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ABSTRACT

Linear systems analysis with tones, clicks or white noise results essentially in the 
same information: the impulse response or frequency response of the system. In non­
linear systems, such as the auditory system, these three methods provide different 
results. Furthermore the outcome will be level dependent. Higher order cross correlation 
with gaussian wide band noise as input signal provides, in principle, a method to analyze 
non-linear systems. For that purpose one needs noise with a zero valued second order 
auto correlation function. Commercially available pseudo-random noise generators do 
not produce noise with satisfactory properties. Software generated noise with gaussian 
amplitude distribution can easily be generated on basis of the uniform distributed random 
number generator. Using noise with these improved characteristics we studied neurons 
in the auditory midbrain of the grassfrog. Two examples are shown and a comparison is 
given between the results obtained with the white noise method and the more traditional 
pure tone analysis.

SOMMAIRE

L'analyse des sytèmes linéaires au moyen de sons purs, de clics ou d'un bruit blanc 
donne essentiellement la même information: la réponse impulsionnelle ou la réponse en 
fréquence du système. Dans les systèmes non-linéaires tel que le système auditif, ces 
trois méthodes donnent des résultats différents. De plus, la réponse dépendra du 
niveau d'excitation. L'inter-corrélation d’ordre supérieur avec une bande de bruit 
gaussien comme signal d'entrée fournit, en principe, une méthode d'analyse des 
systèmes non-linéaires. A cette fin, on a besoin d'un bruit dont la fonction d'auto­
corrélation de second degré est nulle. Les générateurs de bruit pseudo-aléatoire 
disponibles sur le marché ne produisent pas un bruit qui rencontre ces exigences. Un 
bruit généré par programmation avec une distribution gaussienne d'amplitudes peut 
facilement être produit à partir d'un générateur de nombres uniformément distribués au 
hasard. En recourant à un bruit comportant de telles caractéristiques, nous avons étudié 
des neurones du cerveau moyen de la grenouille. Deux exemples sont présentées ainsi 
qu'une comparaison entre les résultats obtenus avec le bruit blanc et la méthode plus 

conventionnelle de l'analyse aux sons purs.
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INTRODUCTION

Traditionally the auditory system has been studied using rather simple and mostly 

deterministic stimuli, such as continuous sinusoids, tone-pips or tone-bursts, repetitive click 
trains, and sinusoidally amplitude- or frequency-modulated tones.These stimuli have the 

advantage that they are characterized by a only a few independently variable parameters. 

For instance, continuous tones are completely determined by frequency and sound pressure 

level, and the response of neurons in the auditory system is usually presented in its 

dependence on these parameters, e.g., as tuning curves or iso-intensity contours. The tuning 

curve is a plot of sound pressure level-frequency combinations that produce a prespecified 
change in the spontaneous firing rate of neurons. The iso-intensity contour represents the 

firing rate of a neuron as a function of frequency for a constant sound pressure level. 

Tuning curves therefore represent an equal-output criterion, iso-intensity  contours an 
equal-input one. If  the system under study were linear, then both measurements could 
easily be converted into each other, however, the auditory system is highly nonlinear and 

tuning curves and iso-intensity  contours generally highlight different aspects of its 

functioning. Constant response criteria can only be used i f  the non linear element is a 

threshold detector and the last stage in the chain of transformations. The problem with the 
tuning curve approach is that it is only based on a constant change in the magnitude of a 

response, for example in the firing rate o f  the neuron, the vibration amplitude of the 

basilar membrane or the receptor potential amplitude. A true constant response criterion 
should also consider phase (latency) and harmonic distortion.

A further consequence of the nonlinear nature of the auditory system is that the 

frequency response measured with one frequency at a time - the harmonic analysis method 

- cannot describe the behavior of the system for complex multi-frequency stimuli. A very 
simple multi-frequency stimulus is Gaussian wide band noise (GWN), that has wide spread 

use in linear systems analysis. Cross correlation between the system output and the GWN 

results in an estimate of the impulse response, and through Fourier transformation in an 

estimate of the frequency response of the system. This technique can also be applied when 

the output signal is discrete such as for a neural spike train. Depending on the precise 

technique used, the form of the nonlinearity that results in the spike production, and the 

form of the impulse response itself, the cross correlation technique either results in an 

unbiased estimate, a scaled version or a linear combination of the impulse response and its 

first derivative. For auditory nerve fibers with characteristic frequency below 4 kHz it has 
been established that an unbiased estimate is obtained (De Boer and De Jongh, 1978; 

Eggermont et al.,1983a). One manifestation of the nonlinear nature of the auditory system is 
that the estimate o f  the impulse response depends on the spectrum level of the noise that is 

used: in general the impulse response shows greater damping for higher noise levels, and 

consequently a broader frequency response (Moller, 1986). Therefore it is expected that 

nonlinear systems analysis offers some more insight into the specific nature of the auditory 

nonlinearity, which by virtue of the audibility of cubic difference tones is known to be at 

least o f third order. The reader has to keep in mind that in non linear systems the result of 

an input-output characterization has by definition not much predictive value. Because the 

superposition principle only holds for linear systems, knowledge of the input-output 

relation of a non linear system is only valid for the actual test stimulus itself. Using the 

Wiener-kernel formalism a complete description of the non linear system will require 

determination of all Wiener kernels (Johnson, 1980) which is usually not feasible because of 

computational constrain ts .
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In this paper the main emphasis will be on the use of GWN stimuli, how to 

study their first and second order statistical properties and to find out how these affect the 

s timulus response relationships that are revealed by first-  and second-order cross 
correlation. Methods to reduce computation time will be briefly discussed. Examples will be 

given from a study into the functioning of the auditory midbrain of the grass frog.

CHARACTERIZATION OF STIMULI

No ise  that is used to measure first order properties of the system under study should 

have a flat spectrum and have a bandwidth greater than that of the system, and thus a 

relatively short and non-oscillating impulse response. When the noise is used to measure 
second order properties such as energy-time densities (Mecklenbrauker, 1987), ambiguity 

functions, bi-spectra (Spekreyse and Reits, 1982), or second order correlation functions 

(Marmarelis and Marmarelis,1978), the noise must have adequate second order properties 
itself. Thus the second order auto correlation should be equal to zero everywhere, or 
equivalently its bi-spectrum should be flat. A flat second order auto correlation requires that 

the amplitude distribution of the noise is symmetric, i.e., the skewness should be zero. When 

the (0,0) element of the second order auto correlation is zero then the skewness of the 
amplitude d istribution is also zero. We have therefore investigated  the amplitude 

distribution, and the first and second order auto correlation functions for pseudo-noise 
generated by a Wavetek 132 function generator, noise characterized as random and 

generated by the Bruel and Kjaer dual FFT analyzer (model 2032), and noise derived from 
uniformly distributed, software generated, random numbers after appropriately changing
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the amplitude distribution to a standard normal distribution(as e.g. in Eckhorn and 

Popel,1979). The Wavetek and B&K noises were generated for a -3dB point of 2.5 and 3.2 kHz 

respectively and sampled at 20 kHz for a total of 32k samples.

GUN

Figure 2. First and second order auto correlation functions for A) Gaussian wide band noise 
(GWN), B) 2 kHz bandpass filtered noise, C) filtered and squared noise, D) squared GWN, and E) 
squared and filtered noise.



All amplitude probability densities appear to be symmetrical; for the Wavetek noise 

with sequence length ( 2 ^ - 1 )  the distribution is very close to Gaussian , the B&K noise and 
the computer generated noise do have a Gaussian probability density function (Figure 1 
a,b,c). The first order auto-correlation functions for the three types of noise were computed 
for 64 lags (3.2 ms) and all of them are acceptably close to the ideal one as obtained for the 
computer generated noise (Figure 1 d,e,f).

The second order auto-correlation properties for the three types of noise differ 
greatly, however. Defined as:

R x x £ v 2)  = Y f 0 * 0  '  Ti) * 0  " xi) dt
( 1)

for T sufficiently large, the second order auto correlation function can be represented 
in pseudo 3-dimensional view as in Figure 1 g,h,i. Part g shows the result for the Wavetek, 
part h the so-called random noise from the B&K, and part i the computer generated noise. 
One can observe that only the computer generated noise has satisfactory second order 
properties, and that the "random" B&K noise clearly has periodic components in it and 
therefore should better be labeled pseudo-random. Basically this means that the two 
commercial noise sources studied do not produce noise with properties that are acceptable 
for second order analysis of non-linear systems.
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Figure 3. First and second order cross correlation functions for the three systems under
consideration (a, b, c) and the bispectra for the systems in b and c (d).
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STIMULUS RESPONSE RELATIONSHIPS

The pow er o f  non-linear analysis is best demonstrated for a m odel system. For that 

purpose we introduce two non-linear systems consisting of a linear band-pass filter (center 

frequency 2 kHz, slopes 135 dB/oct, ->6 dB bandwidth 125 Hz) and a squarer in cascade: one 

system has the filter at the input, the other system has the squarer at the input. The input to 

the system s will be gaussian wide-band noise (GWN) and we will show the properties of 

signals and system th rough  their f irst and second order corre la tion  properties . Figure 2 

presents the format for the auto-correlation analysis o f  the signals at various points in the 

systems. First o f  all the properties of the GWN are repeated in part a, part b gives the same 

for the filtered GW N showing the effects o f  the f ilter  in the first order auto-correlation. 

Because the filter is linear the second order auto-correlation is not affected. Part c shows the 

signal p roper tie s  a f te r  the signal is f il te red  and then  squared: the f irs t  o rder  au to ­

co rre la tion  is now the squared version o f  the filtered  one and the second order auto ­

correla tion reflects both the skew and the filter properties. In part d we study the first 

tran s fo rm atio n  in the  sq u a re r -fo llo w ed -b y -f i l te r  system  and observe  tha t  squaring  the 

signal does not affect the f irst o rder  auto-corre la tion  but the induced skewness clearly 

shows in the (0,0) elem ent o f  the second order correlation which now has a value of 0.5. 

Passing this squared signal through the filter produces a first order auto correlation which 

is identical to that in the absence of the non-linearity, the second order auto correlation is 

zero since the filtering operation removes all skew from the signal.

As we know from linear systems theory the Fourier transform o f  the auto-correlation 

function o f  the output signal for a GWN input signal gives an estimate of the modulus o f  the 

frequency response but leaves us in  the dark about the phase rela tionship  between input 

and output signal (Bendat and Piersol, 1971). In order to identify the system completely we 

need to use the cross-correla tion  between input and output signals. The first and second 

order cross-correla tions are defined as:

Ry^x 0 = t f0 x(t_x 0 dt

Ry»Cxi»x0=tX ^  x0 'xi)x(t' x%) dt

( 2 )

(3 )

In Figure 3a we show results for the analysis of the linear filter: samples o f  the input and 

output signal are shown toge the r  with both c ross-corre la tion  functions. The first order 

cross-correlation results in an unbiased estimate o f  the impulse response o f  the filter. For 

this l inear  system the second order cross-correla tion should theoretically  be zero, in this 

case for a lim ited signal length the extremes are sm aller than 0.01. For the squarer-filter 

com bination the first order cross-correlation nearly disappeared, as it should because:

J  (4 )

In contrast the second order cross correlation shows on the diagonal a stretched out version 

o f  the impulse response o f  the linear filter because:

(5)

The f i l te r -sq u a re r  com bina tion  (F igure  3c) again  does not show a f irs t  o rder  c ro ss ­

correlation, however, a d istinct second order cross-correlation equal to:



( 6)

A bi-spectrum analysis of the two non linear systems shows (Figure 3d) that for the filter- 
squarer combination the only output is for signals at the filter frequency, however, for the 

squarer-filter an output is produced whenever the sum or difference of two frequencies 
equals the filter frequency. This illustrates the formation of sum and difference frequencies 

when a multifrequency signal is presented at the input of the squarer. Such phenomena are 
found in the auditory system, indicating that the filter stage is not likely to precede the 

n o n l i n e a r i t y .

THE AUDITORY NERVOUS SYSTEM

At this point we introduce a model representing current thinking about the auditory 
peripheral system with exclusion of the middle ear. The model (Figure 4) consists of a non­

linear filter, located in the basilar membrane, that receives energy from an active process 

located in the outer hair cells (Ashmore, 1987), followed by a synapse responsible for 
auditory adaptation (Eggermont, 1973, 1975, 1985; Smith, 1979; Harris and Dallos, 1979), and 

finally a pulse generating device: the auditory neuron. Because techniques to deal with non­
linear filtering are lacking we modify the model into a band-pass non-linearity (BPNL) 

model. In such a model the non-linear filter is split up into two linear filters with an 

algebraic non-linearity sandwiched in between. The first filter is a sharply tuned band-pass 
filter representing the tuning properties of the basilar-m em brane-outer-hair-cell system, 

the second filter is a low-pass filter representing the action of the hair-cell-neuron- 

synapse (see Pfeiffer, 1970; Johannesma, 1971; De Boer, 1976).

In the present model the occurrence of an action potential z(t) depends on the signal 

y(t), the generator potential of the auditory neuron. In case the pulse generator produces 

spikes proportional to y(t) it can be demonstrated that :

®-zxOO — ^yxOD (7 )

basilar membrane synapse nerve fibre

non-linea r active adaptation spike generation

filte r

h(x) k(o) expy(t)

x(t) u(t) v(t) y(t) z(t) n(t)

Figure 4. A model for the peripheral auditory nervous system, and its adaptation for non­
linear systems analysis (from Eggermont et al., 1983c).
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This appears to be the most likely situation for the auditory nerve fibers (De Boer and De  

Jongh, 1978). Thus instead o f  using , the rather inaccess ib le  analog s ignal, y(t) we can 

perform the correlation with the spike train as the output signal (De Boer and Kuyper, 1968). 
The method can be extended to second order cross-correlation (Hermes et a l. ,1981; Eggermont 

et a l.,1983a). In both cases the signal to noise ratio decreases by a factor o f  1.8 respectively  

3.4 as compared to the correlation on the basis o f  the analog signals.

Since the z(t) are unitary pulses occurring at times tn , the cross correlation takes the 

form o f  averaging the pre-spike stimulus:

T (8)  

respectively  the lagged  product function:

N  1 N
l’^ )  ~ Xl)  x(^n'  ^2)

n=1 ( 9 )

o f  the stimulus that precedes the action potentials. It turns out (Moller, 1986) that the first 

order cross correlation is stimulus dependent, at least in rodents, and becomes progressively  

more damped w ith  increase in noise  leve l.  This is  again a strong indication o f  a non- 
linearity o f  at least third order.

POLARITY AND TERNARY CORRELATION FUNCTIONS

Calculating h igher order correlation functions requires fast computers and although  

these are now readily available a discussion o f  computationally less demanding procedures is 

still useful. An idea proposed by Veltman (1966) and later elaborated upon by W olf  (1973) 

and Klein  and Yasui (1979) is to replace both the GWN and the analog output signal by a 

s imple transformation o f  these signals. Such a transformation can be replacing the signal 

by its s ign , and it can be shown (Figure 5 a,b) that correlation betw een  two such  

transformed signals, polarity correlation, leaves the shape o f  the correlation function intact 

but reduces the amplitude by a factor 2/pi, and increases the variance by a factor 1.57 for 

first order correlation and 2 .47  for second order correlation.

A s lightly  better result is obtained by using a ternary transform (Figure 5 c,d) in 

which the signal is transformed according to:

x ( t ) > H  +  i ia  5 x(t) =  l

x (t) <  |i  -  n a   ̂ x(t) = - 1

and otherwise x(t) =  0; usually n is taken equal to 1. In this case the variances for the first 

and second order correlation functions increase by 1.37 respectively 1.88, the reduction in 

amplitude is however larger and results in about 0 .24  o f  the original size.

A draw back o f  the polarity and ternary correlation procedures is that in case o f  an 

even order non-linearity fo llow ing  the filter, such as in our example o f  the filter-squarer  

combination, the output signal will be extremely skewed. In such a case the transformations 

are not justified . This can be alleviated by adding a non-correlated random signal to the 

output before transforming it, this o f  course will further increase the variance but at least 
allows these computational faster methods to be used.
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Figure 5. A comparison of cross correlation functions bases upon GWN (a), polarity representation (b), 
and a ternary representation (c). Part d is to be compared to Fig. 3b.

FREQUENCY-TIME REPRESENTATION OF SIGNALS AND CORRELATION FUNCTIONS

For the auditory nervous system, which is both a frequency and a time analyzer, 

it is intuitively more useful to represent second order correlations or bi-spectra in the form 
of time dependent spectra or spectrograms. The Fourier transform with respect to time of the 
time dependent autocorrelation function results in the spectrogram of a signal. Various 

forms exist such as the Wigner distribution (Yen, 1987) or the Rihacek Costid (Johannesma et 

al.,1981). This can be extended to those parts of the stimulus signal that precede an action 
potential. Formally the correlation takes the form of a second order cross correlation 
between z(t) and x(t) in which z(t) is a series of delta functions. A Fourier transform with 
respect to the difference in lag times then results in a short-time-spectrogram. Averaging 

all these short-time-spectrograms results in the average spectrogram of signals preceding 

action potentials, and is considered to be causal in their generation. The latter form has been 

used extensively in the study of response properties of.auditory  neurons (Hermes et al.,1981; 

Eggermont et aL,1983a; Epping and Eggermont,1985). We will discuss two examples and then 
give an overview of results obtained in previous studies.



0
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«e-------- time before spike (ms)

49 15 49 
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Figure 6. Average Costid's fo r  signals preceding an action potential fo r  two neurons in the 
auditory midbrain o f the grassfrog.

Figure 6a shows the real part of the average Costid (short for coherent spectro- 

temporal intensity density) for a neuron in the auditory midbrain of the grassfrog. On the 

horizontal axis time before the action potential is indicated, the vertical axis represents 

frequency. The right hand side of the Figure schematically outlines the various areas of 

interest in the Costid. The coding used is a grey scale: grey is the level of the noise signal in 

case of random, not stimulus related, action potentials, dark represents more signal level and 

white less signal level than background. One can interpret part a of the Costid as those parts 

of the noise that increase firing probability in the neuron, i.e., those parts of the noise 

stimulus that are filtered out by the neuron. In this example the center frequency is about 

250 Hz, the fact that this area is situated about 15 ms before the spike indicates that the 

latency of the neuron is about 15 ms. After this dark, activation, area one observes (part b) a 
lighter area indicating that in this time frame on average less noise than average was 
present in this frequency range. This is called post-activation suppression. Also some lateral 
suppression is noted (part c). The total number of spikes elicited by the noise, and thus the 

number of averages, was 666.
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The second example (Figure 6b) shows a neuron that has a double peaked sensitivity: 

one region (part a) is centered around 750 Hz, the other region (b) around 250 Hz. The latter 
region also is accompanied by lateral suppression (c). Such double tuned neurons are quite 

common in the auditory midbrain of frogs and nearly absent at more peripheral levels. This 

indicates that neurons with widely differing best frequencies converge onto a single 

neuron at the level of the midbrain.
In two recent studies a total of 219 units was investigated with noise (Hermes et 

al.,1981; Epping and Eggermont,1985) of which 107 responded in a sustained way such that 

their Costids could be evaluated. Of these 107 neurons 58% showed unimodal excitatory 

results, 21% showed bimodal responsiveness, 19% had lateral suppression (as in Fig. 7a) and 

only 2% showed inhibitory Costids (i.e., certain frequencies in the noise actually decreased 
the spontaneous firing rate of the neuron). Comparing these results to that of an analysis 

with random single-frequency tone burst stimuli revealed that in 64% of the cases the same 

type of spectro-temporal sensitivity was obtained. The remaining 36% of the units had 

different spectrograms for the noise and the tonal stimuli: all o f them had multimodal 

spectrograms for the tonal stimuli that was either changed into a unimodal one (27%) or in a 

different multimodal one (9%) in case of the response to noise.

Discussion

The first question we obviously have to ask is what the particular benefits the GWN 

analysis is producing, especially in the light of its demanding computational aspects. The 
basic idea behind the use of gaussian white noise, is that in principle all possible stimuli are 

contained in it, although the probability of occurrence for each of these is very low. If  we 

know the response of a system to noise, or approximate that knowledge by the evaluation of 

cross-correlation functions, it is possible to predict the response to any other stimulus, 
provided that our approximation was sufficiently good. This is the pervading view, however 

when using the cross-corre la tion  approach the estimated W iener kernels are only 

orthogonal with respect to GWN of that particular spectrum power level, unless we know all 

the Wiener kernels (Johnson, 1980). Furthermore when we only have an approximation of 
the response to GWN, because we have evaluated only a few of the possible cross correlation 

functions, it is impossible to obtain an accurate prediction to stimuli that are not close to 
GWN (e.g.,Eggermont et al.,1983 a,b,c for an experimental investigation). On the other hand 
it may be possible to approximate the properties of meaningful sounds such as speech by 

linear transformations of GWN, in that case the stimulus used for predictions is close to GWN 

and the procedure might work.

Stimuli used in this procedure should be very carefully evaluated before using them, 

because their second order properties will confound the second order cross correlations and 
related spectro-temporal representations. In general one cannot rely on information in 

technical manuals of potentially useful equipment. First o f all most commercially available 
noise sources are destined for linear systems analysis, secondly it is not appreciated that 
when nonlinearities of the third order are present that this makes the estimation of the 
"impulse response" dependent on the noise power.

The differences in the sensitivity obtained for the noise and the tonal stimuli can be 
the result o f the lateral inhibition that becomes manifest for the multifrequency, noise, 
stimulation and is absent in the tonal stimulation. Another aspect is the differing adaptation 

state for the neuron in case of continuous noise stimulation versus the pulsed tone burst 

stimulation.The differences observed between the responses o f  the auditory neurons to 
single tone stimuli and noise illustrates that in order to characterize the auditory nervous 

system, or parts thereof, one needs a large variety of stimuli. The theoretical background for 

analyzing the stimulus response relationships for GWN stimuli obviously is an important 

advantage. The fact that the neurons in about half of the - cases do not respond in a stationary 
way to GWN makes it application not as widespread as wanted. The use of amplitude modulated 
noise stimuli can alleviate this problem.
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MICROPHONES

ACO Pacific Breaks The Price Barrier!
SAVE $100 to  $200 per unit NOW

THE
“ALTERNATIVE”
FAMILY OF PRECISION 

MICROPHONE PRODUCTS

Direct replacement for Bruel & Kjaer 
Microphones — see chart below 
Compatible with existing accessories 
Cost effective in small quantities 
Quantity pricing available 
One year warranty
Manufactured and sold throughout the world 
since 1972
Companion preamplifier available with detachable 
two meter cable

FOR MORE INFORMATION, 

CATALOG AND COMPLETE 

SPECIFICATIONS CONTACT:

Cross Reference Table

ACO B&K GenRad Ivie

7012 4133 1560-9532* 1133*

7013 4134 1560-9533* 1134*

7016 4135 1560-9534’ —

7017 4136 1560-9535* —

7022 4145 — —

7023 4144 — —

7046 4165 — —

7047 4166 — —

7048 4148* — —

'S im ila r  - Compare specifications

ACO Pacific, Inc.
2604 Read Avenue 

Belmont, CA 94002  
(41 5) 595-8588

TYPICAL FREQUENCY RESPONSE

Hz

ACOustics Begins With ACO
Dealer inquiries invited


