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WHITEHEAD TEST MODULES

JAN TRLIFAJ

Abstract. A (right R-) module N is said to be a Whitehead test mod-
ule for projectivity (shortly: a p-test module) provided for each module M ,
ExtR(M,N) = 0 implies M is projective. Dually, i-test modules are defined.
For example, Z is a p-test abelian group iff each Whitehead group is free. Our
first main result says that if R is a right hereditary non-right perfect ring, then
the existence of p-test modules is independent of ZFC + GCH. On the other
hand, for any ring R, there is a proper class of i-test modules. Dually, there is
a proper class of p-test modules over any right perfect ring.

A non-semisimple ring R is said to be fully saturated (κ-saturated) provided
that all non-projective (≤ κ-generated non-projective) modules are i-test. We
show that classification of saturated rings can be reduced to the indecompos-
able ones. Indecomposable 1-saturated rings fall into two classes: type I, where
all simple modules are isomorphic, and type II, the others. Our second main
result gives a complete characterization of rings of type II as certain gener-
alized upper triangular matrix rings, GT (1, n, p, S, T ). The four parameters
involved here are skew-fields S and T , and natural numbers n, p. For rings
of type I, we have several partial results: e.g. using a generalization of Bon-
gartz Lemma, we show that it is consistent that each fully saturated ring of

type I is a full matrix ring over a local quasi-Frobenius ring. In several recent
papers, our results have been applied to Tilting Theory and to the Theory of
∗-modules.

In modern algebra, the structure of rings, R, is studied by means of properties
of corresponding module categories, Mod-R. In most cases, it is not possible to
characterize Mod-R fully. Nevertheless, there are important subclasses of Mod-R
that can be treated in detail and that shed light on the whole of Mod-R. Among
the prominent ones are the classes of all projective and all injective modules.

Recall that a module M is said to be projective (injective) provided that the
functorHomR(M,−) (HomR(−,M)) preserves short exact sequences. There is also
a universal algebraic aspect: each module is a factor module of a projective module,
and a submodule of an injective module. So a possible strategy to investigate Mod-
R consists in describing all injective modules, and for each injective module, I, all
its submodules. The first step is usually relatively easy, but the second may be
quite hard. For example, using this strategy for abelian groups, one meets serious
difficulties already for I = Q⊕Q (see e.g. [E, Theorem 2]).
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There are two basic results on testing injectivity and projectivity. First, Baer’s
Criterion, saying that injectivity can be tested using only cyclic (singular) modules.
Then Kaplansky’s Theorem, saying that any projective module is a direct sum
of countably generated (projective) modules. This theorem enables one to test
projectivity of certain modules by their Γ-invariants (see [EM, IV, §1]).

In the present paper, we suggest another way to test projectivity and injectivity.
It consists in evaluations of appropriate extension groups Ext. Of course, a module
M is projective iff ExtR(M,N) = 0 for all modules N ∈ Mod-R. Similarly, N is
injective iff ExtR(M,N) = 0 for all modules M ∈Mod-R.

When we are testing for projectivity or injectivity, we need not check all the
groups ExtR(M,N). In fact, the evaluation of a single group is enough. For each
module M , there exist modules K and L such that M is projective (injective) iff
ExtR(M,K) = 0 (ExtR(L,M) = 0)—see Lemma 1.1 below. The problem is that
the modules K and L depend on M , and they can be quite big provided M is such.
We would like to get rid of this dependence, deciding the projectivity or injectivity
of M by calculating a single Ext group using a fixed module N . This leads to the
following basic definition:

Definition. Let R be a ring and N be a module.
(i) N is said to be a Whitehead test module for projectivity (or a p-test module)

provided that for each M ∈Mod-R, ExtR(M,N) = 0 implies M is projective.
The class of all p-test modules is called the p-test class and denoted by PT .

(ii) N is said to be a Whitehead test module for injectivity (or an i-test module)
provided that for each M ∈Mod-R, ExtR(N,M) = 0 implies M is injective.
The class of all i-test modules is called the i-test class and denoted by IT .

Note that it can be quite hard to decide whether a particular module is p-test or
not. For example, if R = Z, then the question “Is Z a p-test Z-module?” is exactly
the well-known Whitehead problem. Thanks to a series of deep results of Shelah,
notably [S1], [S2], [S3] and [S4], this problem is known to be undecidable in ZFC +
GCH (see also [EM, Ch.XII]). Recently, Eklof and Shelah have given a full answer
to this problem, by identifying its combinatorial equivalent [ES2].

In Sections 1-3 of this paper, we deal with existence of p-test and i-test modules.
We show that the i-test class is a proper class for an arbitrary ring (Corollary 1.3).
Dually, the p-test class is a proper class for any right perfect ring (Corollary 1.5).
The more difficult question of existence of p-test modules over non-right perfect
rings cannot be answered using only algebraic methods. Here, the set-theoretic
methods developed by Shelah for abelian groups turn out to be very useful. In
Section 2, the consistency of non-existence is proved using a uniformization principle
due to Shelah (Theorem 2.5). On the other hand, in Section 3, a generalized weak
diamond principle is applied to prove consistency of existence of a proper class of
p-test modules over any right hereditary non-right perfect ring (Theorem 3.13).

In Sections 4-6, we study rings possessing many test modules. A non-semisimple
ring R is said to be fully saturated (κ-saturated) provided that all non-projective
(≤ κ-generated non-projective) modules are i-test (Definition 4.1). The fully satu-
rated rings have already been studied, under the term “right Ext-rings”, in [T1].
The results of Sections 4-6 provide substantial refinements and further progress in
the structure theory instigated by [T1]. First, we show that the classification of
saturated rings can be reduced to the indecomposable ones (Theorem 4.9). Then we
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divide indecomposable 1-saturated rings into two classes: type I, where all simple
modules are isomorphic, and type II, the others (Definition 4.10). In Section 5, we
provide a complete characterization of rings of type II as certain generalized upper
triangular matrix rings, GT (1, n, p, S, T ) (Theorem 5.14). Finally, in Section 6, we
deal with rings of type I, proving e.g. that it is consistent that each fully saturated
ring of type I is a full matrix ring over a local quasi-Frobenius ring (Theorem 6.16).

The results of this paper have applications to Tilting Theory and to the Theory
of ∗-modules. In [CT1, §3], [T3, §2] and [T4], they were used for a classification
of almost ∗-modules. In [CT2, §2], they were applied to an investigation of tilting
torsion theories, generalizing results of Assem [As], Smalø [Sm] et al.

We use the following notation and conventions: All rings are associative and
with unit. Let R and S be rings. Then R � S denotes the ring direct product of
R and S. Further, Mod-R denotes the category of all (unitary right R-)modules.
Homomorphisms of module categories are written as acting on the opposite side
from scalars. If M is a module, then gen(M) denotes the minimal cardinality of a
generating set of M . Further, Soc(M), Rad(M) and Sing(M) denote the left socle,
Jacobson radical and singular submodule of M , respectively. The injective hull of
M is denoted by I(M). The i-th derived functor of the HomR functor is denoted
by ExtiR, and ExtR = Ext1R. For basic properties of these notions, and for further
standard terminology, we refer to [AF], [CaEi] and [EM].

1. Whitehead test modules for projectivity and injectivity

We start with the simple fact that projectivity and injectivity of a given module
can be tested by checking a single Ext group:

Lemma 1.1. Let R be a ring.
(i) Let M ∈Mod-R and

0 −→ K
ν−→ P −→M −→ 0

be a short exact sequence in Mod-R such that P is projective. Then M is projective
iff ExtR(M,K) = 0.

(ii) Let N ∈Mod-R and

0 −→ N −→ I −→ L −→ 0

be a short exact sequence in Mod-R such that I is injective. Then N is injective
iff ExtR(L,N) = 0.

Proof. (i) Using the definition of Ext by Hom groups of the given projective pre-
sentation of M , we get ExtR(M,K) ' HomR(K,K)/Im(HomR(ν,K)). Assume
ExtR(M,K) = 0. Then idK = πν, for some π ∈ HomR(P,K). So Ker(π) is a
summand of P and Ker(π) ' P/Im(ν) 'M .

(ii) Dual to (i). �

Using Baer’s Criterion, it is easy to see that i-test modules exist over an arbitrary
ring:
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Proposition 1.2. Let R be a ring. Let E be the set of all proper essential right
ideals of R. Put M =

⊕∑
I∈E R/I. Then M is an i-test module.

Proof. Assume ExtR(M,N) = 0. Let J be a left ideal of R and φ ∈ HomR(J,N).
There exist J ⊆ I ∈ E and φ̄ ∈ HomR(I,N) such that φ̄ � J = φ. By the premise,
ExtR(R/I,N) = 0. Since the sequence

0 −→ HomR(R/I,N) −→ HomR(R,N) −→ HomR(I,N) −→ ExtR(R/I,N) = 0

is exact, there is some ϕ ∈ HomR(R,N) such that ϕ � I = φ̄. By Baer’s Criterion,
N is injective. �

Of course, any module possessing a summand isomorphic to an i-test module is
likewise i-test. This implies

Corollary 1.3. For any ring R, there is a proper class of i-test modules.

Clearly, each (projective) module is i-test iff the ring R is semisimple. Denote
by P the class of all projective modules. Then IT ⊆Mod-R \P provided R is not
semisimple. Though IT is a proper class, almost never does IT = Mod-R \P. We
shall consider this problem in detail in §4-6.

Proposition 1.4. Let R be a right perfect ring. Denote byM the set of all maximal
right ideals of R. Put N =

⊕∑
I∈MR/I. Then N is a p-test module.

Proof. Assume ExtR(M,N) = 0 and M is non-projective. Let

0 −→ K −→ P −→M −→ 0

be a projective cover of M , i.e. a short exact sequence with P projective and
K a superfluous submodule of P . By the premise, K 6= 0 and K has a maximal
submodule, L. Then K/L is isomorphic to a summand of N , and ExtR(M,K/L) =
0. Let π ∈ HomR(K,K/L) be the projection. By the definition of Ext using Hom
groups of the projective cover of M , there is a φ ∈ HomR(P,K/L) such that
φ � K = π. Then Ker(φ) is a maximal submodule of P and K ⊆ Rad(P ) ⊆
Ker(φ) ⊂ P . Thus, π = φ � K = 0, a contradiction. �

Note that the proof of 1.4 can easily be dualized to obtain another (longer) proof
of 1.2.

Corollary 1.5. Let R be a right perfect ring. Then there is a proper class of p-test
modules.

Clearly, each (injective) module is p-test iff the ring R is semisimple. Denote
by I the class of all injective modules. Then PT ⊆ Mod-R \ I provided R is not
semisimple. Though PT is a proper class over any right perfect ring, almost never
does PT = Mod-R \ I. Also this problem will be considered in detail in §4-6.

Finally, we introduce two important notions often used in the sequel:

Definition 1.6. Let κ be an infinite regular cardinal. Let R be a ring and M be
a module.

(i) M is κ-projective provided that each submodule of M generated by < κ
elements is projective.

(ii) A sequenceM = (Mα;α < κ) of submodules of M is said to be a κ-filtration
of M provided that gen(Mα) < κ for all α < κ, M is a chain (i.e. Mα ⊆Mα+1 for
all α < κ),M is continuous (i.e. Mα =

⋃
β<αMβ for all limit ordinals α < κ), and

M =
⋃
α<κMα.
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2. The use of uniformization principles

In this and in the subsequent section, we show how methods and results of infinite
combinatorics are used to answer the question of existence of p-test modules over
non-right perfect rings. As in the particular case of R = Z, the answer turns out
to be independent of ZFC. In fact, many of the methods developed by Shelah for
abelian groups carry over to modules over non-perfect rings (cf. [EM], [ES1], [T2]
et al.)

In this section, we show that there is no p-test module over any non-right perfect
ring, assuming Shelah’s uniformization principle UP (Theorem 2.5). Moreover,
there exist non-right perfect rings over which there are no finitely generated p-test
modules in ZFC (Example 2.6).

We start with several notions from infinite combinatorics:

Definition 2.1. Let R be a non-right perfect ring. By Bass’ Theorem P ([AF,
Theorem 28.4]), there exist elements ai ∈ R, i < ℵ0, such that (Rai . . . a0; i < ℵ0) is
a strictly decreasing chain of principal left ideals of R. Let κ be an infinite cardinal
and E be a subset of κ+ such that E ⊆ {α < κ+; cf (α) = ℵ0}. Let (nν ; ν ∈ E)
be a ladder system i.e. for each ν ∈ E, let (nν(i); i < ℵ0) be a strictly increasing
sequence of non-limit ordinals less that ν such that supi<ℵ0

nν(i) = ν.
Let (Rα;α < κ+) be a system of free modules defined as follows: Rα = R

provided α ∈ κ+ \E, and Rα = R(ℵ0) provided α ∈ E. For α ∈ κ+ \ E, denote by
1α the canonical generator of Rα, and for α ∈ E let {1α,i | i < ℵ0} be the canonical
basis of Rα. Note that by Bass’ Lemma ([AF, Lemmas 28.1 and 28.2]), for every
ν ∈ E, the module

Sν =
∑
i<ℵ0

(1ν,i − 1ν,i+1 · ai)R

is a free submodule of Rν such that Rν/Sν is not projective. Put

P =
⊕ ∑

α<κ+

Rα, Q =
∑
α∈E

Qα, and Qα =
∑
i<ℵ0

gαiR

for all α ∈ E, where gαi = (1nα(i)− 1α,i + 1α,i+1 ·ai) ∈ P , for all α ∈ E and i < ℵ0.
Finally, put M = P/Q ∈Mod-R.

Recall that E is a stationary subset of a cardinal λ provided E has a non-empty
intersection with any closed and cofinal subset of λ.

Lemma 2.2. If E is a stationary subset of κ+, then proj.dim(M) = 1.

Proof. Put M0 = 0 and, for each 0 < α < κ+, Mα = (
⊕∑

β<α Rβ + Q)/Q.
Then (Mα;α < κ+) is a κ+-filtration of M . Clearly, Q =

⊕∑
α∈E Qα, Qα =⊕∑

i<ℵ0
gαiR for all α ∈ E, and Ann(gαi) = 0 for all α ∈ E and i < ℵ0. In

particular, both P and Q are free modules, so proj.dim(M) ≤ 1. Proving indirectly,
assume proj.dim(M) = 0, i.e. M is projective. By Kaplansky’s Theorem, there
exist modules (Pα;α < κ+) such that gen (Pα) ≤ ℵ0 for all α < κ+ and M =⊕∑

α<κ+ Pα. Put N0 = 0 and, for each 0 < α < κ+, Nα =
⊕∑

β<α Pβ. Clearly,
(Nα;α < κ+) is a κ+-filtration of M . Since the set C = {α < κ+;Mα = Nα} is
closed and cofinal in κ+, there exists ν ∈ E∩C. Of course, D = C∩{α < κ+; ν < α}
is also closed and cofinal in κ+, whence there is some µ ∈ E∩D. Then X = Nµ/Nν
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is a projective module. On the other hand, put Y = (
⊕∑

ν<α<µ Rα + Q)/Q.
Then X = Mµ/Mν = Mν+1/Mν + (Y +Mν)/Mν . By 2.1, Y ∩Mν+1 ⊆Mν , whence
Mν+1/Mν ' Rν/Sν is a non-projective summand of X, a contradiction. �

The following (meta-) lemma is proved by forcing e.g. in [ES1, §2]:

Lemma 2.3. Let κ be a cardinal such that cf (κ) = ℵ0. Consider the following
assertion:
UPκ: “there exist a stationary subset E of κ+ satisfying E ⊆ {α < κ+; cf (α) = ℵ0}
and a ladder system (nν ; ν ∈ E) such that for each cardinal λ < κ and each sequence
(hν ; ν ∈ E) of mappings from ℵ0 to λ there is a mapping f : κ+ → λ such that
∀ ν ∈ E ∃ j < ℵ0 ∀ j < i < ℵ0 : f(nν(i)) = hν(i)”.

Denote by UP the assertion “UPκ holds for every uncountable cardinal κ such
that cf (κ) = ℵ0 ”. Then UP is consistent with ZFC + GCH.

The next lemma is proved in [T2] (cf. [ES1, Theorem 1.7]):

Lemma 2.4. Let κ be a cardinal such that cf (κ) = ℵ0. Assume UPκ holds. Let
M = P/Q be the module corresponding to the E and (nν(i); ν ∈ E) from UPκ
by 2.1. Then Ext(M,N) = 0 for all N ∈ Mod-R such that card(N) < κ.

Now, we easily obtain the consistency result (cf. [ES1, Corollary 2.2] and [T2]):

Theorem 2.5. The assertion “There is no p-test module over any non-right perfect
ring” is consistent with ZFC + GCH.

Proof. By 2.3, we assume UP . Let N be a module. Let κ be a cardinal such that
cf(κ) = ℵ0 and κ > card(N). By 2.2 and 2.4, there is a non-projective module M
such that ExtR(M,N) = 0. Hence, N is not a p-test module. �

The following example shows (in ZFC) that there exist non-right perfect rings
without finitely generated p-test modules:

Example 2.6. Let R be a right self-injective nonright perfect ring (e.g. let R be
the ring of all linear transformations of an infinite dimensional right linear space
over a skew-field). Then no finitely generated module is a p-test module.

Proof. Let ai, i < ℵ0, be as in 2.1. Let 1i, i < ℵ0, be the canonical basis of the free
module F = R(ℵ0) and let G =

∑
i<ℵ0

(1i − 1i+1 · ai)R ⊆ F . Put M = F/G. By
Bass’ lemma, G is a free module, andM is not projective. If N is a finitely generated
module, we have N ' R(n)/K for some n < ℵ0 and K ⊆ R(n). Since the sequence
0 −→ G −→ F −→ M −→ 0 is exact, we get 0 = ExtR(G,K) −→ Ext2R(M,K) −→
Ext2R(F,K) = 0, and Ext2R(M,K) = 0. Since the sequence 0 −→ K −→ R(n) −→
N −→ 0 is exact and R is right self-injective, we have 0 = ExtR(M,R(n)) −→
ExtR(M,N) −→ Ext2R(M,K) = 0, whence ExtR(M,N) = 0. �

For right hereditary rings, the question of existence of p-test modules can be
decided on free modules:

Proposition 2.7. Let R be a ring and κ a cardinal. Then the following conditions
are equivalent:

(i) There exists a p-test module N such that gen(N) ≤ κ and proj.dim(N) ≤ 1;
(ii) R(κ) is a p-test module.

Proof. The non-trivial part is (i) =⇒ (ii) : Let M be a module such that
ExtR(M,R(κ)) = 0. By the premise, there is an exact sequence 0→ K → R(κ) →
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N → 0, where K is projective. Then 0 = ExtR (M,R(κ)) → ExtR (M,N) →
Ext2

R (M,K) = 0, whence ExtR (M,N) = 0, and M is projective by (i). �

Corollary 2.8. Let R be a right hereditary ring. If there is a p-test module in
Mod-R, then there is a cardinal κ such that each free module of rank ≥ κ is p-test.

Proof. Take κ = min{gen(N);N is p-test } and apply 2.7. �

3. Generalized weak diamond and the existence of p-test modules

The main purpose of this section is to prove the consistency of the existence of
p-test modules for certain classes of non-right perfect rings (Theorem 3.13(ii)). An
essential tool for this is a combinatorial principle called generalized weak diamond
(and denoted by Ψ). Since Ψ is a consequence of the axiom of constructibility, all
consequences of Ψ are consistent with ZFC + GCH. Our proof is in three steps:

Step I: by purely algebraic means, the existence of modules testing projectivity
of modules of “small” size is obtained;

Step II: using Ψ, the testing is extended to modules of regular cardinality;
Step III: Shelah’s Compactness Theorem is applied to cover the singular cardi-

nality case.
Note that the proof requires the generalized weak diamond only in Step II, the
other steps being proved in ZFC.

In this way, the existence of p-test modules is achieved for all right hereditary
non-right perfect rings. Further results are obtained in the particular cases when

(1) R is a Dedekind domain with card(R) ≤ ℵ1 such that R is not a complete
discrete valuation ring; and

(2) R is a simple von Neumann regular ring with card(R) ≤ ℵ1 such that R has
countable dimension over its center.
In the case (1), p-test modules include all non-zero free modules (Theorem 3.14).
In the case (2), all non-zero countably generated modules are p-test. Hence, also all
non-zero free modules, and semisimple modules, are p-test in the case (2) (Corollary
3.19).

Step I for the Dedekind domains is a well-known generalization of the classical
result of Stein for Z. The generalization is due to Nunke ([N, §8]):

Proposition 3.1. Let R be a Dedekind domain which is not a complete discrete
valuation ring. Let F be a non-zero free module, and M be a module of countable
rank. Then M is projective iff ExtR(M,F ) = 0.

We turn to Step I for the von Neumann regular rings:

Lemma 3.2. Let R be a von Neumann regular ring such that dimK(R) ≤ ℵ0,
K being the center of R. Then each left (right) ideal of R is countably generated.
Hence R is (left and right) hereditary. In particular, any countable von Neumann
regular ring is hereditary.

Proof. Let I be a right ideal of R. Then dimK(I) ≤ ℵ0. Let B = {bn;n < κ},
κ ≤ ℵ0, be a left K-basis of I. Then I =

∑
n<κ bnR, and I is countably generated.

Since R is regular, I is projective, and R is right hereditary. The left-hand version
follows similarly. �
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Proposition 3.3. Let R be a simple von Neumann regular ring. Denote by K
the center of R. Assume dimK(R) ≤ ℵ0. Let N be a non-zero countably gener-
ated module. Let M be any countably generated module. Then M is projective iff
ExtR(M,N) = 0.

Proof. Let ExtR(M,N) = 0. Let M ′ be any finitely generated submodule of M .
We prove that M ′ is projective: We have M ′ ' R(m)/I for some 0 < m < ℵ0

and I ∈Mod-R. Proving indirectly, assume gen(I) ≥ ℵ0. Then the regularity of R
implies I is a direct sum of cyclic modules, I =

⊕∑
α<κ xαR. Since ExtR(M,N) =

0, 3.2 implies ExtR(M ′, N) = 0. Then also ExtR(R(m)/I ′, N) = 0, where I ′ =⊕∑
α∈C xαR, for a countably infinite subset C ⊆ κ. Since each xαR is cyclic

and projective, there exist idempotents 0 6= eα, α ∈ C, such that xαR ' eαR
for all α ∈ C. Since R is a simple ring, we have Neα 6= 0 for all α ∈ C. In
particular, dimK(HomR(I ′, N)) = dimK(

∏
α∈C Neα) ≥ dimK(Kℵ0) > ℵ0, while

dimK(HomR(R(m), N)) = dimK(N (m)) ≤ ℵ0. This contradicts the exactness of
the sequence

0 −→ HomR(R(m)/I ′, N) −→ HomR(R(m), N) −→ HomR(I ′, N) −→ 0.

Hence, gen(I) < ℵ0, I is a summand of R(m) (as R is regular), and M ′ is projective.
Thus, M is ℵ0-projective, and the assertion is true provided M is finitely generated.
If gen(M) = ℵ0, we use the following

Lemma 3.4. Let R be a right hereditary von Neumann regular ring. Let M be an
ℵ0-projective module with gen(M) = ℵ0. Then M is projective.

Proof. We have M = R(ℵ0)/I for some I ⊆ R(ℵ0). Put Mn = (R(n) + I)/I and
In = R(n)∩I, n < ℵ0. Then M is a union of the non-decreasing chain (Mn;n < ℵ0).
By the premise, Mn ' R(n)/In is projective, and In is finitely generated. Therefore,
we can define two sets, (An; 0 < n < ℵ0), and (Bn; 0 < n < ℵ0), of finitely generated
submodules of R(ℵ0) by

Bn ⊕ (In +R(n−1)) = R(n) and In+1 = In ⊕An,

for each 0 < n < ℵ0. Then R(ℵ0) = I1 ⊕ (
⊕∑

0<n<ℵ0
An) ⊕ (

⊕∑
0<n<ℵ0

Bn).
Now, I =

⋃
0<n<ℵ0

In, I = I1 ⊕ (
⊕∑

0<n<ℵ0
An), and M '

⊕∑
0<n<ℵ0

Bn is
projective. �

For Step II, we start with combinatorial principles that follow from the axiom
of constructibility:

Definition 3.5. Let κ be a regular uncountable cardinal and E be a stationary
subset of κ. Denote by ♦κ(E) the Jensen’s diamond (for κ and E), i.e. the assertion

“ Let A be any set of cardinality κ and (Aα;α < κ) a κ-filtration of A. Then
there is a system {Sα;α < κ} such that Sα ⊆ Aα for all α < κ, and the set
{α ∈ E;X ∩Aα = Sα} is stationary in κ, for every X ⊆ A.”

Denote by Φκ(E) the weak diamond (for κ and E), i.e. the assertion
“ Let A be any set of cardinality κ and (Aα;α < κ) a κ-filtration of A. For each

α ∈ E, let Pα : Exp(Aα)→ {0, 1} be given. Then there is φ : E → {0, 1} such that
the set {α ∈ E;Pα(X ∩Aα) = φ(α)} is stationary in κ, for every X ⊆ A.”

Denote by Ψκ(E) the assertion
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“ Let A be any set of cardinality κ and (Aα;α < κ) a κ-filtration of A. For
each α ∈ E, let 2 ≤ pα < ℵ0 and let Pα : Exp(Aα) → pα be given. Then there is
ψ : E → ℵ0 such that ψ(α) ∈ pα for all α ∈ E, and the set {α ∈ E;Pα(X ∩Aα) =
ψ(α)} is stationary in κ, for every X ⊆ A.”

Finally, denote by Ψ the generalized weak diamond, i.e. the assertion:
“ Ψκ(E) holds true for each regular uncountable cardinal κ and each stationary

subset E ⊆ κ ”.

The generalized weak diamond principle is less well-known, so we notice its
position between the better known ones:

Lemma 3.6. (i) Let κ be a regular uncountable cardinal and E be a stationary
subset of κ. Then ♦κ(E) =⇒ Ψκ(E) =⇒ Φκ(E).

(ii) Ψ is consistent with ZFC + GCH.

Proof. (i) This is clear, taking ψ(α) = Pα(Sα) for all α ∈ E for the first implication,
and taking pα = 2 for all α < κ for the second.

(ii) Assume the axiom of constructibility. Then, by a well-known result of Jensen,
♦κ(E) holds for each regular uncountable cardinal κ and each stationary subset E
of κ. Note that the Jensen’s diamond for κ = λ+ and E = λ+ implies 2λ = λ+.
Hence, GCH holds, and (i) implies that the assertion holds true. �

In general, by [S5, Ch.XIV], none of the implications from 3.6(i) can be reversed.
Similarly as the (weak) diamond (in [EM, XII, §1] et al.), the generalized weak

diamond is very useful for investigations of vanishing of Ext:

Lemma 3.7. Let κ be a regular uncountable cardinal and E a stationary subset of
κ. Assume Ψκ(E). Let R be a ring with card(R) ≤ κ. Let N be a module such that
card(I(N)) ≤ κ. Let M be a κ-projective module such that gen(M) = κ and there
is a κ-filtration (Cα;α < κ) of M such that E = {α < κ;ExtR(Cα+1/Cα, N) 6= 0}.
Then ExtR(M,N) 6= 0.

Proof. First, we take a κ-filtration (Dα;α < κ) of the set κ and elements mα ∈M ,
α < κ, such that Cα =

∑
β∈Dα mβR, for all α < κ. Let (Bα;α < κ) be a κ-

filtration of the Z-module I = I(N). Denote by ν the inclusion of N into I, by
π the projection of I onto I/N , and by να the inclusion of Cα into Cα+1, for all
α < κ.

Take α ∈ E. Let Xα = HomR(Cα, N) and Yα = Im(Hom(να, N)). By the
premise, there is some fα ∈ Xα \ Yα. Denote by oα the order of fα + Yα in the
group Xα/Yα = ExtR(Cα+1/Cα, N).

We are going to use the principle Ψκ(E) in the following setting: A = κ× I and
Aα = Dα × Bα, α < κ. Let α ∈ E. If oα = ℵ0, we put pα = 2. If oα < ℵ0, we
define pα = oα. In order to define the colourings Pα, α ∈ E, we equip the set of all
mappings from Dα to Bα with an equivalence relation ∼α: we put u ∼α v iff there
are n ∈ Z and y ∈ Yα such that v = u+ nfα � Dα + y � Dα. Note that the number
n is unique (unique modulo pα) provided oα = ℵ0 (oα < ℵ0). Now, for each α ∈ E,
we take a colouring Pα : Exp(Aα)→ pα such that Pα(u) = Pα(v) iff the number n
given by the pair (u, v) is divisible by pα.

Let ψ : E → ℵ0 be the mapping corresponding to this setting by Ψκ(E). In
order to prove that ExtR(M,N) 6= 0, we shall construct

g ∈ HomR(M, I/N) \ Im(HomR(M,π)).
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By induction on α < κ, we define gα ∈ HomR(Cα, I/N) so that gα+1 � Cα = gα
for each α < κ, and gα =

⋃
β<α gβ for all limit α < κ.

Put g0 = 0. Assume gα is defined for an ordinal α < κ. We distinguish the
following two cases:

(I) α ∈ E and there exists f ∈ HomR(Cα+1, I) such that Im(fνα � Dα) ⊆ Bα,
Pα(fνα � Dα) = ψ(α), and gα = πfνα.

(II) = not (I).
In the case (I), take an f satisfying the conditions of (I). The injectivity of I yields
the existence of hα ∈ HomR(Cα+1, I) such that hανα = fνα−fα. Put gα+1 = πhα.
Then gα+1να = πfνα − πfα = gα.
In the case (II), the projectivity of Cα yields the existence of hα ∈ HomR(Cα, I)
such that gα = πhα. The injectivity of I gives some hα+1 ∈ HomR(Cα+1, I) such
that hα = hα+1να. Put gα+1 = πhα+1. Then gα+1 � Cα = gα.

Finally, put g =
⋃
α<κ gα. Then g ∈ HomR(M, I/N). Proving indirectly, sup-

pose there is h′ ∈ HomR(M, I) such that g = πh′. Note that the set {α < κ;
Im(h′ � Dα) ⊆ Bα} is closed and cofinal in κ. Put X =

⋃
α<κ(h′ � Dα). By the

premise, there is an α ∈ E such that g � Cα = πhνα, Pα(hνα � Dα) = Pα(X∩Aα) =
ψ(α), and Im(hνα � Dα) ⊆ Bα, where h = h′ � Cα+1. Hence, the case (I) occurs,
and π(hα − h) = 0. Then yα = (hα − h)να ∈ Yα. Moreover, fνα = hνα + fα + yα,
whence ψ(α) = Pα(fνα � Dα) = Pα(hνα � Dα + fα � Dα + yα � Dα) 6= Pα(hνα �
Dα), a contradiction. Thus g /∈ Im(HomR(M,π)). �

Lemma 3.8. Let κ be a regular uncountable cardinal. Assume Ψκ(E) holds for all
stationary subsets of κ. Let R be a ring with card(R) ≤ κ. Let N be a module such
that card(I(N)) ≤ κ. Let M be a κ-projective module such that gen(M) = κ. Then
the following conditions are equivalent:

(i) ExtR(M,N) = 0 ;
(ii) There is a κ-filtration (Cα;α < κ) of M such that ExtR(Cα+1/Cα, N) = 0

for all α < κ.
Moreover, the implication (ii) =⇒ (i) holds in ZFC.

Proof. (i) =⇒ (ii): Since gen(M) = κ, there is a κ-filtration, (Dα;α < κ),
of the module M . By induction, we define a mapping η : κ → κ as follows.
First, η(0) = 0. If η(α) is defined, then either ExtR(Dβ/Dη(α), N) = 0 for all
β ≥ η(α) and we put η(α + 1) = η(α) + 1, or there is a smallest η(α) < β < κ
such that ExtR(Dβ/Dη(α), N) 6= 0 and we put η(α + 1) = β. For α limit, we put
η(α) = supβ<αη(β). Then (Dη(α);α < κ) is a κ-filtration of the module M . Let
E = {α < κ;ExtR(Dη(α+1)/Dη(α), N) 6= 0}. By 3.7, E is not stationary in κ. Let
C be a closed and cofinal subset of κ with E ∩ C = ∅ and 0 ∈ C. Let θ : κ → C
be a strictly increasing continuous mapping of κ onto C. For each α < κ, put
Cα = Dηθ(α). Then (Cα;α < κ) is a κ-filtration of M satisfying (ii).

(ii) =⇒ (i): We prove in ZFC. Denote by π the projection of I = I(N) onto
I/N . For α < κ, let να be the inclusion of Cα into Cα+1. By induction on α < κ
we define mappings ϕα : HomR(Cα, I/N) → HomR(Cα, I) such that for each
f ∈ HomR(Cα, I/N), πϕα(f) = f , and ϕα(fνα) = ϕβ(f)να provided β = α + 1.
For α = 0 put ϕα = 0. Let 0 < α < κ and f ∈ HomR(Cα+1, I/N). Since Cα+1

is projective, there is g ∈ HomR(Cα+1, I) with f = πg. As gνα − ϕα(fνα) ∈
HomR(Cα, N) and ExtR(Cα+1/Cα, N) = 0, there is h ∈ HomR(Cα+1, N) such
that hνα = gνα − ϕα(fνα). We put ϕα+1(f) = g − h. If α is limit, define ϕα =
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β<α ϕβ. Then f = πϕα(f), for all f ∈ HomR(Cα, I/N). Finally, put ϕ =⋃
α<κ ϕα. Then f = πϕ(f), for all f ∈ HomR(Cα, I/N), and ExtR(M,N) = 0. �
Though our main applications will be to hereditary rings, the rings R in 3.7 and

3.8 need not be right hereditary in general (consider R = R′�R′′, where R′ is right
hereditary, but R′′ is not, and let M,N ∈Mod-R′ ⊂Mod-R satisfy the conditions
of 3.7 and 3.8).

Definition 3.9. Let M be a module and λ ≥ ℵ0. Assume that for some submod-
ules of M , sets called “bases” are given. If N is a submodule of M such that N has
at least one “basis”, we say that N is “free”. We introduce the following axioms:

(Ax I) If N is a “free” submodule of M and F is a “basis” of N , then F is
a set of submodules of N , F is closed under unions of chains, and for each subset
A ⊆ N there is some F ∈ F such that A ⊆ F and card(F ) ≤ card(A) + λ.

(Ax II) If N is a “free” submodule of M , F is a “basis” of N and C ∈ F , then
F � C = {D ∈ F ;D ⊆ C} is a “basis” of C.

(Ax III) If N is a “free” submodule of M , C is an element of a “basis” of N ,
and C has a “basis” G, then N has a “basis” F such that G = F � C.

(Ax IV) Suppose (Nα;α < λ) is a smooth chain of “free” submodules of M ; for
each α < λ a “basis” Fα of Nα is given so that α < β < λ implies Fα = Fβ � Nα.
Then

⋃
α<λNα has a “basis” consisting of all sets of the form

⋃
α<λ Cα, where

(Cα;α < λ) is a chain of submodules of M , and Cα ∈ Fα for all α < λ.

Now, we formulate the version of Shelah’s Compactness Theorem that we shall
need for Step III. Its proof, using game theoretic arguments, appears e.g. in [Ho,
§4] or [EM, Ch.IV]:

Theorem 3.10. Let R be a ring and M be a module such that card(M) = κ is a
singular cardinal. Let λ be an infinite cardinal such that card(R) ≤ λ < κ. Assume
the axioms (Ax I)–(Ax IV) from 3.8 hold, and every submodule of M of cardinality
< κ is “free”. Then M is “free”.

Corollary 3.11. Let R be a ring and M be a module such that card(M) = κ is
a singular cardinal. Assume that card(R) < κ and M is κ-projective. Then M is
projective.

Proof. We shall say that a submodule N of M is “free” provided there are a cardinal
µ and countably generated projective modules Pα ⊆ N , α < µ, such that N =⊕∑

α<µ Pα. Then the set F = {C; ∃A ⊆ µ : C = ⊕
∑
α∈A Pα} is called a

“basis” of the module N . Put λ = card(R)× ℵ0. Then each countably generated
projective module has cardinality ≤ λ. It is easy to see that the notions in quotes
satisfy axioms (Ax I)–(Ax IV) of 3.9. On the other hand, Kaplansky’s structure
theorem for projective modules implies that a module is “free” iff it is projective.
Hence, the premise and 3.10 imply that M is projective. �

Combining Steps II and III, we obtain

Theorem 3.12. Assume Ψ. Let R be a right hereditary ring with card(R) ≤ ℵ1.
Let N be a module such that card(I(N)) ≤ ℵ1. Assume that ExtR(M,N) = 0
implies M is projective, for every countably generated module M . Then N is a
p-test module.

Proof. By induction on gen(M) = κ, we prove that M is projective whenever M is
a module such that ExtR(M,N) = 0. If κ ≤ ℵ0, the assertion holds by the premise.
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Let κ be a regular uncountable cardinal. Since R is right hereditary, 3.8 implies
M has a κ-filtration (Cα;α < κ) such that ExtR(Cα+1/Cα, N) = 0 for all α < κ.
By the induction premise, all the modules Cα+1/Cα, α < κ, are projective, whence
M =

⋃
α<κ Cα is projective.

Let κ be singular. Since R is right hereditary, M is κ-projective, by the induction
premise. Now, 3.11 terminates the proof. �

For right hereditary rings, 2.8 shows that the existence of p-test modules implies
the existence of free p-test modules. This occurs under Ψ:

Theorem 3.13. Assume Ψ. Let R be a right hereditary non-right perfect ring.
(i) Let λ ≥ ℵ0 be a cardinal such that card(I(R(λ))) ≤ λ. Then each free module

of rank ≥ λ is p-test.
(ii) Each free module of rank ≥ 2card(R) is p-test.

Proof. (i) Assume M is a ≤ λ generated module such that ExtR(M,R(λ)) = 0. Let
K be a submodule of R(λ) such that M ' R(λ)/K. By the premise, gen(K) ≤ λ.
Since R is right hereditary, we infer that ExtR(M,K) = 0, and M is projective by
1.1(i). Now, starting from λ, and using 3.8 and 3.11 for induction in regular and
singular cardinals, respectively, we obtain the claim.

(ii) Since R is not right perfect, we have κ = card(R) ≥ ℵ0. We prove that
card(I(R(2κ))) ≤ 2κ. Put M = R(2κ). Then there is a chain of modules

M ' HomR(R,M) ⊆ HomZ(R,M) ⊆ HomZ(R,D) = I,

where D is the divisible hull of the (right) Z-module M . Since R is a flat left
R-module, I is injective. Since card(D) = card(M) = 2κ, we infer that card(I) ≤
(2κ)κ = 2κ. This proves card(I(R(2κ))) ≤ 2κ, and (i) applies. �

Stronger results hold true for the particular cases of Dedekind domains and of
von Neumann regular rings:

Theorem 3.14. Assume Ψ. Let R be a Dedekind domain such that R is not
a complete discrete valuation ring, and card(R) ≤ ℵ1. Then any non-zero free
module is p-test.

Proof. It suffices to prove that R is p-test. Denote by K the quotient field of R.
Then K is an injective module, R ⊆ K, and card(K) = card(R) ≤ ℵ1. Hence, 3.1
and 3.12 show that R is a p-test module. �
Theorem 3.15. Assume Ψ. Let R be a right hereditary von Neumann regular ring
such that card(I(R(ℵ0))) ≤ ℵ1. Then each free module of rank ≥ ℵ0 is p-test.

Proof. By 3.4 and 3.12, we have to prove that ExtR(M,R(ℵ0)) = 0 implies M
is projective for each finitely generated module M . Let M ' R(n)/K. Since R
is regular, there are a cardinal κ and elements 0 6= xα ∈ K, α < κ, such that
K =

⊕∑
α<κ xαR.

Proving indirectly, assume κ ≥ ℵ0. Take a system of pairwise disjoint sets
Ak, k < ℵ0, such that card(Ak) = n for each k < ℵ0, and ℵ0 =

⋃
k<ℵ0

Ak. For
each k < ℵ0, we identify R(n) with R(Ak) via an R-isomorphism νk. Define f ∈
HomR(K,R(ℵ0)) by f(xα) = να(xα) provided α < ℵ0, and by f(xα) = 0 otherwise.
Let g ∈ HomR(R,R(ℵ0)). Then Im(g) ⊆ R(m) for some m < ℵ0, and g � K 6= f .
Then ExtR(M,R(ℵ0)) 6= 0, a contradiction.

Hence, κ is finite, and M is projective (as R is regular). �
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Lemma 3.16. Let R be a von Neumann regular ring. Let N be a module and λ
be a cardinal of cofinality ω. Denote by πν the ν-th canonical projection of Mλ

to M , ν < λ. Let {λk; k < ℵ0} be a cofinal subset of λ. For each k < ℵ0 put
Mk = {m ∈ Mλ;πν(m) = 0∀ν ≥ λk}, and Mλ =

⋃
k<ℵ0

Mk. Let J be a countably
generated right ideal of R. Then ExtR(R/J,Mλ/Mλ) = 0.

Proof. If J is finitely generated, then R/J is projective (as R is regular), and
the assertion is clear. If gen(J) = ℵ0, the regularity of R implies there is a set,
{en;n < ℵ0}, of orthogonal idempotents of R such that J =

⊕∑
n<ℵ0

enR. We
have to extend each ϕ ∈ HomR(J,Mλ/Mλ) to some φ ∈ HomR(R,Mλ/Mλ). We
have ϕ(en) = (xnα.en;α < λ)+Nλ for some xnα ∈ N , n < ℵ0, α < λ. For α < λ0, put
yα = 0. If λk ≤ α < λk+1, put yα =

∑
n≤k x

n
α.en. Define φ ∈ HomR(R,Mλ/Mλ)

by φ(1) = (yα;α < λ). Since the idempotents en, n < ℵ0 are orthogonal, we have
φ � J = ϕ. �
Proposition 3.17. Assume Ψ and CH. Let R be a von Neumann regular ring such
that each right ideal is countably generated and card(R) ≤ ℵ1. Let N be a module
such that gen(N) ≤ ℵ1. Assume that ExtR(M,N) = 0 implies M is projective, for
every finitely generated module M . Then N is a p-test module.

Proof. First, we use 3.16 for λ = ℵ0 and λn = n, n < ℵ0. Then Nλ = N (ℵ0).
Put I = Nℵ0/N (ℵ0). By Baer’s Criterion and 3.16, I is injective. Denote by ν
the mapping assigning each x ∈ N the coset of the constant sequence (x; k < ℵ0).
Then ν is an embedding of N into I. Note that card(I) ≤ ℵℵ0

1 = (2ℵ0)ℵ0 = ℵ1. So
the injective hull I(N) of N has cardinality at most ℵ1. Finally, the regularity of
R and 3.4 show that we can apply 3.12. �
Corollary 3.18. Assume Ψ and CH. Let R be a von Neumann regular ring such
that each right ideal is countably generated and card(R) ≤ ℵ1. Then each free
module of rank ≥ ℵ0 is p-test.

Proof. Since card(R) ≤ ℵ1, also card(I(R(ℵ0))) ≤ ℵ1, and we use 3.15. �
The main application of 3.17 is to the case when R is simple and of countable

dimension over its center:

Corollary 3.19. Assume Ψ and CH. Let R be a simple von Neumann regular ring
such that card(R) ≤ ℵ1 and dimK(R) ≤ ℵ0, K being the center of R. Let N be
a non-zero module such that N is either (i) countably generated, or (ii) projective,
or (iii) semisimple. Then N is a p-test module.

Proof. Part (i) follows from 3.2, 3.3 and 3.17. Parts (ii) and (iii) follow from the
fact that the respective modules possess non-zero cyclic summands. �

There is no analogue (in ZFC) to 3.13–19 for arbitrary non–right perfect rings:

Example 3.20. Let κ be an uncountable cardinal, K be a skew-field and M be
a right linear K-space of dimension κ over K. Let R be the ring of all linear
transformations of M . Then no module N with proj.dim(N) ≤ 1 is p-test. In
particular, no free module is p-test.

Proof. Let {bα;α < κ} be a basis of M . Define a system of idempotents {eα;α <
ℵ1} of R as follows: eα(bβ) = bβ provided β ≤ α, and eα(bβ) = 0 otherwise. Define
a chain of right ideals of R by I0 = 0, Iα+1 = eαR, α < ℵ1, and by Iα =

⋃
β<α Iβ
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provided α is a limit ordinal < ℵ1. Then (Iα;α < ℵ1) is an ℵ1-filtration of the right
ideal I =

⋃
α<ℵ1

Iα. Since R is von Neumann regular, Iα+1 is a summand in Iβ for
all α < β < ℵ1. Hence, the set

A = {α < ℵ1; {α < β < ℵ1; Iβ/Iα is not projective } is stationary in ℵ1}

contains all limit ordinals < ℵ1, and A is a stationary subset of ℵ1. Applying [EM,
IV, Proposition 1.7], we see that I is a non-projective right ideal of R.

We prove that ExtR(R/I,R(λ)) = 0 for each cardinal λ. Let φ ∈ HomR(I,R(λ)).
For each α < ℵ1, denote by Fα the smallest finite subset of λ such that φ(eα) ∈
R(Fα). Then (Fα;α < ℵ1) is a non-decreasing chain of finite subsets of λ. Since
cf(ℵ1) > ω, we infer that F =

⋃
α<ℵ1

Fα is a finite set, and Im(φ) ⊆ R(F ). Since
R is right self-injective, there is some ϕ ∈ HomR(R,R(F )) such that ϕ � I = φ.
Then ExtR(R/I,R(λ)) = 0, and R(λ) is not p-test.

Finally, by 2.7, no module N with proj.dim(N) ≤ 1 is p-test. �

4. Rings possessing many test modules

By §1, we know that there is a proper class of i-test modules over any ringR. This
suggests the question of how close can IT be to Mod-R. Obviously, IT = Mod-R
if and only if R is semisimple. If R is not semisimple, then no projective module
is i-test. Thus, investigating the possible size of IT , we start with the question
whether IT can contain all “small” non-projective modules.

Since similar observations apply to the dual case of the class PT , we arrive at
the following

Definition 4.1. Let R be a non-semisimple ring and κ be a cardinal. Then IT
(PT ) is said to be κ-saturated provided it contains all non-projective (non-injective)
modules M such that gen(M) ≤ κ. Moreover, IT (PT ) is fully saturated, provided
it is κ-saturated for each κ.

A ring R is said to be κ-saturated (fully saturated) provided the class IT is such.
Trivially, IT and PT are always 0-saturated, whence any ring R is 0-saturated.
Also, κ-saturated implies κ′-saturated for all κ′ ≤ κ. Moreover, IT is fully satu-
rated iff IT = Mod-R \ P. Similarly, PT is fully saturated iff PT = Mod-R \ I.
Since each of these conditions is equivalent to the assertion “ExtR(M,N) 6= 0 when-
ever M is non-projective and N is non-injective”, the two conditions are equivalent
(to R being fully saturated).

Note that fully saturated rings have been studied (under the term “right Ext-
rings”) in [T1]. Most of Sections 4–6 deals with the structure of κ-saturated rings
for κ = 1 and κ = ℵ0, substantially refining and generalizing the results of [T1].
Moreover, our results show that even the condition of R being 1-saturated imposes
very strong restrictions on the structure of R. That is, “almost” no R satisfies
this condition. Of course, R is 1-saturated iff IT contains all cyclic non-projective
modules iff ExtR(R/J,N) = 0 implies N is injective for all right ideals J such
that J is not a summand of R. So by Baer’s Criterion, our results show that for
“almost” all rings R there exist right ideals I and J and a module N such that J
is not a summand of R, ExtR(R/I,N) 6= 0, but ExtR(R/J,N) = 0.

We start with showing that if IT contains all cyclic non-projective modules,
then R has no uncountably generated right ideals:
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Theorem 4.2. Let R be a 1-saturated ring. Then each right ideal is countably
generated. Moreover, either

(i) R is right noetherian (i.e. each right ideal is finitely generated), or
(ii) R is von Neumann regular.

Proof. (i) Assume R is not von Neumann regular. Then there is a principal right
ideal rR which is not a summand in R. Let (Iα;α < κ) be any system of injective
modules. Put M =

⊕∑
α<κ Iα. We show that M is injective. First, we prove

that ExtR(R/rR,M) = 0. Let φ ∈ HomR(rR,M). Then there is a finite set
F ⊆ κ such that Im(φ) ⊆

⊕∑
α∈F Iα = MF . Since MF is injective, there is some

ϕ ∈ HomR(R,MF ) such that ϕ � rR = φ. Thus, ExtR(R/rR,M) = 0. Since R/rR
is an i-test module, M is injective. Hence, a direct sum of any system of injective
right modules is injective, and (i) holds.

(ii) Assume R is von Neumann regular, but not right noetherian. Then R is not
semisimple and there is an infinite set, {en;n < ℵ0}, of orthogonal idempotents in
R. Put J =

⊕∑
n<ℵ0

enR and M = R/J . Then J is projective and M is a cyclic
non-projective module.

Let I be an injective module and K be a submodule of I. Put N = I/K. Since
the sequence 0 −→ J −→ R −→M −→ 0 is exact, we have

0 = ExtR(J,K) −→ Ext2R(M,K) −→ Ext2R(R,K) = 0,

and Ext2R(M,K) = 0. Since the sequence 0 −→ K −→ I −→ N −→ 0 is exact, we have

0 = ExtR(M, I) −→ ExtR(M,N) −→ Ext2R(M,K) = 0,

and ExtR(M,N) = 0. As M is i-test, we infer that N = I/K is injective. This
proves that any factor module of an injective module is injective, and R is right
hereditary.

Now, we shall show that each right ideal is countably generated. On the contrary,
assume there is a right ideal I such that gen(I) > ℵ0. Since R is right hereditary,
I =

⊕∑
α<κ xαR for an uncountable cardinal κ and some 0 6= xα ∈ R, α < κ.

Put J =
⊕∑

α<ℵ0
xαR.

Let M be a non-injective module. Let H = HomR(I,M). Put λ0 = card(H), i.e.
H = {hβ ;β < λ0}. By induction, define λn+1 = λ+

n , n < ℵ0. Put λ = supn<ℵ0λn.
Then λ has cofinality ω. By 3.16, ExtR(R/J,Mλ/Mλ) = 0. Since R/J is a cyclic
non-projective module, Mλ/Mλ is injective, and ExtR(R/I,Mλ/Mλ) = 0. For each
ν < λ, denote by πν the projection of Mλ onto M . Define f ∈ HomR(I,Mλ/Mλ)
by f(xα) = mα +Mλ, α < κ, where mα ∈Mλ is defined by
πν(mα) = hν(xα) provided ν < λ0;
πν(mα) = hβ(xα) provided ν = λn + β, β < λ0, n < ℵ0;
πν(mα) = 0 otherwise.

Since ExtR(R/I,Mλ/Mλ) = 0, there is a g ∈ HomR(R,Mλ/Mλ) such that g � I =
f . Hence, there is some y ∈ Mλ such that y.xα −mα ∈ Mλ, for all α < κ. For
n < ℵ0, put An = {α < κ; y.xα −mα ∈ Mn}. Then An ⊆ An+1 for all n < ℵ0,
and κ =

⋃
n<ℵ0

An. Clearly, there is a p < ℵ0 such that card(Ap) > ℵ0. Then
πν(y.xα −mα) = 0 for all λp ≤ ν < λ and all α ∈ Ap.

Put K =
⊕∑

α∈Ap xαR. We shall prove that ExtR(R/K,M) = 0, i.e. that
any h ∈ HomR(K,M) extends into some h′ ∈ HomR(R,M). First, there is some
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β < λ0 such that hβ � K = h. Put ν0 = λp+β. Then h(xα) = πν0(mα) = πν0(y.xα)
for all α ∈ Ap. Define h′ ∈ HomR(R,M) by h′(1) = πν0(y). Then h′ � K = h, and
ExtR(R/K,M) = 0. Since R/K is a cyclic non-projective module, we infer that
M is injective, a contradiction. �

We turn to the case when IT contains all countably generated non-projective
modules:

Theorem 4.3. Let R be an ℵ0-saturated ring. Then either
(i) R is right artinian, or
(ii) R is von Neumann regular and each right ideal of R is countably generated.

Proof. Assume that R is not von Neumann regular. Proving indirectly, we show
that R is right perfect: otherwise, there exist elements ai ∈ R, i < ℵ0, such that
(Rai . . . a0; i < ℵ0) is a strictly decreasing chain of principal left ideals of R. Let
1i, i < ℵ0, be the canonical basis of the free module F = R(ℵ0) and let G =∑
i<ℵ0

(1i − 1i+1 · ai)R ⊆ F . Put M = F/G. By Bass’ lemma, M is a countably
generated flat module, but M is not projective. Since R is not von Neumann
regular, there exists a non-flat left R-module N . Let C be an injective cogenerator
for Mod-Z. Since TorR(M,N) = 0, we have ([CaEi,IV,Proposition 5.1])

ExtR(M,HomZ(N,C)) ' HomZ(TorR(M,N), C) = 0.

Since N is not flat in R-Mod and C is a cogenerator for Mod-Z, HomZ(N,C) is
not injective. Hence, M is not i-test, a contradiction. Therefore, R is right perfect
and right noetherian, by 4.2. Thus, R is right artinian, and (i) holds.
If R is von Neumann regular, then 4.2 gives (ii). �

Now, we pause to present the “rare” examples of rings possessing many test
modules. The first one is an artinian non-singular ring such thatR is fully saturated:

Example 4.4. Let K be a skew-field. Denote by R = UT2(K) the ring of all
upper triangular 2× 2 matrices over K. Then R is a (left and right) artinian and
(left and right) non-singular ring, and R is fully saturated.

Proof. R is well-known to be artinian and hereditary. Denote by e and f the
orthogonal idempotents of R such that e00 = f11 = 1, and all other entries in e and
f are zero. Then J0 = eR/Soc(eR) and J1 = fR are—up to isomorphism—the
only simple modules. Moreover, J0 is injective, and eR ' I(J1). Let M be any
module. There exist cardinals κ and λ such that Soc(M) ' J (κ)

0 ⊕ J (λ)
1 . Since J (κ)

0

is injective, there are submodules N and P in M such that M = N ⊕ P , P ' J (κ)
0

and Soc(N) ' J
(λ)
1 . Then I(N) ' (eR)(λ) is projective, and so is N . Since {e, f}

is a complete basic set of idempotents of R, there are cardinals µ and ν such that
N ' J

(µ)
1 ⊕ (eR)(ν). Hence, M is isomorphic to a direct sum of direct powers of

the modules J0, J1 and eR. If M is non-projective and non-injective, then the
direct power of J0, and of J1, respectively, is non-zero in this decomposition. Since
ExtR(J0, J1) 6= 0, the assertion holds true. �

Our second example is again a fully saturated ring:

Example 4.5. Let R be a commutative local artinian principal ideal ring. Then
R is fully saturated.
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Proof. It is well-known that each module is a direct sum of cyclic modules, and the
ideals of R form a chain

0 = xmR ⊂ xm−1R ⊂ · · · ⊂ xR = Rad(R) ⊂ R,

where x is a generator of Rad(R) (see [FuSa]). Since Soc(R) is simple, R is a
QF-ring.

Hence, we have to prove that ExtR(R/xiR,R/xjR) 6= 0 for all 0 < i, j < m.
Define f ∈ HomR(xiR,R/xjR) by f(xi) = 1 + xjR provided i + j ≤ m, and by
f(xi) = xi+j−m + xjR otherwise. Then f 6= g � xiR, for all g ∈ HomR(R,R/xjR).
This proves that ExtR(R/xiR,R/xjR) 6= 0. �

The ring R from the previous example is an artinian valuation ring. Also noe-
therian valuation domains possess many i-test modules:

Example 4.6. Let R be a noetherian valuation domain which is not a field. Then
R is n-saturated for each n < ℵ0, but it is not ℵ0-saturated.

Proof. Since R is an almost maximal valuation domain, each finitely generated
module is a direct sum of cyclic modules ([FuSa]). Hence, it suffices to prove that
each cyclic non-projective module is i-test. By the premise, the ideals of R form a
chain

0 =
⋂
n<ℵ0

xnR ⊂ · · · ⊂ xn+1R ⊂ xnR ⊂ · · · ⊂ x2R ⊂ xR = Rad(R) ⊂ R.

LetN be a module. Assume there is some 0 < n < ℵ0 such that ExtR(R/xnR,N) =
0. Since Ann(xn) = 0, each element of N is divisible by xn. Then each element
of N is divisible by xm and ExtR(R/xmR,N) = 0, for all 0 < m < ℵ0. By Baer’s
Criterion, N is injective. Since R is not right artinian, the last assertion follows
from 4.3. �

Note that 4.6 shows that 4.2 and 4.3 apply to different classes of rings. Another
example of this fact is

Example 4.7. Let K be a universal differential field of characteristic 0 with dif-
ferentiation D (i.e. char(K) = 0; for each n < ℵ0, each polynomial equation in
indeterminates x0 = x, x1 = D(x), . . . , xn−1 = Dn−1(x) has a solution in K; and
each homogenous linear D-differential equation has a non-trivial solution in K).
Denote by R = K[y,D] the ring of all differential polynomials in one indeterminate
y over K (i.e. the elements of R are polynomials from K[y] with usual addition,
and with multiplication given by the identity ya = ay+D(a) and its consequences).
Then R is n-saturated for each n < ℵ0, but it is not ℵ0-saturated.

Proof. We shall need several well-known properties of R (proved in [Fa], [CzFa] and
[K]): first, R is a simple non-commutative principal right ideal domain. Moreover,
all simple modules are isomorphic to a simple module J , and J is injective. Let K
be a right ideal of R. Since R has a right division algorithm, R/K is a semisimple
module. Let Q be the right skew field of quotients of R. Then Q is an injective
module. Since R is right noetherian, each injective module is isomorphic to a direct
sum of copies of Q and J . In particular I(N)/N is isomorphic to a direct power of
J for each module N . If F is a finitely generated module with Soc(F ) = 0, then F
is flat, whence F is free.
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Now, we prove that each finitely generated non-projective module F is i-test:
Assume ExtR(F,M) = 0 for a module M . Note that F = Soc(F ) ⊕ G, where G
is finitely generated and Soc(G) = 0. Hence G is free, and Soc(F ) 6= 0. Similarly,
M = Soc(M)⊕N , where Soc(N) = 0 and I(N) ' Q(κ) for a cardinal κ. W.l.o.g.,
we can assume that N 6= 0. We have ExtR(J,N) = 0 and HomR(J,Q(κ)) = 0.
Then also HomR(J, I(N)/N) = 0. Since I(N)/N is isomorphic to a direct power
of J , we infer that N = I(N).

The last assertion is a consequence of 4.3. �
In fact, the proof of the last assertions of 4.6 and 4.7 is constructive. Taking the

module M = F/G as in the proof of 4.3, we obtain a particular countably generated
non-projective module which is not i-test.

Now, we proceed with the structure theory and show that the “rare” examples
of 4.4–4.7 are in a sense typical. First, we have

Lemma 4.8. Let R be a 1-saturated ring. Then all non-projective simple modules
are isomorphic.

Proof. Let J be a non-projective simple module and N = N0 be a non-injective
module. By the premise, ExtR(J,N0) 6= 0, so HomR(J, I(N)/N0) 6= 0. Hence,
there is a module N1 such that N0 ⊂ N1 ⊆ I(N) and N1/N0 ' J . If N1 6= I(N),
then ExtR(J,N1) 6= 0, and HomR(J, I(N)/N1) 6= 0. Proceeding similarly, we
see that the module I(N)/N has a (transfinite) composition series with factors
isomorphic to J . If J ′ is another non-projective simple module, then ExtR(J ′, N) 6=
0, and HomR(J ′, I(N)/N) 6= 0, whence J ′ ' J . �

The following theorem shows that we can restrict our investigation to indecom-
posable rings:

Theorem 4.9. Let κ be a cardinal. Let R be a κ-saturated (fully saturated) ring.
Then either

(i) R is an indecomposable ring; or
(ii) R = R′ � R′′, where R′′ is a semisimple ring and R′ is an indecomposable

ring such that R′ is κ-saturated (fully saturated).
On the other hand, if R = R′�R′′ and R′, R′′ are as in (ii), then R is κ-saturated

(fully saturated).

Proof. First, note that for any decomposition R′ � R′′ of the ring R, either R′ or
R′′ is semisimple. Indeed, taking any non-projective simple right R′-module M and
any non-injective right R′′-module N , we have ExtR(M,N) = 0, a contradiction.
Let B be a representative set of all projective simple modules (possibly, B = ∅).
Let J be a simple non-projective module. By 4.8, A = B ∪ {J} is a representative
set of all simple modules. Let C and D be two disjoint subsets of A. Denote by IC
and ID the trace of C and of D, respectively, in R. Then IC and ID are two-sided
ideals of R. Moreover, HomR(IC , ID) = 0, and ExtR(R/IC , ID) = 0. Hence, either
IC is a summand of R, or ID is injective (and a summand of R).

Assume C and D are two infinite disjoint subsets of A. Then neither IC nor ID
is finitely generated, a contradiction. Hence, A is finite. This implies that either R
is indecomposable, or R has a decomposition R = R′�R′′, where R′′ is semisimple
and R′ is indecomposable. The final assertion follows from the fact that

ExtR(M,N) ' ExtR′(MR′, NR′)⊕ExtR′′(MR′′, NR′′)
whenever M,N ∈Mod-R. �
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As we shall see in Sections 5 and 6, an important distinction between indecom-
posable 1-saturated rings comes from the number of isomorphism classes of simple
modules. This leads to the following definition:

Definition 4.10. Let R be a non-semisimple indecomposable ring such that R is
1-saturated. Then R is said to be of type I provided that all simple modules are
isomorphic. Assume R is of type I. Then

(i) R is of type Ia provided Sing(R) 6= 0,
(ii) R is of type Ib provided Sing(R) = 0 and Rad(R) = 0,
(iii) R is of type Ic provided Sing(R) = 0 and Rad(R) 6= 0.

Further, R is said to be of type II provided that there are at least two non-isomorphic
simple modules.

Note that all the types from 4.10 do occur: Ia in Example 4.5, Ib in 4.7, Ic in
4.6, and II in 4.4.

Proposition 4.11. Let R be a non-semisimple indecomposable ring such that R is
1-saturated. Clearly, either R is of type I or of type II. Moreover,

(i) if R is of type Ia, then R is isomorphic to a full matrix ring over a local right
artinian ring,

(ii) if R is of type Ib, then R is a simple ring such that each right ideal is
countably generated,

(iii) if R is of type Ic, then R is right noetherian with Soc(R) = 0.
If R is of type II, then R is right semiartinian and right hereditary and, up to
isomorphism, there exist exactly two simple modules. One of them, J , is Σ-injective
and non-projective, and the other, P , is projective.

Proof. Take a simple non-projective module J . If B is a representative set of all
simple projective modules, then A = B ∪ {J} is a representative set of all simple
modules by 4.8. For C ⊆ A, denote by IC the trace of C in R. We distinguish the
following four cases:

(1a) B = ∅ and IJ 6= 0. Then R is not von Neumann regular, and R is right
noetherian by 4.2. Since J embeds into R, we have Soc(R) = IJ 6= 0. Moreover,
if Soc(R/Soc(R)) = 0, then HomR(IJ , N) = 0 for any submodule N of R/Soc(R).
Hence, ExtR(R/IJ , N) = 0, N is injective, and R/Soc(R) is completely reducible, a
contradiction. Similarly, it follows thatR has a (finite) socle sequence, andR is right
artinian. This implies that R ' (eR)(n) for some n < ℵ0 and some indecomposable
idempotent e ∈ R. Then R ' HomR((eR)(n), (eR)(n)) 'Mn(eRe), where eRe is a
local right artinian ring.

(1b) B = ∅, IJ = 0 and Rad(R) = 0. Let I 6= R be a two-sided ideal of R.
Let M be a maximal right ideal containing I. Then J ' R/M and I.J = 0. Since
Rad(R) = 0, we have Ann(J) = 0 and I = 0. Hence, R is a simple ring.

(1c) B = ∅, IJ = 0 and Rad(R) 6= 0. By 4.2, R is right noetherian. Also
Soc(R) = IJ = 0. Further, assume Sing(R) 6= 0. Take 0 6= r ∈ R such that K =
Ann(r) E R. Then R/K ' rR is a submodule of I(K)/K. Since ExtR(J,K) 6=
0, also HomR(J, I(K)/K) 6= 0, and I(K)/K has a transfinite composition series
with factors isomorphic to J . In particular, J embeds into R/K ' rR ⊂ R, a
contradiction. Hence, R is right non-singular.
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(2) B 6= ∅. Then IB 6= 0. Since HomR(IB, IJ) = 0 and R is indecomposable,
we infer that ExtR(R/IB, IJ) = 0 and IJ = 0. Take P ∈ B and put C = B \ {P}.
Similarly, we get IC = 0, i.e. C = ∅ and A = {P, J}. Take a cardinal κ and consider
the module N = J (κ). Since HomR(IP , N) = 0, we have ExtR(R/IP , N) = 0, and
N is injective.

Let M be an arbitrary module. Denote by MP the trace of P in M . Let N be a
submodule of M/MP . Since HomR(IP , N) = 0, we have ExtR(R/IP , N) = 0, N is
injective and M/MP is semisimple. Hence, M/MP is isomorphic to a direct power
of J . In particular, R is right semiartinian.

Proving indirectly, assume R is not right hereditary. Then there are an injective
module I and a submodule K of I such that N = I/K is not injective. Put
M = R/IP . Since the sequence 0 −→ IP −→ R −→ M −→ 0 is exact and IP is
projective, we get 0 = ExtR(IP ,K) −→ Ext2R(M,K) −→ Ext2R(R,K) = 0, and
Ext2R(M,K) = 0. Since the sequence 0 −→ K −→ I −→ N −→ 0 is exact, we have
0 = ExtR(M, I) −→ ExtR(M,N) −→ Ext2R(M,K) = 0, and ExtR(M,N) = 0. Then
M is not i-test, a contradiction.

Now, it is clear that R is of type Ia (Ib, Ic, II) iff the case 1a (1b, 1c, 2) applies
to R, and the assertion follows. �

5. A matrix characterization for type II

In this section, using more involved arguments, we shall obtain a full charac-
terization of rings of type II as certain generalized upper triangular matrix rings
(Theorem 5.14). Moreover, in Theorem 5.16, we prove that 2-saturated rings of
type II are exactly the rings Morita equivalent to the matrix rings from Example
4.4.

As a first step of the characterization, we have

Lemma 5.1. Any ring of type II is right artinian.

Proof. Since R is right semiartinian and 4.2 holds, it suffices to prove that R is not
von Neumann regular. On the contrary, assume R is von Neumann regular. By 4.11,
R/IP ' J (n) for some n < ℵ0. Hence, R̄ = R/IP is a simple artinian ring and there
is a complete set of orthogonal idempotents {ē0, . . . , ēn−1} ⊆ R̄ such that ēiR̄ is a
minimal right ideal of R̄ for all i < n. Since R is von Neumann regular, this set can
be lifted modulo IP into a complete set of orthogonal idempotents, {e0, . . . , en−1},
of the ring R so that ei + IP = ēi for all i < n. Since R is not semisimple,
dim(Soc(R)) = dim(IP ) = κ for some κ ≥ ℵ0. Hence, Soc(R) =

⊕∑
i<n Soc(eiR)

and there is some e = ei such that dim(Soc(eR)) = κ. Since R is von Neumann
regular, there are a complete decomposition

⊕∑
α<κ sαR of Soc(R) and a subset

A ⊆ κ such that
(1) 0 ∈ A, card(A) = κ,
(2) f = s0 is an idempotent of R such that efe = f ,
(3) Soc((e− f)R) =

⊕∑
α∈A,α6=0 sαR, and

(4) Soc((1− e)R) =
⊕∑

α/∈A sαR.
By 4.11, Soc(R) E R and sαR ' P for all α < κ. Hence, there is a canonical
ring isomorphism φ : EndR(Soc(R)) ' CFMκ(K), where K = EndR(P ). Since
R is right non-singular, the canonical mapping ϕ : EndR(I(R)) → EndR(Soc(R))
defined by ϕ(x) = x � Soc(R) is a ring isomorphism (see e.g. [L, §4.3 and §4.5]).
Denote by Q the maximal right quotient ring of R. Then Q = I(R) (as modules),
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and the canonical mapping ψ : Q→ EndR(I(R)) given by h(q)(1) = (1)q is a ring
isomorphism.

W.l.o.g., we can view R as a submodule of Q. Moreover, since π = φϕψ is a ring
isomorphism, we can identify Q with CFMκ(K), whence R becomes a subring of
CFMκ(K). By (2), (3) and (4), m = π(e) is a matrix such that mαα = 1 provided
α ∈ A, and mαβ = 0 otherwise. If s ∈ Soc(R), then ψ(qs)(1) = (1)(qs) = ((1)q)s =
(s)q = s′ ∈ Soc(R), whence ψ(qs) = ψ(s′) for all q ∈ Q. Thus, Soc(R) is a left
ideal of the ring CFMκ(K). Moreover, if s ∈ Soc(R), s =

∑
α∈F sαrα for a finite

set F ⊂ κ, then π(s) is a matrix which is zero in any row indexed by α ∈ κ \ F .
Since π(s) is also column finite, it has only finitely many non-zero entries. Further,
by (2), (π(f))00 = 1 and (π(f))αβ = 0 otherwise. Define {fn, n < ℵ0} ⊂ Q by
f0 = f , and (fn)n0 = 1, (fn)αβ = 0 otherwise, for 0 < n < ℵ0. Since Soc(R) is a
left ideal of Q, we infer that fn ∈ Soc(R) for all n < ℵ0.

We shall construct a cyclic non-projective moduleM which is not i-test: Consider
the right ideal I =

⊕∑
n<ℵ0,n even (fn− fn+1)R. Since I is not finitely generated,

M = R/I is not projective.
It remains to construct a non-injective module N such that ExtR(M,N) =

0. Let λ = card((eRe + Soc(R))/Soc(R)). Then (eRe + Soc(R))/Soc(R) =
{rβ + Soc(R), β < λ} for some rβ ∈ eRe, β < λ, and r0 = 0. Put L =
Q(λ) and denote by πβ, β < λ, the β-th projection of L onto Q. Note that
Soc(L) = (Soc(R))(λ) E L E I(L), and I(L)/Soc(L) is a completely reducible
module. W.l.o.g., we shall view Q as a submodule of L consisting of all l ∈ L
such that πβ(l) = 0 for all 0 < β < λ. Consider the matrix q ∈ Q defined by
qi,i+1 = qi+1,i = 1 provided i < ℵ0, i even, and by qαβ = 0 otherwise. Note that
q = eqe and e+ q /∈ Soc(R), as e+ q has infinitely many nonzero entries. Moreover,
take r ∈ R such that (e + q)r ∈ Soc(R). Then (e + q)ere ∈ Soc(R). Assume
(eRe)r 6⊆ Soc(R). Then (er′e)(ere) = e+ s, for some r′ ∈ R and s ∈ Soc(R). Since
ēR̄ē ' EndR̄(ēR̄) ' EndR(J) is a skew-field, also (ere)(er′e) = e + s′ for some
s′ ∈ Soc(R), whence e + q = (e + q)(erer′e − s′) ∈ Soc(R), a contradiction. This
implies that there exists a maximal submodule N of I(L) such that Soc(L) ⊆ N ,
e /∈ N , and qβ ∈ N for all 0 < β < λ. Here, qβ denotes the element of L defined
by π0(qβ) = rβ , πβ(rβ) = e + q, and πβ′(rβ) = 0 otherwise. Since N 6= I(L) and
Soc(L) E N E I(L), N is not injective.

Finally, let φ ∈ HomR(I,N). Then there is some x ∈ I(L) with xe(fn−fn+1) =
φ(fn − fn+1) for all n < ℵ0. Since N is a maximal submodule of I(L), we have
eR + N = I(L), and x = er + y for some r ∈ R and y ∈ N . Then ere = rβ for
some β < λ. If rβ 6= 0 (i.e. if β > 0), then rβ(fn − fn+1) = qβ(fn − fn+1), whence
(qβ − ye)(fn− fn+1) = xe(fn− fn+1) = φ(fn− fn+1). Define ϕ ∈ HomR(R,N) by
ϕ(1) = qβ + ye provided β > 0, and by ϕ(1) = ye otherwise. Then ϕ � I = φ, and
ExtR(R/I,N) = 0. �

Now, we introduce a class of rings which plays crucial role in characterizing rings
of type II:

Definition 5.2. Let 0 < m < ℵ0. Let S and T be skew-fields such that T is a
subring of Mm(S). Denote by − the mapping from Mm+1(S) to Mm(S) defined by
(a−)ij = aij for all a ∈ Mm+1(S) and i, j < m. Define R = UT (m,S, T ) as the
subring of Mm+1(S) consisting of all matrices a ∈Mm+1(S) satisfying

(1) ami = 0 for all i < m, and
(2) a− ∈ T .
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Note that the rings UT (m,S, T ) include following important particular cases:
(1) upper triangular matrix rings of degree two over skew-fields (as UT (1,K,K)

= UT2(K) for any skew-field K)—see Example 4.4;
(2) the rings UT (1, S, T ), where T ⊂ S are skew-fields and S is a quadratic

extension of T (these examples are essential for several recent applications, see e.g.
[CT1], [CT2], and [Si]);

(3) the ring UT (2,C, ϕ(H)), where C is the field of all complex numbers, H the
skew-field of all quaternions and ϕ the canonical ring embedding of H into M2(C).

Basic properties of the rings UT (m,S, T ) can easily be described:

Lemma 5.3. Let R = UT (m,S, T ). For each i ≤ m, denote by ei the matrix from
R defined by (ei)im = 1 and (ei)jk = 0 otherwise. Put e = em, f = 1− e, P = eR
and J = R/Soc(R).

(i) If I is a proper right ideal of R, then either I = fR or I ⊆
⊕∑

i≤m eiR.
(ii) Soc(R) =

⊕∑
i≤m eiR and Rad(R) =

⊕∑
i<m eiR.

(iii) The mapping ψ : R/Soc(R) → T defined by ψ(r + Soc(R)) = r− is a ring
isomorphism.

(iv) R is an indecomposable right hereditary right artinian basic ring. The set
{e, f} is a complete basic set of idempotents of R.

(v) {P, J} is a representative set of all simple modules. Moreover, P is projective,
but not injective, while J is

∑
-injective, but not projective.

(vi) I(R) = Mm+1(S), and the maximal right quotient ring of R is isomorphic
to Mm+1(S).

Proof. By easy matrix computations. �
As further step of the characterization, we have

Theorem 5.4. Any ring of type II is Morita equivalent to some UT (m,S, T ).

Proof. Let R be a ring of type (II). By 4.11, we have 0 ⊂ Rad(R) ⊂ Soc(R) = IP ,
where P is (up to isomorphism) the only projective module. Moreover, by 5.1,
there is a complete orthogonal set, {e0, . . . , ek, e

′
0, . . . , e

′
l}, of primitive idempotents

of R such that P ∼= eiR for all i ≤ k and e′iR
∼= e′i′R for all i, i′ ≤ l. By 4.11,

Soc(R) ∼= P (n) for some k < n < ℵ0, and R/Soc(R) is a simple artinian ring.
Put S = EndR(P ). Then S is a skew-field. Let R′ be the basic ring of R. Since
R is Morita equivalent to R′, it suffices to show that R′ is isomorphic to some
UT (m,S, T ).

Clearly, R′ = (e+ f)R(e+ f), where e = e0 and f = e′0, and {e, f} is a basic set
of primitive idempotents of R′. Let m = dim(Soc(fR′)). The same argument as in
the proof of 5.1 shows that R′ is (canonically isomorphic to) a subring of the full
matrix ring Q = Mm+1(S) so that emm = 1, and ejj′ = 0 otherwise. Moreover, as
in the proof of 5.1, we see that Soc(R′) is a left ideal of Q. In particular, each of
the matrices xi, i ≤ m, defined by (xi)im = 1 and by (xi)jj′ = 0 otherwise, belongs
to R′. Put X = {q ∈ Q; qij = 0 for all i ≤ m and j < m}. Then X ⊆ Soc(R′).
Since f is a primitive idempotent, we have Rad(R′) = Rad(fR′) = Soc(fR′).
Hence, xi ∈ Rad(R′) for each i < m. Since Rad(R′).Soc(R′) ⊆ Rad(Soc(R′)) = 0,
we have X = Soc(R′). In particular, for each r ∈ R′ and each i < m, we have
xir ∈ Soc(R′), whence rmi = 0 for all i < m. If q ∈ Q, define q− ∈Mm(S) as in 5.2.
Let T = {q−; q ∈ R}. Then T is a subring of Mm(S) such that T ∼= R′/Soc(R′) ∼=
fR′/Rad(fR′) is a skew-field. By 5.2, R′ ∼= UT (m,S, T ). �
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Rings Morita equivalent to UT (m,S, T ) are completely characterized as certain
generalized upper triangular matrix rings, as follows:

Definition 5.5. Let 0 < m,n, p < ℵ0. Let S and T be skew-fields such that T
is a subring of Mm(S). Denote by GT (m,n, p, S, T ) the subring of Mm.n+p(S)

consisting of all matrices of the form
(
A B

0 C

)
, where A ∈ Mn(T ) ⊆ Mm.n(S),

B ∈Mm.n×p(S), C ∈Mp(S) and 0 is the zero matrix from Mp×m.n(S).

Theorem 5.6. Let 0 < m < ℵ0. Let S and T be skew-fields such that T is a
subring of Mm(S). Let R̄ = UT (m,S, T ). A ring R is Morita equivalent to R̄ if
and only if there are 0 < n, p < ℵ0 such that R is isomorphic to GT (m,n, p, S, T ).

Proof. First, if n = p, then R is (isomorphic to) the full matrix ring Mn(R̄). More-
over, a ring R′ is Morita equivalent to R̄ iff there are 0 < q < ℵ0 and an idempotent
matrix e ∈ Mq(R̄) such that Mq(R̄)eMq(R̄) = Mq(R̄) and R′ ∼= eMq(R̄)e. Using
a suitable inner automorphism of Mq(R̄), we can assume that R′ is isomorphic to
e′Mq(R̄)e′, where e′ ∈Mq(R̄) ⊆Mm.q+q(S) is an idempotent matrix and there are
subsets ∅ 6= A ⊆ q and ∅ 6= B ⊆ q such that e′j+m.i,j+m.i = 1 for all i ∈ A and
j < m, e′m.q+i,m.q+i = 1 for all i ∈ B, and e′ij = 0 for all other pairs i, j < m.q + q.
Finally, putting n = card(A) and p = card(B), we obtain a ring isomorphism
e′Mq(R̄)e′ ∼= GT (m,n, p, S, T ). �

By 5.4, it remains to determine which of the generalized upper triangular matrix
rings R defined in 5.5 really are of type II.

First, we show that if m = 1 and T = K, then R is of type II. This is a
consequence of 4.4 and of the fact that the property “R is λ-saturated” is Morita
invariant for λ ≥ ℵ0:

Lemma 5.7. Let λ be an infinite cardinal. Let R be a κ-saturated ring for all κ < λ
(a fully saturated ring). Let R̄ be Morita equivalent to R. Then R̄ is κ-saturated
for all κ < λ (R̄ is fully saturated).

Proof. By 4.1, using the fact that the property “to be κ-generated” is Morita in-
variant for each κ ≥ ℵ0. �
Example 5.8. Let S be a skew-field. Let R = GT (1, n, p, S, S) for some 0 < n, p <
ℵ0, i.e. R is Morita equivalent to UT2(S). Then R is fully saturated. In particular,
R is of type II.

Proof. By 4.4 and 5.7. �
In order to decide the remaining cases, we need more information about basic

properties of the generalized upper triangular matrix rings:

Lemma 5.9. Let 0 < m,n, p < ℵ0. Let T and S be skew-fields such that T is a
subring of Mm(S). Let R = GT (m,n, p, S, T ). For each i < n, define fi ∈ R by
(fi)kk = 1 provided m.i ≤ k < m.(i+ 1) and (fi)kl = 0 otherwise. For each j < p,
define gj ∈ R by (gj)kk = 1 provided k = m.n+ j and (gj)kl = 0 otherwise.

(i) If I is a proper right ideal of R, then either there are subsets ∅ 6= X ⊆ n and
Y ⊆ p such that I = (

⊕∑
i∈X fiR)⊕ (

⊕∑
j∈Y gjR) or I ⊆ Soc(R).

(ii) Soc(R) = {
(
A B

0 C

)
∈ R;A = 0} and Rad(R) = {

(
A B

0 C

)
∈ R;A = 0, C = 0}.

(iii) There is a ring isomorphism R/Soc(R) ∼= Mm(T ).
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(iv) R is an indecomposable right hereditary right artinian ring. The set {f0, g0}
is a basic set of idempotents of R, and R̄ = UT (m,S, T ) is the basic ring of R.

(v) Put P = g0R and J = f0R/Soc(f0R). Then {P, J} is a representative
set of all simple modules. Moreover, P is projective, but not injective, while J is∑

-injective, but not projective.
(vi) I(R) = Mm.n+p(S), and the maximal right quotient ring of R is isomorphic

to Mm.n+p(S).

Proof. By 5.3 and 5.6. �

Another case when R is of type II is that of m = n = 1:

Example 5.10. Let 0 < p < ℵ0. Let T and S be skew-fields such that T is a
subring of S. Let R = GT (1, 1, p, S, T ). Then R is of type II.

Proof. Let M be a cyclic non-projective module and let N be a module such that
ExtR(M,N) = 0. We shall prove that N is injective.

In view of 5.9(iv), w.l.o.g. we can assume that M is indecomposable and that M
has a projective cover. By 5.9(i) and (ii), this implies that M ∼= f0R/Soc(f0R) ∼= J ,
where Soc(f0R) = Rad(R). Take r ∈ Q = M1+p(S) such that r0p = 1 and rkl = 0
otherwise. Then rR = Rad(R). By 5.9(v), w.l.o.g. we can assume that the trace of
J in N is 0. Hence, there is a cardinal κ > 0 such that

P (κ) ∼= {( 0 d ) ; d ∈ CFMκ×p(S)} = Soc(N) ⊆ N ⊆ I(N)

= {( d′ d ) ; d′ ∈ CFMκ×1(S), d ∈ CFMκ×p(S)} = Q(κ).

Take an arbitrary a ∈ CFMκ×1(S). Define ϕ ∈ HomR(Rad(R), N) by ϕ(r) =
( z a ), where z is the zero matrix in CFMκ×p(S). Since ExtR(M,N) = 0, ϕ
extends to some φ ∈ HomR(f0R,N), i.e. there is some x ∈ N with xf0 = x and
xr = ϕ(r). This implies that x = ( a z ). Since a was arbitrary, we infer that
N = I(N), i.e. N is injective. �

We are going to show that R is not of type II in all remaining cases. First, we
prove this in the case when m > 1:

Lemma 5.11. Let 0 < n, p < ℵ0 and 1 < m < ℵ0. Let T and S be skew-fields
such that T is a subring of Mm(S). Let R = GT (m,n, p, S, T ). Then there is a
non-projective cyclic module M which is not i-test.

Proof. We shall use the notation of 5.9. Put Q = Mm.n+p(S). Let M = f0R/rR,
where r ∈ Rad(R) is defined by r0,m.n+p−1 = 1, and rkl = 0 otherwise. Since
r ∈ Rad(f0R) = Soc(f0R), M is not projective.

Further, J = f0R/Soc(f0R) is also a right Mn(T )-module of dimension 1. De-
note by C the set of all matrices c ∈ f0Q such that there exists t ∈ T satisfying
cj0 = tj0 for all j < m, and ckl = 0 otherwise. Denote by D the right Mn(T )-
submodule of f0Q/Soc(f0R) generated by the cosets c + Soc(f0R), c ∈ C. By a
matrix rank argument, it follows that D∩J = 0. So there is a maximal right Mn(T )-
submodule, E, of f0Q/Soc(f0R) satisfying D ⊆ E and E ⊕ J = f0Q/Soc(f0R).
Define a module N by Soc(f0R) ⊆ N ⊂ f0Q, C ⊆ N , and N/Soc(f0R) = E. Since
f0Q is injective (see 5.9(vi)) and Soc(N) = Soc(f0R) = Soc(f0Q) / f0Q, we infer
that N is not injective.
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It remains to prove that ExtR(M,N) = 0. Let ϕ ∈ HomR(rR,N). Then ϕ(r) =
( z a ) for some a ∈Mm×1(S), where z is the zero matrix in Mm×(m.n+p−1)(S). Put
x = ( a z ) ∈ f0Q. Since E ⊕ J = f0Q/Soc(f0R) and Soc(f0R) ⊆ N , there exist
b ∈ N and s ∈ R such that x = b + f0s. Moreover, since C ⊆ N , there is some
b′ ∈ N such that b′r = f0sr and b′kl = 0 for all k < m and 0 < l < m.n+ p. Define
φ ∈ HomR(f0R,N) by φ(f0) = bf0 + b′f0. Then φ(r) = br+ f0sr = xr = ϕ(r), i.e.
φ extends ϕ. This proves that ExtR(M,N) = 0. �

We turn to the remaining case of m = 1, n > 1 and T 6= K. First, we need a
lemma from non-commutative linear algebra:

Lemma 5.12. Let T ⊂ S be skew-fields, and 1 < n < ℵ0. Then there are a
cardinal κ, a proper right Mn(T )-submodule X of CFMκ×n(S) and y ∈ Mn×1(S)
such that Xy = CFMκ×1(S).

Proof. Put λ = card(T ), i.e. T = {tα;α < λ}. Let {bβ ;β < µ} be a right T -basis
of S such that b0 = 1. By the premise, µ > 1. Put P = CFM(1+λ)×1(S). For each
α < λ, define xα, yα ∈ P by (xα)00 = tα, (xα)1+α,0 = b1 and (xα)kl = 0 otherwise,
and by (yα)1+α,0 = b0 and (yα)kl = 0 otherwise. Let Y be a right T -subspace of
P generated by {xα;α < λ} ∪ {yα;α < λ}. Define p ∈ P by p00 = 1 and pkl = 0
otherwise. Then Y ∩ pT = 0, i.e. there is a right T -subspace Z ⊂ P such that
Z ⊕ pT = P and Y ⊆ Z.

Put Q = CFM(1+λ)×n(S). Let X = {q ∈ Q; ∀i < n∃p ∈ Z∀j < 1 + λ : qji =
pj0}. Clearly, X is a proper right Mn(T )-submodule of Q. Define y ∈ Mn×1(S)
by y00 = 1, y10 = −b1, and ykl = 0 otherwise. Take a ∈ P . By construction,
there exist α < λ and z ∈ Z such that a = z + ptα. Define x′ ∈ X so that the
first column of x′ is xα, the second is yα, and all other columns are zero. Then
x′y = ptα. Moreover, trivially, z ∈ Xy. So Xy ⊇ Z ⊕ pT = P . Finally, it suffices
to put κ = card(1 + λ). �

Lemma 5.13. Let 0 < p < ℵ0 and 1 < n < ℵ0. Let T and S be skew-fields
such that T is a proper subring of S. Let R = GT (1, n, p, S, T ). Then there is a
non-projective cyclic module M which is not i-test.

Proof. We shall use the notation of 5.9 and 5.12. Put f = f0 + · · · + fn−1 and
M = fR/rR, where r ∈ Rad(R) is defined by ri,n+p−1 = yi0 for all i < n, and
rkl = 0 otherwise. Since r ∈ Rad(fR), M is not projective.

Put Q = CFMκ×(n+p)(S). Note that Soc(Q) consists of the q ∈ Q such that the
first n columns of q are zero. Put N = {q ∈ Q; ∃x ∈ X : qαi = xαi∀i < n∀α < κ}.
Since X is a proper subset of CFMκ×n(S), we have Soc(Q) = Soc(N) E N / Q.
In particular, N is not injective.

We prove that ExtR(M,N) = 0. Let ϕ ∈ HomR(rR,N). Then ϕ(r) = ( z a ) for
some a ∈ CFMκ×1(S), where z is the zero matrix in CFMκ×(n+p−1)(S). By 5.12,
there is some x ∈ X with xy = a. Take b ∈ N such that bαi = xαi for all α < κ
and i < n, and bαj = 0 for all α < κ and n ≤ j < n + p. Then bf = b, i.e. there
is ϕ ∈ HomR(fR,N) such that ϕ(f) = b. Since ϕ(r) = br = xy = a, φ extends ϕ.
This means that ExtR(M,N) = 0. �

5.10 and 5.13 show that the property “R is λ-saturated” is not Morita invariant
for λ = 1. This contrasts with the case of λ ≥ ℵ0 described in 5.7.
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Theorem 5.14. Let R be a ring. Then R is of type II if and only if there exist
0 < n, p < ℵ0 and skew-fields T ⊆ S such that R is isomorphic to GT (1, n, p, S, T ),
and either T = S or n = 1.

Proof. By 5.4, 5.6, 5.8, 5.10, 5.11 and 5.13. �

We sum up our results for the case when R is 1-saturated. To simplify notation,
we shall write R = R′(�R′′) to denote that either R = R′ or R = R′ �R′′:

Theorem 5.15. Let R be a 1-saturated ring. Then R = R′(�R′′), where R′′ is a
semisimple ring and R′ is an indecomposable 1-saturated ring. Moreover, either

(i) R′ is of type Ia and R′ is isomorphic to a full matrix ring over a local right
artinian ring, or

(ii) R′ is of type Ib and R′ is a simple ring such that each right ideal is countably
generated, or

(iii) R′ is of type Ic and R′ is right noetherian, with Soc(R′) = 0,
or
(iv) R′ is of type II, i.e. there exist 0 < n, p < ℵ0 and skew-fields T ⊆ S such

that R′ is isomorphic to GT (1, n, p, S, T ), and either T = S or n = 1.

Proof. By 4.9, 4.11 and 5.14. �

Now, it is easy to see which of the rings of type II are 2-saturated:

Theorem 5.16. Let R be of type II. Let κ ≥ 2. Then R is κ-saturated iff R is
Morita equivalent to UT2(S) for a skew-field S iff R ∼= GT (1, n, p, S, S) for some
0 < n, p < ℵ0 and a skew-field S.

Proof. Assume R is of type II and R is 2-saturated. By 5.15, we can assume that
R ∼= GT (1, n, p, S, T ) for some 0 < n, p < ℵ0 and some skew-fields T ⊆ S such that
either T = S or n = 1.

Assume n = 1 and T 6= S. Let R̄ = M2(R). Define e ∈ R̄ by e00 = 1 and ekl = 0
otherwise. Then R̄ is Morita equivalent to R, the pair of adjoint functors realizing
category equivalence between Mod-R̄ and Mod-R being F = HomR̄(eR̄,−) and
G = −⊗R eR̄. Note that R̄ ∼= M2(GT (1, 1, p, S, T )) ∼= GT (1, 2, 2p, S, T ). By 5.13,
there are a cyclic non-projective right R̄-module M and a non-injective right R̄-
module N such that ExtR̄(M,N) = 0. By well-known properties of F , we have
ExtR(F (M), F (N)) = 0, F (M) is non-projective and F (N) non-injective. Since
F (R̄) ∼= R̄e ∼= R(2) in Mod-R, F (M) is 2-generated, and R is not 2-saturated, a
contradiction. This proves that T = S.

The remaining assertions follow from 5.8. �

6. Elimination for type I

Though §5 provides a complete characterization of rings of type II, the case
of type I is far from being solved. Nevertheless, applying various techniques of
ring and module theory, we can “eliminate” this case, i.e. prove that there are no
κ-saturated rings of type Ix provided κ is “big enough”.

This is easy to do for type Ic: by 4.3 and 4.11(iii), no ring of type Ic is ℵ0-
saturated. For type Ib, we have a corresponding consistency result, Theorem 6.6.
Moreover, by Theorem 6.1(ii) and Proposition 6.3, there are no ℵ0-saturated rings
of type Ib of cardinality < 2ℵ0 (in ZFC).
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By 4.5, a complete elimination for type Ia is not possible. Nevertheless, using a
generalization of Bongartz Lemma, we show that the description gets closer to 4.5
provided κ is “big enough” (Theorems 6.11 and 6.13).

We start with the elimination for κ = ℵ0:

Theorem 6.1. Let R be an ℵ0-saturated ring. Then R = R′(�R′′), where R′′ is a
semisimple ring and R′ is an indecomposable ℵ0-saturated ring. Moreover, either

(i) R′ is of type Ia and R′ is isomorphic to a full matrix ring over a local right
artinian ring, or

(ii) R′ is of type Ib and R′ is a simple von Neumann regular ring such that all
right ideals are countably generated and all simple right R′-modules are isomorphic,
or

(iii) R′ is Morita equivalent to UT2(S) for a skew-field S.

Proof. By 4.3, 4.11(iii) and 5.16. �
Corollary 6.2. Let R be a right non-singular ring such that R is not von Neumann
regular. Then the following conditions are equivalent:

(i) R is ℵ0-saturated,
(ii) R is fully saturated,
(iii) PT is fully saturated,
(iv) R = R′(�R′′), where R′′ is a semisimple ring and there is a skew-field S

such that R′ is Morita equivalent to UT2(S).

To eliminate type Ib, we first show that there are no von Neumann regular rings
of that type of size < 2ℵ0 :

Proposition 6.3. Let R be a simple von Neumann regular ring with card(R) <
2ℵ0 . Then there are at least 2ℵ0 non-isomorphic simple modules.

Proof. First, we define a 2-branching tree (T,<) of height ω as follows: T =⋃
n<ℵ0

Tn, where Tn is the n-th level of T and Tn consists of a complete set of
orthogonal idempotents of R defined by induction as follows: T0 = {1}; if e ∈ Tn,
then ReR = R, i.e. the rings eRe and R are Morita equivalent, whence there are
orthogonal idempotents fe, ge ∈ R such that fe 6= e 6= ge and e = fe + ge, and we
put Tn+1 =

⋃
e∈Tn{fe, ge}. Since Tn is a complete set of idempotents, so is Tn+1.

If n < ℵ0, e ∈ Tn and e′ ∈ Tn+1, we define e ≺ e′ iff either e′ = fe or e′ = ge.
Now, < is defined as the transitive closure of ≺ on T . Denote by B the set of all
branches of T . Clearly, card(B) = 2ℵ0 . For each b ∈ B, define a right ideal Ib of
R by Ib =

∑
e∈(T\b) eR. Then Ib 6= R, and there is a maximal right ideal Jb of R

such that Ib ⊆ Jb.
Let M be a simple module. Put BM = {b ∈ B;R/Jb ∼= M}. Since R is a

simple ring, the Jacobson density theorem implies that we can view R as a subring
of EndK(M), where K = EndR(M) is a skew-field. Since M is isomorphic to a
factor module of R, card(M) ≤ card(R) < 2ℵ0 and dimK(M) ≤ card(R) � 2ℵ0 .
Let b ∈ BM . Then HomR(R/Jb,M) 6= 0 and there is some 0 6= mb ∈M such that
mbIb = 0.

We shall prove that the set UM = {mb; b ∈ BM} is a K-independent subset of
M . On the contrary, let {mbi ; i < n} be a K-dependent subset of Ub having a
minimal cardinality, n > 1. Then

∑
i<n kimbi = 0 for some 0 6= ki, i < n. Since

all the branches bi, i < n, are different, there is some e ∈ b0 \
⋃

0<i<n bi. Take
p < ℵ0 such that e ∈ Tp. Since Tp is complete, 1 − e is a sum of some elements
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of T \ b0. Then 0 =
∑
i<n kimbi(1− e) =

∑
0<i<n kimbi , in contradiction with the

minimality of n. Finally, denote by S a representative set of all simple modules.
Clearly, B =

⋃
M∈S BM . Since card(BM ) ≤ dimK(M) ≤ card(R) < 2ℵ0 for each

M ∈ S, we infer that card(S) ≥ 2ℵ0 . �

6.1(ii) and 6.3 now give

Corollary 6.4. Let R be a right non-singular ring such that card(R) < 2ℵ0 . Then
the conditions (i)–(iv) of 6.2 are equivalent.

The remaining case of card(R) ≥ 2ℵ0 is covered by the following consistency
result:

Lemma 6.5. Let κ be a cardinal such that cf (κ) = ℵ0. Assume UPκ. Let R be a
non-right perfect ring such that card(R) < κ. Then PT is not 1-saturated, and R
is not κ+-saturated.

Proof. Since R is not semisimple, [Os, Corollary 2.23] implies that there exists a
cyclic non-injective module, N . Clearly, card(N) ≤ card(R) < κ. By 2.2 and 2.4,
there is a non-projective module M such that gen(M) ≤ κ+ and ExtR(M,N) = 0.
Hence, N is not p-test, and M is not i-test. �

Thus, using UP, we reach elimination of types Ib and Ic in case κ is “big enough”:

Theorem 6.6. Assume UP. Let R be a ring. Let κ be a cardinal such that cf (κ) =
ℵ0 and card(R) < κ. Assume R is κ+-saturated. Then R = R′(�R′′), where R′′ is
a semisimple ring and either

(i) R′ is isomorphic to a full matrix ring over a local right artinian ring, or
(ii) R′ is Morita equivalent to UT2(S) for a skew-field S.

Proof. By 6.1 and 6.5. �

UP also gives the following corollary (cf. 6.2 and 6.4):

Corollary 6.7. Assume UP. Let R be a right non-singular ring. Then the following
conditions are equivalent :

(i) R is fully saturated,
(ii) PT is fully saturated,
(iii) R = R′(�R′′), where R′′ is a semisimple ring and there is a skew-field S

such that R′ is Morita equivalent to UT2(S).

By 4.5, artinian valuation rings provide examples of rings of type Ia. For further
study of type Ia, we need a generalization to rings and modules of a well-known
technique of Bongartz ([B, 2.1 Lemma] and [H, Lemma III.6.1]):

Lemma 6.8. Let R be a ring and A, B be modules. Assume ExtR(B,B(κ)) = 0
for all cardinals κ. Then there are a cardinal λ and a module C satisfying

(i) ExtR(B,C) = 0, and
(ii) there is an exact sequence 0→ A→ C → B(λ) → 0 in Mod-R.

Proof. Let λ = gen(ZExtR(B,A)). Take extensions

(1) 0→ A→ Eα → B → 0, α < λ,
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so that the equivalence classes of these extensions generate ExtR(B,A) as an
abelian group. Let

(2) 0 −→ A −→ C
π−→ B(λ) −→ 0

be the extension obtained by pushing out the direct sum extension

0→ A(λ) →
⊕∑

α<λ

Eα → B(λ) → 0

along ∇A ∈ HomR(A(λ), A) defined by ∇A((aα;α < λ)) =
∑
α<λ aα. Consider the

long exact sequence

0 −→ HomR(B,A) −→ HomR(B,C) −→ HomR(B,B(λ)) δ−→ ExtR(B,A)

−→ ExtR(B,C)
ExtR(B,π)−−−−−−−→ ExtR(B,B(λ)) = 0 −→ . . .

induced by (2) and by the functors ExtiR(B,−). Since equivalence classes of the
extensions (1) generate ExtR(B,A), the connecting Z-homomorphism δ is onto.
Hence, the Z-homomorphism ExtR(B, π) is a monomorphism. This proves that
ExtR(B,C) = 0. �

We shall also need a generalization of a bimodule dual of 6.8:

Lemma 6.9. Let R and S be rings, and let A ∈ S-Mod-R and B ∈ Mod-R. Put
λ = gen(SExtR(B,A)). Assume ExtR(Aλ, A) = 0. Then there is a module C
satisfying

(i) ExtR(C,A) = 0, and
(ii) there is an exact sequence 0→ Aλ → C → B → 0 in Mod-R.

Proof. Choose extensions

(3) 0 −→ A −→ Eα
ρα−→ B → 0, α < λ,

so that their equivalence classes generate ExtR(B,A) as a left S-module. Let

(4) 0 −→ Aλ
µ−→ C −→ B −→ 0

be the extension obtained by pulling back the direct product extension

0→ Aλ →
∏
α<λ

Eα

∏
ρα−−−→ Bλ → 0

along ∆B ∈ HomR(B,Bλ) defined by ∆B(b) = (b;α < λ). For each α < λ, we
have the following commutative diagram:

0 −−−−→ Aλ −−−−→
∏
α<λEα

∏
ρα−−−−→ Bλ −−−−→ 0∥∥∥ τ

x ∆B↑σα
y

0 −−−−→ Aλ
µ−−−−→ C −−−−→ B −−−−→ 0

πα

y h

y ∥∥∥
0 −−−−→ A

f−−−−→ Xα
g−−−−→ B −−−−→ 0∥∥∥ ∥∥∥

0 −−−−→ A −−−−→ Eα
ρα−−−−→ B −−−−→ 0
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where σα is the α-th projection of Bλ to B, and the third row is obtained by
pushing out the second row along the α-th canonical projection, πα, of Aλ onto A.
Using the α-th projection, ηα, of

∏
α<λEα onto Eα, and the pushout property,

we get ϕ ∈ HomR(Xα, Eα) making the lower left square commutative. Since
Im(f) = Ker(g), Im(h) + Ker(g) = Xα, and gh = σα(

∏
ρα)τ = ραηατ = ραϕh,

we infer that also the lower right square is commutative. This means that the third
and fourth rows are equivalent as extensions of A by B. Consider the long exact
sequence

0 −→ HomR(B,A) −→ HomR(C,A) −→ HomR(Aλ, A) δ−→ ExtR(B,A)

−→ ExtR(C,A)
ExtR(µ,A)−−−−−−−→ ExtR(Aλ, A) = 0 −→ . . .

induced by (4) and by the functors ExtiR(−, A). Since equivalence classes of the
extensions (3) generate ExtR(B,A), the commutative diagram constructed above
shows that the connecting S-homomorphism δ is onto. Hence, the S-homomorphism
ExtR(µ,A) is a monomorphism. This proves that ExtR(C,A) = 0. �

Now, we apply 6.8 and 6.9 to rings of type Ia:

Lemma 6.10. Let R be a local right artinian ring. Assume n = gen(RSoc(R)) <
ℵ0 and R is (n+ 1)-saturated. Then n = 1 and R is a QF-ring.

Proof. W.l.o.g, we assume that R is not a skew-field. Then Sing(R) 6= 0, and R is
not right hereditary. Take 0 6= r ∈ Soc(R). Denote by µ the inclusion of rR into
R. Since R is local, there are left R-module isomorphisms

(5) ExtR(R/rR,R) ∼= HomR(rR,R)/Im(HomR(µ,R)) ∼= Soc(R)/Rr.

In particular, λ = gen(RExtR(R/rR,R)) ≤ n. Put A = R and B = R/rR.
Since R is local, B is not projective. By 6.9, we obtain a module C such that
ExtR(C,R) = 0 and there is an exact sequence

(6) 0→ Rλ → C → B → 0.

Proving indirectly, assume C is projective. Since R is not right hereditary, there
is an exact sequence in Mod-R,

0→ N → E → E/N → 0,

where E is, but E/N is not, injective. Applying ExtiR(−, N), we get

0 = ExtR(Rλ, N)→ Ext2R(B,N)→ Ext2R(C,N) = 0,

and
0 = ExtR(B,E)→ ExtR(B,E/N)→ Ext2R(B,N) = 0.

This gives ExtR(B,E/N) = 0. Since R is 1-saturated, B = R/rR is projective, a
contradiction.

This proves that C is not projective, but ExtR(C,R) = 0. Since λ ≤ n, (6)
yields gen(C) ≤ n + 1. Finally, R is (n + 1)-saturated, so R is injective and R is
a QF-ring by [AF, Theorem 30.7]. By (5), Rr = Soc(R) for each 0 6= r ∈ Soc(R),
i.e. Soc(R) is simple and n = 1. �
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Theorem 6.11. Let R be a ring of type Ia. Assume R is left artinian and n-
saturated for all n < ℵ0. Then R is isomorphic to a full matrix ring over a local
QF-ring.

Proof. By 4.11, R ∼= Mm(S) for some 0 < m < ℵ0 and for a local left and right
artinian ring S. By 5.7, S satisfies the premises of 6.10, whence S and R are
QF-rings. �
Lemma 6.12. Let R be a right noetherian ring such that R is not right hereditary.
Assume R is κ-saturated, for all κ < ℵ0 and for all κ ≤ gen(M), where M is any
indecomposable injective module. Then R is a QF-ring.

Proof. Let B be an indecomposable injective module. Since R is right noetherian,
we have ExtR(B,B(κ)) = 0 for all cardinals κ. Let A be a non-injective module.
By 6.8, there are a cardinal λ and a module C such that ExtR(B,C) = 0 and there
is an extension

(7) 0→ A→ C → B(λ) → 0.

Proving indirectly, assume C is injective. Since R is right noetherian, but not
right hereditary, there is a non-projective finitely generated right ideal I of R.
Applying ExtiR(R/I,−) to the exact sequence (7), we get

0 = ExtR(R/I,B(λ))→ Ext2R(R/I,A)→ Ext2R(R/I,C) = 0,

whence Ext2R(R/I,A) = 0. Applying ExtiR(−, A) to the exact sequence 0 → I →
R→ R/I → 0, we get

0 = ExtR(R,A)→ ExtR(I, A)→ Ext2R(R/I,A) = 0.

Since gen(I) < ℵ0, A is injective, a contradiction.
Thus, C is not injective. Since ExtR(B,C) = 0, our premise implies that B is

projective. This proves that any injective module is projective, and R is a QF-ring
by [AF, Theorem 31.9]. �
Theorem 6.13. Let R be a ring of type Ia. Let J be a representative of all simple
modules, and put λ = gen(I(J)). Assume R is κ-saturated for all κ < max(λ+,ℵ0).
Then R is isomorphic to a full matrix ring over a local QF-ring.

Proof. By 4.11 and 6.12. �
The following example shows that both gen(RSoc(R)) and gen(I(J)) can be

“arbitrarily” big for local right artinian rings which are not QF:

Example 6.14. Let λ > 1 and let 1 < n < ℵ0. Let T , S be skew-fields such that
T is a subring of S, the left dimension of S over T is λ and the right dimension is
n (see [Co] and [Sc]). Put R = {

( t s
0 t

)
; t ∈ T, s ∈ S}. Then

(i) R is a subring of M2(S), R is local right artinian and gen(RSoc(R)) = λ.
(ii) If n = 2 and λ ≥ ℵ0, then T and S can be chosen so that gen(I(J)) = λ,

where J is a representative of all simple modules.

Proof. (i) Clearly, Soc(R) = Rad(R) = {
(

0 s

0 0

)
; s ∈ S}, whence gen(RSoc(R)) = λ

and gen(Soc(R)) = n. If I 6= R is a left (right) ideal of R, then I ⊆ Soc(R). So R is
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local and right artinian. Further, a module N is injective iff ExtR(R/Soc(R), N) =
0. This means that R/Soc(R) is an i-test module. Put P = {

(
s′ s

0 0

)
; s, s′ ∈ S}

and L = {
(

0 t

0 0

)
; t ∈ T}. Clearly, L ∼= J . Moreover, ExtR(R/Soc(R), R) 6= 0,

ExtR(R/Soc(R), P ) 6= 0, while ExtR(R/L, P ) = 0. Thus, R is not 1-saturated,
and R is not a QF-ring.

(ii) Assume n = 2. Take s ∈ S \ T . Then S = T ⊕ sT in Mod-T . It follows
that there are an injective ring homomorphism φ : T → T and a φ-differentiation
D : T → T such that

(8) ts = sφ(t) +D(t)

for all t ∈ T (see e.g. [Co, p.56]). This implies that the left dimension of T over
φ(T ) is λ − 1. Let {bα;α < κ} be a right φ(T )-basis of T such that b0 = 1. Put
L′ = {

(
0 st

0 0

)
; t ∈ T}. Denote by {eα;α < 1 + κ} the canonical R-basis of the free

module R(1+κ). Put

K = e0L
′ ⊕ (

⊕∑
α<κ

e1+αL)⊕ (
⊕∑

α<κ

(e0

(
0 1

0 0

)
− e1+α

(
0 sb−1

α

0 0

)
)R).

Let M = R(1+κ)/K. For each α < 1 + κ, let mα = eα + K. Clearly, {mα;α <
1 + κ} is a generating subset of M . Moreover, Soc(M) = m0L = m1+αL

′ ∼= J ,
for all α < κ, and M/Soc(M) ∼= J (κ+1). It follows that gen(M) = κ + 1, and
J ∼= Soc(M) EM . We shall prove that M ∼= I(J).

By (i), it suffices to show that ExtR(R/Soc(R),M) = 0. Put r1 =
(

0 1

0 0

)
∈

Soc(R) and r2 =
(

0 s

0 0

)
∈ Soc(R). Then Soc(R) = r1R ⊕ r2R. Take any ϕ ∈

HomR(Soc(R),M), i.e. ϕ(r1) = m0

(
0 t1
0 0

)
and ϕ(r2) = m0

(
0 t2
0 0

)
for some t1, t2 ∈

T . Now, there exist cα ∈ T , α < κ, such that cα = 0 for almost all α < κ, and
t2 −D(t1) =

∑
α<κ bαφ(cα). Define ψ ∈ HomR(R,M) by

ψ(1) = m0

(
t1 0

0 t1

)
+
∑
α<κ

m1+α

(
cα 0

0 cα

)
.

Then ψ(r1) = ψ(1)r1 = m0

(
0 t1
0 0

)
= ϕ(r1). By (8),

ψ(r2) = ψ(1)r2 = m0

(
0 D(t1)
0 0

)
+
∑
α<κ

m1+α

(
0 sφ(cα)
0 0

)
= m0

(
0 D(t1)
0 0

)
+
∑
α<κ

m0

(
0 bαφ(cα)
0 0

)
= m0 ( 0 t2

0 0 ) = ϕ(r2).

This proves that ψ � Soc(R) = ϕ, whence ExtR(R/Soc(R),M) = 0.
Finally, assume λ ≥ ℵ0. We choose S and T as in the Cohn construction [Co, pp.

124-126]. Then κ = dim(Tφ(T )) = dim(φ(T )T ) = λ− 1 = λ (see [Co, pp. 125-126]
or [CT1, Theorem 5.7]), and the assertion follows. �

We sum up several results of Sections 5 and 6:
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Theorem 6.15. Let R be a fully saturated ring. Then R = R′(�R′′), where R′′

is a semisimple ring and R′ is an indecomposable fully saturated ring. Moreover,
either

(Ia) R′ is isomorphic to a full matrix ring over a local QF-ring, or
(Ib) R′ is a simple von Neumann regular ring such that all right ideals are count-

ably generated and all simple right R′-modules are isomorphic, or
(II) R′ is Morita equivalent to UT2(S) for a skew-field S.

Proof. By 6.1 and 6.13. �
Theorem 6.16. Assume UP. Let R be a fully saturated ring. Then R = R′(�R′′),
where R′′ is a semisimple ring and either

(I) R′ is of type Ia and R′ isomorphic to a full matrix ring over a local QF-ring,
or

(II) R′ is of type II and R′ is Morita equivalent to UT2(S) for a skew-field S.

Proof. By 6.6 and 6.15. �

7. Open problems

(1) In 1.5, we have proved in ZFC that PT is a proper class for any right perfect
ring R. If R is not right perfect, then 2.5 shows that it is consistent with ZFC that
PT is empty. On the other hand, if R is right hereditary, then it is consistent with
ZFC that PT is a proper class (see 3.13).

What is the possible size of PT in the case when R is non-right perfect and
non-right hereditary ? Is then the assertion of 2.5 a theorem of ZFC ? The prob-
lem is open even in the very particular case of full endomorphism rings of infinite
dimensional linear spaces over skew-fields (cf. 2.6 and 3.20).

(2) Is there a simple von Neumann regular ring R such that R is not semisimple
and all simple modules are isomorphic (cf. 6.3, [OR] and [G2]) ?

(3) By 6.13, each fully saturated ring of type Ia is isomorphic to a full matrix
ring over a local QF-ring R. Is R actually an artinian valuation ring (as in 4.5) ?
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