
Received June 25, 2019, accepted July 9, 2019, date of publication July 19, 2019, date of current version August 6, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2929958

WhiteRabbit: Scalable Software-Defined
Network Data-Plane Verification
Method Through Time Scheduling

TAKAHIRO SHIMIZU 1, (Student Member, IEEE), NAOYA KITAGAWA 2, (Member, IEEE),

KOHTA OHSHIMA 3, (Member, IEEE), AND NARIYOSHI YAMAI 2, (Member, IEEE)
1Department of Computer and Information Sciences, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
2Division of Advanced Information Technology and Computer Science, Department of Institute of Engineering, Tokyo University of Agriculture and Technology,

Tokyo 184-8588, Japan
3Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, Tokyo 135-8533, Japan

Corresponding author: Takahiro Shimizu (tshimizu@net.cs.tuat.ac.jp)

This work was supported by JSPS KAKENHI Grant Number JP19K20252.

ABSTRACT Software-defined networks are vulnerable to attacks by compromised switches because

commonly used programmable software switches are risky than traditional hardware ones. Although

several countermeasures have been proposed to address compromised switches, the accuracy of detecting a

malicious behavior depends on the performance of network statistics gathering by a controller. In this paper,

we propose that WhiteRabbit is an approach to verify the consistency of the forwarding state by gathering

real-time network statistics gathering from switches with accurate time scheduling. WhiteRabbit can detect

attacks by compromised switches without being influenced by the performance of statistics gathering of a

controller. Given that the proposed utilizesmoving average, it mitigates the effect on the verification accuracy

from the impact of the switch performance, such as scheduling error. In our previous work, we demonstrated

the feasibility of WhiteRabbit using a prototype system. However, we could not evaluate the impact of the

difference between the scheduled and actual execution times in our previous work, because we performed

the experiment in a minimal setup using Mininet. Thus, we measured the scheduling error and time required

to gather statistics in a large-scale environment. We also confirmed that the scheduling error is lower than the

time required to gather statistics. Additionally, considering that WhiteRabbit only depends on the scheduling

error, we verified that the accuracy of WhiteRabbit is higher than prior arts on the tree topology constructed

with 15 switches.

INDEX TERMS Data-plane verification, software-defined network (SDN), scheduled bundle, statistics

gathering, precision time protocol (PTP).

I. INTRODUCTION

A. BACKGROUND

Network attackers may compromise switches by abusing

software or hardware vulnerability, and hence, networks are

prone to attacks owing to these compromised switches. Cisco

reported that routers in 318 models have the vulnerability

to possibly encounter compromised switches by invoking a

simple command [2]. The possible signs of a compromised

switch are drop, delay, and deviation of packets.

The associate editor coordinating the review of this manuscript and
approving it for publication was Xiaofei Wang.

In particular, several papers indicate that a software-

defined network (SDN) often uses programmable soft-

ware switches and has higher compromise probability

than traditional hardware switches [3]–[6]. For instance,

CVE-2016-2074 [7] reported that attackers can execute an

arbitrary code by abusing the vulnerability of the buffer over-

flow in Open vSwitch. Dhawan et al. [4] reported that pop-

ular SDN controller applications cannot detect a malicious

network behavior. Thus, protection of the data plane in SDN

is more important than that in traditional networks.

Byte consistency check, which was proposed in SPHINX

[4], is a countermeasure against suspicious behaviors of

compromised switches such as packet drop and injection.

97296 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0002-3177-5138
https://orcid.org/0000-0002-1191-2449
https://orcid.org/0000-0001-9509-9282
https://orcid.org/0000-0003-2651-2701


T. Shimizu et al.: WhiteRabbit: Scalable SDN Data-Plane Verification Method Through Time Scheduling

However, it has a problem because verification accuracy

depends on the statistics gathering performance of a con-

troller. Moreover, an alternative solution based on trajectory

sampling, referred to as WedgeTail [5], has been proposed

recently. Although WedgeTail can be verified with higher

accuracy than SPHINX, additional resources are required to

perform its verification.

In the flow updating field of SDN, Time4 [8] was pro-

posed as a method to update the flow using Scheduled

Bundle. Scheduled Bundle is a method used to schedule

the time of executing OpenFlow messages at the switches.

Time4 demonstrated that simultaneous updating of flow by

Scheduled Bundle can suppress packet loss and without the

performance degradation at Flow Swapping scenario. Fur-

thermore, given that Scheduled Bundle supports all Open-

Flow messages, we considered that utilizing this method can

gather statistics without relying on the controller performance

through time triggered OpenFlow message execution.

In this study, we propose WhiteRabbit, which is a

novel approach to verify forwarding state consistency. Our

approach uses the statistics gathered from the switches by

Scheduled Bundle simultaneously. Although WhiteRabbit

schedules the task to gather transfer statistics in each switch,

it is not affected by the controller performance and network

size (Section III). Thus, the proposed method can detect

attacks by compromised switches without relying on the

performance of controller statistics gathering.

In our previous study, we reported a prototype system was

implemented in our method inMininet [1]. However, because

the experimental environment in Mininet was constructed

in a single machine, our previous work has three issues.

First, we could not perform an experiment in other envi-

ronments aside from a small linear topology setup. Second,

the previous work assumed that the time of each emulated

node is synchronized using the same hardware clock. Hence,

the experiment could not evaluate the effect of time syn-

chronization in a real-world environment. Third, the previous

experiment lacked the analysis of performance attributes,

such as scheduling error and time required to send the mes-

sages. Therefore, we need further experiments in a large scale

environment to evaluate the impact of performance attributes,

overhead of WhiteRabbit, and accuracy of the validation.

Considering that the controller cannot gather statistics

from switches simultaneously, the switches send the trans-

fer statistics immediately within the scheduled time. Hence,

time here is regarded as the scheduling error. The schedul-

ing error is affected by two factors: clock accuracy and

execution accuracy. Although the clock accuracy can typi-

cally achieve one microsecond order, the execution accuracy

strongly depends on the implementation of the switches. We

showed that the execution accuracy achieves one millisec-

ond order in the software-based switch of our experimental

environment (Section IV-A.4). Then, we confirmed that the

scheduling error is lower than the time required to send

messages to all switches. Although WhiteRabbit depends on

the scheduling error, the error is lower than the time required

to send messages when the untimed approach is used, such as

SPHINX. Thus, WhiteRabbit has the scalability advantage.

Moreover, we evaluated the verification accuracy of

WhiteRabbit in a 25-node environment implemented on the

DeterLab testbed. BecauseWhiteRabbit is not affected by the

network scale and controller performance through scheduling

to gather statistics of each switch, we confirmed that it has

a lower false-positive rate than SPHINX (Section IV-B.1).

Thus, our experiments showed that WhiteRabbit can effi-

ciently detect attacks without depending on controller perfor-

mance when compared with SPHINX.

This paper makes the following contributions.

• We present the sequence of the statistics gathering

with time scheduling utilizing Scheduled Bundle in

WhiteRabbit. By gathering the transfer statistics using

Scheduled Bundle simultaneously, WhiteRabbit can

gather the statistics without depending on controller

performance.

• Wepresent the verification algorithm for using the statis-

tics gathered in scheduled time based on the byte consis-

tency check in SPHINX.

• We examine the elapsed time for sending messages to

all switches, and the scheduling error. We also report

the scheduling error is lower than the time required in

sending the messages to all switches.

• We evaluate WhiteRabbit to show that it can achieve

lower false positives than SPHINX, and it does not affect

packet transferring.

The rest of this paper is organized as follows. Section II

summarizes the related work. Section III depicts our system

overview, threat model, and workflow of WhiteRabbit in

detail. Section IV evaluates WhiteRabbit by comparing it

with the existing one. Section V, discusses the limitations,

impact of the scheduling accuracy, and future work. Finally,

Section VI provides the conclusion of the entire study.

II. RELATED WORK

A. SOFTWARE DEFINED NETWORK

An SDN has network control and packet forwarding func-

tion that enables flexible network control using a centralized

control plane. Network intelligence is logically centralized

in the trusted software-based controller that maintains the

global view of the entire network, and the packet forwarding

function comprises hardware and software switches, which

are dumb forwarding device.

OpenFlow [9] is a protocol used to realize SDN using

controllers and switches.

The OpenFlow messages relevant to this study include

FLOW_MOD, STATS_REQUEST, and STATS_REPLY.1 The

FLOW_MOD messages create flow entries in the switches,

1In OpenFlow 1.3 later, STATS_REQUEST and STATS_REPLY mes-
sages are renamed to MULTIPART_REQUEST and MULTIPART_REPLY,
respectively. However, because these messages are called
STATS_REQUEST and STATS_REPLY messages in [4], we renamed
these messages STATS_REQUEST and STATS_REPLY messages,
respectively, in this paper.

VOLUME 7, 2019 97297



T. Shimizu et al.: WhiteRabbit: Scalable SDN Data-Plane Verification Method Through Time Scheduling

and the STATS_REQUEST messages request the statistics

to the switches from a controller. As a response to the

STATS_REQUESTmessages, the STATS_REPLYmessages

report the network statistics in the switches related to flow,

table, and switch port, such as the number of packets and

bytes sent or received.

B. SDN AND TIME

The Scheduled Bundle proposed in Time4 [8], a method to

schedule the execution timing of some OpenFlow messages

execution in switches, is used without depending on the con-

troller performance. Scheduled Bundle is a flexible method

that is compatible with all types of OpenFlow messages. The

specification of OpenFlow 1.5 [10] also includes Scheduled

Bundle.

To execute scheduled messages simultaneously, Time4 uti-

lizes high precision time synchronization, such as Precision

Time Protocol (PTP) to be standardized by IEEE 1588 [11].

PTP can synchronize nanosecond order time synchroniza-

tion using a hardware-timestamping enabled NIC module.

Time4 shows that simultaneous updating of flow can suppress

packet loss and eliminate performance degradation at the

Flow Swapping scenario. Mizrahi and Moses [8] reported

that nine out of the 13 SDN capable switch silicones listed

in the Open Networking Foundation SDN Product Directory

have native IEEE 1588 support.

C. TRADITIONAL NETWORK DATA PLANE AND SECURITY

Many researchers reported that detecting compromised

switches is an important issue in a traditional network

[12]–[15]. Thus, they proposed solutions to detect these

compromised switches. The objective of these solutions is

to perform the verification in the switches themselves. For

example, OPT [14] uses a cryptography approach with key

exchange between switches. Therefore, they are not suitable

for SDNs, which are maintained by the centralized controller,

because these solutions work on the switches.

D. SDN SECURITY AND NETWORK VERIFICATION

The SDNs’ paradigm leads to software flexibility to the

networks. However, SDN is as vulnerable to compromised

switches as traditional networks. Several studies showed

that SDN is more vulnerable to compromised switches

than traditional networks and confirmed that attackers can

even have control of an entire network with compromised

switches [3]–[6]. Hence, countermeasures against compro-

mised switches in SDN are required.

To verify network configuration, tools such as

VeriFlow [16] and NetPlumber [17] are proposed by several

studies. However, these studies only focus on the detection of

network bugs, such as loops, but infringed switches are out of

scope. These network verification procedures also depends

on the traffic information from the switches, which is not

regarded as a security issue. Thus, these solutions are not

suitable for detecting compromised switches.

SPHINX [4] is the most relevant research on this paper. It

is one of the countermeasures against compromised switches

and assumes trusted controller and reliable majority switches.

SPHINX provides a global view of networks, referred to

as flow graph, by collecting FLOW_MOD messages from the

trusted controller and then verifies its consistency and con-

straint. It can also verify the legitimacy of the SDN data

plane via byte consistency check with the flow statistics

gathered from the switches. Byte consistency check uses

Similarity Index (6), which is the moving average of byte

statistics value regarding flow. 6 must have a similar value

to a particular flow of each switch when the networks do not

suffer through attacks from compromised switches, such as

dropping or injecting packets.

Byte consistency check is a practical countermeasure for

attacks by compromised switches, but it has a scalability

issue. Given that it influenced by the gap of statistic gath-

ering time between switches, the accuracy of SPHINX’s

byte consistency check is dependent on the controller

performance. In particular, several studies reported that

controller performance depends on the number of con-

nected switches [8] and the hardware specification [18].

Furthermore, Curtis et al. [19] showed that threshold and

sampling-based statistics gathering methods can collect

statistics without relying on the controller performance. How-

ever, when these methods are applied for data plane verifica-

tion, they are confirmed to be totally dependent on the timing

of the statistics report from untrusted switches. Similarly,

Flowmon [20] used the moving average of byte statistics,

which also has a scalability issue. Therefore, to apply the byte

consistency check to a production environment, operators

should improve these solutions independent of the on network

scales.

WedgeTail [5] has higher accuracy than SPHINX but

requires many resources for gathering packet hash and verify-

ing behaviors of the switches with comparing between except

packet behaviors and actual packet behaviors.

Thus, current solutions have issues relating to scalability;

for example, the accuracy of verification may depend on the

controller performance.

III. SYSTEM DESIGN

A. OVERVIEW

As mentioned in Section II, the existing solutions have scala-

bility issues; for example, the time required to gather statistics

depends on the controller performance, and many resources

are required. Hence, if the number of switches increases and

the controller specification is insufficient, then the verifica-

tion accuracy may degrade.

In this paper, we propose a data plane verification method

that uses the statistics concurrently gathered among all

switches through accurate time scheduling. WhiteRabbit can

collect statistics without depending on the controller perfor-

mance, and the controller can simultaneously handle statistics

gathering.

97298 VOLUME 7, 2019



T. Shimizu et al.: WhiteRabbit: Scalable SDN Data-Plane Verification Method Through Time Scheduling

FIGURE 1. System overview.

FIGURE 1 presents the schematic architecture of the sys-

tem proposed in this study. The part implemented using the

proposed method is indicated by Verifier in this figure, and

it intercepts the OpenFlow messages between the switches

and controller applications. Furthermore, we assume that all

switches and controllers are accurately time synchronized.

B. THREAT MODEL

We focus on the data plane security that attacks can detect

from packet transfer statistics analysis because the control

plane security is well investigated [21]. We assume that the

packets of a compromised switch may drop, inject, or delay,

and the compromised switch does not accurately handle the

packets according to the rules specified by the controller.

The cause of these behaviors is probably misconfiguration or

switch failure. WhiteRabbit can be utilized not only to detect

compromised switch behaviors but also to discover network

defects. Regarding the assumption of SPHINX, we assume

that the controller applications are trusted and majority of

the switches are legitimate. Thus, the messages from the

controller are reliable, whereas those messages from any

switches may be forged by compromised switches. To focus

the analysis on only OpenFlow control messages, we con-

sider that the verifier knows the reliable physical topology

information and assume a closed SDN system.

Additionally, we assume that the times of all switches

and controllers are synchronized accurately through the

time synchronization protocol, such as PTP. Although com-

promised switches synchronized time similar to legitimate

switches and disguised the byte transfer statistics, many other

switches report legitimate statistics. The difference of byte

transfer statistics is consequently higher than that with the

compromised and many legitimate switches. Thus, Whit-

eRabbit can detect attacks by compromised switches (see

Section III-C.3). Additionally, we can utilize prior arts, such

as [22], as a countermeasure of attacks to the PTP protocol.

Therefore, the security of time synchronization is outside the

scope of this paper.

C. SEQUENCE OF VALIDATION

FIGURE 2 shows the workflow of WhiteRabbit, which

involves three sequences. WhiteRabbit validates whether the

packet transmissions are correctly performed on the path as

assumed by the trusted controller. Additionally, considering

that WhiteRabbit requires us to schedule statistics gathering

in real time, we use ReversePTP [23] to collect the time offset

between the controller and switches. The validation sequence

to a specific traffic flow using WhiteRabbit is as following:

1) Calculate the path that the controller supposes, using

physical topology information and FLOW_MOD mes-

sages sent from the controller application.

2) Obtain the actual transfer statistics of all switches using

Scheduled Bundle simultaneously.

3) Validate the transfer state consistency using the

expected path of the controller and the difference of

statistics among the neighboring switches.

As described in Section III-A, WhiteRabbit inter-

cepts the OpenFlow message, such as FLOW_MOD and

STATS_REPLY, and then relays it to the destination. It

also relays OpenFlow messages that are irrelevant to the

verification.

From Section III-C.1 through Section III-C.3, we present

these mechanisms in detail.

1) CURRENT PATH CULCULATION

WhiteRabbit requires a flow graph, which is a graph theoretic

perspective of the network assumed by a trusted controller,

to obtain a current path similar to that of SPHINX. The flow

graph is constructed only using the FLOW_MOD messages

issued by the trusted controller. It includes match field and

instruction, comprising an src/dst MAC address, src/dst IP

address, and in/out port information of the switches. The

flow graph does not suffer from untrusted switches because

the untrusted STATS_REPLY messages are not used in con-

structing this graph.

The current path assumed by the trusted controller can be

obtain by combining information of FLOW_MOD messages

and physical topology. The current path is used for identifying

the switches through which a specific traffic passes when

during the verification execution.

2) STATISTICS GATHERING WITH SCHEDULED BUNDLE

WhiteRabbit periodically gathers transfer statistics in real

time from the switches. When gathering statistics, a con-

troller generally sends STATS_REQUEST messages simul-

taneously, and the time required to send these messages

depends on the controller performance. In particular, Whit-

eRabbit uses STATS_REQUEST wrapped with Scheduled

Bundle because it gathers statistics in real time between

switches. In addition, it can gather statistics without relying

on the controller performance.

WhiteRabbit calculates and uses the scheduling time TS
with the time offset ti between the switch and controller to

obtain transfer statistics on all the switches concurrently. To

achieve this objective, we define the scheduling time TS ,

which is the time for gathering the transfer statistics from

switches. We also define TSi as the actual scheduling time

VOLUME 7, 2019 97299



T. Shimizu et al.: WhiteRabbit: Scalable SDN Data-Plane Verification Method Through Time Scheduling

FIGURE 2. Workflow of WhiteRabbit.

FIGURE 3. Sequence of the statistics gathering with Scheduled Bundle.

at the switchi. TSi includes the time offset between the con-

troller and switch i (ti). In particular, TSi = TS + ti, and

TSi are determined to ensure that they look the same as TS
to the controller. To determine the time offset between the

switchi and controller (ti), we use ReversePTP [23], which

can deliver the time offset between the switches and controller

from the switches to the controller. ReversePTP utilizes PTP

to deliver the time offset per switch, but cannot sync the

time between the switches and controller. It is used only to

deliver the time offset between the switches and controller.

Therefore, to obtain the time offset ti and calculate TSi of each

switch, WhiteRabbit should schedule when to gather transfer

statistics simultaneously among switches.

FIGURE 3 illustrates the flow of gathering transfer

statistics at timestamp TSi with Scheduled Bundle. First,

the controller sends the BUNDLE_OPEN message to the

switch, followed by the BUNDLE_ADD message that encap-

sulates the STATS_REQUEST message to collect the statis-

tics for all flow entries. Then, the controller sends the

BUNDLE_COMMITmessagewith the timestamp of the sched-

ule execution timing TSi.

To verify the byte consistency, WhiteRabbit primar-

ily uses byte_cnt and match field information contained

in STATS_REPLY messages. WhiteRabbit associates the

flow and statistics according to match field and calcu-

lates the byte_cnt difference from the already collected

STATS_REPLY information.

The statistics difference between the switches may occur

owing to the timing of FLOW_MODmessage sent via the con-

troller application depending on themechanism of the routing

control. Additionally, the statistics of real time gathering rely

on the performance of the switches, such as flow table size

and schedule execution accuracy. Thus, WhiteRabbit uses

moving averages of the difference of the last four statistics

report (i.e., use byte_cnt difference) simultaneously between

switches, referred to as ByteDiff . Because this interval is

sufficient to eliminate the effects of scheduling errors and

traffic bursts, our mechanism can avoid false alarms. Unlike

with6 of SPHINX, given that schedulingmechanism gathers

the statistics in real time, ByteDiff of WhiteRabbit does not

depend on the controller performance.

3) ALGORITHM

Algorithm 1 describes the steps of executing the consistency

check using the given flow graph and simultaneously gath-

ered statistics between the switches. The algorithm requires

the flow graph as an input, and the flow graph includes a

current path relevant to traffic flow F . WhiteRabbit verifies

97300 VOLUME 7, 2019



T. Shimizu et al.: WhiteRabbit: Scalable SDN Data-Plane Verification Method Through Time Scheduling

Algorithm 1 Proposed Algorithm

Input: F :traffic flow, τ :threshold

Output: O:violation switches of traffic flowF

function Verify(F ,τ )

Initialize:

FG := Get_FlowGraph(F)

CurrP := Get_CurrentPath(FG)

O := ∅

PrevByte := ∞
for all S ∈ CurrP do

FE := Get_FlowEntry(S,F)

ByteDiff := Get_ByteStatsDifference(FE)

if True == ((PrevByte == ∞) ∨

(PrevByte/τ < ByteDiff < PrevByte·τ )) then

PrevByte := ByteDiff

else

O := O ∪ S

for all S ∈ FG ∧ S 6∈ CurrP do

FE := Get_FlowEntry(S,F)

ByteDiff := Get_ByteStatsDifference(FE)

if ByteDiff 6= 0 then

O := O ∪ S

whether the compromised switches attack the network from

the same two points as SPHINX.

First, this algorithm validates the statistics of the switches

over a current path of the traffic flow F from the nearest

switch from a source host. Given that the algorithm uses

the concurrent gathered of statistics, all switches that passed

through must report the same value of the statistics between

the switches. Although a compromised switch disguises that

the statistics are similar to a reliable switch, it can be detected

using a reliable downstream switch.

Hence, the algorithm needs should consider the difference

of the statistics values that occurs owing to propagation delay,

scheduling error, and the difference of the flow table sizes

maintained by the switches. For that reason, we compare the

statistics of neighboring switches based on the validation data

already passing through the switches (referred to asPrevByte)

using a threshold τ . The algorithm reports a violation when

it observes a remarkable difference from the concurrent gath-

ered statistics of the neighboring switch over the current path.

Second, the algorithm verifies whether the statistics of the

switches that are not included in the current path associated

with the traffic flow F are zero. Thus, it can confirm that no

traffic has been injected and dropped by the switches that are

out of the current path.

The algorithm requires the threshold (τ ) as an input,

which is used as the margin of the statistics value simi-

larity. Considering that ByteDiff varies with communication

situation, the algorithm calculates the maximum/minimum

ByteDiff by multiplying PrevByte with the threshold. Addi-

tionally, because the performance of statistics gathering

depends on the switch performance, which occurs from the

schedule execution accuracy, flow table size [19], and switch

implementation [24], τ must be determined by considering

the switch performance. If the value of τ in this algorithm

is significantly large, then false negatives may occur and

a genuine alarm may not be outputted. By contrast, if the

value of τ is remarkably small, then the algorithm may result

in false positives. Therefore, the administrator should thor-

oughly determine the value of τ .

IV. EVALUATION

A. EXPERIMENTAL SETUP

1) IMPLEMENTATION

We are supported to integrateWhiteRabbit into an application

of the controller. However, considering the processing effect

for this experiment, we implemented WhiteRabbit as a proxy

between the controller application and switches, separate

from the controller application. Hence, we executed it in

Stopcock [25], which is an implementation of the OpenFlow

proxy, and then we used a custom Loxigen [26] script to

achieve compatibility with Scheduled Bundle.We utilized the

OpenFlow switch ofsoftswitch13_EXT-340 [27], which is

compatible with Scheduled Bundle. Moreover, we employed

of ReversePTP [28], which is an application used to obtain

the time offset between the switches and controller. During

implementation, the verifier reads the time offset data asyn-

chronously from ReversePTP and then uses these data to

calculate the scheduling time. Because our method schedules

the timing of the statistics gathering in the switches, the ver-

ification accuracy is not degraded even if integrated into the

controller application.

In our experiments, we set that the interval of the statistics

gathering is three seconds and the duration of schedule execu-

tion is more than one second when the first BUNDLE_OPEN

message was sent in WhiteRabbit. To compare the results

of experiments, we set the interval of the statistics gather-

ing is three seconds in SPHINX as well. Considering that

ofsoftswitch13_EXT-340 does not have multiple schedul-

ing, these intervals are sufficient to remove the duplicated

schedule.

2) EXPERIMENTAL ENVIRONMENT

To evaluate WhiteRabbit, we adopted a testbed with 25 nodes

on DeterLab [29]. FIGURE 4 shows the topology setup in

our experiment. Our experiments used a custom tree topology

setup that reduces the number of host nodes. This layout

is based on tree topology (depth=3, fanout=2). All nodes

used are a machine type called MicroCloud in DeterLab.

Because both WhiteRabiit and SPHINX use only the statis-

tics gathered from the switches, the verification accuracy of

either method is not affected by the number of hosts. Each

node has the following roles: switch, host, SDN controller

application, verifier component, and SDN message gateway.

We also utilized Floodlight v1.1 [30] as an SDN controller

application.

The experimental networks in DeterLab were constructed

using shared VLAN links. Thus, our experimental environ-

VOLUME 7, 2019 97301



T. Shimizu et al.: WhiteRabbit: Scalable SDN Data-Plane Verification Method Through Time Scheduling

FIGURE 4. Experimental topology.

ment has a restriction on PTP synchronization accuracy. (We

describe this restriction in Section IV-A.3.) Time synchro-

nization with excellent precision is impossible to achieve

because of the experimental environment restriction. Hence,

we should evaluate whether WhiteRabbit can be applied to

the environment that has synchronized the time with millisec-

ond order as real-world environment.

In particular, this experimental environment is larger than

that used in our previous work. In our previous work, we con-

structed the environment using Mininet on a single machine,

which coexisted with the verification component. To deter-

mine the impact of resource contention, we used a minimal

linear topology and then separated the controller application

host and Mininet host including the verification program. By

contrast, the experimental node of the environment in this

present study is independent of each other. Thus, this exper-

imental environment does not rely with the other nodes, but

we must accurately synchronize the time or calculate the time

offset between the switches and controller as a real-world

environment.

3) PERFORMANCE ATTRIBUTES: δM, δM AND δS

Given that the verification accuracy is influenced by the

gap of transfer statistics between switches, influencing the

verification accuracy in SPHINX and WhiteRabbit vary. The

following three performance attributes serve as key factors

in our evaluation: δm is the time difference required to send

two consecutive messages to two switches, 1m is the time

required to simultaneously send the messages to all switches

in the environment, and δs is the difference between the actual

and scheduled times when executing statistics gathering.

In an untimed approach, such as SPHINX, depending

on the gap that is gathered through the transfer statistics

timing simultaneously between switches, δm and 1m deter-

mine the verification accuracy. δm indicates the performance

of the controller: The SDN controller should handle tens

FIGURE 5. Measurement of performance attributes.

of thousands to millions of packets per second [18], [31],

and its performance substantially depends on the controller

machine and implementation. Meanwhile, 1m denotes the

performance of the controller on the supervised network:

when sending messages to all switches, such as simultaneous

statistics gathered from each switch, the time required to

send the messages is dependent on the network size. Thus,

the transfer statistics may increase the difference between

switches, despite a request to send the messages to gather

transfer statistics simultaneously when δm and 1m increase.

Meanwhile, considering that WhiteRabbit supposes to

gather concurrent transfer statistics, the scheduling error

determines the accuracy. When the transfer statistics gather-

ing is scheduled at time T0, the execution is basically executed

at time T0 + δm. Therefore, the difference in the transfer

statistics between switches may occur in the time approach.

The scheduling error is primarily affected by the following

two factors mainly: the devices’ clock accuracy and execution

accuracy. First, the devices’ clock accuracy is the clock offset

in each node. Clock accuracy depends on the network size,

shape of network topology, and synchronizationmethod used.

For example, the clock accuracy can realize an order of one

microsecond with PTP [11]. Second, the execution accuracy,

denoted byte 1s, is the measurement of how the device can

accurately perform a scheduled task depending on the device

specs and the implementation to execute the scheduled task.

97302 VOLUME 7, 2019



T. Shimizu et al.: WhiteRabbit: Scalable SDN Data-Plane Verification Method Through Time Scheduling

FIGURE 6. False-positive experimental results.

4) MEASUREMENT OF PERFORMANCE ATTRIBUTES

We measured the following performance attributes: δm, 1m

and δs. Figure 5a depicts the time required to send two consec-

utive messages from the controller (i.e., δm)m denoted by the

blue line, and the time required to send these messages to all

switches (i.e., 15) from the controller (i.e., 1m), denoted by

the orange line. In this measurement, we calculated the time

required to continuously send messages from the controller

by sending 1K STATS_REQUEST messages from the verifi-

cation program to each switch. Figure 5b shows the results of

the experiments measuring the accuracy of scheduling (i.e.,

δs) in this environment. Here, we obtained the difference

between the actual and scheduled execution times by sending

1K Scheduled Bundle from the verification program every

three seconds to each switch.

We observed two performance attributes, namely, δm and

δs, which are less than one millisecond in 90 percentile.

Unlike δm in our environment, δs is slightly larger than δm.

However, when the controller needs to send messages to all

switches, we must consider 1m. We observed 1m is larger

than δs whenwe are required to sendmessages to 15 switches.

Considering that the scheduling error (δs) is independent of

each switch, δs is not affected by the topology size and work-

load of the controller when compared with 1m. In addition,

the authors reported that the scheduling errors in all machines

on their testbed were nearly one millisecond. This result is

similar to the environment used in Time4 [8].

Our environment uses the software switch wherein the

CPU handles the data plane traffic and communication

between the controller and switch. Hence, δs is affected by the

traffic through the switch. Further, WhiteRabbit can mitigate

scheduling errors using a moving average of transfer statis-

tics. Therefore, this environment is sufficient for evaluating

WhiteRabbit.

B. ACCURACY OF VERIFICATION

We evaluated the verifications with WhiteRabbit and

SPHINX and then compared the verification accuracy by

measuring the false alarm generated under a benign con-

dition and the lack of real alarms. Because the controller

application of our experiment uses Floodlight default simple

settings, the workload of the controller application is light and

stable. Hence, we simulated the variation of the controller

performance by delay (d), which was inserted in the verifi-

cation program before sending the STATS_REQUEST mes-

sages. Consequently, d impacts 1m. Tootoonchian et al. [18]

reported that, as the increasing number of connected switches

cause I/O handling overhead and resource contention on the

task, the latency of the controller response also increased.

Given that the verification algorithm in WhiteRabbit is

based on SPHINX,WhiteRabbit can achieve the true positive

rate and true negative rate comparable to SPHINX. Hence,

we compared false alarms with the absence of actual alarms

in our experiments.

1) FALSE ALARM

We analyzed the probability of false alarm caused by the

effect of controller performance degradation using the 3-hop

path TCP flows with iperf. In this experiment, raising an

alarm for verification is not preferable because all switches

are legitimate.

Figure 6a and Figure 6b illustrate the false-positive rate

of WhiteRabbit and SPHINX. Noticeably, SPHINX has high

false alarm probability evidently when the controller per-

formance degrades (i.e., d increases) as it depends on the

controller performance. Meanwhile, we observed that, even

if d increases, the false-positive rate of WhiteRabbit is stable,

which is similar to SPHINX at d = 0. Because WhiteRabbit

only depends on δs, its false-positive rate does not increase

even if d increases, thus affecting1m. Given that δs is slightly

lower than δm, we observed that WhiteRabbit’s false-positive

rate is slightly lower than SPHINX at d = 0.

2) LACK OF REAL ALARM

We evaluated the probability of the lack of an actual alarm

given varying controller performance under the same condi-

tions and then compared eachmethod.We performed a packet

drop on a 6-hop path link using the given link loss rates,

VOLUME 7, 2019 97303



T. Shimizu et al.: WhiteRabbit: Scalable SDN Data-Plane Verification Method Through Time Scheduling

FIGURE 7. False-negative experimental results.

FIGURE 8. Comparison of the ping latencies between WhiteRabbit and
SPHINX.

that is, 2%, 4%, and 6%, to emulate malicious behaviors by

the compromised switch or link. In this experiment, although

alarms generated in all verifications are preferred, false neg-

atives occur when τ increases.

Figure 7a through Figure 7c illustrate the false-negative

rates of each method among the three types of controller

performance value d (d = 0, d = 5, d = 10). We observed

that the false-negative rate of WhiteRabbit is slightly higher

than that of SPHINX when d increases. However, despite

the increase of d , the false-negative rate of WhiteRabbit is

nearly constant. The impact of the controller performance in

WhiteRabbit is smaller than that of SPHINX. Hence, Whit-

eRabbit can set smaller τ than SPHINX (see Section IV-B.1)

and can achieve equal performance of the false-negative rate

to SPHINX by tuning τ .

C. OVERHEADS IN DATA PLANE

We evaluated the performance impact of the packet process-

ing that is affected by statistics gathering from the switches

when using WhiteRabbit and SPHINX. Then, we measured

the ping latencies in a 6-hop path while gathering statistics

every three seconds. FIGURE 8 shows the results of this

experiment. As observed in this figure, the ping latencies of

WhiteRabbit are similar to those of SPHINX. This result indi-

cates that the ping latencies are not affected even if statistics

gathering is performed simultaneously.

In our previous work, the ping latency of WhiteRabbit

is partially higher than that of SPHINX for two reasons.

First, the implementation of Scheduled Bundle using

ofsoftswitch13_EXT-340 affects packet processing. Second,

given that the experimental environment of our previous work

was constructed in a single machine with Mininet, resource

contention had occurred in the experimental environment. By

contrast, because the experimental environment used in this

study is built independently usingmultiplemachines, the ping

latencies in this environment are similar to those of SPHINX.

V. DISCUSSION

A. LIMITATIONS

WhiteRabbit has the following limitations that are similar to

SPHINX.

• WhiteRabbit cannot identify whether an ingress or

egress switch is compromised or not because the

verification accuracy of WhiteRabbit depends on

STATS_REPLY messages from untrusted switches.

Thus, if the edge switch is compromised, then Whit-

eRabbit cannot detect the attack even if the switch

that passes through afterward is legitimate. Therefore,

WhiteRabbit cannot be applied to end-to-end verifica-

tion presently. However, detecting attacks from compro-

mised switches is possible bymanaging all hosts, as well

as the switches, using the verifier, enabling the gathering

of statistics from the hosts at a scheduled time.

• WhiteRabbit may omit some transient attacks because

the verification span depends on the verification pro-

gram. To address this limitation, shortening the statistics

gathering interval or changing it to a highly accurate net-

work monitoring method, such as WedgeTail [5], is nec-

essary.

• WhiteRabbit cannot verify traffic integrity. However,

cryptographic mechanisms can support it to overcome

this issue.

B. SCHEDULING ACCURACY

The timed approach, such as WhiteRabbit, remarkably

depends on the scheduling accuracy determined from

the performance of each switch. Typically, time syn-

chronization can achieve 1-microsecond order precision

using PTP. Recently, Kannan et al. [32] showed that

97304 VOLUME 7, 2019



T. Shimizu et al.: WhiteRabbit: Scalable SDN Data-Plane Verification Method Through Time Scheduling

Data-Plane Time-synchronization Protocol (DPTP) can

achieve 100 nanosecond order time synchronization using

a programmable switch ASIC. However, even if the time

synchronization accuracy becomes precise, the execution

accuracy (described in Section IV-A.3) depends on switch

implementation.

In a software-based environment, such as our experimen-

tal environment, the scheduling error is 1-millisecond order.

However, TimeFlip [33] has shown that the scheduling error

in a flow update task can achieve a 1-microsecond order

in a hardware-based switch by identifying ways on how

to use TCAM. Thus, WhiteRabbit can also be applied to

a hardware-based environment using TCAM effectively for

scheduled statistics gathering.

C. FUTURE WORK

We intend to reduce the statistics gathering overhead of

the Scheduled Bundle by periodic scheduling because our

present prototype sends Scheduled Bundle during statistics

gathering.

Additionally, the compatibility of WhiteRabbit with dis-

tributed controller environment, such as ONOS [34], required

further investigation. Although these sites are managed sepa-

rately, synchronizing the time of all switches and controllers

with sufficiently high precision is possible by utilizing a time

synchronization method, such as PTP. Thus, we believe that

our improved method is suitable for a distributed controller

environment. However, because the distributed controller

environment may have link delays caused by the distances

among the sites, we intend to improve WhiteRabbit by con-

sidering the specific delay of a link.

VI. CONCLUSION

SDN is attracting remarkable attention as a future networking

paradigm. However, even if the SDN security, such as control

plane, is thoroughly investigated, the attacks on the data plane

by compromised switches can be a relatively critical threat.

Nevertheless, existing solutions have several issues rele-

vant to scalability such as increasing false alarm probability

depending on controller performance. In this study, we pre-

sented the countermeasure against compromised switches

by utilizing the gathered statistics with time scheduling. By

gathering statistics simultaneously from the switches through

scheduling, WhiteRabbit can detect attacks by compromised

switches without depending on the controller performance.

Moreover, we demonstrated that the timed approach can mit-

igate the impact of the time required in sending messages

when executing statistics gathering through measurement.

Given that WhiteRabbit can mitigate the impact of time

required in sending the messages to all switches, we con-

firmed that the false-positive rate of WhiteRabbit is lower

than that of SPHINX when the performance of the controller

degrades.

ACKNOWLEDGMENT

This paper was presented at the Proceedings of the 15th

APAN Research Workshop 2018 [1].

REFERENCES

[1] T. Shimizu, N. Kitagawa, K. Ohshima, and N. Yamai, ‘‘Detecting suspi-

cious behavior of SDN switches by statistics gathering with time,’’ in Proc.

15th APAN Res. Workshop (APAN-RW), Aug. 2018, pp. 32–39.

[2] (2017). Cisco IOS and IOS XE Software Cluster Management Protocol

Remote Code Execution Vulnerability. Accessed: Jun. 24, 2019.

[Online]. Available: https://tools.cisco.com/security/center/content/

CiscoSecurityAdvisory/cisco-sa-20170317-cmp/

[3] D. Kreutz, F. M. Ramos, and P. Verissimo, ‘‘Towards secure and depend-

able software-defined networks,’’ in Proc. 2nd ACM SIGCOMMWorkshop

Hot Topics Softw. Defined Netw. (HotSDN), 2013, pp. 55–60.

[4] M. Dhawan, R. Poddar, K. Mahajan, and V. Mann, ‘‘SPHINX: Detecting

security attacks in software-defined networks,’’ in Proc. 22nd Annu. Netw.

Distrib. Syst. Secur. Symp. (NDSS). Reston, VA, USA: Internet Society,

2015, pp. 8–11.

[5] A. Shaghaghi, M. A. Kaafar, and S. Jha, ‘‘Wedgetail: An intrusion preven-

tion system for the data plane of software defined networks,’’ in Proc. ACM

Asia Conf. Comput. Commun. Secur. (ASIA CCS), 2017, pp. 849–861.

[6] A. Feldmann, P. Heyder, M. Kreutzer, S. Schmid, J.-P. Seifert, H. Shulman,

K. Thimmaraju,M.Waidner, and J. Sieberg, ‘‘NetCo: Reliable routingwith

unreliable routers,’’ in Proc. IEEE/IFIP 46th Annu. Int. Conf. Dependable

Syst. Netw. Workshop (DSN-W), Jun./Jul. 2016, pp. 128–135.

[7] CVE-2016-2074. Accessed: Jun. 24, 2019. [Online]. Available:

https://nvd.nist.gov/vuln/detail/CVE-2016-2074/

[8] T. Mizrahi and Y. Moses, ‘‘Time4: Time for SDN,’’ IEEE Trans. Netw.

Service Manage., vol. 13, no. 3, pp. 433–446, Sep. 2016.

[9] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,

J. Rexford, S. Shenker, and J. Turner, ‘‘OpenFlow: Enabling innovation

in campus networks,’’ ACM SIGCOMM Comput. Commun. Rev., vol. 38,

no. 2, p. 69, 2008.

[10] Open Networking Foundation. (2014). OpenFlow Switch Specification

Version 1.5.0. Accessed: Jun. 24, 2019. [Online]. Available: https://www.

opennetworking.org/wp-content/uploads/2014/10/openflow-switch-

v1.5.1.pdf

[11] IEEE Standard for a Precision Clock Synchronization Protocol for Net-

worked Measurement and Control Systems, IEEE Standard 1588-2008,

2008, pp. 1–300.

[12] A. T. Mizrak, Y.-C. Cheng, K. Marzullo, and S. Savage, ‘‘Detecting and

isolating malicious routers,’’ IEEE Trans. Dependable Secure Comput.,

vol. 3, no. 3, pp. 230–244, Jul. 2006.

[13] A. T. Mizrak, S. Savage, and K. Marzullo, ‘‘Detecting malicious packet

losses,’’ IEEE Trans. Parallel Distrib. Syst., vol. 20, no. 2, pp. 191–206,

Feb. 2009.

[14] T. H.-J. Kim, C. Basescu, L. Jia, S. B. Lee, Y.-C. Hu, and A. Perrig,

‘‘Lightweight source authentication and path validation,’’ in Proc. ACM

Conf. SIGCOMM (SIGCOMM), 2014, pp. 271–282.

[15] S. Lee, T. Wong, and H. S. Kim, ‘‘Secure split assignment trajectory sam-

pling: A malicious router detection system,’’ in Proc. Int. Conf. Depend-

able Syst. Netw., Jun. 2006, pp. 333–342.

[16] A. Khurshid,W. Zhou, M. Caesar, and P. B. Godfrey, ‘‘VeriFlow: Verifying

network-wide invariants in real time,’’ in Proc. 10th USENIX Symp. Netw.

Syst. Design Implement (NSDI), Sep. 2013, vol. 42, no. 4, p. 467.

[17] P. Kazemian, M. Chang, H. Zeng, G. Varghese, N. McKeown, and

S. Whyte, ‘‘Real time network policy checking using header space anal-

ysis,’’ in Proc. 10th USENIX Conf. Netw. Syst. Design Implement (NSDI),

2013, pp. 99–112.

[18] A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado, and

R. Sherwood, ‘‘On controller performance in software-defined

networks,’’ in Proc. 2nd USENIX Workshop Hot Topics Manage.

Internet, Cloud, Enterprise Netw. Services (Hot-ICE), 2012. [Online].

Available: https:// www. usenix.org/conference/hot-ice12/workshop-

program/presentation/tootoonchian

[19] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and

S. Banerjee, ‘‘DevoFlow: Scaling flow management for high-performance

networks,’’ in Proc. ACM SIGCOMM Conf., 2011, pp. 254–265.

[20] C. Fung and C. Fung, ‘‘FlowMon: Detecting malicious switches in

software-defined networks,’’ in Proc. Workshop Automated Decis. Making

Act. Cyber Defense (SafeConfig), 2015, pp. 39–45.

[21] S. Khan, A. Gani, A. A. Wahab, M. Guizani, and M. K. Khan, ‘‘Topology

discovery in software defined networks: Threats, taxonomy, and state-

of-the-art,’’ IEEE Commun. Surveys Tuts., vol. 19, no. 1, pp. 303–324,

1st Quart., 2017.

VOLUME 7, 2019 97305



T. Shimizu et al.: WhiteRabbit: Scalable SDN Data-Plane Verification Method Through Time Scheduling

[22] T. Mizrahi, ‘‘Time synchronization security using IPsec and MACsec,’’

in Proc. IEEE Int. Symp. Precis. Clock Synchronization Meas., Control

Commun. (ISPCS), Sep. 2011, pp. 38–43.

[23] T. Mizrahi and Y. Moses, ‘‘ReversePTP: A clock synchronization scheme

for software-defined networks,’’ Int. J. Netw. Manage., vol. 26, no. 5,

pp. 355–372, Sep. 2016.

[24] C. Rotsos, N. Sarrar, S. Uhlig, R. Sherwood, and A.W.Moore, ‘‘OFLOPS:

An open framework for OpenFlow switch evaluation,’’ in Passive and

Active Measurement (Lecture Notes in Computer Science), vol. 7192.

Berlin, Germany: Springer, 2012, pp. 85–95.

[25] P. Wood. (2014). Stopcock. Accessed: Jun. 24, 2019. [Online]. Available:

https://github.com/tignetworking/stopcock/

[26] P. Floodlight. (2018). Loxigen. Accessed: Jun. 24, 2019. [Online]. Avail-

able: https://github.com/floodlight/loxigen/

[27] TimedSDN. (2015). Ofsoftswitch13_EXT-340. Accessed: Jun. 24, 2019.

[Online]. Available: https://github.com/TimedSDN/ofsoftswitch13_EXT-

340/

[28] Tal Mizrahi. (2015). ReversePTP Implementation. Accessed: Jun. 24,

2019. [Online]. Available: https://github.com/TimedSDN/ReversePTP

[29] D Project. (2017).DeterLab. Accessed: Jun. 24, 2019. [Online]. Available:

https://www.isi.deterlab.net/index.php3

[30] (2018). Floodlight. Accessed: Jun. 24, 2019. [Online]. Available:

http://www.projectfloodlight.org/floodlight/

[31] A. Tavakoli, M. Casado, T. Koponen, and S. Shenker, ‘‘Applying NOX to

the datacenter,’’ in Proc. 8th ACM Workshop Hot Topics Netw. (HotNets-

VIII), 2009, pp. 1–6.

[32] P. G. Kannan, R. Joshi, and M. C. Chan, ‘‘Precise time-synchronization

in the data-plane using programmable switching ASICs,’’ in Proc. ACM

Symp. SDN Res., no. 2, 2019, pp. 8–20.

[33] T. Mizrahi, O. Rottenstreich, and Y. Moses, ‘‘TimeFlip: Using

timestamp-based TCAM ranges to accurately schedule network updates,’’

IEEE/ACM Trans. Netw., vol. 25, no. 2, pp. 849–863, Apr. 2017.

[34] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide, B. Lantz,

B. O’Connor, P. Radoslavov, W. Snow, and G. Parulkar, ‘‘ONOS: Towards

an open, distributed SDN OS,’’ in Proc. 3rd Workshop Hot Topics Softw.

Defined Netw. (HotSDN). 2014, pp. 1–6.

TAKAHIRO SHIMIZU received the B.E. degree

in computer and information science from the

Tokyo University of Agriculture and Technology,

in 2018, where he has been a Graduate Stu-

dent with the Graduate School of Engineering,

since April 2018. His research interests include

software-defined network (SDN) security and

monitoring.

NAOYA KITAGAWA received the B.Sc. andM.Sc.

degrees in information science from Chukyo Uni-

versity, Toyota, Japan, in 2009 and 2011, respec-

tively, and the Ph.D. degree in information science

from Nagoya University, Nagoya, Japan, in 2014.

In April 2014, he joined the Information Tech-

nology Center, Nagoya University, as a Postdoc-

toral Fellow. Since October 2014, he has been an

Assistant Professor with the Institute of Engineer-

ing, Tokyo University of Agriculture and Tech-

nology. His research interests include the Internet, network security, and

distributed systems. He is a member of IPSJ.

KOHTA OHSHIMA received the B.E. and M.E.

degrees in electronics and information engineering

and the Ph.D. degree from the Tokyo University

of Agriculture and Technology, in 2001, 2003, and

2006, respectively.

In 2006, he joined the Faculty of Engineering,

Tokyo University of Agriculture and Technology,

as a Research Associate. From 2013 to 2015,

he was a Senior Lecturer with the Saitama Uni-

versity of Technology, where he was an Associate

Professor, in 2016. Since 2016, he has been an Associate Professor with

the Faculty of Marine Technology, Tokyo University of Marine Science

and Technology. His research interests include mobile computing, marine

communication, network science, and network architecture. He is a member

of IEICE, IPSJ, and JIN.

NARIYOSHI YAMAI received the B.E. and M.E.

degrees in electronic engineering and the Ph.D.

degree in information and computer science from

Osaka University, Osaka, Japan, in 1984, 1986,

and 1993, respectively.

In April 1988, he joined the Department of

Information Engineering, Nara National College

of Technology, as a Research Associate, where he

was an Assistant Professor, from April 1990 to

March 1994. In April 1994, he joined the Edu-

cation Center for Information Processing, Osaka University, as a Research

Associate. In April 1995, he joined the Computation Center, Osaka Uni-

versity, as an Assistant Professor. From November 1997 to March 2006,

he joined the Computer Center, Okayama University, as an Associate Profes-

sor. From April 2006 to March 2014, he was a Professor with the Informa-

tion Technology Center (at present, the Center for Information Technology

and Management), Okayama University. Since April 2014, he has been a

Professor with the Institute of Engineering, Tokyo University of Agriculture

and Technology. His research interests include distributed systems, network

architecture, and Internet. He is a member of IEICE and IPSJ.

97306 VOLUME 7, 2019


	INTRODUCTION
	BACKGROUND

	RELATED WORK
	SOFTWARE DEFINED NETWORK
	SDN AND TIME
	TRADITIONAL NETWORK DATA PLANE AND SECURITY
	SDN SECURITY AND NETWORK VERIFICATION

	SYSTEM DESIGN
	OVERVIEW
	THREAT MODEL
	SEQUENCE OF VALIDATION
	CURRENT PATH CULCULATION
	STATISTICS GATHERING WITH SCHEDULED BUNDLE
	ALGORITHM


	EVALUATION
	EXPERIMENTAL SETUP
	IMPLEMENTATION
	EXPERIMENTAL ENVIRONMENT
	PERFORMANCE ATTRIBUTES: M, M AND S
	MEASUREMENT OF PERFORMANCE ATTRIBUTES

	ACCURACY OF VERIFICATION
	FALSE ALARM
	LACK OF REAL ALARM

	OVERHEADS IN DATA PLANE

	DISCUSSION
	LIMITATIONS
	SCHEDULING ACCURACY
	FUTURE WORK

	CONCLUSION
	REFERENCES
	Biographies
	TAKAHIRO SHIMIZU
	NAOYA KITAGAWA
	KOHTA OHSHIMA
	NARIYOSHI YAMAI


