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Abstract

The structure of the human brain changes in several ways throughout childhood and adolescence. Perhaps the most salient of
these changes is the strengthening of white matter tracts that enable distal brain regions to communicate with one another more
quickly and efficiently. Here, we sought to understand whether and how white matter changes contribute to improved reasoning
ability over development. In particular, we sought to understand whether previously reported relationships between white matter
microstructure and reasoning are mediated by processing speed. To this end, we analyzed diffusion tensor imaging data as well
as data from standard psychometric tests of cognitive abilities from 103 individuals between the ages of 6 and 18. We used
structural equation modeling to investigate the network of relationships between brain and behavior variables. Our analyses
provide support for the hypothesis that white matter maturation (as indexed either by microstructural organization or volume)
supports improved processing speed, which, in turn, supports improved reasoning ability.

Introduction

The construct of ‘fluid’ reasoning represents flexibility of
thought – the ability to solve problems and think
logically even in new or unfamiliar settings (Cattell,
1987). For a growing child, the emergence of reasoning
skills serves to scaffold the acquisition of new skills and
knowledge (Blair, 2006; Cattell, 1971, 1987; Goswami,
1992). Indeed, prior research indicates that reasoning
skills in childhood serve as a strong predictor of later
academic achievement and even professional success
(Gottfredson, 1997). This important facet of human
cognition is often, as in the present study, assessed with
standardized tests of visuospatial reasoning ability.

Existing work on the development of reasoning has
focused on individual differences in its trajectory over
time (McArdle, Ferrer-Caja, Hamagami & Woodcock,
2002) or on relations to other facets of cognitive ability

(Fry & Hale, 2000; Conway, Cowan, Bunting, Therriault
& Minkoff, 2002; Salthouse, 1996; Salthouse, Babcock &
Shaw, 1991). Still other work, involving functional
magnetic resonance imaging (fMRI), has focused on
the specific brain regions that are active while adults
engage in tests of reasoning (for review, see Krawczyk,
2012), or differences in reasoning-related activation
between children and adults (Crone, Wendelken, Don-
ohue, van Leijenhorst & Bunge, 2006; Choi, Shamosh,
Cho, DeYoung, Lee, Lee, Kim, Cho, Kim, Gray & Lee,
2008; Eslinger, Blair, Wang, Lipovsky, Realmuto, Baker,
Thorne, Gamson, Zimmerman, Rohrer & Yang, 2009;
Wright, Matlen, Baym, Ferrer & Bunge, 2009;
Dumontheil, Houlton, Christoff & Blakemore, 2010;
Wendelken, O’Hare, Whitaker, Ferrer & Bunge, 2011).

While informative in its own right, this fMRI research
also serves as a road map for more extensive investiga-
tions into the relationships between changes in brain
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structure and reasoning ability over the course of
development. The present study makes use of structural
brain imaging data to explain why reasoning ability is
subserved by a basic cognitive ability referred to as
processing speed.

Development of reasoning ability

The capacity for reasoning begins to emerge in the first
two or three years of life (Cattell, 1971, 1987), after the
development of general perceptual, attentional, and
motoric capabilities (Horn, 1991; Horn & Noll, 1997).
The psychometric literature indicates that reasoning
ability increases throughout childhood and adolescence,
peaking in very early adulthood and declining subse-
quently (McArdle et al., 2002). This pattern of growth
and decline has been characterized by a double expo-
nential function (McArdle et al., 2002), with features
similar to the patterns followed by other cognitive
abilities such as processing speed up to adolescence
(Kail, 1991; Kail & Ferrer, 2007; Kail & Park, 1992).
According to this mathematical description, reasoning
grows rapidly in early and middle childhood, continues
to increase though at a slower rate in late childhood and
early adolescence, and reaches asymptotic values in mid-
adolescence, after which it begins to decline.
Although these mathematical functions are elegant

and parsimonious in describing the changes of reasoning
over development, the mechanisms underlying such
changes are still unknown. Here, we sought to test
whether a key aspect of brain development, white matter
maturation, could account for changes in reasoning both
directly and indirectly through effects on a more basic
cognitive variable, namely the speed of cognitive pro-
cessing.
Behavioral studies measuring concurrent relationships

between cognitive abilities in children or adults have
pointed to processing speed as a key mediator of
reasoning. The speed and efficiency with which material
can be processed, be it external stimuli or self-generated
thoughts, strongly influences the recruitment of this
information for complex cognition (Kail & Salthouse,
1994). Processing speed can be thought of as a bottle-
neck of reasoning development: the integration of
multiple stimuli, which characterizes high-level cognitive
processing, cannot occur until these stimuli can be
individually understood. Processing speed not only
correlates with performance on a broad range of
cognitive tasks (Kail & Salthouse, 1994; Li, Lindenber-
ger, Hommel, Aschersleben, Prinz & Baltes, 2004;
Salthouse, 2005; Wechsler, 1999), but also with age-
related changes throughout the life span (Kail, 1991;
Salthouse, 1996).

Structural brain changes supporting the development of
reasoning

Performance of even the most basic of tasks requires
coordinated neural activity across distant brain regions.
Thus, an individual’s processing speed capacity must be
related to the speed of neural signaling within and
between brain regions in his or her brain. The long-range
transmission of information across distributed brain
networks is made possible by the presence in the brain of
myelin, a fatty sheath that surrounds and insulates the
long axons of neurons that project from one brain region
to another. Myelin prevents signal degradation over the
relatively long distances between distal cortical regions,
and supports the high degree of temporal precision and
fidelity of signaling that is critical for brain function.
The development of complex cognition relies heavily

on the maturation of these structural connections. Both
the thickness and degree of myelination of white matter
fiber tracts affect action potential conduction speed
(Guti�errez, Boison, Heinemann & Stoffel, 1995; Tolhurst
& Lewis, 1992; Waxman, 1980). Histological studies
comparing post mortem brains from subjects of different
ages have shown increases in myelin through childhood
and adolescence, and even into the third decade of life
(Yakovlev & Lecours, 1967). In addition, recent work
using diffusion tensor imaging (DTI, explained in detail
in the methods section) has provided an indirect measure
of white matter maturation in vivo (Lebel, Walker,
Leemans, Phillips & Beaulieu, 2008; Lebel & Beaulieu,
2011). DTI provides an index of the organization of
white matter: i.e. the extent to which axons follow
coherent pathways, as well as the degree to which these
axons are myelinated (Beaulieu, 2002).
Individual differences in both processing speed and

reasoning have been linked to white matter organization
(WMO) throughout the brain. Significant correlations
between processing speed and WMO have been reported
for the parietal and temporal lobes as well as in the
connections between these posterior brain regions and
lateral prefrontal cortex (Turken, Whitfield-Gabrieli,
Bammer, Baldo, Dronkers & Gabrieli, 2008). Likewise,
correlations between reasoning and WMO have been
reported for numerous white matter tracts (Chiang,
Barysheva, Shattuck, Lee, Madsen, Avedissian, Klunder,
Toga, McMahon, de Zubicaray, Wright, Srivastava,
Balov & Thompson, 2009).
Our goal in this study was to investigate the mediating

effect of cognitive processing speed between white matter
organization and reasoning ability. Given the strong
involvement of lateral prefrontal and parietal cortices in
reasoning (for review see Krawczyk, 2012), we investi-
gated WMO in bilateral white matter tracts connecting
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these regions. However, because both processing speed
and reasoning have been shown to correlate with WMO
throughout the brain, we also sought to compare
frontoparietal WMO with whole-brain WMO to deter-
mine which would better capture individual differences
in processing speed and reasoning. Finally, we included a
measure of white matter volume (in mm3) as a secondary
index of white matter maturation.

Studies of brain development have shown that
increased WMO over childhood is correlated with better
cognitive performance (for review see Thomason &
Thompson, 2011), and we predicted this pattern for
reasoning ability as well. More specifically, however, we
sought to test whether the relationship between white
matter and reasoning is direct, or whether age-related
changes in white matter are indirectly linked to changes
in reasoning through their effects on processing speed.

To investigate these inter-related variables, all of which
are increasing through this age range, we used structural
equation modeling (SEM). We assumed a causal rela-
tionship from brain to behavior, with WMO affecting
both reasoning and processing speed, and predicted a
direct effect from processing speed to reasoning. SEM
allowed us to construct a latent variable for reasoning
from four separate neuropsychological tests (explained in
detail in the methods section), and we were therefore able
to generalize across four distinct instantiations of
reasoning and minimize the effect of one specific task.
We examined the extent of each relation, and investi-
gated models using multiple measures of white matter
maturation: (1) WMO in the fronto-parietal tract, which
connects brain regions that have been implicated in
reasoning, (2) WMO in the corticospinal tract and the
body of the corpus callosum, control tracts that are
believed to be relatively unimportant for reasoning, (3)
whole-brain WMO, and (4) whole-brain white matter
volume. We predicted that fronto-parietal WMO would
have the strongest relationship with reasoning ability,
reflecting increased speed and fidelity of communication
between lateral PFC and parietal cortex, but that all of
these measures of white matter maturation would be
correlated with processing speed.

A recent paper by Salthouse (2011) called for more
sophisticated statistical analyses when investigating the
interrelated changes of brain, behavior, and age. Struc-
tural equation modeling accommodates the multivariate
nature of this data set, which included latent factors and
multiple manifest variables. It also facilitates the explicit
test of hypotheses concerning the relation between brain
structure and the behavioral data. Only a handful of
studies have used SEM to model the relationship
between DTI data and cognitive performance on a
battery of tasks (Charlton, Landau, Schiavone, Barrick,

Clark, Markus & Morris, 2008; Chiang et al., 2009;
Voineskos, Rajji, Lobaugh, Miranda, Shenton, Kennedy,
Pollock & Mulsant, 2010) and, to our knowledge, no
prior study has used SEM to investigate the role of white
matter maturation in cognitive development through
childhood and adolescence.

Methods

Participants

Participants in this study were individuals from the
Neural Development of Reasoning Ability (NORA) study,
a project designed to examine the behavioral and neural
factors that underlie reasoning. FMRI data from this
cohort have previously been published in Wendelken
et al. (2011). All participants were screened for neuro-
logical impairment, psychiatric illness, history of learn-
ing disability and developmental delay.

Parents completed the Child Behavioral Check List
(Achenbach, 1991) on behalf of their child, and partici-
pants who scored in the clinical range for either external-
izing or internalizing behaviors were excluded from
further analyses. Of the 123 children and adolescents
enrolled in the study who completed the necessary scans
and scored in the normal range on the Child Behavior
Check List, 20 were excluded due to data quality issues,
and 103 (55males) were included in the study. They ranged
in age from 6.2 to 18.9 years (mean 11.6 � 3.7). All
participants and their parents gave their informed assent
or consent to participate in the study, which was approved
by theCommittee for Protection ofHuman Subjects at the
University of California at Berkeley.

Behavioral measures

The behavioral measures used in our longitudinal study
were selected to have very high internal consistency and
test–retest reliability, ranging from .94 to .95 (McArdle
et al., 2002; McGrew, Werder & Woodcock, 1991). For
all five cognitive measures listed below, we used raw
scores in our analyses. Processing speed was measured
using the Cross Out subtest of the Woodcock-Johnson
Tests of Achievement (Woodcock, Mather & McGrew,
2001). This test measures how rapidly and accurately one
can identify, within an array of stimuli, a subset of
geometric shapes that match a sample stimulus.

Visuospatial reasoning ability was assessed using a
combination of measures, including the Matrix Reason-
ing and Block Design sub-tests of the Wechsler Abbre-
viated Scale of Intelligence (WASI; Wechsler, 1999), and
the Analysis Synthesis and Concept Formation sub-tests
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of the Woodcock-Johnson Tests of Achievement (Wood-
cock et al., 2001). Matrix Reasoning, modeled after a
traditional test of ‘fluid’ or non-verbal reasoning,
Raven’s Progressive Matrices (Raven, 1938), measures
the ability to select the geometric visual stimulus that
accurately completes an array of stimuli arranged
according to one or more progression rules. Block Design
measures the ability to arrange a set of red-and-white
blocks in such a way as to reproduce a two-dimensional
visual pattern shown on a set of cards. Analysis Synthesis
measures the ability to analyze the components of an
incomplete logic puzzle and to determine and name the
missing components. Concept Formation measures the
ability to identify and state the rules for concepts when
shown illustrations of both instances and non-instances
of the concept. Reasoning Ability factor scores were
calculated from a factor analysis of these four tests.

Overview of DTI

DTI constitutes an indirect index of neuronal structure
that measures the movement, or ‘diffusion’, of water in
the brain with a diffusion-weighted MRI (DW-MRI)
scan. DW-MRI detects the movement of protons, which
are most commonly found in the brain as part of water
molecules. Within the white matter of the brain, water
molecules diffuse preferentially along axon bundles
because the myelin sheath surrounding the axons
impedes the diffusion of water molecules across it. Water
molecules that have high directionality are said to exhibit
anisotropic diffusion. Within gray matter and cerebro-
spinal fluid, water molecules can move freely in all
directions and thus exhibit isotropic diffusion. Data from
a DW-MRI scan can be fitted to a tensor model (see
Figure 1A). The tensor is a multi-dimensional matrix
that represents the amount of water diffusion in three
orthogonal directions for every voxel in the brain.
Fractional anisotropy (FA) is a widely used measure of

white matter microstructure. It is a scalar measure that
quantifies how directional diffusion is within a voxel (see
Figure 1B for equation). Voxels containing randomly
oriented fibers will have a very small FA (close to 0,
reflecting near-isotropic diffusion), while voxels contain-
ing coherently oriented fibers will have a large FA (close
to 1, reflecting highly anisotropic diffusion). Measure-
ment of these variables can provide clues regarding white
matter tract development (see Figure 1C). When this
index is large, the interpretation is that a single axis of
movement is possible, with restriction of movement in
the accompanying directions (Mori & Zhang, 2006).
Increases in myelination around the neurons generally
decrease movement perpendicular to the axis of greatest
diffusion and thus increase FA. However, it is possible

that an increase in FA could also be caused by an
increase in the number of fibers along the primary axis,
or a reduction in the number of crossing fibers. In the
context of healthy brain development, increases in FA are
thought to reflect increased white matter integrity.

Brain imaging data acquisition and analysis

Data acquisition

Brain imaging data were collected at UC Berkeley on a 3-
T Siemens Trio TIM MR scanner using a 12-channel
head coil with a maximum gradient strength of 40mT/m.
Whole-brain DTI data were acquired using echo-planar
imaging (EPI; TR = 7900 ms; TE = 102 ms; 2.2 mm3

isotropic voxels; 55 axial slices). Parallel acquisition
(GRAPPA) was used with an acceleration factor of 2.

(A) (B)

(C)

(D)

Figure 1 Illustration of tensor model and fractional
anisotropy. A: Tensor model with eigenvectors along three
orthogonal axes. B: Fractional anisotropy (FA) formula. C:
Possible mechanisms for an increase in FA. Both increased
fiber coherence – either from reorganization of existing axons
(shown here) or pruning of axons running in different
directions (not shown) – and myelination would result in an
increased FA. D: Tracts connecting lateral frontal and parietal
cortices in left and right hemispheres generated from this
dataset with probabilisitic tractography.
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One non-diffusion-weighted direction and 64 diffusion-
weighted directions were acquired with a b-value of 2000
s/mm2, uniformly distributed across 64 gradient direc-
tions. A T1-weighted image was also acquired in each
participant for image registration and segmentation
(MPRAGE; TR = 2300 ms; TE = 2.98 ms; 1 mm iso-
tropic voxels).

Assessment of data quality

Both anatomical and DTI scans were assessed visually to
determine scan quality, and subjects with obvious motion
artifact were excluded. Specifically, six participants were
excluded due to low-quality DTI data and eight were
excluded due to low-quality anatomical data. In addition,
six participants were excluded due to miscellaneous
problems during scanning or testing. As is common in
developmental MRI studies, younger participants were
more likely to produce lower quality scans, and were thus
excluded at a higher rate than older participants.

DTI data analysis

Analyses were performed using tools from FDT (for
Functional MRI of the Brain (FMRIB) Diffusion
Toolbox, part of FSL 4.1; Smith, 2002; Woolrich,
Jbabdi, Patenaude, Chappell, Makni, Behrens, Beck-
mann, Jenkinson & Smith, 2009). Brain volumes were
skull stripped using the Brain Extraction Tool (Smith,
2002) and a 12-parameter affine registration to the non-
diffusion weighted volume was applied to correct for
head motion and eddy current distortions introduced by
the gradient coils, and the gradient directions were
rotated accordingly. A diffusion tensor model was fitted
to the data in a voxel-wise fashion to generate whole-
brain maps of fractional anisotropy.

A white matter mask was created from each partici-
pant’s high resolution T1-weighted scan, after brain
extraction, using FAST (FMRIB’s Automated Segmen-
tation Tool; Zhang, Brady & Smith, 2001) which
segments the brain into gray matter, white matter and
cerebral spinal fluid. This mask was transformed into the
subject’s DTI space by applying the inverse of the affine
registration of the non-diffusion-weighted volume to the
high-resolution image. Both the registration and calcu-
lations of the inverse transform used FLIRT (FMRIB’s
Linear Image Registration Tool; Jenkinson, Bannister,
Brady & Smith, 2002). This mask is an independent
definition of white matter voxels in the FA map created
from the DTI acquisition.

We used probabilistic tractography to define tracts
connecting anterior frontal and posterior parietal
cortices within each hemisphere. The cortical regions

were defined from the Harvard-Oxford cortical atlas
(Desikan, S�egonne, Fischl, Quinn, Dickerson, Blacker,
Buckner, Dale, Maguire, Hyman, Albert & Killiany,
2006). The superior lateral occipital complex was used as
the posterior parietal ROI and lateral frontal pole (X > |
14|) as the lateral prefrontal cortex ROI. Voxel-wise
estimates of the fiber orientation distribution, including
the modeling of up to two fibers per voxel, were
calculated using Bedpostx (Behrens, Berg, Jbabdi, Rush-
worth & Woolrich, 2007). Probabilistic fiber tracking
was performed for each participant using the following
settings: 5000 samples per voxel, maximum 2000 steps,
curvature threshold of 0.2, 0.5 mm step length.

Left and right lateral fronto-parietal tracts were
computed from anterior to posterior and posterior to
anterior. ‘Start’ and ‘stop’ masks required tracts to pass
through the two relevant cortical regions. Further,
exclusion masks were used to restrict probabilistic
streamlines to our a priori tracts. The exclusion mask
for the fronto-parietal tracts prevented fibers that passed
through the mid-sagittal plane, thalamus, basal ganglia,
cingulum or insula from being included in our tract. All
tractography was conducted in each participant’s native
DTI space, with masks transformed from standard space
using FNIRT (FMRIB’s Nonlinear Image Registration
Tool; Andersson, Jenkinson & Smith, 2007a, 2007b).

Upon completion of tractography for each participant,
tract images were thresholded to remove voxels through
which fewer than 5% of the total number of generated
tracts passed. Anterior-to-posterior and posterior-to-
anterior tracts were added together and binarized. Indi-
vidual tract images for all participants were then overlaid
on one another in standard space (Figure 1D). These tract
ROIs were transformed into subject space (using the non-
linear warping described above) and WMO within each
tract was defined as the average of every voxel in the FA
map that fell both inside the tract ROI and the subject’s
white matter mask (WMOl-FPT).

Additional control tracts – left and right corticospinal
tracts and the body of the corpus callosum – were
obtained from the JHU white matter atlas (included with
FSL). WMO in these tract ROIs (WMOl-CS,WMOr-CS

and WMOCC) was calculated in the same manner as in
the fronto-parietal tracts. Whole-brain WMO (WMO-
global) was calculated for each subject as the average of
every voxel in the FA map that fell within the subject’s
white matter mask.

Structural equation modeling

Our goal in this study was to investigate the network of
relations among reasoning, processing speed, and WMO.
All SEM analyses were carried out using SEM in Mplus
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v6 (Muth�en & Muth�en, 2010). In our model, WMO was
hypothesized to predict both processing speed and
reasoning ability, whereas processing speed was hypoth-
esized to predict reasoning ability. A Wald test was
performed to assess the significance of removing the
regression parameter from white matter on reasoning.
This model tests the hypothesis that higher WMO leads
to better cognitive processing speed, which in turn leads
to increased reasoning ability. This model was fit for each
of the white matter ROIS separately.

Results

As shown in Figure 2, we replicated previous findings
that cognitive processing speed, reasoning ability, and
fronto-parietal WMO all increase with age. Using an
exponential model, age predicted 74% of the variance in
cognitive speed (p < .001, Figure 2A), and 62% of the
variance in reasoning ability (p < .001, Figure 2B).
Similarly, age predicted 47% and 37% of the variance
in FA in the right and left l-FPT (p < .001 for both,
Figure 2C), and 42% of the variance in whole brain FA
(p < .001, not shown). We also replicated previous
findings that our neuropsychological tests of reasoning
contribute strongly and equally to one latent variable
(see results in Table 1).
We hypothesized that the effect of WMO on reasoning

ability was mediated by processing speed. We first tested
this hypothesis in our primary regions of interest (ROIs):
left and right l-FPT. Statistical fit indices for thismodel are
reported in Table 2. For both ROIs, the regression path
from WMO to reasoning ability did not differ from zero
(ps ranging from .235 to .685). Furthermore, a Wald test
on this model parameter confirmed these results, indicat-
ing that removing this path did not significantly affect the
overall model fit. The most parsimonious model, there-
fore, is one in which reasoning is regressed on processing
speed and processing speed is regressed onWMO, with no
direct link between reasoning andwhitematter (Figure 3).
We conclude that the effect of white matter development
on reasoning is mediated by processing speed.
Given that our initial analysis was limited to the lateral

fronto-parietal white matter tracts, one reasonable ques-
tion to examine is the extent to which our results are
specific to those tracts or are really due to widespread
changes in white matter organization. This question is
especially important given the idea that fluid intelligence
is related to parietal-frontal integration, which is strongly
related to reasoning ability (Jung & Haier, 2007). To test
the specificity of our results, we included other long

(A)

(B)

(C)

Figure 2 Age-related changes in (A) processing speed, (B)
reasoning, and (C) WMO in left and right l-FPT. The model fit
to the data was a Von Bertalanffy exponential growth model of
the form y ¼ b1 þ b2e

age
b3
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range tracts that do not overlap with lateral fronto-
parietal tracts. Specifically, we analyzed the same medi-
ating model using corticospinal tracts (right and left) and
the body of the corpus callosum. We also analyzed this
model using whole-brain WMO. Across all of these
measures, the results were consistent with the previous
analyses, with no specific pathway departing from the
overall results (see Table 2). Thus, the degree of white

matter maturation throughout the brain, rather than
specifically in the frontoparietal tracts, influences rea-
soning ability through its influence on processing speed.

To examine the specificity of FA as a measure, in
producing the pattern of results that we observed, we
also analyzed our model using whole-brain white matter
volume in place of WMO. Here again, we observed a
similar pattern: the direct effect of white matter on
reasoning ability was minimal, given the mediating effect
of processing speed (see Table 2).

To rule out a spurious mediating effect from process-
ing speed to reasoning ability, we examined an alterna-
tive model in which reasoning ability mediated the effect
of whole-brain WMO on processing speed. The fit of this
model was identical to the original specification, as both
models used the same data and degrees of freedom.
However, unlike the path from WMO to fluid reasoning
in the original model, the path from WMO to processing
speed in the new model was reliably different from zero

Table 2 Parameter estimates for the mediation model

Parameter Estimate (SE) Est/SE p-value

Right lateral fronto-parietal tract WMO
PS ? RA .784 (.065) 12.04 <.0001
Right l-FPT FA ? PS .585 (.065) 9.04 <.0001
Right l-FPT FA ? RA .034 (.083) 0.41 .685

Model fit v2(8) = 35.3, p < .001; CFI = .930; SRMR = .045; BIC = 2597.7
Left lateral fronto-parietal tract WMO

PS ? RA .757 (.061) 12.49 <.0001
Left l-FPT FA ? PS .515 (.072) 7.12 <.0001
Left l-FPT FA ? RA .092 (.039) 1.19 .235

Model fit v2(8) = 29.9, p = .001; CFI = .940; SRMR = .039; BIC = 2596.6
Corpus Callosum Body (FA)

PS ? RA .805 (.045) 18.01 <.0001
Corpus-Callosum FA ? PS .219 (.094) 2.33 <.002
Corpus-Callosum FA ? RA .008 (.069) 0.11 .910
Model fit v2(8) = 29.3, p = .001; CFI = .937; SRMR = .037; BIC = 3641.4

Cortico-Spinal Tract Left (FA)
PS ? RA .785 (.054) 14.43 <.0001
Cortico-Spinal Left FA ? PS .434 (.080) 5.43 <.0001
Cortico-Spinal Left FA ? RA .043 (.075) 0.58 .561

Model fit v2(8) = 32.0, p < .001; CFI = .933; SRMR = .041; BIC = 2781.7
Cortico-Spinal Tract Right (FA)

PS ? RA .786 (.050) 15.63 <.0001
Cortico-Spinal Right FA ? PS .340 (.087) 3.90 <.0001
Cortico-Spinal Right FA ? RA .051 (.071) 0.72 .470

Model fit v2(8) = 29.8, p = .001; CFI = .940; SRMR = .039; BIC = 2679.8
Whole brain WMO

PS ? RA .750 (.066) 11.30 <.0001
Whole brain FA ? PS .577 (.066) 8.79 <.0001
Whole brain FA ? RA .092 (.082) 1.13 .259

Model fit v2(8) = 29.9, p = .001; CFI = .940; SRMR = .039; BIC = 2596.6
Whole-brain white matter volume (mm3)

PS ? RA .773 (.049) 15.86 <.0001
White matter volume ? PS .250 (.098) 2.55 <.011
White matter volume ? RA .120 (.072) 1.62 .100

Model fit v2(8) = 28.9, p = .001; CFI = .940; SRMR = .037; BIC = 4077.7

Note: N = 103; RA = reasoning ability; PS = processing speed; FA = fractional anisotropy. MD = mean diffusivity. All estimates are standardized
values. Factor loadings for RA were equivalent across all measures (as in Table 1).

Table 1 Factor loadings for RA

Parameter Estimate (SE) Est/SE p-value

Matrix reasoning .863 (.032) 26.72 <.0001
Block design .868 (.033) 26.37 <.0001
Concept formation .817 (.049) 16.63 <.0001
Analysis synthesis .821 (.039) 20.96 <.0001

Note: N = 103; All estimates are standardized values. Factor loadings
for RA were equivalent across all DTI measures.
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(p < .002). Removing this path worsened the model fit
significantly (v2(1) = 8.5, p < .01), unlike the case in the
original model (v2(1) = 1.2, p > .05). This additional
model supports the idea that processing speed mediates
the relation between WMO and fluid reasoning.
In a final set of analyses, we examined whether WMI

and processing speed are so highly linked that all other
complex measures would appear to be mediated by
processing speed, or is there something unique about the
relationship between processing speed and reasoning
ability (e.g. Deary, Penke & Johnson, 2010). Thus, we
tested a model that included a measure of vocabulary
(Woodcock-Johnson Revised 2001) instead of fluid
reasoning. The results from this model indicated that
vocabulary is directly related to WMO, in addition to
being related to processing speed. Unlike with fluid
reasoning, removing the path from WMO to vocabulary
(that is, leaving only the relation throughprocessing speed)
worsens the fit of the model significantly (v2(1) = 5.2,
p < .05). This is also the case when vocabulary is added to
the original model. Together, these analyses indicate that
the mediating effects between WMO and fluid reasoning
(through processing speed) do not generalize to another
commonly used measure of cognitive aptitude.

Discussion

In this report we tested whether brain structural
connectivity mediates the previously reported behavioral

relationship between processing speed and reasoning
ability. Our analyses indicate that the structure of the
relations among processing speed, reasoning, and whole-
brain FA are best captured as unidirectional, with WMO
predicting processing speed, and processing speed in turn
predicting reasoning. The data analyzed in this study are
consistent with a causal sequence in which white matter
structural specialization is the leading indicator bringing
about increases in processing speed, which in turn lead to
increases in reasoning ability. However, these results are
cross-sectional; longitudinal data analyses will be needed
to elucidate the directionality of the relations among
white matter organization, processing speed, and reason-
ing ability, and how these relations unfold over develop-
ment (e.g. Lindenberger, von Oertzen, Ghisletta &
Hertzog, 2011; Maxwell & Cole, 2007; Raz & Linden-
berger, 2011).
The inclusion of age is warranted in any developmen-

tal study, though the specification of its influence is not
always straightforward. We showed that all our measures
were significantly increasing with age, but this does not
elucidate the biological mechanisms that underlie the
relationships. Practically speaking, age is a variable that
summarizes changes in multiple factors that unfold
together over an individual’s lifespan, whether these
factors are interrelated or not. Age is therefore not really
an explanatory variable, in that it does not provide
mechanistic insights, as its inclusion in the modeling may
imply. However, we modeled multiple variables that all
increase with age, and sought to understand how they
relate to one another.
We found no differences in the pattern of results for

the different white matter measures – WMO within the
ROIs, whole-brain WMO, or whole-brain white matter
volume. The global measures provide a more complete
picture of the age-related changes in brain structure that
support the development of processing speed and
reasoning, both of which rely on distributed brain
networks. Thus, we conclude that the mediation of the
relationship between white matter maturation and
reasoning by processing speed is an attribute of the
whole brain, rather than specific regions of white matter.
However, future research may uncover smaller areas of
white matter, such as a portion of the l-FPT, that play a
relatively more important role in reasoning than others.
In our model, white matter maturation leads to better

reasoning. However, this unidirectional relationship
could reasonably be questioned, given that brain struc-
ture is modified by neural activity (Barres & Raff, 1993).
In fact, we have shown recently that three months of
intensive reasoning can change frontal and parietal
WMO in adults (Mackey, Whitaker & Bunge, 2012).
Future longitudinal research will be required to further

Figure 3 SEM for the mediation of the effect of whole-brain
WMO on reasoning ability by processing speed. The pattern is
the same for all white matter ROIs; see Table 1. This model
indicates that the relationship between reasoning ability and
white matter microstructure is mediated by processing speed.
*** indicates p < .0001; ns indicates p > .2.
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untangle the complex reciprocal relationships between
brain structure, brain function, and cognition.

Important new research reveals that chronological age
can be predicted with 92% accuracy on the basis of
approximately 250 variables derived from region of
interest analyses of DTI and structuralMRI data (Brown,
Kuperman, Chung, Erhart, McCabe, Hagler, Venkatr-
aman, Akshoomoff, Amaral, Bloss, Casey, Chang, Ernst,
Frazier, Gruen, Kaufmann, Kenet, Kennedy, Murray,
Sowell, Jernigan & Dale, 2012). In cases where the
prediction error is large, an individual’s biological matu-
rity (‘brain age’) either lags behind or leads his or her
chronological age by several years (see Bunge &Whitaker,
2012). In light of this newwork, it isworth taking seriously
the claim that indices of brain maturation serve as a more
precise and relevant explanatory variable than age in
research on the dynamic relationships between cognitive
abilities over development.

Conclusion

In sum, the present study contributes to our under-
standing of how structural brain changes support the
emergence of critical cognitive abilities during childhood
and adolescence. Our findings show that processing
speed is tightly linked to whole-brain WMO, and further
that the strong relationship between reasoning and white
matter microstructure is mediated by processing speed.
More generally, many cognitive and brain measurements
change together over development, and so it is a
challenge to determine which brain changes directly
contribute to which cognitive changes. We show here
how SEM can be applied to neuroscientific data to
elucidate the mechanisms of cognitive development.
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