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A B S T R A C T

White matter hyperintensity (WMH) burden is a critically important cerebrovascular phenotype linked to prediction of diagnosis and prognosis of diseases, such as

acute ischemic stroke (AIS). However, current approaches to its quantification on clinical MRI often rely on time intensive manual delineation of the disease on T2

fluid attenuated inverse recovery (FLAIR), which hinders high-throughput analyses such as genetic discovery.

In this work, we present a fully automated pipeline for quantification of WMH in clinical large-scale studies of AIS. The pipeline incorporates automated brain

extraction, intensity normalization and WMH segmentation using spatial priors. We first propose a brain extraction algorithm based on a fully convolutional deep

learning architecture, specifically designed for clinical FLAIR images. We demonstrate that our method for brain extraction outperforms two commonly used and

publicly available methods on clinical quality images in a set of 144 subject scans across 12 acquisition centers, based on dice coefficient (median 0.95; inter-quartile
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range 0.94–0.95; p < 0.01) and Pearson correlation of total brain volume (r=0.90). Subsequently, we apply it to the large-scale clinical multi-site MRI-GENIE study

(N=2783) and identify a decrease in total brain volume of −2.4 cc/year. Additionally, we show that the resulting total brain volumes can successfully be used for

quality control of image preprocessing.

Finally, we obtain WMH volumes by building on an existing automatic WMH segmentation algorithm that delineates and distinguishes between different cere-

brovascular pathologies. The learning method mimics expert knowledge of the spatial distribution of the WMH burden using a convolutional auto-encoder. This

enables successful computation of WMH volumes of 2533 clinical AIS patients. We utilize these results to demonstrate the increase of WMH burden with age

(0.950 cc/year) and show that single site estimates can be biased by the number of subjects recruited.

1. Introduction

White matter hyperintensity (WMH) burden is a clinically important

and highly heritable cerebrovascular phenotype (Atwood et al., 2004;

Debette and Markus, 2010). Utilizing magnetic resonance imaging

(MRI), WMH can be readily identified on T2 fluid attenuated inverse

recovery (FLAIR) images due to the increased contrast (DeCarli et al.,

2005). FLAIR is a common MRI sequence used for clinical assessment in

acute ischemic stroke (AIS) patients. Additionally, WMH burden has

been linked to cerebrovascular disease outcomes (Wardlaw et al.,

2013), especially in ischemic stroke (Smith, 2010), where the under-

lying genetic effects are still largely unknown (Giese et al., 2017).

Manual or semi-automatic methods for delineating WMH are labor in-

tensive and time consuming, making them impractical in large-scale

studies. Fully automatic approaches are therefore necessary to enable

genetic discovery based on image-derived phenotypes in large-scale

studies.

Recently, several groups have presented automatic algorithms to

identify and differentiate WMH from other hyperintense signals on T2

MRI (Caligiuri et al., 2015; Dadar et al., 2017). Most algorithms are

developed using research quality scans with isotropic, or close to iso-

tropic, resolution. Additionally, these methods require significant (often

multimodal) preprocessing of the images, such as brain extraction and

spatial normalization to a template (Caligiuri et al., 2015), which is

particularly challenging with clinically acquired data. When imaging

patients hospitalized with acute stroke, isotropic sampling is infeasible

as the increased acquisition time would interfere with demands of acute

clinical care. The resulting images have high in-plane, but low through-

plane resolution, due to large slice thickness and/or spacing between

slices. Subsequently, image analysis steps essential for automatic WMH

delineation often fail, and therefore dedicated workflows (also called

computational pipelines) are required to accommodate clinical images

(Schirmer et al., 2017; Sridharan et al., 2013, 2014).

Segmenting WMH in AIS populations is particularly challenging

(Dalca et al., 2014), as the T2 hyperintense stroke lesion may also be

visible on the FLAIR sequence, and are not separated from the under-

lying WMH burden by most algorithms. Therefore, manual or semi-

automatic protocols have been used to segment WMH in AIS patients

(Cloonan et al., 2015; Etherton et al., 2017). These approaches preclude

large-scale analysis.

In this work, we develop a high-throughput, fully automated WMH

analysis pipeline for clinical grade FLAIR images, which promises to

facilitate rapid phenotypic evaluation and demonstrate our pipeline in a

large-scale multi-site study of AIS patients. The pipeline incorporates:

(a) brain-extraction specifically designed for clinical FLAIR images, (b)

intensity normalization to accommodate for multi-site heterogeneity,

and (c) automatic atlas-based segmentation of WMH in the image. We

introduce a new algorithm for brain extraction, utilize a mean-shift

algorithm for intensity normalization, and build on previously de-

monstrated methods for WMH segmentation in stroke patients (Dalca

et al., 2014). We validate the efficacy of this pipeline on a validation

image set which approximately spans the range of WMH disease burden

and demonstrate the pipeline efficacy in a large multi-site study of AIS

patients, where we analyze WMH volume (WMHv) associations with

age in a cross-sectional AIS study cohort.

2. Methods

2.1. Neuroimaging data

The MRI-GENetics Interface Exploration (MRI-GENIE) study is a

large-scale, international, hospital-based collaborative study of AIS

Fig. 1. Overview of the analysis pipeline for extracting WMH in clinically acquired FLAIR images. Each input image first undergoes brain extraction, followed by

intensity normalization. Images are spatially normalized, i.e. upsampled and affinely registered to an atlas, in order to allow for WMH segmentation with spatial

priors.
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patients (Giese et al., 2017). Approval from the institutional review

board or ethics committee was obtained by each site in line with their

institutional guidelines. Informed consent was obtained for all patients

by the individual sites. FLAIR scans of 2781 patients from 12 sites (7

European, 5 US based) were acquired over a period of more than eight

years, ending 2011, as part of each hospital's clinical AIS protocol. The

axial FLAIR images have a mean resolution of 0.7mm in-plane

(minimum: 0.4mm, maximum: 1.9mm) and 6.3mm through-plane

(minimum: 1.0 mm, maximum: 65.0 mm). Additionally, basic demo-

graphics, such as age and sex, are available for all subjects in the study.

Table A. summarizes the MRI-GENIE data set used in our experiments.

2.2. Validation set

For each acquisition site, we selected 12 subjects approximately

spanning the range of WMH volume based on qualitative assessment,

forming a validation image set (N=144, Table A1). For each subject in

the validation set, the brain and WMH were segmented manually.

‘Manual’ outlines were performed based on a semi-automated method

with high inter-rater reliability (for details, see Chen et al., 2006), after

undergoing a structured training protocol for WMH segmentation,

which demands a high inter-rater agreement (Intra-class Correlation

Coefficient (ICC) of 0.92). In the structured training protocol, each rater

manually segments a set of test cases with a range of WMH disease

burden and the results are subsequently compared to the manual out-

lines of an expert rater. Here, a single rater (K.D.) who passed the

training protocol and with over 2 years of experience has completed the

WMH segmentation. We use these segmentations for quantitative eva-

luation of automatic analysis steps. Table A. also summarizes the vali-

dation set. Methods are developed without access to the validation set,

which is only used once, in order to demonstrate/validate the efficacy

of the proposed methods in previously unseen data.

2.3. Pipeline overview

Each image undergoes brain extraction and intensity normalization,

followed by the WMH segmentation. The WMH segmentation algorithm

identifies white matter disease using atlas-based prior models for spa-

tial distribution of WMH and local intensities in the image (Dalca et al.,

2014). We perform the necessary spatial normalization to an age-ap-

propriate FLAIR template via the affine registration implementation in

the ANTs software package (Avants et al., 2011). Fig. 1 presents an

overview of the fully automatic analysis pipeline for WMH segmenta-

tion in clinical FLAIR images. Implementation was based on a large-

scale processing infrastructure to enable processing of thousands of

scans within parallel deployment systems (Sridharan et al., 2013).

2.4. Brain extraction

We develop a brain extraction method for clinical FLAIR scans

(Neuron-BE) that employs a 2D U-Net convolutional neural network

architecture1 (see schematic in Fig. 2). We first roughly normalize the

intensities of each image, so that the 97th percentile of the image in-

tensities is scaled to 1 and pad the image so that the in-plane resolution

is a multiple of 16. The architecture contains five downsampling levels

and five upsampling levels. Down−/up-sampling is achieved using

2× 2 maxpool/upsample operations. Each level contains two con-

volution layers with 128 features per layer. To optimize the network

parameters, we use the Adadelta stochastic optimizer (Zeiler, 2012)

with mini-batches of size 16. For each batch, we augment the data to

mimic the observed conditions in clinical data. The augmentation in-

cludes random intensity scaling (contrast factor between 0.7 and 1.3),

random ghosting effects (at most 3 “copies” of the brain), as well as

additive Gaussian and Perlin noise (standard deviations of 0.4 and 0.5,

respectively). We learn the network parameters using a supervised in-

dependent training set of 69 subject scans (Zhang et al., 2015; site 3;

non-overlapping data) for which we manually outlined the brain. These

manual outlines include grey matter, white matter, and the four ven-

tricles, and were generated by tracing the outer boundary between grey

matter and CSF. Given learned parameters, we apply our convolutional

neural network to a subject's FLAIR image. Each axial slice, with the

two directly adjacent slices of the FLAIR image serve as input to the

algorithm. Additionally, we close holes in the resulting segmentation

mask, and identify the largest connected component as the brain mask

(Van der Walt et al., 2014).

To assess the efficacy of the brain extraction on clinical scans, we

compare results of Neuron-BE and two publicly available methods

(ROBEX (Iglesias et al., 2011) and FSL BET (Smith, 2002)), within our

validation set. For each resulting segmentation, we compute volume

overlap (via Dice coefficient (Dice, 1945)) and correlation of total vo-

lumes estimates (via Pearson's correlation coefficient and after outlier

removal based on the modified z-score on the volume differences) be-

tween manually and automatically generated brain masks.

2.5. Intensity normalization

Tissue intensity values vary substantially across FLAIR scans.

Intensity normalization is therefore useful for harmonization across

scanners and imaging sites. However, WMH can lead to failure of tra-

ditional histogram normalization (Sridharan et al., 2013). Therefore,

after brain extraction we use a mean-shift algorithm (Cheng, 1995) to

determine the mode of intensity distribution that corresponds to the

average white matter intensity in each scan (Sridharan et al., 2013).

Brain extraction is an essential first step for intensity normalization, to

ensure that “background” intensities, originating e.g. from the skull,

eyes or neck, are not taken into account in the estimation of the mode.

Image intensity values are rescaled, so that the mode maps to an in-

tensity of 0.75.

We assess intensity normalization using the validation set by using

the intensity value estimated via the mean-shift algorithm and the

corresponding full width half maximum (FWHM) of the peak in the

intensity histogram of the total brain volume to mark potential white

matter voxels. These outlines can be used to confirm visually that the

majority of voxels in these masks correspond to white matter, enabling

qualitative visual assessment of the intensity normalization in each

subject of the validation set. Additionally, we visually assess the cu-

mulative white matter masks of the 144 subjects in template space after

affine registration.

2.6. Automatic WMH segmentation

We build on an existing automatic WMH segmentation algorithm

(Dalca et al., 2014) to delineate and distinguish different cere-

brovascular pathologies on brain MRI. The algorithm is derived from a

generative probabilistic model that describes T2 FLAIR image in-

tensities of WMH and stroke lesions. The model captures disease priors

using a convolutional auto-encoder that mimics experts' knowledge of

the spatial distribution of WMH (see schematic in Fig. 3). The auto-

encoder contains four sets of convolution layers, max-pooling and

down-sampling layers, a dense layer to capture spatial covariance and

create a fixed-length encoding, and four sets of convolution and up-

sampling layers. It uses the ReLu activation function on all convolution

layers. We optimize the parameters of the neural network using an

independent set of manual WMH outlines (Zhang et al., 2015; 699/91/

90 outlines used for training/validating/testing; site 3; non-overlapping

data) via stochastic updates with the Adadelta optimizer (Zeiler, 2012).

In order to employ spatial priors, we interpolate each input scan

using bi-cubic upsampling (Jones et al., 2014) and register the

1Neuron-BE is implemented by building on the tensorflow-based open-source

neuron library found at http://github.com/adalca/neuron (Dalca et al., 2018)
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upsampled image to age-appropriate FLAIR template (1 mm3, dimen-

sions: 182, 218, 182 in x, y, and z; Schirmer et al., 2018) using affine

alignment (Avants et al., 2011). We assess registration efficacy by cal-

culating the Dice coefficient between each subject's brain mask and the

brain mask of the template. The upsampled, registered flair image is

then used as input to the segmentation algorithm.

Additionally, we evaluate the efficacy of the automated WMHv

quantification on the validation data set using Pearson's correlation

coefficient, a linear model between manual and automatic WMHv (log

(automated WMHv)= slope * log(manual WMHv)), the corresponding

mean squared error (MSE), as well as the ICC as measures of agreement

with manual segmentations. Furthermore, we assess the residuals

(variations of the automatically estimated WMHv from the manual) for

trends based on the age and sex phenotypes.

2.7. Quality control (QC) in the MRI-GENIE image set

As a first step of QC, we determine outliers based on both the in-

Fig. 2. The Neuron-BE architecture, based on the UNet, contains five downsampling levels and five upsampling levels, achieved using 2× 2 maxpool/upsample

operations (blue arrows). Each level contains two convolution layers with 128 features per layer. To optimize the network (convolution) parameters, we use the

Adadelta stochastic optimizer with mini-batches of size 16. (For interpretation of the references to color in this figure legend, the reader is referred to the web version

of this article.)

Fig. 3. Architecture for automated WMH segmentation. The model first captures disease priors using a convolutional auto-encoder (top) that mimics experts'

knowledge of the spatial distribution of WMH. The auto-encoder contains four sets of convolution layers, max-pooling layers, a dense layer (black arrow) to capture

spatial covariance and create a fixed-length encoding, and four sets of convolution and up-sampling layers. We use ReLu activation function on all convolution layers.

The inference network (bottom) uses this (fixed) prior by taking an input scan and projecting down to an encoding using a similar architecture as above with

independent parameters, before using the prior decoder weights to yield a segmentation from this encoding.
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plane and through-plane resolution for all scans using the modified z-

score with a threshold of 3.5 (Iglewicz and Hoaglin, 1993). Ad-

ditionally, we flag scans with low slice numbers (≤3). The detected

potential outliers are flagged for visual evaluation, where the user can

determine if they represent valid data or if they should be excluded

from subsequent analyses.

After brain extraction, we detect and eliminate potential outliers by

examining the modified z-scores computed on total brain volume based

on the extracted brain masks. Here, total brain volume is defined as

grey matter, white matter, and the four ventricles. In addition to the

site-based modified z-score (threshold 3.5), we model brain volume

changes with age as

= ∗ +m by age , (1)

where y is the brain volume, and m and b the regression parameters.

Parameters are estimated using the Python package numpy (Ascher

et al., 1999). We use this model and the standard deviation of its re-

siduals, to determine age-based outliers. Outliers are defined as brain

volumes more than two standard deviations away from the model es-

timate. Similar to the initial QC step with respect to the image resolu-

tion, we flag subjects for manual QC, which helps detect potential er-

roneous WMH segmentations due to incomplete brain extraction.

Finally, after processing the remaining images, three raters randomly

select two WMH outlines per site and qualitatively assess the quality of

the resulting segmentations.

2.8. WMHv analysis in MRI-GENIE image set

We investigate the extracted WMHv for each individual site and

compare them to the pooled data set, comprising all subjects of all sites,

by computing the distributions of WMHv. In addition, we estimate the

coefficient of change in WMHv with age for the pooled data set and

investigate the effect of sample size. To do so, we model the association

of the natural log-transformed WMHv as a linear function of age (see

Eq. (1)). Additionally, we calculate uncertainty (standard deviation) of

the determined coefficients of change for each site using a 10-fold split

of the data for each site and a subsequent leave-one-fold-out approach.

3. Results

3.1. Validation set

We first characterize the distribution of volumes of WMH obtained

from manual delineation in the validation set. Fig. 4 (left) shows the

histogram of WMHv across subjects (0.24–119.98 cc).

3.2. Brain extraction

Fig. 5 shows the volume overlap between the automatically

extracted brain mask and the manual brain segmentation for ROBEX

(Iglesias et al., 2011), BET (Smith, 2002) and Neuron-BE on the vali-

dation set scans.

Median volume overlap (inter-quartile range (IQR)), as measured by

the Dice coefficient, was 0.92 (0.94–0.89), 0.92 (0.94–0.89) and 0.95

(0.95–0.94) for ROBEX, BET and Neuron-BE, respectively. We remove

outliers using the modified z-score on the volume difference between

total volume estimates obtained from automatic segmentations and

those extracted from manual segmentations (3, 8 and 14 subjects for

Neuron-BE, ROBEX and FSL BET). Correlations were subsequently es-

timated to be 0.94, 0.80 and 0.75 for Neuron-BE, ROBEX and FSL BET

(p < 0.01 for all correlations), respectively.

Neuron-BE also helps us identify outliers with substantial imaging

artefacts. We find two gross outliers in the brain extraction using

Neuron-BE due to motion and ghosting effects. Severe motion corrup-

tion or ghosting effects can prevent accurate WMH segmentation. We

therefore flag these scans as potentially problematic for WMH seg-

mentation. Computing z-scores for outlier detection identifies both of

these scans as outliers in the case of NEURON-BE, but not for ROBEX or

FSL BET. Upon visual inspection, the remainder of the scans did not

show any motion corruption or ghosting artefacts.

Based on these results, we use Neuron-BE for the remainder of the

analysis and incorporate a quality control step based on brain volume.

This enables us to obtain accurate brain extraction results on clinical

data while being able to remove images where resulting WMH seg-

mentations are ill-defined due to image quality.

3.3. Intensity normalization

Fig. 6a shows an example of the estimated white matter intensity

using the mean shift algorithm, and full-width-half-maximum (FWHM)

of the distribution peak. The resulting “white matter mask” is shown in

Fig. 4b. Finally, Fig. 4c shows the cumulative white matter mask in atlas

space.

Visual inspection of the white matter masks on all 144 subjects of

the validation set and the cumulative white matter mask suggest that

the average white matter intensity estimates are accurate and can be

used to normalize image intensity across sites. We normalize each

subject's FLAIR image intensities, by scaling the intensity distribution so

that the mean white matter intensity equals 0.75.

3.4. Automatic WMH segmentation

We spatial normalize the clinical scans by first upsampling each

scan, and affinely registering the result image to the FLAIR atlas. The

Dice coefficient of the brain masks of each affinely registered subject

scan compared to the brain mask of the template were 0.93 ± 0.01

(mean ± standard deviation). We apply the automatic WMH segmen-

tation algorithm to each affinely registered scan. Fig. 7 shows the

Fig. 4. WMHv in the validation set based on manual segmentations of WMH (144 subjects, 12 per site). Left: Distribution of WMHv. Right: Comparison of left and

right hemispheric WMHv (Wilcoxon: p < 0.05).
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comparsion of WMHv (ICC=0.84, Pearson r=0.86 with p < 0.001)

between manual and automatic outlines (left), as well as the residuals

(right), for the validation set.

When assessing the residuals of the volume comparison between

manual and automated volumes with respect to biases due to differ-

ences in age and sex, we did not find any trends in the data. These

results suggest that the algorithm can accurately segment WMH in

clinical data, facilitating WMH analysis in the entire MRI-GENIE data

set.

3.5. Quality control in the MRI-GENIE image set

In total 107 scans (4% of the data) are identified as potential out-

liers based on assessment of the modified z-score (in- and through-plane

resolutions) and those with low slice numbers. Visual inspection iden-

tifies 10 incorrectly flagged scans. The remaining 97 scans had a low

number of slices (≤3), were different sequences (such as MR angio-

graphy, DWI or T1), or included large motion artefacts. These 97 scans

(3% of the data) were excluded, leaving 2684 scans for the remaining

analysis.

The QC of the automatic analysis pipeline identified potentially

erroneous segmentation based on brain extraction. We identified 32

(1%) scans as potential outliers, based on the modified z-score assess-

ment for each site. Further investigation revealed that 3 scans (9% of

outliers) were considered outliers due to large motion artefacts, which

resulted in removal of large areas of the brain during brain extraction.

The majority (n=26; 81% of outliers) were images with a different

slice direction (25 coronal scans and 1 sagittal scan). Other problems

included wrong acquisition contrast or small brain extraction errors,

where parts of the skull and/or eyes were included in the brain mask.

Model (1) of the association of brain volume with age yielded an

estimated slope of −2.4 cc/year and an offset of 1630.8 cc using linear

regression. The standard deviation of the residual was 167.5 cc. Fig. 8

reports the extracted brain volumes for all subjects, the association of

brain volume with age, including two standard deviation for outlier

detection. The assessment of how many subjects fall outside the two

standard deviations resulted in 163 (6%) flagged subjects.

All previously identified outliers in the per-site analysis were also

included in this set. Manual assessment of the flagged images showed

that 8 (5%) of these scans present with large motion artefacts and 62

(38%) of scans showed small errors, such as incomplete brain extrac-

tion. Of all flagged subjects, 10 (6%) were unnecessarily labelled as

outliers. The remaining 83 (51%) of scans have wrong acquisition di-

rection (axial requested, sagittal (3; 2%) and coronal (72; 44%) pro-

vided, resulting in insufficient stripping of the neck) and other issues (8;

5%). Fig. 9 reports site-specific distributions of the estimated brain

volume for each imaging site in the study and indicates the flagged

images using the site-based and age-based outlier detection.

Overall, 250 subjects (9% of the data) were deemed to be outliers

and removed from the analysis. The remaining 2533 subjects (91% of

the data) were used to extract WMHv for analysis. As the last QC step,

three experts selected two subjects per site at random to sample and

manually assess the quality automated WMH outlines. Visual assess-

ment by the raters suggests good agreement of what they would expect

to be outlined in these scans.

Fig. 5. Volume overlap distributions between the automatically extracted brain mask and a manual brain segmentation in the validation set for ROBEX, FSL BET and

Neuron-BE. Comparisons between methods are based on paired t-tests. Median Dice coefficient were 0.92, 0.92 and 0.95 for ROBEX, FSL BET and Neuron-BE,

respectively.

Fig. 6. a: Example intensity distribution for one subject with the estimated mean white matter intensity (solid red line) and full width half maximum (FWHM; dashed

lines). b: Axial slice of the corresponding FLAIR image. Voxels whose image intensity is equal to the estimated mean white matter intensity are shown in yellow;

voxels whose image intensity falls into FWHM range are shown in purple. c: Cumulative white matter mask in atlas space for all 144 subjects.
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3.6. WMHv analysis in MRI-GENIE image set

Fig. 10 shows the distribution of WMH for each site, in comparison

to the global WMH distribution. All sites follow similar trends com-

pared to the pooled WMHv distribution.

Fig. 11 shows the age-dependent association of the WMHv in the

MRI-GENIE cohort, as well as each individual site. Linear regression

results in an estimated slope of 0.051 ln(cc)/year, corresponding to an

increase of 0.950 cc/year. We find higher deviation from the pooled

estimate for sites with less subjects. Table 1 summarizes the results

stratified by site.

4. Discussion

Automatic WMH segmentation and WMHv quantification in clinical

populations is crucial for elucidating mechanisms, biomarkers and ge-

netic effects in complex diseases such as stroke. In this work, we de-

veloped, validated, and implemented a fully automatic pipeline for

segmenting WMH in clinical FLAIR images of AIS patients admitted to

the hospital. We applied the pipeline to a large-scale international

multi-site clinical dataset and investigated associations of WMHv with

age at the time of stroke.

We assessed the efficacy of the presented pipeline in a validation set

of 144 images. WMHv computed from automatic segmentations shows

good agreement with that estimated from manual segmentations

(ICC=0.84; Pearson r=0.86, slope=0.95). We find a larger dis-

agreement in scans with higher WMH burden. Visual assessment

revealed that the automatic WMH segmentation appears to under-

segment in these cases. A likely reason is an underrepresentation of

subjects with high WMH burden in the training set of the algorithm. In

the 2533 subjects that passed QC, fewer than 9% of WMHv were esti-

mated to be above 20 cc. Future work may include augmenting training

of the automatic WMH segmentation by including more of the high-

burden WMH cases.

The processing pipeline is designed to be highly parallelizable,

where each subject can be independently processed. A key strength of

our approach is the processing speed, where the disease burden esti-

mate takes, on average, 3.6 min (estimated using the validation set on a

local machine; HP Z240 Tower Workstation; 64-bits Ubuntu 18.04

operating system; Intel Xenon CPU E3-1230 v5 @ 3.4 GHz; 32 GB RAM,

without the use of a GPU for inference). This further demonstrates the

potential translatable aspect of our pipeline to the clinic.

A key contribution of this paper is the preprocessing steps of the

analysis pipeline and QC of clinical images. We presented a deep-

learning based brain extraction algorithm, which outperforms two of

the commonly used and publicly available methods. Outliers due to

extreme motion/ghosting artefacts can be identified in the results of our

method, as they can result in incomplete or too aggressive stripping of

non-brain matter. While this may be considered a shortcoming of the

algorithm, it enables us to implement a QC step of preprocessing and

the overall scan quality in large clinical cohorts. We presented two

methods of using the estimated brain volumes for QC, where the esti-

mation of age-dependent total brain volume in our cohort demonstrated

to be a more rigorous QC criterion compared to site-based modified z-

Fig. 7. Evaluation of automated and manual WMHv (natural log-transformed). Left: Scatter-plot between automatically and manually determined WMHv (Pearson

r=0.86), with the linear fit and 95% confidence interval (orange). Right: Histogram of residuals.

Fig. 8. Association of brain volume with age, esti-

mated using automated brain extraction via Neuron-

BE for each subject. The solid black line is the esti-

mated linear trend in brain volume with age. Dashed

lines represent 2 standard deviation differences from

the linear trend, used for outlier (red) detection. (For

interpretation of the references to color in this figure

legend, the reader is referred to the web version of

this article.)
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score estimates. We flagged scans as potential erroneous results in the

preprocessing, and performed manual assessment. This is an important

step, as errors in brain extraction can lead to subsequent errors in WMH

estimation (see Appendix A.1). Future improvements in brain extrac-

tion could include allowing for both sagittal and coronal scans as in-

puts, as well as accounting for motion artefacts. However, as WMH

burden is clinically best appreciated on axial slices, this might not be

beneficial for assessment of WMHv.

We used an intensity normalization step, which is particularly im-

portant when working with data acquired across various sites and time,

and necessary for intra-site analyses. We showed its efficacy on our

validation set where average intensities of white matter were success-

fully normalized to the same value across subjects and sites.

Applying our pipeline to a large clinical multi-site cohort, we ex-

tracted WMHv automatically from 2533 subjects. Random sampling

and assessment of WMH outlines showed good results when assessed by

expert raters. Additionally, the WMHv showed expected, approximately

exponential distributions for each site. By assessing changes of WMHv

with age in this cross-sectional setting, we observe a general WMHv

increase with age. Investigating the estimates on a per-site basis, we see

higher deviations from the pooled result in sites with lower number of

subjects. In future studies, these sites may benefit from being combined

to form bigger cohorts, in order to obtain more appropriate re-

presentation of the disease burden.

There are several assumptions of this pipeline that merit further

consideration. First, it assumes consistent (axial) imaging across the

image set. While WMH is best appreciated on these images, occasion-

ally scans are acquired in the sagittal or coronal directions. Future

developments to allow other acquisition directions could help recover

these images, although studies employing sagittal or coronal imaging

directions have to carefully account for the subsequent uncertainties in

WMHv. Second, we employ affine rather than deformable spatial

normalization. While our results show good agreement with manual

outlines, deformable registration may further improve the efficacy of

spatial atlas-based priors. Non-linear registration of clinical images,

however, is a difficult problem due to the low image quality (Sridharan

et al., 2013), potentially leading to gross registration errors, as well as

increased computational cost. Third, the main goal of this study was to

automate volumetric analysis of WMHv in hospital cohorts of stroke

patients. While we focused on the evaluation of accuracy with respect

to volumes using the Pearson correlation coefficient, other study may

want to utilize the segmentations directly. There are multiple metrics

for evaluating the agreement between automated and manual seg-

mentation (Taha and Hanbury, 2015; Wack et al., 2012), including the

outline error rate (OER) or the detection error rate (DER); however no

consensus has been reached as to which best describes the performance

of algorithm. Importantly, the upper bound as to how good an algo-

rithm performs is given by the inter-rater reliability between expert

raters. In this study our rater passed the training with an ICC of 0.92,

however, due to high effort intensity of manual outlines, we only had

segmentations of one expert rater for comparison and could therefore

not estimate this upper bound (outline error rate (OER (median (IQR)):

1.00 (0.78–1.22)); DER (median (IQR)): 0.18 (0.05–0.62)). Finally, the

study design does not allow for a full evaluation of age-related (i.e.,

brain atrophy) effects on our analysis, nor are there previously ex-

ternally validated data available to use as a “gold standard” in testing

some of the assumptions (e.g., total brain volume distribution among

the stroke populations), which is a potential limitation, but also pre-

sents an opportunity to future studies.

The strengths of the presented methodology include: (a) the utili-

zation of a large, multi-site, hospital-based cohort of AIS patients with

clinical imaging data, as it is acquired in the emergency room; (b) a

novel, brain extraction tool for clinical grade FLAIR images based on

Unet architecture; (d) the incorporation of simple, automated QC steps

Fig. 9. Site-specific distribution of the estimated total brain volume. Red and purple indicate outliers detected using a site-specific and age-based outlier detection,

respectively. All site-specific outliers were also identified by the age-based method.
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for large scale image processing; (d) the adaptation and evaluation of a

WMH segmentation algorithm, also based on Unet architecture, speci-

fically designed for hospital-based imaging of AIS patients; (e) the low

computational cost offering a translatable aspect; and (f) the estimation

and evaluation of the association between WMHv and age in over 2500

AIS patients, including an evaluation based on sample size per imaging

site.

In conclusion, the presented WMH segmentation pipeline was de-

monstrated on highly heterogeneous large-scale multi-site data. We

applied it to the MRI-GENIE study to demonstrate that its applicability

to real-world clinical data, specifically in the acute stroke phase in the

hospital. Our method shows promise for future studies that utilize the

vast and often under-utilized clinical data to aid phenotypic studies.

The resulting phenotypes are not affected by inter-rater variability,

which may help reduce variability in follow-up studies, helping to de-

termine additional risk factors for stroke patients. Large studies of

WMHv can, for example, elucidate genetic influences, as well as WMH

pattern relating to various diseases and phenotypic variables. This work

will enable new avenues of research and help advance current knowl-

edge of risks and outcomes in AIS patients.

Fig. 10. WMHv distributions per individual MRI-GENIE sites (blue histogram), as well as distribution of the combined 12 sites (red line). (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 11. Association of WMHv with age. Left: Regression of log-transformed pooled WMHv from all sites. Right: Association of WMHv against the number of subjects

per site. Error bars for each site are computed using a 10-fold split of the data for each site and using a leave-one-fold-out approach to estimate the standard

deviations of the coefficient of change. The solid blue bar represents the estimate and standard deviation using all subjects. (For interpretation of the references to

color in this figure legend, the reader is referred to the web version of this article.)
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Appendix

A.1. Cohort characterization

Table A1
MRI-GENIE patient cohort. Statistically significant group differences between sites were assessed using ANOVA (age) and χ

2 tests (sex and prior stroke). All tests

between the individual sites were found to be significant (p < 0.001). For the validation set only prior stroke was found to be statistically significant (p < 0.01),

when compared to the remainder of all subjects.

Site N Mean (sd) age Sex (% male) % prior stroke

All 2783 63.28 (14.70) 61.0 10.6

01 351 65.32 (15.07) 61.3 0

02 202 64.59 (14.44) 48.5 28.7

03 452 64.89 (14.48) 64.4 14.5

04 253 61.98 (13.83) 62.1 12.6

05 61 42.08 (6.59) 78.7 0

06 120 70.05 (10.93) 62.5 17.6

07 64 64.23 (16.12) 53.1 25

08 289 63.58 (13.41) 72.0 19.7

09 188 52.38 (11.58) 60.1 9.6

10 210 60.54 (13.85) 52.4 9.5

11 148 62.71 (13.09) 60.8 0

12 445 67.02 (14.63) 58.2 1.8

Validation set 144 62.01 (16.85) 59.7 18.2

A.2. Effects of errors of brain extraction on WMH burden estimation

The presented segmentation algorithm relies on spatial correspondence to allow the use of symmetry priors of WMH burden for excluding

hyperintense regions caused by the acute stroke, which do not reflect the underlying chronic disease. Incomplete brain extraction, however, can

affect the registration of a patient's MRI to the template and subsequently lead to errors in estimation of the WMH burden. To assess these potential

errors, we utilized the manual brain segmentations of the validation set and systematically disturbed the brain segmentations, by randomly adding

discs of various sizes to the boundary of the brain masks on a per slice basis. Fig. A1 illustrates the principle of the disturbances.

Table 1

Summary of quantitative results in this study with the cohort as a whole and stratified by site. N is the number of subjects remaining after QC in relation to initial

number of subjects (Ntotal). The corresponding characteristics (mean ± standard deviation) include age, brain volume, WMHv and association of WMHv with age,

characterized by parameter m in Eq. (1).

Site N/Ntotal Age (years) Brain volume (cc) ln(WMHv (cc)) Association

ln(WMHv (cc)) ~ age (years)

All 2533 63.38 ± 14.58 1471.65 ± 150.86 1.66 ± 1.35 0.051 ± 0.001

01 335/351 64.85 ± 15.00 1465.38 ± 139.58 1.84 ± 1.27 0.047 ± 0.002

02 150/202 65.21 ± 13.49 1444.81 ± 144.42 2.06 ± 1.25 0.051 ± 0.002

03 448/452 65.06 ± 14.36 1471.24 ± 151.98 1.70 ± 1.30 0.051 ± 0.001

04 241/253 61.78 ± 13.82 1451.94 ± 144.94 1.85 ± 1.12 0.038 ± 0.001

05 59/61 42.59 ± 5.80 1451.94 ± 144.94 0.45 ± 1.09 0.065 ± 0.007

06 110/120 70.15 ± 11.10 1512.19 ± 139.58 2.30 ± 1.13 0.042 ± 0.003

07 60/64 64.60 ± 15.71 1463.68 ± 153.96 1.56 ± 1.91 0.081 ± 0.002

08 208/289 63.89 ± 12.91 1439.15 ± 140.96 1.69 ± 1.33 0.049 ± 0.002

09 159/188 52.28 ± 11.68 1514.68 ± 142.48 0.81 ± 1.54 0.071 ± 0.002

10 202/210 60.43 ± 13.63 1420.39 ± 131.28 1.55 ± 1.24 0.052 ± 0.002

11 127/148 62.71 ± 13.01 1523.09 ± 157.05 1.62 ± 1.31 0.047 ± 0.003

12 434/445 67.12 ± 14.45 1483.62 ± 152.30 1.62 ± 1.33 0.048 ± 0.001
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Fig. A1. Example of increasing disturbances of the brain segmentation (top) and resulting brain extracted image (bottom) for a single and multiple disturbances with

a diameter of 250 voxels.

We investigated 1, 10, 100, and 250 disturbances with diameters of 25, 51, 75, 101, and 125 voxels. Centers of the discs were randomly selected

on the boundary of the manual brain mask and the analysis was repeated 5 times for each combination of number of disturbances and diameters.

Additionally, we investigated the case of not executing brain extraction, referred to as maximum disturbance (max). The results are summarized as

relative error, given by.

= −Relative error WMHv WMHv WMHv(%) | |/ ,original distrubed original

where the original WMHv was estimated by our algorithm with the undisturbed brain mask and the disturbed WMHv was estimated using each of the

disturbed masks. The results are shown in Fig. A2, and demonstrate that small disturbances result in a median relative error of under 12% in WMHv

estimation (see Fig. A2 C), where errors increase with increasing errors in brain extraction.
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Fig. A2. Systematic evaluation on WMH burden estimation with respect to errors in brain extraction. Results are summarized as median relative error across subjects

and repetitions. Error bars correspond to the IQR.
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