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INTRODUCTION

In the present note, we study relations between the structure of associative rings
and extension properties of modules. Let R be an associative ring with unit and
R-mod the category of unitary left R-modules. A module N € R-mod is said to have
the Whitehead property (WP) if either N is injective or, for all M € R-mod,
Extg (M, N) = 0 implies M is projective.

A given module may or need not have WP according to the extension of ZFC
we work in (this happens e.g. if R is a countable Dedekind domain and N = R — see
[7] and [4] — orif R is a simple countable non-completely reducible von Neumann
regular ring and N is any countable R-module — see Section 2 below). Nevertheless,
if we require all R-modules to have WP, we get results on the structure of the ring R,
proved in ZFC. Hence, this requirement seems more appropriate for our aims.

Recall that by [2, Appendix A}, a ring R such that every left R-module has WP
is called a left T-ring. By [9] we know that every left T-ring is either left artinian or
von Neumann regular. While we have a full description e.g. of left nonsingular left
artinian left T-rings (see [9, 4.4 and 6.1]), only little is known about the regular ones.
By [10], if R is a simple countable regular ring, then Ext, (M, N) = 0 for all count-
ably generated R-modules M, N such that M is non-projective and N is non-injective.
Moreover, assuming ¥V = L, every countable R-module has WP (see [10, IIL6]).

The present note is divided into three sections. In Section 1, we show that in spite
of the facts mentioned above, if R is a simple non-completely reducible regular
ring of cardinality <2%°, then there is an R-module which does not have WP. Hence,
R is not a left T-ring. In Section 2, we show that in some models of ZFC, even no
countable R-module has WP. Hence, the assertion of [10, III.6] is independent
of ZFC. In Section 3, we use the solution of Artin’s problem ([6] and [3]) to con-
struct a ring R which is not a left T-ring, but every cyclic R-module has WP.

467



PRELIMINARIES

In what follows, an ordinal is identified with the set of its predecessors and
a cardinal is an ordinal which is not equipotent with any of its predecessors. Let «
be an infinite cardinal and E < x. Then E is cofinal in x if sup E = «. Further,
E is closed in x if sup F e Eu {«x}, for every non-empty subset F = E. We say
that E is stationary in x if En F = 0 for every closed and cofinal subset F of k.
Let G be a filter over k. Then G is k-complete if G is closed with respect to inter-
sections of less than « elements of G. Further, G is normal if for any g,€ G, « < k,
the set {« < x| e ﬂ g} belongs to G.

In what follows, all rings are associative with unit. If S and T are rings, then
S B T denotes the ring direct sum of S and T. If S is a ring, n is a natural number,
n 2 1, and x is a cardinal, x = 1, then RFM"XK(S) denotes the set of all row finite
matrices of type n x k over S.

If S is a ring, then S-mod denotes the category of unitary left S-modules. A unitary
left R-module is simply called a module. Let R be a left hereditary ring, x an infinite
cardinal and M € R-mod. Then M is k-free if every submodule of M which is gener-
ated by less than x elements is projective. Moreover, M is strongly x-free if every
submodule 4 of M which is generated by less than x elements is contained in a pro-
jective submodule A’ such that A’ is generated by less than x elements and M/A4’
is x-free (see [4, § 18]). If N is a module, then I(N) denotes the injective hull of N
and Soc (N) denotes the left socle of N. A ring R is said to be completely reducible
if Soc(R) = R. If N € R-mod and x € N, then Anng (x) denotes the left annihilator
of x in R.

A module N is said to have a socle sequence if there are an ordinal o and a sequence
S,, v < ¢ of submodules of N such that S, = 0, S,+,/S, = Soc (N/S,) =+ 0 for all
v<o, S, =US, u<vforall limtv £ o and S, = N. Clearly, if N has a socle
sequence, then ¢ and S,, v < o, are unique. .

A sum (direct sum) of submodules is denoted by Y. (by Y, respectively). If « is
a cardinal, ¥ = 1 and N € R-mod, then N® and N* denote the direct sum and the
direct product of x copies of N, respectively.

Further concepts and notation can be found e.g. in [1] and [4].

1. REGULAR RINGS AND WP

By [10], the only candidates for non-completely reducible regular left T-rings
are rings of the form (S ) R, where S is a completely reducible ring and R is a simple
regular ring having all left ideals countably generated. Here, in 1.5, we show that,
moreover, card R = 2%, Thus, in 1.6, we obtain a full description of left non-singular
left T-rings of cardinality < 2%°.

1.1. Let R be a non-completely reducible regular ring. Let 4 be a non-empty set
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of countably generated left ideals of R. For N € R-mod let f € Homg (N, N¥[N®),
such that nf = (n; + N®™ | i < ¥,), where n; = n for all i < X,. Define a sequence
S,, v £ N, of submodules of N™ by
(i) So 2 N® and S/N®® = (N) /£,
(i) Sy41 = {neN¥ |3 e A:In = S,})s,
(iil) S, = US,, p < v for v limit.
Put N = Sy [N,

Lemma. N is isomorphic to a submodule of N and, for allI € A, Extg (R/I, N) = 0.

Proof. Obviously, N ~ {N) f = N. The assertion is clear if I is finitely generated.
Let g € Homg (I, N), where I = ZRej,j < Ny, and {e; | j < No} is a set of pairwise
orthogonal idempotents of R (see [5, § 2]). Let e;g = (s] + N™ | i < N;), where
e;si = siforalli,j < N, Let v < X, be the smallest ordinal such that e;g € S,/[N®),
for all j < N,. Define an n = (n;|i < Ng)eN™ by n; =s) + ... + s}, i < N,.
It is easy to see that ne S,,, and e;g = e;n + N for all j < N,, whence
Exty (R[]I, N) = 0.

1.2. Lemma. Let R be a simple regular ring. Let N;, i < ¥,, be a sequence of
modules such that N, is a proper submodule of N,y for all i < N,. Put N = N,,
i < Ny, and let I be a countably infinitely generated left ideal of R. Then
Extg (R/I, N} % 0.

Proof. We have I = ZRei, i < N, where {e; | i < Ny} is a set of pairwise ortho-
gonal idempotents of R. Since R is simple, there is n;e(e;N;,.; — N;), for each
i < No. Now, ge Homg(1, N), defined by e;g = n;, is not a restriction of an
element of Homy (R, N).

1.3. Proposition. Let R be a regular left T-ring. If N e R-mod, then I(N)/N
has a socle .sequence of length ¢ < N, where either ¢ = R, or ¢ is non-limit.
Hence, if M, N € R-mod and N is essential in M, then M[N has a socle sequence
of length =N ..

Proof. By [10, IL4], we can use 1.1 with 4 — the set of all maximal left ideals
of R. With regard to 1.2, there is an ordinal o < N, such that either ¢ = N; or ¢
is non-limit, and S, + N®[S; + N®, vy < ¢ is a socle sequence of NJ(N) f. The
rest is clear.

1.4. Lemma. Let R be a left primitive ring, J a simple faithful module and
K = Endg (J). Then R is a dense subring of Endg (J} and the following conditions
are equivalent:

(i) all simple modules are isomorphic,

(ii) dimy(N) Ker s, sel) = 1, for each maximal left ideal I of R.

Proof. The density of R is well-known. Assume (i) and let I be a maximal left
ideal of R. There is a j € J with Anng (j) = I, i.e. JK < \Ker s, s € I. By the density,
foreachke(J — JjK) there is an r € R with rk = 0 and rj = 0, whence k ¢ Ker s,
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sel. Assume (ii). Let [ and L be maximal left ideals of R and jK = ) Kers, sel;
kK = (Y Kers, se L. By the density, there is an re R with rk = j. Hence, r¢ L
and Ir < L, and Homg (R/I, R|L) + 0.

1.5. Theorem. Let R be a simple regular ring such that R is not completely
reducible. Let J be a simple module and K = Endg (J). Assume dimy (J) < 2%
(this holds e.g. if card R < 2%°). Then there are a non-projective cyclic module M
and a non-injective module N such that Extg (M, N) = 0.

Proof. We prove the theorem in two steps.

Step L Let 2 = {0, 1} and for x € 29, x =(x,, ..., x,) put In(x) = n. For x,€2
denote by x; the binary complement of x;. By induction, we define a set {e, | x € 289}
such that ‘

(i) for each n < X, {e.| x€2™ &In(x) = n} is a complete set of pairwise

orthogonal idempotents of R; ,
(ii) if x, p,2€2M, x = (X0, .., X,), ¥ = (X0y s %> 0), Z = (Xgs ..., X,, 1), then
e, + e, =e,

Put ¢, = e, ¢, =1 — ¢, where eeR, € = e¢{0,1}. Then (i) holds for n = 0.
Assume e, are defined for all x e 2™ with In (x) < m and (i) holds for all n < m
and (ii) for all n < m — 1. Let x, y, € 2™ x = (x4, ..., Xp), ¥ = (Xq, ..., X, 0),
z = (X, ..., Xp, 1). Since R is simple, the rings R and e Re, are Morita equivalent
and there are orthogonal idempotents e, e, € e,Re, with e, + e, = ¢, and e, +
+ e, # e,. Then (i) holds for m < n + 1 and (ii) for n < m. Further, for u e 2%,
u = (u;|i <No) put wo=uy and w,.q = (g, ..., Uy U 1), 1 < No. Let I, be
a maximal left ideal of R containing the set {e, | n < No}. If u® ..., u™ are different
elements of 2%, let i < N, be the smallest index such that for all 0 < k < m there
is aj < iwith u] + uf. By (i) and (ii), we have (e,,0 + ... + €,,0) €1,0, and for all
0<ksm, Le((eyo + ... + e,0) + LK)
Step II. Assume that, for each cyclic non-projective module M and each non-
injective module N, Extg(M,N) =+ 0. In particular, Extg(S,N)+ 0 and
Homyg (S, I(N)/N) =+ 0 for each simple module S. Hence, I{N)/N has a socle sequence
with factors isomorphic to direct powers of S. Thus, all simple modules are iso-
morphic. By 1.4, for each u € 2%° there is a j,e J with j,K = (Y Ker x, xeI,. We
shall show that P = {j, I u € 2%} is an independent subset of the right K-module J.
On the contrary, let {j,, ..., j,»} be a dependent subset of P with a smallest number
of elements. We have joky + ... + jmk, = 0 for some 0 % k,eK,n=20,...,m.
By Step I, 0 = (e, + ... + €,0) (Juko + ... + jumky) = jutky + ... + jumkn, 2
contradiction. Hence, dimy(J) 2 2™°, a contradiction.

1.6. Theorem. Let R be a ring of cardinality <2%°. Then the following conditions
are equivalent:

(i) R is a left non-singular left T-ring;

(ii) either R =S or R =T or R = S T, where S is a completely reducible
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ring of cardinality <2® and there is a division ring D of cardinality
< 2% such that T is Morita equivalent to the upper triangular matrix ring
of degree 2 over D.

Proof. By [9, 4.4 and 6.1], [10, I1.4] and 1.5.

2. INDEPENDENCE FOR COUNTABLE MODULES

In this section, we use a combinatorial principle due to S. Shelah to prove in-
dependence of WP for countable modules over simple countable non-completely
reducible regular rings {various examples of such rings can be found e.g. in [5]).

2.1. For E < N, consider the assertion: (Ag) Let (n, | ve E) be a sequence of

strictly increasing Np-sequences such that for each limit ve E : sup n,(i) = v. Let
i<R®o

(h, | ve E) be a sequence of functions from N, to No. Then there is a function

f: Ny = N such that for each limit ve E: 3j < X, Vi > j: (n(i)) f = (i) h,.

Lemma. If ZFC is consistent, then ZFC + GCH + “3E < N;: E stationary
in N, & (Ap)” is consistent.

Proof. Let E be a stationary subset in N, such that ¥, — E is stationary in ¥,
too. Take D — a normal 8;-complete filter over N, such that (N; ~ E)e D — and
use [8, 2.1].

2.2. Let R be a non-completely reducible regular ring. Let I be a countably
infinitely generated left ideal of R. By [5, §2], I = Y Re;, i < Ry, where e;, i < N,
are pairwise orthogonal idempotents of R. Let E be a stationary subset in ¥; and F
the set of limit ordinals from E. Clearly, F is stationary in N, too. Take a ve F.
Then either there is a strictly increasing sequence v;, i < N, of limit ordinals less

than v with sup v; = v, or there is a limit ordinal ¢ < v with v = pt + ;. In the
i<No

former case, put n(i) = v; + i + 1, i < ¥, and in the latter put n,(i) = g + i + 1,
i < N,. Further, for « < ¥, denote by =, the «-th canonical projection R™? — R,
Now, for ve F, denote by g;, the element of R with =, ;(9,) = €, m(g4) =
= —e,, and m,(g;) = 0 otherwise. Let M}, = Y Rg,,, i < Ny, ve F and put My =
= R®Y/M;.

Theorem. M, is a strongly Ni-free, non-projective module. Moreover, (AE)
implies Extg (Mg, N) = 0 for each countable N € R-mod.

Proof. For a < N let ¢, be the clement of R®Y with =,(t,) = 1 and m,(¢,) = 0
otherwise. Put M, = 0 and for 0 < p < ¥ let M, = Y R(t, + M), « < p. Hence,
for each limit p < N1 M, = UM,, v < u. Further, for each 0 < p < N;: M, =
= Y'Rv,, & < u, where

(i) v.= (1 — &)1, + M} and Ro, > R(1 — e)) provided there are i < ¥, and
ceF, o < puwith a = n,i),
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(ii) v, = t, + M} and Rv, ~ R otherwise.
Hen‘ce, for each u < N3, M, is projective. Moreover, for v < u < Ny, M, [M, =
o~ Zla, v £ o < u, where

(i) I, = R(1 — e;) provided there are i < Ny and o€ F, ¢ < pu with a = n,(i),

(i) I, = R/ZRei provided a € F, v < « < p and A, = {i | n(i) <},

i€Aa

(iii) I, = R otherwise.
Now, if v¢ F, then for all p with v < u < §,, all the sets 4,, ae F, vSa<u
are finite and hence M,jM, is projective. Thus My = UM,, v < N, is strongly
N,-free. On the other hand, if ve F, then M, /M, ~ R/l is not projective. By
[4, 5.1 and § 18], M is not projective. To prove the rest, let N be a countable
module and r: N — ¥, an injective mapping. Let p € Homg (M}, N). Assume (Ag).
Then also (Ag), for (n, | veF) defined as above and for h,: N, — X, defined by
(i) hy = (g94) Py i <Ry, ve F. Note that (g,,) pre(e;N)r for all i <Ny, veF.
Hence, there is a function f: N; - N, such that for each ve F there is a j, < N,
with n(i) fr™! = (g;,) p, for all j, < i < N,. For each ae F and each i £ j, put
8, = ny{i) fr~" if there is a Be F such that j, < i and n,(i) = nyi), and §;,, = 0
otherwise. Define a g e Homg (R™", N) by

(i) t,g = (af) r~" provided there are ve F and i < N, such that j, < i and

o = nyi),

Jo

(ii) .9 = Y, (0:x — (9:x) P) provided z € F,
i=0-

(iii) #,9 = O otherwise.

Then, for each i < ®,, ve F, we have (g,,) 9= et,,nd — 1,4) = (9:) p, Whence
Ext, (My, N) = 0.

2.3. Theorem. Assume GCH + “JE < Ny: E stationary in N; & (Ag)”. Let R
be a simple countable non-completely reducible regular ring. Then no non-zero
countably generated module has WP.

Proof. By 2.2 and [10, IIL.2 and IIT.4].

2.4. Theorem. Let R be g simple countable non-completely reducible regular
ring. Then the assertion “every countably generated module has WP” is independent
of ZFC.

Proof. By [10, II1.6] (or by [10, IIL.4] and [4, 21.6]), the assertion holds if ¥ = L
is assumed. The rest follows from 2.1 and 2.3.

3. ARTIN’S PROBLEM AND WP

Recently (see [6] and [3]), Artin’s problem for skew field extensions has been
solved: for each pair of cardinals («, ) with o > 1, 8 > 1, there are division rings §
and T such that Tis a subring of S, the left dimension of S over Tis « and the right
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dimension is . Here, in 3.2, we use this fact to construct a matrix ring R such that R
is not a left T-ring, but each cyclic module has WP. Our result was announced in
[9, 5.4].

Let m be a natural number, m = 1, n = m + 1, and let S, T be division rings
such that T is a subring of M,,,,(,,,{S). If x is a cardinal, k = 1, we shall shortly
write M, and M instead of RFM,..(S) and RFM,, (S), respectively. Note
that M, (M) is a left M,, (M,, respectively)-module. For a matrix a e M,}, let
a’ € M, be such that aj; = a;, ;. for al 0 i, j < m. Let R = U(m, S, T) be
the subring of M, formed by the set of matrices a € M,” with a;q = ... = g, = 0
and a" e T. Let e € R be such that e;p = 1 and e;; = 0 otherwise and put f = 1 — e.
It is easy to see that {e, f} is a basic set of primitive idempotents of R, whence R
is a basic ring. Further properties of R can be found e.g. in [9, 5.1].

If x is a cardinal, x = 1 and X (Y) is a subset of M,, (M,, respectively), we put

k
= { Z X:yi
i=0

k<N, x;€X, y;eYforall i =0,...,k}.

3.1. Lemma. Let k be a cardinal, x = 1. Then the following conditions are
equivalent:
(i) there are a non-projective module M and a non-injective module N such
that dim (Soc (N)) = x and Extg (M, N) = 0,
(ii) there are a finitely generated right T-submodule X of M, and a proper
left T-submodule Y of M, such that X . Y = M,..

Proof. Denote by 4 the module R/Soc(R). Let N be a non-injective module.
Using [9, 5.1], it is easy to see that I(N)/Soc (N), and thus I(N)/N, is a direct sum
of copies of A. Further, if M is any module, then by [9, 5.1.(i)], there is a projective
cover (P, p) of M. By [1, 28.13], there are cardinals «, §, , § such that P = (Re)® 4

+ (Rf)® and Ker p ~ (Re)™ 4 (Rf)®. Since Ker p is superfluous in P, we have

6 = 0 and Ker p < (Rf)®.
Assume (i). Let x ¢ Ker p be such that Rx is a direct summand of Ker p and
Anng (x) = Rf. Since Extg (P[Ker p, N) = 0, we have Extg (P/Rx,N) = 0. Let q
be the smallest natural number such that x € (Rf)@, i.e. x = (xo, ..., X,_,), Where
0 + x, € Soc (Rf) for all k < g. Put G = (Rf)@/Rx. Then G is not projective and
Extg (G, N) = 0. By [9, 5.1(ii)], we may assume that Homp (4, N) = 0. Hence,
by [9, 5.1], we have I(N) = M7 and

Soc(N) = Soc(M}}) =
={aeM; |a;=0forall 0 <i<m and 0<j<k}.

Now, put Y = {a’ | aeN}. By [9, 5.1.(vi)], Yis a proper left T'submodule of M.
Further, for 0 < i < m and 0 £ k < g, let z} € M,, be such that (z});; = (%o j+1
forall 0 £ j < m and (zk)c, == 0 otherwise. Let X be the right T-submodule of M,,

generated by {z}|0 <i<m and 0 £ k < g}. We shall prove that X . Y = M,.
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Take u € M, and let u; be the i-th row of u, hence u; € S™ for all 0 < i < m. Clearly,
q—1
for each 0 < i < m, there are vie M,, 0 < k < g, such that Zxkv,‘ = u,. Let

wi € M, be such that (w)) = v, 0 < i <mand0 < k < g. Since ZkakESOC(N)
k=0 g-1

and Extg (G, N) = 0, thereare t;e M), 0 < i < mand 0 £ k < g, with Zxktk =0
k=0

and t; + N = w, + Nforall0 £ i < mand 0 £ k < ¢g. Now, put yj = (w} — t}),

0Li<mand 0k <gq. Then y/eY,forall0<i<mand 0 <k <gq, and

gq-—1 . m—1g—1
Y Xy, = uy, forall 0 < i < m, whence Y, Y ziyj = u.
k=0 i=0 k=0

Assume (ii). Let N be a submodule of M, such that Soc(N) = {ae M} | a;;

forall 0 <i<mand 0<j<xk}andY={a'|aeN}. Clearly, N is not 1nject1ve

and I(N) M. Since Soc(N) = Soc(M,), [9, 5.1] implies dim (Soc(N)) = .

Let {z, ‘ 0 £ k < g} be a finite set of generators of the right T-module X. For each

0 < k < g, let x; € Soc (Rf) be such that the O-th row of x, equals the 0-th row of z,.
g—1

g—1
Then Z XN = Soc(N). Let x = (Xgy +ves Xg—1) ez Rf,, where f, =f for all
0=Lk<gq, and put M = Z Rf,/Rx. We shall prove that Extp(M,N)=0.
Take g e Homg (M, I(N)/N) Then (f,, + Rx)g =u, + N, for all 0<k<gq,

where u, e M), 0 £ k < q. Since Z Xty € Soc (N), there exist n, e N, 0 < k < ¢,
ql

such that ) x(u, — ) = 0. Hence, if heHomg (M,I(N)) is defined by

k=0
(fu + RX)h =u, —n, 0 <k <gq, then g = hn, where 7: I[(N) — I(N)|N is the
canonical projection, whence Extz (M, N) = 0.

3.2. Theorem. Let S, T be division rings such that T is a subring of S, the left
dimension of S over Tis two and the right dimension is infinite. Let R = U(1, S, T).
Then Extg (M, N) # 0 for each non-projective module M and each cyclic non-
injective module N, but R is not a left T-ring.

Proof. By [9, 5.3], R is not a left Tring (in fact, the proof of [9, 5.3] shows that
there are a non-projective 2-generated module M and a non-injective module N
such that Extg (M, N) = 0). Further, for x =1, we have M, = S and hence
X .Y+ S, for any finitely generated right T-submodule X of S and any proper
left T-submodule Y of S. Now, it is easy to see that each cyclic module is a direct
sum of modules N with dim (Soc (N)) = 1, and it suffices to apply 3.1.
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