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Abstract—This paper proposes a whitening-rotation (WR)-
based algorithm for semi-blind estimation of a complex flat-fading
multi-input multi-output (MIMO) channel matrix . The pro-
posed algorithm is based on decomposition of as the matrix
product = , where is a whitening matrix and

is unitary rotation matrix. The whitening matrix can be
estimated blind using only received data while is estimated
exclusively from pilot symbols. Employing the results for the com-
plex-constrained Cramer–Rao Bound (CC-CRB), it is shown that
the lower bound on the mean-square error (MSE) in the estimate
of is directly proportional to its number of unconstrained
parameters. Utilizing the bounds, the semi-blind scheme is shown
to be very efficient when the number of receive antennas is greater
than or equal to the number of transmit antennas. Closed-form
expressions for the CRB of the semi-blind technique are presented.
Algorithms for channel estimation based on the decomposition
are also developed and analyzed. In particular, the properties of
the constrained maximum-likelihood (ML) estimator of for
an orthogonal pilot sequence is examined, and the constrained
estimator for a general pilot sequence is derived. In addition, a
Gaussian likelihood function is considered for the joint optimiza-
tion of and , and its performance is studied. Simulation
results are presented to support the algorithms and analysis, and
they demonstrate improved performance compared to exclusively
training-based estimation.

Index Terms—Channel estimation, constrained Cramer–Rao
bound, constrained estimation, Cramer-Rao bound (CRB),
iterative general maximum likelihood (IGML), multi-input
multi-output (MIMO), orthogonal pilot maximum-likelihood
(OPML), unitary.

I. INTRODUCTION

MULTI–INPUT multi-output (MIMO) and smart antenna
systems are widely being studied for employment in

current and upcoming wireless communication systems. Smart
antenna systems, which are built with multiple antennas on
receive and/or transmit side, offer a variety of gains such
as improved signal-to-noise ratio (SNR) due to diversity of
reception or transmission and also enhanced signal quality
from interference suppression. In addition to these, MIMO
systems also give the additional advantage of increased data
communication rates for the same SNR by using the multiple
spatial multiplexing modes available for communication.
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Channel parameters provide key information for the opera-
tion of wireless systems and hence need to be estimated ac-
curately. As the number of data channels increases in MIMO
systems, the number of associated training streams for the esti-
mation of these channel coefficients increases proportionately.
This increase in the pilot data overload results in reduced spec-
tral efficiency. Moreover, such pilot-based techniques tend not
to use the statistical information available in unknown data sym-
bols to improve channel estimates. Semi-blind techniques can
potentially enhance the quality of such estimates by making a
more complete use of available data. Overhead costs can be re-
duced by achieving pilot-based estimation quality for smaller
training symbol pay loads. With a few known training sym-
bols along with blind statistical information, such techniques
can avoid the convergence problems associated with blind tech-
niques. The MIMO channel estimation problem is further com-
plicated because, as the diversity of the MIMO system increases,
the SNR (per bit) required to achieve the same system perfor-
mance [in terms of bit error rate (BER)] decreases. The SNR
at each antenna is even lower. For instance, employing binary
orthogonal frequency-shift-keying (FSK) modulation and at an
operation BER of , while an SNR of 25 dB is re-
quired with a single receive antenna, an SNR of 12 dB suf-
fices with four antennas [1]. The SNR at each antenna is even
lower. Such low-SNR environments call for more training sym-
bols thus compromising the effective data rate. Hence, more ro-
bust channel estimation techniques which use both training and
blind data completely are attractive.

We utilize the fact that the MIMO channel matrix
can be decomposed as the product , where

is a whitening matrix and is a unitary matrix, i.e.,
. It is well known that can be computed

blind from the second-order statistical information in received
output data. Training data can then be utilized to estimate only
the unitary matrix . Significant estimation gains can then be
achieved by estimation of such orthogonal matrices which are
parameterized a much fewer number of parameters. A more
rigorous justification of this statement is given in subsequent
sections. Such a whitening-rotation (WR) factorization-based
estimation procedure naturally arises in the independent com-
ponent analysis (ICA)-based framework for source separation,
where it has been noted that when the sources are uncorrelated
Gaussian, the channel matrix can be estimated blind up to a
rotation matrix. A more complete discussion of ICA can be
found in [2] and [3]. A totally blind higher order statistics
algorithm based on such a decomposition is elaborated in [4],
for any source distribution.
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Extensive work has been done by Slock et al. in [5] and
[6] where several semi-blind techniques have been reported.
More relevant literature to our semi-blind estimation scheme
can be found in Pal’s work [7], [8]. However, it does not con-
sider the problem of a constrained estimator for . Our research
is novel in the following aspects. First, we use the theory of
complex-constrained Cramer–Rao bound (CC-CRB) reported
in [9] to quantify exactly how much improvement in perfor-
mance can be achieved over a traditional training-based tech-
nique. Also, since is a unitary constrained matrix, optimal
estimation of necessitates the construction of constrained es-
timators. Such an estimator can be found in [10] and [11] for
an orthogonal pilot sequence. We refer to this as the orthogonal
pilot maximum-likelihood (OPML) estimator and examine its
properties. Another salient feature of this work is the develop-
ment of a novel iterative general maximum-likelihood (IGML)
algorithm for the constrained estimation of employing any
(not necessarily orthogonal) pilot sequence. We then present the
rotation optimized maximum-likelihood (ROML) algorithm as
a low-complexity alternative to the IGML estimator.

The paper is organized as follows. The next section describes
the problem setup. An analysis of the constrained CRBs is given
in Section III and estimation algorithms are presented in Section
IV. Finally, simulation results are given in Section V and we
conclude with Section VI.

II. PROBLEM FORMULATION

Consider a flat-fading MIMO channel matrix
where is the number of transmit antennas and is the number
of receive antennas in the system, and each represents the
flat-fading channel coefficient between the th receiver and th
transmitter. Denoting the complex received data by ,
the equivalent base-band system can be modeled as

(1)

where represents the time instant, is the complex
transmitted symbol vector, and is spatio-temporally white ad-
ditive Gaussian noise such that
where if and otherwise. Also, the sources are
assumed to be spatially and temporally independent with iden-
tical source power i.e., . The
SNR of operation is defined as SNR . Now as-
sume that the channel has been used for a total of symbol
transmissions. Out of these transmissions, the initial sym-
bols are known training symbols and the observed outputs are
thus training outputs. Stacking the training symbols as a ma-
trix we have where .

is given by similarly stacking the received training
outputs. The remaining information symbols transmitted
are termed as “blind symbols,” and their corresponding outputs
as “blind outputs.” can be de-
fined analogously for the blind symbols. is the
complete available data.

Consider two possible estimation strategies. can be esti-
mated exclusively using the pilot given as

(2)

where denotes the Moore–Penrose pseudo-inverse of .
This qualifies as training-based estimation and is simple to im-
plement. However, it results in poor usage of available band-
width since the pilot itself conveys no source information. Alter-
natively, may be estimated from blind data without the aid of
any pilot. Thus, in effect this reduces to the case and only
blind data is available. This is very efficient in usage of band-
width since it totally eliminates the need for a pilot. However,
most second-order statistics-based blind techniques are limited
to estimating the channel matrix up to a scaling and permutation
indeterminacy as detailed in [3] and [12]. Blind methods that
employ higher order statistics typically require a large number
of data symbols. Moreover, such techniques are often compu-
tationally complex and result in ill-convergence. Based on the
above observations, one is motivated to find a technique which
performs reasonably well in terms of bandwidth efficiency and
computational complexity. Moreover, pilot symbols are usually
feasible in communication scenarios. Hence, the focus of our
work has been to develop a semi-blind estimation procedure
which uses a small number of pilot symbols along with blind
data. Such a procedure serves the dual purpose of reducing the
required pilot overhead at the same time achieving a greater es-
timation accuracy for a given number of pilot symbols.

Consider a MIMO channel which has at least as
many receive antennas as transmit antennas i.e., . Then, the
channel matrix can be decomposed as , where

and is unitary i.e., .
The matrix is popularly termed as the whitening matrix.1

induces a rotation on the space and is therefore known
as the rotation matrix. For instance, consider the singular value
decomposition (SVD) of given as . A possible
choice for , which is employed in subsequent portions of
this work, is given by

and (3)

It then becomes clearly evident that all such matrices satisfy
the property and it is well known that can
be determined from the blind data . can then be exclusively
determined from . This semi-blind estimation procedure is
termed as a WR scheme. Such a technique potentially improves
estimation accuracy because the matrix by virtue of its unitary
constraint is parameterized by a fewer number of parameters and
hence can be determined with greater accuracy from the limited
pilot data . The precise improvement in quantitative terms is
presented in the next section.

To avoid repetition, we present here a list of assumptions
which may be potentially employed in our work. The exact
subset of assumptions used will be stated specifically in the
result.

A1) is perfectly known at the output.
A2) is orthogonal i.e., .

A1) is reasonable if we assume the transmission of a long data
stream from which can be estimated with considerable ac-
curacy, and A2) can be easily achieved for signal constella-
tions such as the binary-phase-shift keying (BPSK), quadra-

1If a 2 is a random vector such that Efaa g = I and b 2 is
obtained by transforming a asb = Ha, thenW can be employed to decorrelate
or whiten b as c = W b, i.e., Efcc g = I.
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ture-phase-shift keying (QPSK), etc., by using an integer or-
thogonal structure such as the Hadamard matrix.

III. ESTIMATION ACCURACY FOR SEMI-BLIND APPROACHES

We now present a general result to quantify the improve-
ment in estimation accuracy of semi-blind schemes over
training-based channel estimators. The CRB is frequently used
as a framework to study the estimation efficiency. However,
semi-blind approaches involve estimation of constrained com-
plex parameter vectors. Therefore, in our analysis, we use the
CC-CRB framework developed in [9], inspired by the result in
[13], which provides an ideal setting to study the performance
of such schemes. However, from the CRB matrices, which de-
scribe a lower bound on the estimation covariance, it is harder
to interpret the achievable estimation accuracy in quantitative
terms. This necessitates the development of a positive scalar
measure to evaluate and contrast the performance of different
estimators. Frequently, the trace of the covariance or the MSE
in estimation is used to quantify the performance of an esti-
mator. We next present a result which justifies the use of such
a positive scalar measure.

Lemma 1: Let be positive definite matrices
and let i.e., . Then

.
Proof: It is easy to see that .

To prove the converse, observe that
and hence is positive semi-definite (PSD). Further

where are the
eigenvalues of . However, is PSD, and hence .
Therefore, .

Setting to be the error covariance and the covariance
lower bound (obtained from the CRB analysis), respectively,
it is easy to see that if the trace of the covariance approaches
the trace of the bound, then the covariance itself approaches the
bound. Thus, given the estimation error matrix , it is
reasonable to consider the mean of the squared Frobenius norm
of given by , as a performance
measure. We now present a central result which relates the MSE
of estimation to the number of unconstrianed parameters in .

Lemma 2: Under A2), the minimum estimation error in
is directly proportional to the number of unconstrained real
parameters required to describe and in fact

(4)

Proof: is an dimensional matrix and therefore
has real parameters. Let parameter vector be defined as

where denotes a stacking
of of the columns of as and

denotes the th column of for . Since we are
concerned with a constrained parameter estimation problem, we
wish to employ the CC-CRB. For this purpose, we will need
to redefine the following notation. Let the extended set of con-
straints on be given as such that ,
where is the space of functions such that .
Let be defined as . Thus,
there exists a matrix such that the columns of form an or-
thonormal basis of the null space of .

Since the number of unconstrained parameters in is ,
the number of constraints on the system is given as .
This can be seen as follows. Let the elements of be stacked
as . Define

as the vector of the unconstrained parame-
ters . Let the parametric representation of
the elements of be given as ,
and . Let . Define
the vector function as . Therefore,

as . Now, by the inverse func-
tion theorem [14], under mild conditions2 on , there exists an
inverse function such that . The

constraints on the parameter vector and in turn on
the elements of are then obtained by the constraint equations

(5)

Therefore, , the number of nonredun-
dant constraints. It follows that . From [9], the
CC-CRB for the estimation of is given as

(6)

where is the unconstrained complex Fisher information
matrix (FIM). for the above scenario is then given as

[15]. Substituting this expression for
in (6) and considering the trace of resulting matrices on both

sides as justified by Lemma 1, we have

(7)

(8)

Thus, the above result validates the claim that the estimation
of a matrix with fewer unconstrained parameters, i.e., a con-
strained matrix, can result in a significant improvement in esti-
mation accuracy. We next examine the significance of the result
in Lemma 2 as applied to the WR-based semi-blind algorithm.

A. Estimation Accuracy of the WR Scheme

The following result, which compares the lower bounds of
estimation errors of the training-based and WR schemes, gives
critical insight into the estimation accuracy of the proposed
semi-blind scheme.

Lemma 3.1: Under assumptions A1) and A2), the potential
gain of the semi-blind algorithm (in decibels) in terms of MSE
of estimation is .

Proof: Under A1), since is perfectly known, it suffices
to estimate the unitary matrix to estimate the channel matrix
as . From [16], the number of real parameters re-
quired to parameterize which under A1) equals the number
of unconstrained parameters in is given as . How-
ever, the general matrix has un-constrained real

2Existence of inverse function requires the derivative �� be continuous and the
linear operator �� be invertible. A rigorous formulation can be found in [14].
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parameters. Hence, from the result in Lemma 2 the estimation
gain in decibels of the semi-blind scheme, which estimates the
constrained unitary matrix rather than the complex matrix is
given by

dB (9)

which completes the proof.
Two advantages of the WR scheme can be seen from the

above result.

1) In the case when the number of receivers equals the
number of transmitters i.e., , the algorithm can
potentially perform 3 dB more efficiently than estimating

directly.
2) The estimation gain progressively increases as , the

number of receive antennas, increases. This can be ex-
pected since as increases, the complexity of estimating

(size ) increases while that of (size )
remains constant.

Thus for a size 8 4 complex channel matrix H, i.e.,
, the estimation gain of the semi-blind technique is 6 dB

which represents a significant improvement over the conven-
tional technique described in (2).

B. Constrained CRB of the WR Scheme

An exact expression is now derived for the variance
bound in each element of . To begin with, we assume
that only A1) holds. Let the channel matrix be factor-
ized using its singular value decomposition (SVD) as

where are orthog-
onal matrices such that

. As
seen earlier in (3), can be given as . Let for

be the columns of . Define the desired param-
eter vector to be estimated

. It can then be seen that
is a constrained parameter vector and the constraints are given
as

(10)

(11)

Let be defined as

...
...

...
...

...
. . .

...
...

...
...

...
. . .

(12)

From [9], , the CC-CRB for the estimation error of , can be
obtained as

(13)

and the Fisher information matrix for the un-
constrained case is given by the block diagonal matrix

. Block partitioning as

(14)

the CRB for the estimation of is given by .
Let and . We then have .
Hence, from the property of the CRB under transforms [15] the
error covariance of estimation of the channel matrix is then
given as

(15)

Equation (15) gives the bound for a general pilot .
In addition, if A2) holds, then from [15] it follows that

and is therefore diagonal.
Further it can be verified that is also diagonal and is
given as where is
given as .
Hence, . Substituting
these quantities in (15), the CRB for the estimation of is
obtained as

(16)

The variance of the element of is obtained as

(17)

where represent the element of and
element of , respectively. Thus, (18) give the variance for
the estimation of each element of . The weighing factor

in each term of the above summation results
in the net reduction of estimation error over the training-based
scheme as given in Lemma 3.

IV. ALGORITHMS

A. Orthogonal Pilot ML Estimator

Under A1) and A2), the constrained OPML estimator of
such that , where is the manifold of

unitary matrices, is then obtained by minimizing the likelihood

such that (18)

It is shown in [17] and [18] that under the above conditions
is given by

where
(19)

The above equation thus yields a closed form expression for the
computation of , the ML estimate of . The channel matrix
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is then estimated as . We next present properties
of the above estimator.

1) Properties of the OPML Estimator: In this section we
discuss properties of the OPML estimator. We show that the
estimator is biased and hence does not achieve the CRB for fi-
nite sample length. However, from the properties of ML estima-
tors, it achieves the CRB asymptotically as the sample length
increases. Further, it is also shown that the bound is achieved
for all sample lengths at high SNR.

P1) There does not exist a finite-length constrained unbi-
ased estimator of the rotation matrix and hence ,
the OPML estimator of , is biased.

Proof: Let there exist such that
is an constrained unbiased estimator of . is the
observation space and is the manifold of orthog-
onal matrices. Then where is such that

. Now since is a constrained estimator we
have and therefore

which when simplified using the fact that
yields

Rearranging terms in the above expression and taking
the expectation of quantities on both sides (where the
expectation is with respect to the distribution of con-
ditioned on ) yields

(20)

It can immediately be observed that the right-hand
side is strictly less than 0 while the left-hand side is
equal to zero (by virtue of ) and hence the
contradiction.

The above result then implies that the CRB cannot be
achieved in a general scenario as there does not exist an
unbiased estimator necessary for the achievement of the
CRB. However, the properties presented next guarantee
the asymptotic achievability of the CRB both in sample
length and SNR.

P2) The OPML estimator achieves the CRB given in (18) as
the pilot sequence length .

Proof: It follows from the asymptotic property of ML
estimators, reviewed in [15].

P3) The OPML estimator of achieves the CRB given in
(18) at high SNR, i.e., as .

Proof: The above result can be proved using the
theory of matrix eigenspace perturbation analysis
detailed in [19]. The detailed proof can be found in
http://dsp.ucsd.edu/aditya/pertproof.pdf

B. Iterative ML Procedure for General Pilot

The ML estimate of for an orthogonal pilot is given
by (19). In this section we present the IGML algorithm to com-
pute the estimate for any given pilot sequence , i.e., when

A2) does not necessarily hold. As it is shown later, the pro-
posed IGML scheme reduces to the OPML under A2). The ML
cost-function to be minimized is given as in (18). Let A1) hold
true and . With constraints given by (10) and (11),
the Lagrange cost to be minimized can then be for-
mulated as

where are the Lagrange multipliers,
is the i-th row (output at the i-th receiver) and is the

i-th column of for . Define the matrix of La-
grange multipliers as if
and if . Observe that is a Hermitian sym-
metric matrix i.e., . The above cost function can now
be differentiated with respect to for .
These quantities can then be equated to 0 for extrema and after
some manipulation, the resulting equations can be represented
in terms of complex matrices as

(21)

where is unitary. We avoid repeated mention of this constraint
in the foregoing analysis and it is implicitly assumed to hold. Let

.

As noted, and therefore the Lagrange multiplier matrix
can be eliminated as

(22)

Adding and subtracting in (22) and rearranging terms
yields

Let . Thus, from the
above equation, is Hermitian symmetric or in other
words . Also, if then,

. We have then from the sym-
metry of

(23)

Expression (23) gives the critical step in the IGML algorithm
which is succinctly presented below (some of the definitions
above are repeated for the sake of completeness).

IGML Algorithm: Let A1) hold, i.e., . is

the transmitted pilot symbol sequence and not necessarily

orthogonal. We then compute the constrained ML estimate of

as follows.

S.1 Compute , where is the received output

data.

S.2 Let denote the initial estimate of the unitary

matrix . Compute by employing
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and in (19).

S.3 Repeat for iterations. At the th iteration i.e.,

,

S.3.1 Let .

S.3.2 Compute refined estimate of from by

employing (23).

S.4 Finally estimate as .

, the number of iterations is small and typically as
found in our simulations. It can now also be noticed that if A2)
holds, . Therefore, . The
SVD of is then given by . It follows
that the IGML solution given as

(24)

is similar to the solution given in (19). Thus, when is orthog-
onal, the IGML algorithm converges in a single iteration to the
OPML solution.

Finally, we wish to compare the CRB of estimation of for
the IGML and OPML schemes. Let , the pilot for the IGML
scheme be a random sequence such that
or in other words it is statistically white. Denoting by the
unconstrained FIM for IGML, we have from Section III,

. Therefore, . The average
CRB of IGML, where the averaging is over the distribution of

is then given as CRB . Employing Jensen’s
inequality for matrices from [20] we have

CRB

(25)

Thus, the error in the estimation of is minimum for an or-
thogonal pilot . Similar optimality properties of orthogonal
pilots have been previously reported in [21] and [22].

1) “Rotation-Optimization” ML: The above suggested
IGML scheme to compute for a general pilot sequence
might be computationally complex owing to the multiple SVD
computations involved. Thus, to avoid the complexity involved
in the full computation of the optimal ML solution, we propose
a simplistic ROML procedure for the suboptimal estimation
of , thus trading complexity for optimality. The first step of
ROML involves construction of a modified cost function as

where (26)

is the whitening pre-equalized data. The closed form
solution for the modified cost in (26) is given as

where (27)

which can be implemented with low complexity. This result
for problem (26) follows by noting its similarity to problem
(18). Several choices can then be considered for the pre-equal-
ization filter . The standard zero-forcing (ZF) equalizer is
given by (where denotes the Moore–Penrose
pseudo-inverse) and is usually referred to as “data whitening”
in literature. However, ZF is susceptible to noise enhancement
as frequently cited in literature. Alternatively, a robust MMSE
prefilter is given as .

given by (27) is a reasonably accurate closed form estimate
of . However, the resulting estimate does not have any statis-
tical optimality properties as it does not compute the solution to
the true cost function given in (18). This estimate of can now
be employed to initialize the IGML procedure to minimize the
true cost. However, to avoid the complexity associated with an
SVD computation, a constrained minimization procedure (e.g.,
“fmincon” in MATLAB) can now be employed to converge to
the solution with the nonlinear constraints given by the unit
norm and mutual orthogonality of the rows of . This proce-
dure then yields which is close to the optimal ML estimate
and the low computational cost of the proposed solution makes
it attractive to implement in practical systems.

C. Total Optimization

This procedure builds on the above described schemes. The
ML schemes (OPML and IGML) for estimating the unitary ma-
trix are optimal given perfect knowledge of . However, in
finite total symbol run situations where this assumption is not
valid (for example in fast fading mobile environments where the
data symbols available in the channel coherence time are lim-
ited and hence the estimated whitening matrix may not be exact
as assumed earlier), the disjoint estimation of the whitening ma-
trix from blind symbols and rotation matrix from pilot symbols
is not optimal. We present a scheme for such a system to itera-
tively compute the joint solution for and based on mini-
mizing a Gaussian likelihood cost function.

1) Initialization of and : can be estimated from the
output correlation matrix which is given as

(28)

The ML estimate of can be computed blindly from
the entire received data as

. Using relation (28) and assuming that
and are known at the receiver, may be estimated

as

(29)

can then be computed from a Cholesky factorization of
. , the initial estimate of is then computed by employing
in the OPML or IGML algorithms outlined in Sections IV-A

and IV-B, respectively.
2) Likelihood for Total Optimization: In order to arrive at a

reasonably tractable likelihood function, we now assume that
the transmitted data is Gaussian, i.e.,

. The likelihood of the complete received data,
conditioned on the pilot symbols is given as

(30)
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where . is a function entirely
of blind data, and depends only on training data. This cost
function can be minimized for to compute as given below.

Total Optimization: Let be the transmitted pilot symbol

sequence, not necessarily orthogonal. We then compute esti-

mates of and matrices as follows.

T.1 Compute , the initial estimate of from (29).

T.2 Compute by employing in the IGML algorithm

in Section IV-B.

T.3 Repeat for iterations. At the th iteration,

i.e.,

T.3.1 Using as an initial estimate, compute

by minimizing (“fminunc”

in MATLAB).

T.3.2 Compute the IGML estimate of from .

T.4 Finally estimate as .

It is seen from the simulation results that minimization of the
above likelihood yields an improved estimate of the channel ma-
trix even when elements of the transmitted symbol vectors

are drawn from a discrete signal constellation. This solu-
tion however involves a computational overhead. Nevertheless it
provides a useful benchmark for the estimation of the flat-fading
channel matrix . Practical implementation of this algorithm
would require a recipe for efficient numerical computation.

As the data length increases with pilot length kept con-
stant, the effect of on the above expression diminishes for the
estimation of . Hence, for large blind data lengths , maxi-
mizing the likelihood expression with respect to , reduces
to maximization of . The solution is then given by the ML
estimate in (29). The second step maximizes , which is the
cost function optimized by the OPML and IGML algorithms.
Thus, as , the total optimization scheme reduces to a
one iteration algorithm involving the ML estimation of fol-
lowed by the constrained ML estimation of .

V. SIMULATION RESULTS

Our simulation setup consists of an 8 4 MIMO channel
(i.e., ). was generated as a matrix of

zero-mean circularly symmetric complex Gaussian random
entries such that the sum variance of the real and imaginary
parts was unity. For an orthogonal pilot, the source symbol
vectors are assumed to be drawn from a BPSK
constellation and the orthonormality condition is achieved
by using the Hadamard structure. But otherwise, for general
pilot sequences and data vectors, symbols were drawn from a
16-QAM signal constellation. Further, the transmitted for the
transmitted training symbol vectors and for the
data vectors , thus maintaining the
source power constant. Noise vectors were generated
as spatio-temporally uncorrelated complex Gaussian random
vectors and with variance of each element equal to . The SNR
of operation was measured as SNR .
Simulations described below investigate the performance of the
proposed semi-blind algorithm under different conditions.

Fig. 1. MSE versus SNR of OPML semi-blind channel estimation and the
semi-blind CRB with perfect knowledge of W . Also shown for reference is
MSE of the exclusively training-based channel estimate.H is an 8� 4 complex
flat-fading channel matrix and pilot length L = 12.

Experiment 1: In this experiment, we demonstrate the en-
hancement in estimation accuracy that can be achieved by the
use of statistical side information (white data) as qunatified by
Lemma 3. For this purpose, we evaluate the MSE performance
of the different constrained ML estimators of under A1) and
compare it to the training-based estimate given by (2) which ne-
glects white data. The MSE of estimation of the channel matrix

has been averaged over 1000 instantiations of the channel
noise . In Fig. 1, this MSE has been plotted versus SNR in the
range 4 dB SNR 11 dB for the OPML semi-blind scheme.
As noted in Section III-A, the MSE of semi-blind scheme is
6 dB lower than that of exclusively training-based channel es-
timation. The CRB of the semi-blind scheme is also plotted for
reference.

Next we compute the MSE for different pilot lengths in the
range . A statistically white pilot

was employed for the IGML, ROML and training-based
schemes while an orthogonal pilot was used for the OPML
scheme with , thus maintaining constant source
power. The left-hand side of Fig. 2 shows the error for these
different schemes and also that for the exclusive training-based
scheme. It can be seen that the semi-blind schemes are 6 dB
more efficient than the training scheme as suggested by Lemma
3. OPML performs very close to the CRB while the IGML
progressively improves toward the CRB as the pilot length in-
creases. On the right-hand side of Fig. 2, which is a blown-up
version of the same plot, it is seen that the ROML because of its
suboptimality loses slightly (0.5 dB) in terms of estimation gain
when compared to the other constrained estimators.

Experiment 2: We now consider the effect of estimation in-
accuracies in arising from the availability of finite blind data.
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Fig. 2. Computed MSE versus pilot length (L) for the OPML, IGML,
ROML, and exclusive training-based channel estimation. H is an 8� 4
complex flat-fading channel matrix and SNR = 8 dB.

We demonstrate the performance of the total optimization (To-
tOpt) procedure for the joint optimization of and and con-
trast it with the MSE of the IGML estimate with imperfect .
We consider estimation of from 300, 500, and
1000 blind data symbols with the source symbols drawn from a
16-QAM constellation and employing (29). The pilot sequence

was orthogonal. As in the previous experiment, we consider
the MSE in estimation for different pilot lengths .
It can then be seen from Fig. 3 that while the OPML with im-
perfect for performs marginally better than
the training sequence-based technique ( training sym-
bols), the TotOpt scheme which optimizes the likelihood in (30)

Fig. 3. Comparison of OPML with perfect W , OPML with imperfect or
estimated W , total optimization, and training-based estimation of H .

Fig. 4. Probability of bit error versus SNR for 8� 4 MIMO system
employing OPML; total optimization (N = 1000; 500). The performance of
the exclusively training-based channel estimate is also given for comparison.

performs consistently better than the training sequence-based
scheme in all the cases. Their performance is also compared to
the situation of availability of perfect knowledge of (perf W),
which can be seen to achieve the best performance. As noted in
Section IV-C, the performance of TotOpt approaches that of the
OPML with perfect as .

Experiment 3: Finally, we consider of detection of the
transmitted symbol vectors employing estimated from dif-
ferent schemes. We illustrate the performance of OPML with
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perfect knowledge of at the receiver and total optimization
with 1000 and 500 blind symbols. The performance of
the exclusively training-based estimate of is also plotted for

. Fig. 4 shows the probability of error detection vs SNR
for a linear MMSE receiver at the output for an 8 4 system

. It can be seen that at an SNR of 6 dB the semi-blind scheme
achieves about a 1-dB improvement in probability of bit error
detection performance and thus improves over the exclusively
training-based estimate.

VI. CONCLUSION

A semi-blind scheme based on a whitening-rotation de-
composition of the channel matrix has been proposed for
MIMO flat-fading channel estimation. The algorithm computes
the whitening matrix blind from received data and the
unitary matrix exclusively from the pilot data. Closed-form
expressions for the CRB of the proposed scheme have been
derived employing the CC-CRB framework. Using the bounds,
it is shown that the lower bound for the MSE in channel
matrix estimation is directly proportional to the number of
unconstrained parameters leading to the conclusion that the
semi-blind scheme can be very efficient when the number of re-
ceive antennas is greater than or equal to the number of transmit
antennas. We also develop and analyze algorithms for channel
estimation based on the decomposition. Properties of the con-
strained ML estimator of have been studied and an iterative
constrained -estimator has been detailed for nonorthogonal
pilot sequences. In the absence of perfect knowledge of , a
Gaussian likelihood function has been presented for the joint
estimation of and . Simulation results have been presented
to support the algorithms and analysis and they demonstrate
improved performance compared to exclusively training-based
estimation.
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