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de Jussieu-Paris Rive Gauche, Case 247, 4 place Jussieu F-75005, Paris, France
3Sorbonne Universités, UPMC Univ Paris 06, UMR 7586, IMJ-PRG,

F-75005 Paris, France
4CNRS, UMR7586, IMJ-PRG, F-75013 Paris, France

5Department of Mathematics, Columbia University, New York, NY 10027, USA

(Received 28 August 2014; revised 27 December 2014; accepted 28 December 2014;

first published online 31 March 2015)

Abstract Let K be an imaginary quadratic field. Let 5 and 5′ be irreducible generic cohomological
automorphic representation of GL(n)/K and GL(n− 1)/K, respectively. Each of them can be given two

natural rational structures over number fields. One is defined by the rational structure on topological

cohomology, and the other is given in terms of the Whittaker model. The ratio between these rational
structures is called a Whittaker period. An argument presented by Mahnkopf and Raghuram shows that,

at least if 5 is cuspidal and the weights of 5 and 5′ are in a standard relative position, the critical

values of the Rankin–Selberg product L(s,5×5′) are essentially algebraic multiples of the product of
the Whittaker periods of 5 and 5′. We show that, under certain regularity and polarization hypotheses,

the Whittaker period of a cuspidal 5 can be given a motivic interpretation, and can also be related to
a critical value of the adjoint L-function of related automorphic representations of unitary groups. The
resulting expressions for critical values of the Rankin–Selberg and adjoint L-functions are compatible
with Deligne’s conjecture.

Keywords: cuspidal automorphic representation; Deligne’s conjecture; special values; L-function; periods;

rationality

2010 Mathematics subject classification: Primary 11F67

Secondary 11F41; 11F70; 11F75; 22E55

H.G. is supported in part by the Austrian Science Fund (FWF) Erwin Schrödinger grant, J 3076-N13,
and the FWF-project, project number P 25974-N25. The research leading to these results has received
funding from the European Research Council under the European Community’s Seventh Framework
Programme (FP7/2007-2013)/ERC Grant agreement no. 290766 (AAMOT).

https://doi.org/10.1017/S1474748014000462 Published online by Cambridge University Press

mailto:harald.grobner@univie.ac.at
https://doi.org/10.1017/S1474748014000462


712 H. Grobner and M. Harris

Contents

1 Introduction 713

2 Unitary groups and base change 718
2.1 Some standing assumptions and notation . . . . . . . . . . . . . . . . . . 718
2.2 Base change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 720
2.3 Descent to unitary groups and base change . . . . . . . . . . . . . . . . . 720
2.4 The cuspidal automorphic representation 5 . . . . . . . . . . . . . . . . . 721
2.5 The abelian automorphic representation 5′ . . . . . . . . . . . . . . . . . 721
2.6 An action of Aut(C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 722
2.7 Rational structures on cohomological Harish–Chandra modules . . . . . . 724

3 Whittaker periods for the general linear group 725
3.1 Automorphic cohomology of locally symmetric spaces . . . . . . . . . . . 725
3.2 A diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 727
3.3 The map 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 727
3.4 The map 9 = 9cusp

5 ×9Eis
5′ . . . . . . . . . . . . . . . . . . . . . . . . . . 729

3.5 The map ι×φ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 731
3.6 Critical points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 731
3.7 The map T ∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 732
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1. Introduction

L-functions can be attached both to automorphic representations and to arithmetic

objects such as Galois representations or motives, and one implication of the Langlands

program is that L-functions of the second kind are examples of L-functions of the first

kind. Very few results of arithmetic interest can be proved about the second kind of

L-functions until they have been identified with automorphic L-functions. For example,

there is an extraordinarily deep web of conjectures relating the values at integer points

of arithmetic (motivic) L-functions to cohomological invariants of the corresponding

geometric (motivic) objects. In practically all the instances1 where these conjectures

have been proved, automorphic methods have proved indispensable.

At the same time, there is a growing number of results on special values of automorphic

L-functions that make no direct reference to arithmetic. Instead, the special values are

written as algebraic multiples of complex invariants defined by means of representation

theory. Examples relevant to the present paper include [16, 34, 38, 39], where the complex

invariants are defined for representations of cohomological type by reference to the

uniqueness of Whittaker or Shalika models. This paper continues this series, proving

a version of the main results of [34, 38, 39] for the Rankin–Selberg L-function of a pair

(5,5′) of a cuspidal automorphic representation 5 of GLn of cohomological type, and

a cuspidal or abelian automorphic representation 5′ of GLn−1, also of cohomological

type, where the general linear groups are over an imaginary quadratic field K. Here, the

notion ‘abelian automorphic’ refers to a representation which is a tempered Eisenstein

representation induced from a Borel subgroup of GLn−1. In view of Raghuram’s recent

preprint [38], which we received after writing a first version of this paper, the inclusion

of such automorphic representations 5′ is the new feature of this result.

Our cohomological result is stated below as Theorem 1.3. The main purpose of this

paper is to bring this purely automorphic result closer to the motivic expression for

the critical values of the Rankin–Selberg L-function L(s,5×5′) embodied in Deligne’s

conjecture [8]. In what follows, we let c denote complex conjugation of K. Assume for

the moment that both 5 and 5′ are cuspidal. In order to identify L(s,5×5′) with a

motivic L-function, we make the following hypothesis (see Hypothesis 4.19 for details).

Hypotheses 1.1. Both 5 and 5′ can be obtained by base change from holomorphic

discrete series representations of unitary groups of arbitrary signature.

Up to twisting by an integral or half-integral power of the global character g 7→
‖det(g)‖, we may assume that 5 and 5′ have unitary central character (so the central

critical value of L(s,5×5′) is at s = 1
2 ). Then Hypothesis 1.1 implies the polarization

condition
5∨ ∼→ 5c and (5′)∨ ∼→ (5′)c.

Conversely, it has been known for some time ([31]; see also [30]) that the polarization

condition implies that, for any Hermitian space W over K of dimension n, 5 descends

1Whether or not the analytic formulas for special values of the Riemann zeta function and Dirichlet
L-series should be considered exceptions is beyond the scope of this introduction.
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to a stable L-packet {π}W of cuspidal automorphic representations of G = U (W ), of

discrete series type at infinity, provided that it descends locally at all finite places; a

similar condition holds for 5′. The signature in Hypothesis 1.1 is the invariant of W
at a fixed complex embedding of K. In particular, Hypothesis 1.1 is automatic for 5

(respectively, 5′) if n is odd (respectively, even).

Under Hypothesis 1.1, the L-packet {π∨}W contains (at least) one member for which

π∨∞ belongs to the holomorphic discrete series. Let the signature of W be ( j, n− j), and

choose an arithmetically normalized vector φ j in the chosen π∨. Define P( j)(5) to be

the square norm of φ j for the (arithmetically normalized) Petersson inner product. The

P( j)(5) are the motivic invariants in terms of which we express the critical values of

L(s,5×5′).
More precisely, the arithmetic normalization is defined with reference to the coherent

cohomology of the Shimura variety attached to G, or rather to the similitude group

GU(W ). It thus depends on a choice of extension of φ j to a (holomorphic) modular form

on the similitude group. We ignore this irritating but crucial detail in the introduction;

it is addressed at length in Remark 4.33.

Here is our main theorem.

Theorem 1.2. Let 5 and 5′ be cuspidal automorphic representations of GLn(AK) and

GLn−1(AK) which are cohomological with respect to irreducible algebraic representations

Eµ and Eλ, respectively, where µ (respectively, λ) is the corresponding highest weight

(i.e., an n-tuple (respectively, n− 1-tuple) of integers), assumed to satisfy the equivalent

conditions of Lemma 2.1 (i.e., Hypothesis 2.3 for m = 0). We assume that 5 and 5′
satisfy Hypothesis 1.1. Let Q(5 f ) and Q(5′f ) be the fields of definition of the finite parts

5 f and 5′f of 5 and 5′, respectively. Furthermore, we assume that the parameters of

5 and 5′ are sufficiently regular:

µi −µi+1 > 2 for all i and λ j − λ j+1 > 2 for all j.

Then there are finite extensions E(5)/Q(5 f ) and E(5′)/Q(5′f ) such that, for every

critical point s0 = 1
2 +m of L(s,5×5′) with m > 0, there is a non-zero constant

u(m,5∞,5′∞), depending only on m, µ, λ (or equivalently m,5∞,5′∞), such that

L
(

1
2
+m,5 f ×5′f

)
∼KE(5)E(5′) u(m,5∞,5′∞)

n−1∏
j=1

P( j)(5)

n−2∏
k=1

P(k)(5′),

where ∼KE(5)E(5′) means up to multiplication by an element in the composition of

number fields KE(5)E(5′). Equivalently, for every critical point s0 = n− 1+m of

L(s, R(M(5)⊗M(5′))) with m > 0,

L(n− 1+m, R(M(5)⊗M(5′)))

∼KE(5)E(5′) u(m,5∞,5′∞)
n−1∏
j=1

P( j)(5)

n−2∏
k=1

P(k)(5′).
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The fields Q(5 f ) and Q(5′f ) are number fields by [5, Theorem 3.13]. The role of the

finite extensions E(5) and E(5′), which can be taken to be cyclotomic fields, is explained

below.

The proof involves three main ingredients. The first is the extension mentioned above

of the results of Mahnkopf and Raghuram. In what follows, 5 is cuspidal but 5′ is either

cuspidal or abelian automorphic. Since 5 and 5′ are cohomological, their finite parts

5 f and 5′f have natural rational structures over the number fields Q(5 f ) and Q(5′f ),
respectively, defined by the rational structure on cohomology with coefficients in the local

systems attached to Eµ and Eλ. But since they are tempered, they are both globally

generic, and therefore 5 f and 5′f have rational structures defined in terms of their

Whittaker models. The two rational structures are necessarily proportional, because the

representations are irreducible. The factors of proportionality, called Whittaker periods,

belong to C×. Details will be provided in subsequent sections. In what follows, p(5) and

p(5′) are the Whittaker periods. Here is a statement.

Theorem 1.3. Let 5 = BC(π)‖ · ‖m be a cuspidal automorphic representation of

GLn(AK), m ∈ Z, and let 5′ = BC(π ′) be a cuspidal or abelian automorphic

representation of GLn−1(AK) obtained by base change from unitary groups as in §§ 2.4

and 2.5. In particular, 5 is cohomological with respect to Eµ, and 5′ is cohomological with

respect to Eλ. We assume that the parameters µ and λ satisfy Hypothesis 2.3. Then for

every critical point s0 = 1
2 +m of L(s,5×5′) with m > 0, there is a non-zero constant

p(m,5∞,5′∞) ∈ C×, depending only on m, µ, λ (or equivalently m,5∞,5′∞), such that

the following hold.

(1) For all critical values 1
2 +m ∈ Crit(5×5′) with m > 0 and every σ ∈ Aut(C),

σ

(
L( 1

2 +m,5 f ×5′f )
p(5)p(5′)p(m,5∞,5′∞)G(ω5′f,0)

)
= L( 1

2 +m, σ5 f × σ5′f )
p(σ5)p(σ5′)p(m, σ5∞, σ5′∞)G(ωσ5′f,0)

.

(2)

L
(

1
2
+m,5 f ×5′f

)
∼Q(5 f )Q(5′f ) p(5)p(5′)p(m,5∞,5′∞)G(ω5′f,0),

where ∼Q(5 f )Q(5′f ) means up to multiplication by an element in the composition of

number fields Q(5 f )Q(5′f ).

The proof of this result follows the methods of [34, 38, 39]: the branching formula

for the restriction of the representation Eµ to GLn−1 shows that the Rankin–Selberg

integral for GLn ×GLn−1 can be interpreted as a cohomological cup product precisely

for the critical values s0 of the theorem. On the one hand, the cup product is rational on

rational cohomology classes; on the other hand, the Rankin–Selberg integral is, up to an

unspecified archimedean factor, a rational multiple of the Euler product on automorphic

forms that are rational with respect to the Whittaker rational structure. Comparing these

two rationality properties, we obtain the result; the constant p(m,5∞,5′∞) accounts for

the archimedean Rankin–Selberg integral.

The proof of Theorem 1.3 nevertheless involves two novelties. The first is specific to

the method of this paper, and consists in the observation that the method applied
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in the earlier work remains valid when 5′ is abelian automorphic; the reason for this

choice will be made apparent below. The second novelty is of more general import. The

main contribution to the archimedean invariants p(m,5∞,5′∞) is a Rankin–Selberg zeta

integral involving explicit cohomological vectors. For nearly 40 years, results of this type,

for GLn with n > 2, were presented subject to a local non-vanishing hypothesis, which in

our present situation comes down to the claim that the archimedean zeta integral does

not equal zero for the choice of vectors forced upon us by the method. In 2011, however,

Binyong Sun discovered an abstract representation-theoretic method that allowed him

to prove that such integrals never vanish. In his companion paper [44] he applies this

method to cohomological Rankin–Selberg zeta integrals for GLn(R)×GLn−1(R) and for

GLn(C)×GLn−1(C). Without Sun’s breakthrough, the results of this paper would still

be conditioned on the non-vanishing hypothesis.

When 5′ is the abelian automorphic representation attached to an (n− 1)-tuple of

Hecke characters χi , the L-function L(s,5×5′) factors as a product of n− 1 L-functions

of GLn , twisted by the χi . When 5′ is cohomological, these L-functions are of the

type whose special values were considered in [20] (completed by [21]). The second main

ingredient of the proof is the expression of these special values in terms of the P( j)(5)

introduced in 1.2, and in terms of period invariants attached to the χi . On the other

hand, an abelian automorphic 5′ is an Eisenstein representation. Shahidi’s calculation

of Whittaker coefficients for Eisenstein series is the third main ingredient of the proof.

It allows us to identify the Whittaker period p(5′) with a motivic period attached to

the collection of χi . A similar identification was already exploited in [34], for Eisenstein

classes attached to other parabolic subgroups. In our case, the motivic expression for

p(5′) exactly cancels the terms in the expression calculated in [20], yielding an expression

(Theorem 6.7) for p(5) solely in terms of Petersson norms of holomorphic forms on

Shimura varieties, multiplied by purely archimedean invariants that have not yet been

calculated explicitly.

Theorem 1.4. Let 5 be a cuspidal automorphic representation of GLn(AK), which

can be obtained by base change from unitary groups of all signatures (i.e., more

precisely, satisfies Hypothesis 4.19). Assume that 5 is cohomological with respect to

the irreducible, finite-dimensional, algebraic representation Eµ of highest weight µG =
(µ1, . . . , µn;−µn, . . . ,−µ1), and suppose that µi −µi+1 > 2 for all i , so that there is a

highest weight λG = (λ; λv) for G ′∞ and an integer m > 0 such that s0 = 1
2 +m is a critical

value of L(s,5⊗5′) for any cuspidal automorphic representation 5′ of GLn−1(AK),
which is cohomological with respect to Eλ. Then there is a non-zero constant Z(5∞),
which depends only on the local representation 5∞ and such that

p(5) ∼KE(5) Z(5∞)
n−1∏
j=1

P( j)(5).

The constant Z(5∞), like the expression u(m,5∞,5′∞) in Theorem 1.3, is well defined

up to a non-zero scalar in K. It should be mentioned that the latter theorem (or

equivalently Theorem 6.7) is conditional on a global non-vanishing hypothesis. Verifying

this hypothesis for the central critical value appears to be extremely difficult in general,
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but fortunately can always be satisfied provided that the infinitesimal character of 5 is

sufficiently regular.

Putting together Theorems 1.3 and 1.4 with the results of [20], we easily obtain the

main theorem, with the constant u(m,5∞,5′∞) = p(m,5∞,5′∞) · Z(5∞) · Z(5′∞). The

individual terms in the product depend on normalizations of archimedean Whittaker

models, as do the Whittaker periods p(5) and p(5′) themselves, but the product is

independent of normalizations, up to K×. Following the announcement of these results,

Jie Lin has identified u(m,5∞,5′∞) as the explicit power of 2π i predicted by the

automorphic version of Deligne’s conjecture described in § 4.2; see Theorem 6.11 for

a precise statement.

In the absence of the regularity hypothesis of 1.2, we can prove a rather different kind of

result, using Zhang’s recent proof of a version of Neal Harris’s Ichino–Ikeda conjecture for

unitary groups [19]. Suppose that 5 and 5′ satisfy the hypotheses of [51]; in particular,

5 and 5′ are both supercuspidal at some prime of K split over Q. Then the conclusion

of Theorem 1.3 holds, with p(5) and p(5′) replaced by the values at s = 1 of the adjoint

L-functions of π and π ′ respectively, and with slightly different archimedean factors (See

Corollary 6.25).

Theorem 1.5. Let 5 and 5′ be cuspidal automorphic representations of GLn(AK) and

GLn−1(AK) which are cohomological with respect to Eµ and Eλ, respectively, assumed to

satisfy the equivalent conditions of Lemma 2.1. We assume that 5 = BC(π) and 5′ =
BC(π ′) are obtained by base change from definite unitary groups and that the irreducible

unitary cuspidal automorphic representations π and π ′ satisfy the hypotheses of [51]

(more precisely, Hypothesis 6.12). Then, for every critical point s0 = 1
2 +m of L(s,5×

5′) with m > 0, there are, a non-zero complex constant a(m,5∞,5′∞), depending only

on the archimedean components of 5 and 5′, and an integer a(n) only depending on n,

such that

L
(

1
2
+m,5 f ×5′f

)
∼KQ(π)Q(π ′) a(m,5∞,5′∞)G(εK, f )

a(n)L(1, π f , Ad)L(1, π ′f , Ad),

where ∼KQ(π)Q(π ′) means up to multiplication by an element in the composition of number

fields KQ(π)Q(π ′). Equivalently, for every critical point s0 = n− 1+m of L(s, R(M(5)⊗
M(5′))) with m > 0,

L(n− 1+m, R(M(5)⊗M(5′)))
∼KQ(π)Q(π ′) a(m,5∞,5′∞)G(εK, f )

a(n)L(1, π f , Ad)L(1, π ′f , Ad).

While Deligne’s conjecture provides an expression of the critical values in terms of

Deligne periods, which are defined in terms of motives, and whose status is therefore at

least partially hypothetical, the Petersson norms are invariants of authentically arithmetic

objects. The purpose of § 4 is to provide plausible reasons to identify Deligne’s periods

in our situation with the expressions derived using [20]. It should be noted that [20]

was written with applications to self-dual cohomological automorphic representations in

mind, although many of the results are valid more generally. For this reason, the standing

self-duality hypothesis of [20] is sometimes invoked tacitly, simplifying some statements

but making it difficult for the reader (including the author of [20], at more than 15 years’
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distance) to determine which statements need to be modified to treat the general case.

We have therefore attempted in § 4, and especially in 4.4, to provide complete statements

with precise parameters. The authors hope that definitive statements, over general CM

fields (i.e., totally imaginary quadratic extensions of totally real fields), will be available

in the near future.

For the convenience of the reader, we wrote 1.2 from the automorphic point of view as

well as from the motivic point of view. It is shown in Optimistic Comparison 4.32 that

the period that appears in Theorem 1.2, namely

n−1∏
j=1

P( j)(5)

n−2∏
k=1

P(k)(5′),

is at least formally consistent with Deligne’s conjecture, provided that the Hodge types

of the motives attached to 5 and 5′ satisfy the relations derived from Lemma 2.1.

The article [23] computes Deligne periods for general Rankin–Selberg products and

obtains different products of the same basic invariants P( j)(5) and P(k)(5′) (under the

identifications of Optimistic Comparison 4.32). The final section explains how one might

hope to express the critical values of general Rankin–Selberg products, using normalized

Rankin–Selberg integrals of Eisenstein cohomology classes.

The Whittaker period invariants p(5) are defined by comparing two rational structures

on 5 f , one coming from the global realization of 5 f in the cohomology of the locally

symmetric space Sn attached to GLn , and the other from the Whittaker model. It is well

known, however, that 5 f occurs in a range of cohomological degrees bn 6 i 6 cn , and

each one gives rise to one (or more) period invariants. Our p(5) is attached to the lowest

cohomological degree bn ; the proof of Theorem 1.3 is based on the numerical coincidence

that bn + bn−1− 1 equals the dimension of Sn−1. In [45], Urban showed that, when n = 2,

the Whittaker period attached to 5 in the top cohomological degree c2 is related to a

non-critical special value of one of the two Asai L-functions attached to 5. It can be

deduced from the arguments of [51] and the work of Jacquet, Rallis, and Flicker cited

there that the phenomenon Urban discovered remains valid for general n; this is the

subject of our forthcoming article with Lapid [14].

2. Unitary groups and base change

2.1. Some standing assumptions and notation

2.1.1. Number fields. Let K/Q denote an imaginary quadratic extension of Q. We

write S(K) for the set of places of K, and S for the set of places of Q. The ring of adeles

over K (respectively, over Q) is denoted AK (respectively, A). The ring of integers of K
is denoted O, and we let DK be the different of K/Q, i.e., D−1

K = {x ∈ K : T rK/Q(xO) ⊂
Z}, where T rK/Q is the trace map from K to Q. The normalized absolute value of AK
is denoted ‖ · ‖. We extend the Hecke character εK : Q×\A×→ C×, associated to the

extension K/Q via class field theory, to a Hecke character η : K×\A×K → C×. It is easy

to see that η is unitary and η∞(z) = zt z̄−t for a certain t = t (η) ∈ 1
2 +Z.

For convenience, we will also fix, once and for all, a non-trivial, continuous, additive

character ψ : K\AK → C×. To this end, let ψQ be the additive character of Q\A, as

in Tate’s thesis, namely, ψQ(x) = e2π i3(x) with the 3 =∑p6∞3p, where 3∞(x) = −x
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for x ∈ R and 3p(x p), x p ∈ Qp, is the finite, negative tail of x p’s p-adic expansion. That

is, if x p =
∑

j>v a j p j , then 3p(x p) =
∑−1

j=v a j p j . If we write ψQ = ψR⊗⊗pψQp , then

ψR(x) = e−2π i x , and ψQp is trivial on Zp and non-trivial on p−1Zp.

Now, we define ψ := ψQ ◦ T rK/Q. If ψ = ⊗wψw, then the local characters are

determined analogously. In particular, if DK =
∏
℘ ℘

r℘ , the product running over all

prime ideals ℘ ⊂ O, then the conductor of the local character ψw is ℘
−r℘
w , i.e., ψw is

trivial on ℘
−r℘
w and non-trivial on ℘

−r℘−1
w . We let S(ψ) = {℘ | DK}.

2.1.2. Hermitian spaces and unitary groups. We let V be an n-dimensional

Hermitian space over K, relative to the non-trivial element in Gal(K/Q). Depending

on the parity of n, we define

γ :=
{

1 if n is even

η if n is odd.

Hence, γ∞(z) = zc z̄−c, where c = 0, if n is even and c = t ∈ 1
2 +Z, if n is odd.

We let V ′ ⊂ V be a subspace of codimension 1, on which the restriction of the Hermitian

form is non-degenerate so that V = V ′⊕ V ′⊥. At infinity, we want V (and V ′) to be

definite.

We let H := U (V ) and H ′ := U (V ′) be the corresponding unitary groups over Q. In

particular, H(R) ∼= U (n), the compact unitary group of rank n, and similarly H ′(R) ∼=
U (n− 1).

Furthermore, we let G := GLn/K and G ′ := GLn−1/K. We also define real Lie

groups K := GU(V )(R) (respectively, K ′ := GU(V ′)(R)), which we view inside G(C)
(respectively, G ′(C)) by their natural embedding.

The Lie algebra of a real Lie group is denoted by the same (but gothic) lower-case

letter.

2.1.3. Finite-dimensional representations of real groups. Let Eunt
µ (respec-

tively, Eunt
λ )) be an irreducible, finite-dimensional, algebraic representation of H(R)

(respectively, H ′(R)) on a complex vector space. Having fixed a maximal Q-split torus

in H(C) ∼= GLn(C) (respectively, H ′(C) ∼= GLn−1(C)) and an ordering on the set of

its dominant algebraic characters, we may think of Eunt
µ (respectively, Eunt

λ )) as being

given by its highest weight µ (respectively, λ). We may arrange that µ = (µ1, . . . , µn),

where µ1 > · · · > µn , µi ∈ Z for all 1 6 i 6 n, and similarly λ = (λ1, . . . , λn−1) with

λ1 > · · · > λn−1, λi ∈ Z for all 1 6 i 6 n− 1.

Furthermore, we write Eunt
µ ⊗ Eunt

µv (respectively, Eunt
λ ⊗ Eunt

λv ) for

the irreducible, finite-dimensional, algebraic representation of the real Lie group G(C)
(respectively, G ′(C)) of highest weight (µ,µv) (respectively, (λ, λv)). (Here, the check

v denotes taking the contragredient representation.) It is isomorphic to its complex

conjugate contragredient.

Lemma 2.1 (See, e.g., [11, Theorem 8.1.1]). With the above notation, the following

assertions are equivalent.

(1) µ1 > −λn−1 > µ2 > −λn−2 > · · · > −λ1 > µn.

(2) HomH ′(C)(Eunt
µ ⊗ Eunt

λ ,C) 6= 0.

https://doi.org/10.1017/S1474748014000462 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748014000462


720 H. Grobner and M. Harris

If any of these two conditions is satisfied, then also HomG ′(C)((Eunt
µ ⊗ Eunt

µv )⊗ (Eunt
λ ⊗

Eunt
λv ),C) 6= 0.

2.2. Base change

We let π (respectively, π ′) be an irreducible, unitary cuspidal automorphic representation

of H(A) (respectively, H ′(A)). We shall always assume that π (respectively, π ′) is

cohomological with respect to Eunt
µ (respectively, Eunt

λ )). Since H(R) and H ′(R) are both

compact and connected, this simply means that π∞ ∼= Eunt
µv and π ′∞ ∼= Eunt

λv . We let S(π)
(respectively, S(π ′)) be the set of all finite places of Q, where π (respectively, π ′) ramifies,

together with the infinite place of Q. The following is essentially a theorem of Labesse.

Theorem 2.2 (Base change). There exist irreducible automorphic representations 5 of

G(AK) and 5′ of G ′(AK), which are of the form

5 ∼= 51� · · ·�5s and 5′ ∼= 5′1� · · ·�5′r ,
where 5 j (respectively, 5′j ) is a square-integrable automorphic representation of

GLs j (AK) (respectively, GLr j (AK)), for all j , such that the following hold.

• For all p /∈ S(π), the representation 5p := ⊗w|p5w is the local base change of πp.

• The archimedean component 5∞ of 5 is cohomological with respect to Eunt
µ ⊗ Eunt

µv ,

i.e., H∗(g, K ,5∞⊗ (Eunt
µ ⊗ Eunt

µv )) 6= 0.

And analogously, the following hold.

• For all p /∈ S(π ′), the representation 5′p := ⊗w|p5′w is the local base change of π ′p.

• The archimedean component 5′∞ of 5′ is cohomological with respect to Eunt
λ ⊗ Eunt

λv ,

i.e., H∗(g′, K ′,5′∞⊗ (Eunt
λ ⊗ Eunt

λv )) 6= 0.

If all the isobaric summands 5 j (respectively, 5′j ) are cuspidal, then 5∞
(respectively, 5′∞) is the local base change of π∞ (respectively, π ′∞).

Proof. This is essentially due to Labesse; see [31, Corollary 5.3], as well as [30]. Strictly

speaking, the proof given in the aforementioned reference only works for totally real

number fields F different from Q. However, there is no doubt that the theorem holds in

the above form. See [31, Remarque 5.2] and also [30].

2.3. Descent to unitary groups and base change

When BC(π) is cuspidal, it is expected, and has been proved in a great many cases (see for

example [31]) that π occurs with multiplicity 1 in the discrete spectrum of H . Moreover,

if H [ is any inner form of H , then 5 descends to an L-packet {π [} of discrete (cuspidal)

automorphic representations of H [ whose archimedean components lie in the discrete

series; again it is expected that each member of the packet occurs with multiplicity 1.

Suppose that H [(R) ∼= U (r, s), the unitary group of signature (r, s). Then any π [ on

H [ whose base change is BC(π), and whose archimedean component is a holomorphic

(discrete series) representation, will be denoted πr,s . Thus, π = πn,0 or π0,n . It does

not matter whether H is positive or negative definite; but when rs > 0, the difference
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between πr,s and πs,r needs to be respected, because they define holomorphic automorphic

forms on non-isomorphic Shimura varieties (attached to the similitude groups containing

H [). The normalizations relevant to these Shimura varieties can be found in [20].

To πr,s we associate a period invariant P(s)(BC(π)) ∈ C×, as in [23, § 4.2]. Roughly

speaking, P(s)(BC(π)) is the square of the Petersson norm of an arithmetically normalized

holomorphic automorphic form in πr,s . Precise definitions are in [20]; see also § 4.4 below,

especially Hypothesis 4.19, as well as Remark 6.9.

2.4. The cuspidal automorphic representation 5

Recall the automorphic representation BC(π) from Theorem 2.2. We make the additional

assumption that it is cuspidal, and take an arbitrary, but henceforth fixed, integer m ∈ Z.

We define

5 := BC(π)‖ · ‖m,
suppressing its dependence on m. By assumption,5 is cuspidal automorphic, and hence5

is automatically globally ψ−1-generic. We denote by W (5 f ) the corresponding Whittaker

model of 5 f , again suppressing the dependence on the fixed additive character ψ−1.

By Theorem 2.2, 5∞ is cohomological with respect to the finite-dimensional algebraic

representation

Eµ := (Eunt
µ ·det−m)⊗ (Eunt

µv ·det−m) = Eunt
µ−m⊗ Eunt

µv−m

of G(C) of highest weight µG := (µ−m, µv−m); hence, we have

5∞ ∼= IndG(C)
B(C) [z`1+m

1 z̄−`1+m
1 ⊗ · · ·⊗ z`n+m

n z̄−`n+m
n ],

where B = T N is the standard Borel subgroup of G, and

` j = −µn− j+1+ n+ 1
2
− j.

In analogy to the case of unitary groups, we let S(5) be the set of finite places of K,

where 5 ramifies, together with the infinite place of K.

2.5. The abelian automorphic representation 5′

Now recall the automorphic representations BC(π ′) from Theorem 2.2. We set 5′ :=
BC(π ′), and make the following additional assumption. We suppose that 5′ ∼= 5′1�
· · ·�5′r is abelian (and therefore not square integrable), i.e.,

5′j = BC(χ j ) · γ 1 6 j 6 n− 1,

where BC(χ j ) is the base change of an algebraic Hecke character χ j : U (1)(Q)\U (1)(A)→
C×. More explicitly, BC(χ j )(g) = χ j (g/g) for all g ∈ A×K, where g denotes conjugation

relative to the non-trivial element in Gal(K/Q). At the archimedean place of Q
(respectively, K) we obtain χ j,∞(eiθ ) = eik j θ , eiθ ∈ U (1), (respectively, BC(χ j )∞(z) =
zk j z̄−k j , z ∈ C×) for k j ∈ Z. Therefore,

5′∞ ∼= IndG ′(C)
B′(C)[zk1+c

1 z̄−k1−c
1 ⊗ · · ·⊗ zkn−1+c

n−1 z̄−kn−1−c
n−1 ],
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where B ′ = T ′N ′ is the standard Borel subgroup of G ′ and so, since 5′∞ is cohomological

with respect to the finite-dimensional algebraic representation

Eλ := Eunt
λ ⊗ Eunt

λv

of G ′(C) of highest weight λG ′ := (λ, λv), necessarily,

k j = −λn− j + n
2
− j − c.

Hence, we can further see that k1 > k2 > · · · > kn−1. In particular, this implies, using

Shahidi [42, Proposition 7.1.3, Theorem 3.5.12 and Remark 3.5.14] that 5′ is globally

ψ-generic, i.e., the ψ-Whittaker coefficient of 5′ defines a non-vanishing intertwining

5′ ↪→ IndG ′(A)
N ′(A)[ψ] (unnormalized induction). As for 5, we denote by W (5′f ) the

corresponding Whittaker model of 5′f , and let S(5′) be the set of finite places of K,

where 5′ ramifies, together with the infinite place of K.

We will make the following assumption, valid throughout the paper.

Hypotheses 2.3. The highest weights µ and λ satisfy

µ1±m > −λn−1 > µ2±m > −λn−2 > · · · > −λ1 > µn ±m.

Lemma 2.1 then guarantees that HomG ′(C)(Eµ⊗ Eλ,C) 6= 0, which will be important

from § 3.6 on.

2.6. An action of Aut(C)
For a moment, let k > 1 be any integer, and let E be an irreducible, finite-dimensional,

algebraic representation of GLk/K. As a representation of the real Lie group GLk(C), E
factors as E = Eι⊗ E ῑ, for a fixed embedding ι : K ↪→ C. For a given σ ∈ Aut(C), we

define the GLk(C)-representation

σE := Eσ◦ι⊗ Eσ◦ι.

Hence, σE is identical to E , if σ ◦ ι = ι, and it is the representation σE = E ῑ⊗ Eι,
otherwise, i.e., if σ ◦ ι = ῑ. Furthermore, for a representation of GLk(C), which is induced

from the Borel subgroup Bk = Tk Nk of GLk , 1∞ = IndGLk (C)
Bk (C) [ω1⊗ · · ·⊗ωk], we let

σ1∞ := IndGLk (C)
Bk (C) [σω1⊗ · · ·⊗ σωk].

Note that, if 1∞ is cohomological with respect to E , then σ1∞ is cohomological with

respect to σE .

If 1 f (respectively, 1w, w ∈ S(K) f ) is an irreducible representation of GLk(A f )

(respectively, GLk(Kw)), then we denote by σ1 f (respectively, σ1w) the representation

defined by Waldspurger in [46, I.1]. Analogously, if δ∞ is an irreducible representation of

H(R) or H ′(R), we let σδ∞ := δ∞, since there is only the identity embedding of Q into C.

For representations δ f (respectively, δp, p ∈ S f ) of H(A f ) or H ′(A f ) (respectively, H(Qp)

or H ′(Qp)), we use again the definition of Waldspurger, [46, I.1].
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If δ is any of the above representations, we let S(δ) := {σ ∈ Aut(C)|σ δ ∼= δ}, and define

the rationality field of δ to be

Q(δ) := {z ∈ C|σ(z) = z ∀σ ∈ S(δ)}.
See again Waldspurger, [46, I.1]. We say that a representation δ is defined over a field F
if there is an F-subspace δ0 of the representation space of δ which is invariant under the

group action and such that the natural map δ0⊗F C→ δ is an isomorphism.

Proposition 2.4. For all σ ∈ Aut(C), there is an isomorphism

σ5′ ∼= �n−1
j=1

σBC(χ j )
σ
(
γ ‖ · ‖ n−2 j

2

)
‖ · ‖ 2 j−n

2 .

In other words, σ5′ is again the isobaric automorphic sum of Hecke characters. Similarly,
σ5 is again a cuspidal automorphic representation.

Proof. The first assertion results from a straightforward calculation, using the fact that,

since BC(χ j ) and γ ‖ · ‖ n−2 j
2 are both algebraic Hecke characters, so are σBC(χ j ) and

σ
(
γ ‖ · ‖ n−2 j

2

)
. The last assertion on 5 can be shown as follows. By [5, Theorem 3.13],

there is a cuspidal automorphic representation 4 of G(AK), cohomological with respect to
σEµ and such that 4 f ∼= σ5 f . As a cohomological cuspidal automorphic representation

has an essentially tempered archimedean component, it follows from the classification of

cohomological representations of G(C) that necessarily 4∞ ∼= σ5∞.

Proposition 2.5. The finite part 5 f of 5 = BC(π)‖ · ‖m (respectively, 5′f of 5′ =
BC(π ′)) is defined over its rationality field Q(5 f ) (respectively, Q(5′f )), which is an

extension of Q(Eµ) (respectively, of Q(Eλ)). This structure is unique up to homotheties.

Both rationality fields are number fields. As a representation of GLk(K) ⊂ GLk(C), an

irreducible, finite-dimensional, algebraic representation E of GLk(C) is defined over Q(E).

Proof. The fields Q(5 f ) and Q(5′f ) extend Q(Eµ), respectively Q(Eλ), because of Strong

Multiplicity One for isobaric automorphic representations. Here, we use Proposition 2.4.

Moreover, as a consequence of [5, Theorem 3.13], Q(5 f ) is a number field. (For a detailed

proof, one may also have a look at [15, Theorem 8.1].) By Proposition 2.4,

n−1⋂
j=1

S

(
BC(χ j ) f γ f ‖ · ‖

n−2 j
2

f

)
⊆ S(5′f ),

so Q(5′f ) ⊆
∏n−1

j=1 Q
(

BC(χ j ) f γ f ‖ · ‖
n−2 j

2
f

)
. As all BC(χ j ) and γ ‖ · ‖ n−2 j

2 are algebraic

Hecke characters,
∏n−1

j=1 Q
(

BC(χ j ) f γ f ‖ · ‖
n−2 j

2
f

)
is a number field, whence so is Q(5′f ).

The rest follows now from Clozel [5, Proposition 3.1 and p. 122].

Remark 2.6. The representation 5′f is induced from the Hecke character β := 5′1⊗ · · ·⊗
5′r of the (Levi quotient T ′(A f ) of the) Borel subgroup B ′(A f ), and can thus be identified
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with a space of functions on G ′(A f ):

5′f = {φ : G ′(A f )→ C | φ(b′g′) = β(b′) · δ
1
2
B′(b
′) ·φ(g′), b′ ∈ B ′(A f ), g′ ∈ G ′(A f )}.

Here, δB′ is the modulus character of B ′(A f ). Define γ+(x) = γ (x) · ‖x‖ 1
2 if n is odd, and

γ+(x) = 1 if n is even. For any n, (5′j )
+ = BC(χ j ) · γ+ is an algebraic Hecke character,

defined over the number field Q((5′j )
+). On the other hand, the jth component of β · δ

1
2
B′

equals BC(χ j ) · γ ‖ · ‖
n−2 j

2 , which is (5′j )
+ multiplied by an integral power of the norm

character. Thus β · δ
1
2
B′ takes values in a number field, say Q(β, γ+). It follows that the

subspace

5′f [Q(β, γ+)]
= {φ : G ′(A f )→ Q(β, γ+) | φ(b′g′) = β(b′) · δ

1
2
B′(b
′) ·φ(g′), b′ ∈ B ′(A f ), g′ ∈ G ′(A f )

}
is a G ′(A f )-invariant Q(β, γ+)-rational structure on 5′f , and it is clear that the action

of Aut(C) on 5′f can be read directly in terms of the actions on the values of functions.

Next, let tσ,k be the diagonal matrix diag(t−(k−1)
σ , t−(k−2)

σ , . . . , 1) ∈ GLk(A f ), as in [40,

3.2] or [34, 3.3]. Here, tσ is an element of Ô∗, assigned to σ ∈ Aut(C) by the map Aut(C)→
Gal(Q(µ∞)/Q)→ Ẑ∗ ↪→ Ô∗. Let ξ f ∈ Ind

GLk (A f )

Nk (A f )
[φ f ] (unnormalized induction), φ an

additive, continuous character K\AK → C×. Then, σξ f (g f ) := σ(ξ(tσ,k g f )) is again an

element in Ind
GLk (A f )

Nk (A f )
[φ f ]. The analogous definition applies locally at a finite place

w ∈ S(K) f .

Proposition 2.7. The map ξ f 7→ σ ξ f defines a σ -linear G(A f )-equivariant isomorphism

from W (5 f ) onto W (σ5 f ) as well as a σ -linear G ′(A f )-equivariant isomorphism from

W (5′f ) onto W (σ5′f ). For any finite extension F of the rationality field in question, we

have an F-structure on W (5 f ) and W (5′f ) by taking the Aut(C/F)-invariants.

Proof. For the cuspidal representation 5, this is [40, Lemma 3.2]. The same proof

goes through for 5′, using Jacquet, Piatetski-Shapiro, and Shalika’s theorem (5.1.(i))
in [27].

2.7. Rational structures on cohomological Harish–Chandra modules

The universal enveloping algebra U(g′) has a canonical Q-rational (vector space)

structure determined by the Q-reductive group RK/Q(G ′). Moreover, K ′ has a compatible

Q-rational structure, and it determines a Q-rational Cartan decomposition g′ = k′⊕ p′. It

thus makes sense to define the field of rationality of the (U(g′), K ′)-module5′∞ as the field

Q(5′∞) fixed by the action of the subgroup of Aut(C) that fixes 5′∞ up to isomorphism.

Now 5′∞ is the U(g′)-module induced from a Q(Eλ)-rational character of the Lie algebra

of the Borel subgroup B ′(C). In fact, it is given by non-normalized induction from an
algebraic character of the torus T ′(C), by the arguments already seen in 2.6. It follows
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that the subspace of 5′∞ isotypic for the representation Eλ of K ′ is defined over the

number field Q(Eλ). Using the Q-rational structure on p′, we find that the relative

Lie algebra cohomology complex C•(g′, K ′,5′∞⊗ Eλ) = HomK ′(3•(p′),5′∞⊗ Eλ) has

a natural Q(Eλ)-rational (vector space) structure. Hence, the same holds true for

(g′, K ′)-cohomology.

Although the cuspidal automorphic representation 5 is not globally induced, it follows

from the classification of cohomological representations that the archimedean component

5∞ is again isomorphic to the non-normalized induction to G(C) of an algebraic

character of the maximal torus T (C); see § 2.4. We find again that C•(g, K ,5∞⊗ Eµ) =
HomK (3

•(p),5∞⊗ Eµ) – and so also the space of (g, K )-cohomology – has a natural

Q(Eµ)-rational (vector space) structure.

In subsequent sections we will be working with the Whittaker models W (5∞)
and W (5′∞). It follows from the above discussion that their subspaces of K -finite

(respectively, K ′-finite) vectors have rational models over the appropriate fields. Choices

of complex isomorphisms i∞ : 5∞ ∼→ W (5∞) and i ′∞ : 5′∞ ∼→ W (5′∞) identify the

rational models of the two sides, up to complex factors of proportionality that depend

on the choices. In the proof of Proposition 5.7, the factor of proportionality is denoted

�(5′∞); it is attached to the explicit choice of i ′∞ defined by the Whittaker integral.

It is tempting to use the Whittaker integral to define i∞ as well. This would provide

natural normalizations for all the archimedean constants that appear in our final formulas.

However, other normalizations – for example, normalizations in terms of the archimedean

local zeta integrals – may turn out to be more natural.

3. Whittaker periods for the general linear group

3.1. Automorphic cohomology of locally symmetric spaces

We define

Sn := G(K)\G(AK)/K and Sn−1 := G ′(K)\G ′(AK)/K ′.

Moreover, we let

S̃n−1 := G ′(K)\G ′(AK)/U (n− 1).

Observe that K ∼= U (n)C× = U (n)R+ and similarly K ′ ∼= U (n− 1)C× = U (n− 1)R+,

where R+ denotes the topological connected component of the identity of the split

component of the center of G(C) and G ′(C). In this way, the group U (n− 1) in the

definition of S̃n−1 is K ′ without the contribution of the center. Consider the map

ι : G ′ ↪→ G, realizing an element g′ ∈ G ′ as block diagonal matrix diag(g′, 1) ∈ G. If K f
is an open compact subgroup of G(A f ), K ′f := ι−1(K f ) is open compact in G ′(A f ), and

we define

Sn(K f ) := G(K)\G(AK)/K K f and Sn−1(K ′f ) := G ′(K)\G ′(AK)/K ′K ′f

and S̃n−1(K ′f ) := G ′(K)\G ′(AK)/U (n− 1)K ′f . Our finite-dimensional modules Eµ and Eλ
naturally define sheaves Eµ on Sn and Eλ on Sn−1, respectively, and we let

Hq(Sn, Eµ) and Hq(Sn−1, Eλ)
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be the corresponding cohomology spaces. They carry a G(A f )-module (respectively, a

G ′(A f )-module) structure. With respect to this module structure, there are isomorphisms

Hq(Sn, Eµ) ∼= Hq(g, K ,AJ (G)⊗ Eµ)

and

Hq(Sn−1, Eλ) ∼= Hq(g′, K ′,AJ ′(G ′)⊗ Eλ).

This needs some explanation. First, the space AJ (G) (respectively, AJ ′(G ′)) denotes the

space of all automorphic forms of G(AK) (respectively, G ′(AK)) which are annihilated by

some power of J (respectively, J ′). Here, J (respectively, J ′) is the ideal of the center

of the universal enveloping algebra U(gC) (respectively, U(g′C)), which is annihilated by

the contragredient representation of Eµ (respectively, Eλ). Now, since U (n)C× = U (n)R+
and U (n− 1)C× = U (n− 1)R+, the assertion follows from Franke, [9, Theorem 18].

From this, we obtain decompositions

Hq(Sn, Eµ) ∼= Hq
cusp(Sn, Eµ)⊕ Hq

Eis(Sn, Eµ)

and

Hq(Sn−1, Eλ) ∼= Hq
cusp(Sn−1, Eλ)⊕ Hq

Eis(Sn−1, Eλ)

as follows: the space AJ (G) may be decomposed along the associate classes {P} of

parabolic K-subgroups P = L N of G and the cuspidal supports ϕP , i.e., associate

classes of irreducible cuspidal automorphic representations τ = τ̃e〈d3,HP (.)〉 of L(AK),
with τ̃ a unitary cuspidal automorphic representation and 3 : Rrank(P)

+ → C× a Lie group

character of the split component Rrank(P)
+ of L(C). Indeed, if AJ ,{P}(G) denotes the

space of all automorphic forms in AJ (G), which are negligible along every parabolic

subgroup Q /∈ {P}, and, moreover, if AJ ,{P},ϕP (G) denotes the subspace of AJ ,{P}(G),
which is generated as a G(A)-module by all possible holomorphic values or residues of

all Eisenstein series attached to τ̃ , evaluated at the point d3, together with all their

derivatives, then

AJ (G) =
⊕
{P}

AJ ,{P}(G) =
⊕
{P},ϕP

AJ ,{P},ϕP (G).

For a detailed description of this decomposition, we refer the reader to the original paper,

by Franke and Schwermer [10, 1.1–1.4]. If we set

Hq
cusp(Sn, Eµ) := Hq(g, K ,AJ ,{G}(G)⊗ Eµ)

Hq
Eis(Sn, Eµ) :=

⊕
{P}6={G}

Hq(g′, K ′,AJ ,{P}(G)⊗ Eµ),

we obtain the above decomposition of cohomology for G. We remark that, because

AJ ,{G}(G) consists precisely of all cuspidal automorphic forms in AJ (G), Hq
cusp(Sn, Eµ) is

called the cuspidal cohomology of G (with respect to Eµ), and since AJ ,{P}(G) is defined

by means of Eisenstein series, supported in {P}, Hq
Eis(Sn, Eµ) is called the Eisenstein

cohomology of G (with respect to Eµ). Clearly, putting a prime everywhere gives the
analogous result for the cohomology of G ′.
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Let Hq
c (Sn, Eµ) (respectively, Hq

c (S̃n−1, Eλ)) be the cohomology with compact support.

As cusp forms are rapidly decreasing, one has Hq
cusp(Sn, Eµ) ⊆ Hq

c (Sn, Eµ). Put bk :=
k(k−1)

2 . Then bk is the smallest degree in which a cohomological generic automorphic

representation of GLk(AK) has non-zero cohomology. Note that this degree is independent

of the given representation, as well as of the finite-dimensional coefficient module.

Furthermore,

Hbn (g, K ,W (5∞)⊗ Eµ) ∼= C

and also

Hbn−1(g′, K ′,W (5′∞)⊗ Eλ) ∼= C.

3.2. A diagram

Similar to the ideas in Mahnkopf [34], Raghuram [38, 39], and Grobner and

Raghuram [16], we are going to consider the following diagram:

Hbn
c (Sn, Eµ)× Hbn−1(Sn−1, Eλ)

ι×p // Hbn
c (S̃n−1, Eµ)× Hbn−1(S̃n−1, Eλ)

∧
��

Hbn
cusp(Sn, Eµ)× Hbn−1

Eis (Sn−1, Eλ)
?�

OO

Hbn+bn−1
c (S̃n−1, Eµ⊗ Eλ)

T ∗
��

Hbn (g, K ,5⊗ Eµ)× Hbn−1(g′, K ′,5′⊗ Eλ)

9=9cusp
5 ×9Eis

5′

OO

Hbn+bn−1
c (S̃n−1,C)∫

��
W (5 f )×W (5′f )

20=2cusp
0 ×2Eis

0

OO

Dia // C

We are going to define the various maps, which appear in this diagram, in the next

sections. Observe that Dia denotes the composition of all these maps.

3.3. The map 20

This section is in analogy with Mahnkopf [34], Raghuram and Shahidi, [40],

Raghuram [38, 39] and Grobner and Raghuram [16].

As a first step, we choose and fix generators of the one-dimensional spaces

Hbn (g, K ,W (5∞)⊗ Eµ) and Hbn−1(g′, K ′,W (5′∞)⊗ Eλ). They are of the form

[5∞] :=
∑

i=(i1,...,ibn )

dim Eµ∑
α=1

X∗i ⊗ ξ5∞,i,α ⊗ eα

and

[5′∞] :=
∑

j=( j1,..., jbn−1 )

dim Eλ∑
β=1

X ′∗j ⊗ ξ5′∞, j,β ⊗ e′β ,

where the following data has been fixed.
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(1) An ordered basis {X j } of g/k, which fixes the dual-basis {X∗j } for (g/k)∗. By our

concrete choice of K , k is defined over Q, whence we may assume that {X j } is a

Q-basis. For i = (i1, . . . , ibn ), let X∗i = X∗i1
∧ · · · ∧ X∗ibn

∈∧bn (g/k)∗.
(2) Elements e1, . . . , edim Eµ , which form a Q(Eµ)-basis of Eµ.

(3) To each i and α, ξ5∞,i,α ∈ W (5∞).

In addition, we have the following.

(1) An ordered basis {X ′j } of g′/k′, which fixes the dual-basis {X ′∗j } for (g′/k′)∗. Similar

to the case above, by our concrete choice of K ′, k′ is defined over Q, whence we may

assume that {X ′j } is a Q-basis. For j = ( j1, . . . , jbn−1), let X ′∗j = X ′∗j1 ∧ · · · ∧ X ′∗jbn−1
∈∧bn−1(g′/k′)∗.

(2) Elements e′1, . . . , e′dim Eλ , which form a Q(Eλ)-basis of Eλ.

(3) To each j and β, ξ5′∞, j,β ∈ W (5′∞).

We may assume that the bases are compatible, in the sense that {X j } extends {X ′j }
(along the embedding g′/k′ ↪→ g/k defined by ι) and that the non-compact part of the

center of g′ is spanned by Xr , r = dimR S̃n−1. The choice of the generators [5∞] and [5′∞]
fixes generators [σ5∞] and [σ5′∞] of the one-dimensional spaces Hbn (g′, K ′,W (σ5∞)⊗
σEµ) and Hbn−1(g′, K ′,W (σ5′∞)⊗ σEλ) for all σ ∈ Aut(C) as well as isomorphisms 2cusp

and 2Eis:

W (5 f )
∼→ W (5 f )⊗ Hbn (g, K ,W (5∞)⊗ Eµ)
∼→ Hbn (g, K ,W (5)⊗ Eµ)
∼→ Hbn (g, K ,5⊗ Eµ),

and

W (5′f )
∼→ W (5′f )⊗ Hbn−1(g′, K ′,W (5′∞)⊗ Eλ)
∼→ Hbn−1(g′, K ′,W (5′)⊗ Eλ)
∼→ Hbn−1(g′, K ′,5′⊗ Eλ),

where the last map in the respective diagram denotes the inverse of the corresponding

Fourier coefficient. Next, recall from Proposition 2.5 that the G(A f )-module

Hbn (g, K ,5⊗ Eµ) is defined over Q(5 f ) and that the G ′(A f )-module Hbn−1(g′, K ′,5′⊗
Eλ) is defined over Q(5′f ). Both structures are unique up to multiplication by non-zero

complex numbers. This leads us to the following.

Proposition 3.1 (The Whittaker periods). There are non-zero complex numbers p(5) =
p(5 f , [5∞]) and p(5′) = p(5′f , [5′∞]), such that the normalized maps

2
cusp
0 := p(5)−1 ·2cusp and 2Eis

0 := p(5′)−1 ·2Eis (3.2)
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are Aut(C)-equivariant, i.e.,

W (5 f )
2

cusp
0 //

��

Hbn (g, K ,5⊗ Eµ)

��
W (σ5 f )

2
cusp
0 // Hbn (g, K , σ5⊗ σEµ)

and

W (5′f )
2Eis

0 //

��

Hbn−1(g′, K ′,5′⊗ Eλ)

��
W (σ5′f )

2Eis
0 // Hbn−1(g′, K ′, σ5′⊗ σEλ)

commute. The complex number p(5) (respectively, p(5′)) is well defined only up to

multiplication by non-zero elements of the number field Q(5 f ) (respectively, Q(5′f )).

Proof. For 5, this is shown in [40, Definition/Proposition 3.3]. In order to obtain

the result for 5′, we observe that the proof of [40, Definition/Proposition 3.3]

(respectively, [16, Definition/Proposition 4.2.1]) goes over word for word, keeping in

mind our Proposition 2.7 and Jacquet, Piatetski-Shapiro, and Shalika’s Theorem (5.1.(i))

in [27].

Finally, we set

20 := 2cusp
0 ×2Eis

0 .

3.4. The map 9 = 9cusp
5 ×9Eis

5′

It is well known and follows from our résumé in § 3.1 together with Multiplicity One that

Hbn (g, K ,5⊗ Eµ) = Hbn (g, K ,AJ ,{G},ϕ5 ⊗ Eµ),

where ϕ5 is a singleton, represented by the cuspidal automorphic representation 5.

Hence, there is a natural embedding

9
cusp
5 : Hbn (g, K ,5⊗ Eµ) ↪→ Hbn

cusp(Sn, Eµ).

It is the purpose of this section to construct an embedding

9Eis
5′ : Hbn−1(g′, K ′,5′⊗ Eλ) ↪→ Hbn−1

Eis (Sn−1, Eλ),

as well. This is more delicate. First, as a short remark, let us point out that – in contrast

to the case of cuspidal cohomology – this is also a question of degrees of cohomology.

For a non-trivial G ′(A f )-morphism Hbn−1(g′, K ′,5′⊗ Eλ)→ Hbn−1
Eis (Sn−1, Eλ) to exist, it

is necessary that

qmax := min
P ′=a max.

parabolic/K

( 1
2 dimR NP ′(C)) 6 bn−1.

This follows from Grobner [13, Theorem 18], since 5′ is not square integrable.

Since, for any maximal parabolic subgroup P ′ of G ′, the unipotent radical NP ′ is of
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dimension dimC NP ′(C) = m1 ·m2, for some non-trivial partition m1+m2 = n− 1, we have

without loss of generality that m1 6
n−1

2 and m2 6 n− 2. Hence,

qmax 6
1
2

dimR NP ′(C) = m1 ·m2 6
(n− 1)(n− 2)

2
= bn−1,

and therefore the above condition is always satisfied. We now construct such a non-trivial

map and show that is an injection.

Since bn−1 is the minimal degree, in which 5′∞ ∼= IndG ′(C)
B′(C)[zk1+c

1 z̄−k1−c
1 ⊗ · · ·⊗

zkn−1+c
n−1 z̄−kn−1−c

n−1 ] has non-vanishing (g′, K ′)-cohomology with respect to Eλ, there is an

isomorphism of one-dimensional C-vector-spaces:

Hbn−1(g′, K ′, IndG ′(C)
B′(C)[zk1+c

1 z̄−k1−c
1 ⊗ · · ·⊗ zkn−1+c

n−1 z̄−kn−1−c
n−1 ]⊗ Eλ)

∼→ Hbn−1(g′, K ′, IndG ′(C)
B′(C)[zk1+c

1 z̄−k1−c
1 ⊗ · · ·⊗ zkn−1+c

n−1 z̄−kn−1−c
n−1 ⊗ S(ǎG ′

B′,C)]⊗ Eλ),

where S(ǎG ′
B′,C) is the symmetric algebra of the orthogonal complement ǎG ′

B′,C of

ǎG ′,C = X∗(G ′)⊗Z C in ǎB′,C = X∗(T ′)⊗ZC. Hence, if we write τ̃ := BC(χ1)γ ⊗ · · ·⊗
BC(χn−1)γ , then

Hbn−1(g′, K ′,5′⊗ Eλ) ∼= Hbn−1(g′, K ′, IndG ′(AK)
B′(AK)

[τ̃ ⊗ S(ǎG ′
B′,C)]⊗ Eλ).

The algebra aG ′
B′,C operates trivially on τ̃ . Hence, one may check that (B ′, τ̃ , 0, 0) is one of

the quadruples, constructed in Grobner [13, 3.3]. Let ϕB′ be the associate class of unitary

cuspidal automorphic representations of T ′(AK), represented by τ̃ , so the summand

AJ ′,{B′},ϕB′ (G
′) of the space of automorphic forms AJ ′(G ′), cf. § 3.1, is well defined.

Interpreting the elements of the symmetric algebra as differential operators ∂m

∂3m , we

obtain an intertwining operator

Eis5′ : IndG ′(AK)
B′(AK)

[τ̃ ⊗ S(ǎG ′
B′,C)] → AJ ′,{B′},ϕB′ (G

′)

f ⊗ ∂m

∂3m 7→
∂m

∂3m (E( f,3))|3=0,

where E( f,3) is the Eisenstein series attached to a K ′-finite section f ∈ IndG ′(AK)
B′(AK)

[τ̃ ] at

3 ∈ aG ′
B′,C. Observe that this intertwining operator is well defined, since all Eisenstein

series are holomorphic at 3 = 0.

Proposition 3.3. The G ′(A f )-homomorphism

95′ : Hbn−1(g′, K ′, IndG ′(AK)
B′(AK)

[τ̃ ⊗ S(ǎG ′
B′,C)]⊗ Eλ)→ Hbn−1(g′, K ′,AJ ′,{B′},ϕB′ (G

′)⊗ Eλ)

induced from Eis5′ is an injection.

Proof. As all Eisenstein series E( f,3) attached to a K ′-finite section f ∈ IndG ′(AK)
B′(AK)

[τ̃ ] are

holomorphic at 3 = 0, 95′ is injective by Schwermer [43, Satz 4.11] or Li and Schwermer

[32, Theorem 3.3].
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As a consequence of our discussion in § 3.1, we obtain an injection of G ′(A f )-modules

9Eis
5′ : Hbn−1(g′, K ′,5′⊗ Eλ) = Hbn−1(g′, K ′,5′∞⊗ Eλ)⊗5′f ↪→ Hbn−1

Eis (Sn−1, Eλ).

With respect to the Q(Eλ)-rational structure on relative Lie algebra cohomology defined

in 2.7, this defines a Q(5′f )-rational injection

5′f = Ind
G ′(A f )

B′(A f )
[τ̃ f ] ↪→ Hbn−1

Eis (Sn−1, Eλ),

where, for any field L ⊇ Q(5′f ), the L-rational vectors on the left-hand side are just the

L-valued functions on G ′(A f ) that transform on the left under the character δ
1
2
B′, f · τ̃ f .

3.5. The map ι×φ
Recall the map ι : G ′ ↪→ G, realizing an element g′ ∈ G ′ as block diagonal matrix

diag(g′, 1) ∈ G.

Lemma 3.4. The map ι : S̃n−1(K ′f )→ Sn(K f ) is proper.

Proof. For the general linear group over Q, this is stated in Mahnkopf [34, p. 615],

however, without proof. For sake of completeness, we sketch an argument here. Let

Sn−1,n(K f ) := M(F)\M(A)/(K ∩M(C))(K f ∩M(A f )),

where M ∼= GLn−1×GL1, viewed as block diagonal matrices. The map ι factors as

S̃n−1(K ′f )
j // Sn−1,n(K f )

u // Sn(K f ) .

Clearly, j is proper. Hence, it suffices to show that u is proper. This follows from

[1, Lemma 2.7].

As a consequence, we obtain a map in cohomology with compact support:

ιq : Hq
c (Sn(K f ), Eµ)→ Hq

c (S̃n−1(K ′f ), Eµ).

Similarly, the projection p : S̃n−1(K ′f )� Sn−1(K ′f ) induces a map

pq : Hq(Sn−1(K ′f ), Eλ)→ Hq(S̃n−1(K ′f ), Eλ).

In our diagram, we let ι× p be the direct limit (over all open compact subgroups K f of

G(A f )) of the maps ιbn × pbn−1 .

3.6. Critical points

Recall the definition of a point s = 1
2 +m, m ∈ Z being critical for L(s,5×5′) from

Deligne, [8, Prop.-Déf. 2.3]. We let

Crit(5×5′) ⊂ 1
2 +Z

be the set of critical points of L(s,5×5′).
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Lemma 3.5. If s = 1
2 ±m, m > 0, is a critical point of L(s,5×5′), then

HomH ′(C)(Eunt
µ−m−m⊗ Eunt

λ ,C) 6= 0 and HomH ′(C)(Eunt
µv−m−m⊗ Eunt

λv ,C) 6= 0. The set of

critical points is Aut(C)-invariant, i.e., Crit(5×5′) = Crit(σ5× σ5′).

Proof. A proof of these facts will be given in § 4 in the motivic context. See in particular

the proof of Lemma 4.7.

3.7. The map T ∗

Let s = 1
2 +m ∈ Crit(5×5′), m > 0. Hence, by Lemma 3.5, we obtain a non-trivial map

T (m) ∈ HomG ′(C)(Eµ−m ⊗ Eλ,C),

which we will fix in a compatible way (i.e., T (m) for 5⊗5′ shall be identical to T (0)

for (5‖ · ‖m)⊗5′). Again by Lemma 3.5, it factors as T (m) = T (m)
ι ⊗ T (m)

ῑ , and if σ ∈
Aut(C), then we define σ (T (m)) in the obvious way, i.e., σ (T (m)) = T (m)

σ◦ι ⊗ T (m)
σ◦ι . Finally,

if s = 1
2 ∈ Crit(5×5′), we let T = T (0) and obtain a morphism in cohomology

T ∗ : Hbn+bn−1
c (S̃n−1, Eµ⊗ Eλ)→ Hbn+bn−1

c (S̃n−1,C),

as in our diagram.

3.8. Poincaré duality

It remains to define the last map, denoted ‘
∫

’ in our diagram. Therefore, observe that

bn + bn−1 = dimR S̃n−1.

Whence, we may use Poincaré duality, in order to obtain a surjective map
∫ :

Hbn+bn−1
c (S̃n−1,C)→ C. To that end, we fix a Q-valued Haar measure dg f on G ′(A f )

as follows. For a non-archimedean place w ∈ S(K) f , we let dgw be the unique Haar

measure on G ′(Kw), which gives G ′(Ow) volume 1, and let dg f be the product of these

local measures. With this choice of a measure, for any open compact subgroup K ′f of

G ′(A f ), the volume vol(K ′f ) is a rational number. The set of connected components of the

corresponding orbifold S̃n−1(K ′f ) is parameterized by the finite set X := A×f /K
× det(K ′f ).

We assume that we have fixed orientations on the various connected components

S̃n−1(K ′f )x , x ∈ X , given by the orientation on G ′(C)/U (n− 1), which is defined by the

ordered basis {X1, . . . , Xr } of its tangent space at the identity; cf. § 3.3. Hence, the de

Rham isomorphism, which is given by integrating over S̃n−1(K ′f )x , gives rise to a surjective

map on S̃n−1(K ′f ), ∫
S̃n−1(K ′f )

=
∑
x∈X

∫
S̃n−1(K ′f )x

.

Let
∫

S̃n−1
stand for the direct limit (over all open compact subgroups K ′f of G ′(A f ))

of the normalized maps vol(K ′f ) ·
∫

S̃n−1(K ′f )
, and observe that the trivial character 1 of

G ′(AK) defines a non-trivial cohomology class in H0(S̃n−1,C). Using this class, the
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Poincaré–Duality pairing of Hbn+bn−1
c (S̃n−1,C) and H0(S̃n−1,C) finally gives rise to a

surjection

Hbn+bn−1
c (S̃n−1,C) −→ C

θ 7−→
∫
(θ) :=

∫
S̃n−1

θ.
(3.6)

3.9. A non-archimedean, particular vector

We will now choose a special vector in the product of Whittaker models W (5 f )×W (5′f ),
which has the property that it transforms nicely, when plugged into our diagram. This

vector will be fixed as in Raghuram [39, 3.1.4], which is itself inspired by Mahnkopf

[34, 2.1.1].

First, we remark that, for w ∈ S(K) f ,5′w is tempered. Hence, Jacquet and Shalika’s [29]

Proposition (3.2) still holds for 5′w. Therefore, any non-zero Whittaker functional ξ ′w ∈
W (5′w) is non-vanishing on T ′(Kw)+ = {t ∈ T ′(Kw)|ti t−1

i+1 ∈ Ow, tn−1,n−1 = 1}. We let

K (mw) (respectively, K ′(m′w)) be the mirahoric subgroup of G(Kw) (respectively, G ′(Kw))
of level mw (respectively, m′w). This is the subgroup of G(Ow) (respectively, G ′(Ow))

consisting of those matrices whose last row is congruent to (0, . . . , 0, ?) modulo

℘
mw
w , where ℘w is the unique maximal ideal in Ow. Suppose from now on that

mw (respectively, m′w) is the conductor of 5w (respectively, 5′w). Then, by Jacquet,

Piatetski-Shapiro, and Shalika’s Theorem (5.1) [27], the space of Whittaker vectors

transforming by the central character ω5w of 5w (respectively, ω5′w of 5′w) under the

action of the mirahoric subgroup is one dimensional, and its elements are usually called

new vectors.

Now, for 5′w, fix an element t5′w ∈ T ′(Kw)+ on which the non-trivial new vectors of 5′w
do not vanish. Observe that we may choose the same element for all σ -twists, i.e., such

that t5′w = tσ5′w . If w /∈ S(5′), then we may take t5′w := id. Depending on these choices,

for all w ∈ S(K) f , we let

ξ5′w := the unique new vector such that ξ5′w (t5′w ) = 1.

This pins down a special Whittaker vector ξ5′f := ⊗′w∈S(K) f
ξ5′w ∈ W (5′f ).

Our choice for 5w will depend on the data fixed for 5′w. First, we fix an element

t5w ∈ T (Kw)+ analogously as for G ′(Kw). Now, for w /∈ S := S(5′)∪ S(ψ), we let ξ5w
be the unique new vector of 5w, which satisfies ξ5w (t5w ) = 1. It is a certain non-zero

multiple c5w of the essential vector, cf. [27, Théorème (4.1)]. If w ∈ S f , we take ξ5w
to be the unique Whittaker vector, whose restriction to ι(G ′(Kw)) is supported on

N ′(Kw)t5′w K ′(m′w) and there equal to ψ−1
w ω−1

5′w
. This gives a special Whittaker vector

ξ5 f := ⊗′w∈S(K) f
ξ5w ∈ W (5 f ).

Lemma 3.7. Let ξ5 f and ξ5′f be the above Whittaker vectors. For a non-archimedean

place w of K, the integral

9(s, ξ5w , ξ5′w ) =
∫

N ′(Kw)\G ′(Kw)

ξ5w (ι(g))ξ5′w (g)‖det(g)‖s−
1
2

w dgw

https://doi.org/10.1017/S1474748014000462 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748014000462


734 H. Grobner and M. Harris

converges for Re(s) > 1−m and has a meromorphic continuation to all of C. It equals

9(s, ξ5w , ξ5′w ) =
c5w · L(s,5w ×5′w) if w /∈ S

‖det(t5′w )‖
s− 1

2
w · vol(K ′(m′w)) if w ∈ S.

For all σ ∈ Aut(C), σ(ξ5′w ) = ξσ5′w for all non-archimedean places w of K, whereas

σ(ξ5w ) =
{
ξσ5w if w /∈ S

ωσ5′w (tσ ) · ξσ5w if w ∈ S.

Proof. Any one of the above assertions is either well known or follows from a direct

calculation using the definition of the local Whittaker vectors.

3.10. An archimedean non-vanishing result

Suppose from now on that dg∞ is the unique Haar measure on G ′(C), which gives U (n− 1)
volume 1. Recall our choices of cohomology classes [5∞] and [5′∞] from § 3.3. Since

ξ5∞,i,α is K -finite and ξ5′∞, j,β is K ′-finite, the integral

9(s, ξ5∞,i,α, ξ5′∞, j,β) =
∫

N ′(C)\G ′(C)
ξ5∞,i,α(ι(g))ξ5′∞, j,β(g)‖det(g)‖s−

1
2∞ dg∞

converges for Re(s)� 0. By [7, Theorem 1.2.(i)], 9(s, ξ5∞,i,α, ξ5′∞, j,β) is holomorphic at

all critical values of L(s,5×5′). Assume that 1
2 ∈ Crit(5×5′). In this case, we define

c( 1
2 ,5∞,5

′∞) :=
∑
α,β

∑
i, j

s(i, j) · T (eα ⊗ e′β) ·9( 1
2 , ξ5∞,i,α, ξ5′∞, j,β),

where s(i, j) is given by ι(X∗i )∧ p(X ′∗j ) = s(i, j) · X∗1 ∧ · · · ∧ X∗r , r = dimR S̃n−1. By what

we said above, c( 1
2 ,5∞,5

′∞) is well defined, i.e., finite.

Now, drop the assumption that 1
2 ∈ Crit(5×5′), and let s = 1

2 +m ∈ Crit(5×5′) be

an arbitrary critical point of L(s,5×5′) with m > 0. Then, 1
2 ∈ Crit((5‖ · ‖m)×5′), and

we define

c( 1
2 +m,5∞,5′∞) := c( 1

2 ,5∞‖ · ‖m∞,5′∞).
By our compatible choice of T (m), this is well defined. The following theorem recently

proved by Binyong Sun [44, Theorem A] is of the highest importance for the present

paper.

Theorem 3.8. For all s = 1
2 +m ∈ Crit(5×5′) with m > 0, c( 1

2 +m,5∞,5′∞) 6= 0.

Proof. Since Sun’s theorem concerns properties of a non-trivial pairing HomG ′(C)(5∞⊗
5′∞,C), and makes no reference to zeta integrals, Whittaker functions, or coefficient

systems, we explain how to translate his theorem into our non-vanishing statement. We

return to the notation of 3.3. Write p = g/k and p′ = g′/k′. The expressions there for the

generators [5∞] ∈ Hbn (g, K ,W (5∞)⊗ Eµ) and [5′∞] ∈ Hbn−1(g′, K ′,W (5′∞)⊗ Eλ) are

based on the following identifications:

Hn := Hbn (g, K ,W (5∞)⊗ Eµ) = HomK (∧bnp⊗ E∗µ,W (5∞)),

Hn−1 := Hbn−1(g′, K ′,W (5′∞)⊗ Eλ) = HomK ′(∧bn−1p⊗ E∗λ,W (5′∞)).
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Letting hn , hn−1 denote generators of the one-dimensional spaces Hn and Hn−1,

respectively, it is known that ρ = Im(hn) (respectively, ρ′ = Im(hn−1)) is an irreducible

K -type in W (5∞) (respectively, K ′-type in W (5′∞)). Sun’s theorem states that, if

u is a generator of the one-dimensional space HomG ′(C)(W (5∞)⊗W (5′∞),C), where

W (5∞)⊗W (5′∞) denotes the corresponding Casselman–Wallach (Frechet) completion,

then u|ρ⊗ρ′ 6= 0. This implies in particular that the Rankin–Selberg integral

9m(ξ ⊗ ξ ′) := 9( 1
2 +m, ξ, ξ ′) =

[∫
N ′(C)\G ′(C)

ξ(ι(g))ξ ′(g)‖det(g)‖s−
1
2∞ dg∞

]
s= 1

2+m

defines a non-zero linear form on ρ⊗ ρ′. Here, we are using the fact, due to Jacquet,

Shalika, and Piatetski-Shapiro, that the Rankin–Selberg integral is not identically zero.

Now, if we let {e∗α} and {e′,∗β } denote the dual bases to the bases {eα} and {e′β} of Eµ
and Eλ introduced in 3.3, we find that (in the obvious notation)

ξ5∞,i,α = hn(X i ⊗ e∗α) ∈ ρ ξ5′∞, j,β = hn−1(X j ⊗ e′,∗β ) ∈ ρ′

are the matrix coefficients of hn and hn−1 in the chosen bases. Then the non-vanishing

of c( 1
2 +m,5∞,5′∞) comes down to the non-vanishing of 9m on ρ⊗ ρ′.

Observe that Theorem 3.8 implies that c( 1
2 +m, σ5∞, σ5′∞) 6= 0, for all σ ∈ Aut(C).

We denote by p(m, σ5∞, σ5′∞) the inverse of c( 1
2 +m, σ5∞, σ5′∞). In the special case

when m = 0, we will abbreviate p(σ5∞, σ5′∞) := p(0, σ5∞, σ5′∞).

3.11. A theorem on Whittaker periods

Let us recall the Gaußsum of a Hecke character ω : Q×\A×Q → C×. Let c stand for the

conductor ideal of ω f . We take y = (yp)p∈S f ∈ A×f such that ordp(yp) = −ordp(c). Then,

the Gauß sum of ω f is defined as G(ω f , ψ f , y) =∏p∈S f
G(ωp, ψp, yp), where the local

Gauß sum G(ωp, ψp, yp) is defined as

G(ωp, ψp, yp) =
∫
Z×p
ωp(u p)

−1ψp(ypu p)du p.

If all inputs are unramified at p, then G(ωp, ψp, yp) = 1, so the above product is finite.

Suppressing the dependence on ψ and y, we denote G(ω f , ψ f , y) simply by G(ω f ).

If ω : K×\A×K → C× is a Hecke character of K, let ω0 denote its restriction to the

idèles of Q. We are now ready to state and prove the main result of this section, which

is analogous to the main result in [39].

Theorem 3.9. Let 5 = BC(π)‖ · ‖m be a cuspidal automorphic representation of G(AK),
m ∈ Z, and let 5′ = BC(π ′) be an abelian automorphic representation of G ′(AK) obtained

by base change from unitary groups as in §§ 2.4 and 2.5. In particular, 5 is cohomological
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with respect to Eµ, and 5′ is cohomological with respect to Eλ. We assume that the highest

weights µ and λ satisfy Hypothesis 2.3. In view of the archimedean non-vanishing result,

cf. Theorem 3.8, the following hold.

(1) For all critical values 1
2 +m ∈ Crit(5×5′) with m > 0 and every σ ∈ Aut(C),

σ

(
L( 1

2 +m,5 f ×5′f )
p(5)p(5′)p(m,5∞,5′∞)G(ω5′f,0)

)
= L( 1

2 +m, σ5 f × σ5′f )
p(σ5)p(σ5′)p(m, σ5∞, σ5′∞)G(ωσ5′f,0)

.

(2)

L( 1
2 +m,5 f ×5′f ) ∼Q(5 f )Q(5′f ) p(5)p(5′)p(m,5∞,5′∞)G(ω5′f,0),

where ∼Q(5 f )Q(5′f ) means up to multiplication by an element in the composition of

number fields Q(5 f )Q(5′f ).

Remark 3.10. In fact, the central character of 5′ is the twisted base change of the central

character of π ′, and therefore its restriction to the idèles of Q is trivial! The term G(ωσ5′f,0)
is nevertheless retained in the statement of the above theorem because it applies, with

minor modifications, to cohomological automorphic representations not obtained by base

change, in which case the presence of the Gauß sum, as in [39], is indispensable.

Proof. Since (1) implies (2) by Strong Multiplicity One for isobaric automorphic

representations, we only prove (1). We will proceed in two steps.

Step 1: Assume 1
2 is critical.

For any i , j , α and β, denote

ϕ5,i,α := W−1(ξ5∞,i,α ⊗ ξ5 f ) ∈ 5 and ϕ5′, j,β := W−1(ξ5′∞, j,β ⊗ ξ5′f ) ∈ 5
′,

i.e., the inverse image of our particular Whittaker vectors. It follows directly from the

definition of the various maps in our diagram that, if we chase ξ5 f × ξ5′f through the

diagram, we obtain

Dia(ξ5 f × ξ5′f ) =
∑
α,β

∑
i, j

p(5)−1 p(5′)−1 · s(i, j) · T (eα ⊗ e′β)

·
∫

G ′(K)\G ′(AK)
ϕ5,i,α|G ′(AK) ·ϕ5′, j,βdg,

where dg = dg∞ · dg f (cf. §§ 3.8 and 3.10). We are left to compute the latter integral.

Since ϕ5,i,α is cuspidal, it is well known that∫
G ′(K)\G ′(AK)

ϕ5,i,α(ι(g)) ·ϕ5′, j,β(g)‖det(g)‖s− 1
2 dg

converges for all s ∈ C and equals∫
N ′(AK)\G ′(AK)

(ξ5∞,i,α ⊗ ξ5 f )(ι(g)) · (ξ5′∞, j,β ⊗ ξ5′f )(g)‖det(g)‖s− 1
2 dg
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for Re(s)� 0. For such s, this is furthermore equal to

9(s, ξ5∞,i,α, ξ5′∞, j,β) · L S(s,5×5′)
∏
w/∈S

c5w
∏
w∈S f

‖det(t5′w )‖
s− 1

2
w vol(K ′(m′w))

with S = S(5′)∪ S(ψ) by Lemma 3.7. By analytic continuation, we obtain

Dia(ξ5 f × ξ5′f ) =
L( 1

2 ,5 f ×5′f )
p(5)p(5′)p(5∞,5′∞)

·
∏
w/∈S c5w

∏
w∈S f

vol(K ′(m′w))∏
w∈S L( 1

2 ,5w ×5′w)
,

so

σ(Dia(ξ5 f × ξ5′f )) = σ
(

L( 1
2 ,5 f ×5′f )

p(5)p(5′)p(5∞,5′∞)

)
·
∏
w/∈S σ(c5w )

∏
w∈S f

vol(K ′(m′w))∏
w∈S f

σ(L( 1
2 ,5w ×5′w))

.

Here we note that, by our choice of a measure, cf. § 3.8,
∏
w∈S f

vol(K ′(m′w)) is a

rational number. Next, observe that σ(L( 1
2 ,5w ×5′w)) = L( 1

2 ,
σ5w × σ5′w), which is

proved in Raghuram [39, Proposition 3.17]. Moreover, since the results of Jacquet,

Piatetski-Shapiro, and Shalika in [27, 28] as well as Clozel [5, Lemme 4.6] are valid

for 5w, w /∈ S(ψ), the proof of Mahnkopf [35, Proposition 2.3.(c)] may be carried over

to the situation considered here. In other words, σ(c5w ) = cσ5w for all w /∈ S, cf. [34,

p. 621] or [39, Proposition 3.21]. Finally, we obtain

σ(Dia(ξ5 f × ξ5′f )) = σ
(

L( 1
2 ,5 f ×5′f )

p(5)p(5′)p(5∞,5′∞)

)
·
∏
w/∈S cσ5w

∏
w∈S f

vol(K ′(m′w))∏
w∈S f

L( 1
2 ,
σ5w × σ5′w)

.

On the other hand, as all maps in the definition of our diagram are σ -equivariant, we see

that σ(Dia(ξ5 f × ξ5′f )) = Dia(σξ5 f × σξ5′f ). Therefore, Lemma 3.7 implies that

σ(Dia(ξ5 f × ξ5′f )) =
 ∏
w∈S f

ωσ5′w (tσ )

 ·Dia(ξσ5 f × ξσ5′f ).

As ωσ5′w is unramified outside S(σ5′), and since tσ ∈ Ô∗, we get ωσ5′w (tσ ) = 1
for w /∈ S(σ5′). Hence, observing that S(5′) = S(σ5′), the finite product equals∏
w∈S f

ωσ5′w (tσ ) = ωσ5′f (tσ ). We claim that there is the identity

ωσ5′f (tσ ) =
σ(G(ω5′f,0))

G(ωσ5′f,0)
.

Indeed, at a place p ∈ S f ,

G(ωσ5′p,0) =
∫
Z×p
ωσ5′p,0(u p)

−1ψp(ypu p)du p

=
∫
Z×p
σ(ω5′p,0(u p))

−1σ(ψp(ypu pt−1
σ ))du p
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= σ(ω5′p,0(tσ ))
−1
∫
Z×p
σ
(
ω5′p,0(u p)

−1ψp(ypu p)
)

du p

= ωσ5′p,0(tσ )
−1 · σ

(∫
Z×p
ω5′p,0(u p)

−1ψp(ypu p)du p

)
= ωσ5′p,0(tσ )

−1 · σ(G(ω5′p,0)),

where the second last equation follows from the fact that – by the very choice of ψ – the

above integral is the finite sum over the classes modulo the conductor ideal of ω5′p (on

which the integrand is constant). Therefore,

σ

(
L( 1

2 ,5 f ×5′f )
p(5)p(5′)p(5∞,5′∞)

)
·
∏
w/∈S cσ5w

∏
w∈S f

vol(K ′(m′w))∏
w∈S f

L( 1
2 ,
σ5w × σ5′w)

=
σ(G(ω5′f,0))

G(ωσ5′f,0)
·Dia(ξσ5 f × ξσ5′f ).

Recalling that S(5′) = S(σ5′) and that m′w is the same for 5′w and σ5′w, we obtain, by

what we have seen above, that

Dia(ξσ5 f × ξσ5′f ) =
L( 1

2 ,
σ5 f × σ5′f )

p(σ5)p(σ5′)p(σ5∞, σ5′∞)
·
∏
w/∈S cσ5w

∏
w∈S f

vol(K ′(m′w))∏
w∈S f

L( 1
2 ,
σ5w × σ5′w)

.

Comparing the last two equations shows (1) if 1
2 is critical.

Step 2: The general case.

We drop the assumption that 1
2 is critical now. Let s = 1

2 +m be an arbitrary critical

value of L(s,5×5′), m > 0. Then 1
2 is critical for L(s, (5‖ · ‖m)×5′), and we are in the

situation considered above. Hence, by what we have just observed,

σ

(
L( 1

2 , (5‖ · ‖m) f ×5′f )
p(5‖ · ‖m)p(5′)p(5∞‖ · ‖m∞,5′∞)G(ω5′f,0)

)

= L( 1
2 ,
σ (5‖ · ‖m) f × σ5′f )

p(σ (5‖ · ‖m))p(σ5′)p(σ (5∞‖ · ‖m∞), σ5′∞)G(ωσ5′f,0)

= L( 1
2 +m, σ5 f × σ5′f )

p(σ5‖ · ‖m)p(σ5′)p(m, σ5∞, σ5′∞)G(ωσ5′f,0)
.

By [40, Theorem 4.1], the period for 5 f satisfies the relation

σ

(
p(5‖ · ‖m)

p(5)

)
= p(σ5‖ · ‖m)

p(σ5)
,

where we used that G(‖ · ‖mf ) = 1. This proves the theorem.
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Remark 3.11. At no time in the proof did we use the assumption that 5′ is of abelian

type, other than to avoid introducing additional notation. It is therefore clear that our

result also holds for cuspidal automorphic representations 5′ of G ′(AK); in other words,

the proof of Theorem 3.9 also yields Theorem 1.3. As mentioned in the introduction, in

this case, i.e., if 5′ is cuspidal, it has recently also been proved by Raghuram in [38,

Theorem 1.1] – even over any number field. Moreover, it is clear that we did not need

that 5 and 5′ are constructed via base change in order to prove Theorem 3.9. However,

for later use, and to simplify the determination of the set of critical points, we already

assumed this to be the case.

Remark 3.12. Let us finally also remark that we did not need to fix some open compact

subgroup K f ⊂ G(A f ) within the entire process of showing Theorem 3.9.

4. Motives – an interlude

This section reviews and extends the results of [20, 23] that are needed to prove the main

results of this paper. The crucial definitions and calculations are scattered in different

parts of the two papers in question, allowing space for several confusing sign changes, and

their conventions are moreover not quite compatible. We hope that the present section

will provide a more convenient reference. Moreover, the results of the earlier papers were

proved under unnecessarily restrictive hypotheses; here we have striven for maximum

generality, always assuming that the base field is an imaginary quadratic field.

The main purpose of this section is to compare the results on special values proved

by automorphic methods to Deligne’s conjecture, stated in the setting of motives for

absolute Hodge cycles. This setting is partially hypothetical. It is not known, for example,

that two geometric realizations in the cohomology of Shimura varieties of the Galois

representations attached to a (motivic) algebraic Hecke character are isomorphic as

motives, and in particular that they define the same periods. We are therefore led to

introduce automorphic analogues of the invariants that arise in the (motivic) calculation

of Deligne’s periods over imaginary quadratic fields. See also [48] for calculations of

Deligne periods of motives over Q.

From now on we let m = 0, i.e., the cuspidal automorphic representation 5 is simply

the unitary base change from π .

4.1. Tensor products of motives

The L-functions of the automorphic representations 5 and 5′ of the previous section are

conjecturally attached to motives over M(5) and M(5′) over K of ranks n and n− 1,

respectively, with coefficients in finite, possibly non-trivial extensions

E(5)/Q(5 f ) and E(5′)/Q(5′f ).

The passage from 5 to M(5) involves a standard shift, thus

L(s,M(5)) = L
(

s+ 1− n
2

,5

)
,
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whose center of symmetry is at s = n
2 rather than at s = 1

2 . One can in any case attach

Hodge structures and compatible families of `-adic representations to 5 and 5′, pure

of weight n− 1 and n− 2, respectively, so the tensor product M(5)⊗K M(5′) is pure of

weight 2n− 3, and the center of symmetry of the functional equation of its L-function is

at the point s = n− 1.

More generally, we can take 5′ to be an automorphic representation of GLn′(AK). We

will be particularly interested in the cases n′ = n− 1 and n′ = 1, but the methods of the

present paper allow us to say quite a lot about the general case. In particular, the center

of symmetry of the functional equation is the point n+n′−1
2 , which is not necessarily an

integer; however, we will also be interested in critical values to the right of the center of

symmetry. The fact that 5 and 5′ arise by base change from unitary groups is reflected

in the polarization property

M(5)c
∼→ M(5)∨(1− n) and M(5′)c ∼→ M(5′)∨(1− n′). (4.1)

A formalism relating the various realizations of motives satisfying (4.1) and defining their

period invariants is developed in [23, § 1.1], and the Deligne periods of the associated

adjoint and tensor product motives are computed in [23, §§ 1.3–1.4].

Recall that the formula of Theorem 3.9 is valid provided the initial representations

π and π ′ of the definite unitary groups H and H ′ are cohomological with respect to

finite-dimensional representations satisfying the equivalent conditions of Lemma 2.1.

Exactly the same conditions appear in [23, (2.3.1)] where they are used to evaluate the

Deligne period of M(5)⊗K M(5′) – here n′ = n− 1 – when the Ichino–Ikeda conjecture

computes the central value L( 1
2 ,5 f ×5′f ) in terms of periods of integrals of automorphic

forms on H × H ′. This is the same central value that appears on the left-hand side of the

formulas in 3.9. We exploit this identification in subsequent sections. Here we complete

[23] by determining the set of all critical values and their corresponding Deligne periods,

when the inequalities of Lemma 2.1 are satisfied.

Write M = M(5), M ′ = M(5′). As in [23], the Hodge types for M (respectively M ′)
are denoted

(pi , qi ) := (pi , n− 1− pi ) and (pc
i , qc

i ) := (pc
i , n− 1− pc

i ) = (qn+1−i , pn+1−i ) (4.2)

(respectively (r j , n′− 1− r j ) and (rc
j , n′− 1− rc

j )). Bearing in mind that the

cohomological parameters of 5 and 5′ are respectively given by the tuples µ and λ

as in 2.2 (and not by ai ’s and b j ’s as in [23]), we have

pi = n− i +µi , r j = n′− j + λ j . (4.3)

For any integer m, the Hodge types for the Tate twist M(m) are

(pi −m, n− 1− pi −m) and

(pc
i −m, n− 1− pc

i −m) = (n− 1− pn+1−i −m, pn+1−i −m),
(4.4)

where the equality on the right is a consequence of (4.1). We extend the definition of [23]

by letting T (M(m),M ′) be the set of pairs (t, u) of indices, 1 6 t 6 n, 1 6 u 6 n′, such
that pc

t −m+ rc
u >

w+1
2 , and write T (M,M ′) = T (M(0),M ′). Using (4.4), we transform
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the left hand side of this equation to

n− 1− pn+1−t + n′− 1− rn′+1−u −m >
n+ n′− 1− 2m

2

⇔ n+ n′− 3
2

> pn+1−t + rn′+1−u

and this is true if and only if

n+ n′+ 1
2

> t + u+µn+1−t + λn′+1−u . (4.5)

4.2. Critical values when n′ = n− 1

For the moment we let n′ = n− 1. The tensor product motive we consider is R(M ⊗M ′) =
RK/Q(M ⊗M ′), of weight w = 2n− 3. Now in view of 2.1, we make the following

Remark 4.6. When n′ = n− 1, T (M,M ′) consists exactly of the set of pairs {(t, u) | t +
u 6 n}, of cardinality n(n−1)

2 .

To calculate the Gamma factor, we follow Serre’s recipe (see [8, §§ 5.2–5.3]) and find∏
a,b

0C(s− pa − rb)×
∏
t,u

0C(s− pc
t − rc

u)

where the product is taken over pairs such that pa + rb 6
w−1

2 = n− 2 and pc
t + rc

u 6
n− 2. For the first set we have

2n− 1− a− b+µa + λb 6 n− 2⇔ n+ 1+µa + λb 6 a+ b.

By the branching rules this holds if and only if a+ b > n+ 1. For the second set the

polarization gives us

pc
t + rc

u = 2n− 3− (pn+1−t + rn−u) 6 n− 2

⇔ n− 1 6 pn+1−t + rn−u

⇔ n− 1 6 t + u− 2+µn+1−t + λn−u

which is true if and only if n+ 1 6 t + u.

There is therefore a pole at the integer m unless m > 1+ sup(supa+b>n+1 pa +
rb, supt+u>n+1 pc

t + rc
u). The inequalities 2.1 imply that it suffices to consider the pairs

(a, b) and (t, u) with a+ b = n+ 1, t + u = n+ 1. The minimum is thus

mmin = 1+ sup
(

sup
a+b=n+1

n− 2+µa + λb, sup
t+u=n+1

n− 2−µn+1−t − λn−u

)
.

This gives the lower bound of the critical set, and the functional equation that exchanges

s with w+ 1− s implies the upper bound is
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mmax = w+ 1−mmin = 2n− 2−mmin

= inf
(

n− 1− sup
16a6n

(µa + λn+1−a), n− 1+ inf
16t6n

(µu + λn−u)

)
= n− 1+ inf

(
− sup

26a6n
(µa + λn+1−a), inf

16u6n−1
(µu + λn−u)

)
.

In the following lemma, µ(m) denotes the n-tuple µ1−m > µ2−m > · · · > µn −m, the

highest weight of the representation Eunt
µ ⊗ det−m .

Lemma 4.7. The set of critical points of the L-function L(s, R(M ⊗M ′)) is the set

of integers s0 = n− 1±m, where m runs through the non-negative integers such that

HomG ′(C)((Eunt
µ(m)⊗ Eunt

µv(m))⊗ (Eunt
λ ⊗ Eunt

λv ),C) 6= 0. The maximum value of m is also the

minimum of the distances between successive entries in the sequence of inequalities

µ1 > −λn−1 > µ2 > −λn−2 > · · · > −λ1 > µn .

Proof. The branching law implies that the existence of G ′(C)-equivariant

homomorphisms

Eunt
µ(m)⊗ Eunt

λ ⊗→ C, Eunt
µv(m)⊗ Eunt

λv → C
is equivalent to the two series of inequalities

µ1−m > −λn−1 > µ2−m > −λn−2 > · · · > −λ1 > µn −m,

−µ1−m 6 λn−1 6 −µ2−m 6 λn−2 6 · · · 6 λ1 6 −µn −m,

which is equivalent to the determination of mmax above. The final sentence is clear.

We now derive an expression for c+(R(M ⊗M ′)(m)), following [23, § 1.4], when n′ =
n− 1. Recall the formula in [23, Lemma 1.4.1]:

c+(R(M ⊗M ′)∨) = c−(R(M ⊗M ′)∨)
∼

∏
(t,u)∈T (M,M ′)

Qn+1−t (M)−1 Qn−u(M ′)−1 · δ(M ⊗M ′)−1

∼
∏

t+u6n

Qn+1−t (M)−1 Qn−u(M ′)−1 · δ(M)1−n · δ(M ′)−n . (4.8)

Here δ(M) and δ(M ′) are the full period determinants studied in [23, § 1.2], specifically

in Lemma 1.2.7, which we recall here. We let E(M) and E(M ′) be the respective coefficient

fields of M and M ′.

Lemma 4.9. There are elements d(M) ∈ E(M) and d(M ′) ∈ E(M ′) such that

δ(M)−1 ∼ d(M)
1
2 (2π i)n(n−1)/2 Q1/2

det M and δ(M ′)−1 ∼ d(M ′)
1
2 (2π i)(n−1)(n−2)/2 Q1/2

det M ′ ,

where Qdet M =
∏n

t=1 Qt (M) and Qdet M ′ =
∏n−1

u=1 Qu(M ′).
We introduce the new invariants

q(M) := d(M)
1
2 Q1/2

det M and Q6r (M) :=
∏
t6r

Qt (Mc), 1 6 r 6 n (4.10)
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and define q(M ′) and Q6r (M ′) analogously. Recall [23, Remark 1.3.6]:

Qt (Mc) ∼ Qn+1−t (M)−1, t = 1, . . . , n.

Combining this with (4.8)–(4.10), we obtain

c±(R(M ⊗M ′)∨)

∼ (2π i)
n(n−1)2

2 (2π i)
n(n−1)(n−2)

2

n−1∏
t=1

Qt (Mc)n−t
n−1∏
u=1

Qu(M ′c)n−u · q(M)n−1q(M ′)n

∼ (2π i)n(n−1)(2n−3)/2
n−1∏
r=1

(Q6r (M) · Q6r (M ′)) · q(M)n−1q(M ′)n

∼ (2π i)n(n−1)(2n−3)/2
n−1∏
r=1

[Q6r (M) · q(M)]
n−2∏
r ′=1

[Q6r ′(M ′) · q(M ′)] (4.11)

where we have used the relation Q6n−1(M ′) ∼ q(M ′)−2 (cf. [23, Lemma 1.2.7] and [23,

(1.2.5)]) to obtain the more symmetric expression in the last line. Finally, the polarization

gives us an isomorphism for each integer m:

R(M ⊗M ′)(m) ∼= R(M ⊗M ′)∨(m+ 3− 2n).

We write P6r (M) := Q6r (M) · q(M), and likewise for M ′. It thus follows from [8], Formula

(5.1.8) that

c+(R(M ⊗M ′)(m)) ∼ (2π i)n(n−1)(m+3−2n)c±(R(M ⊗M ′)∨)

∼ (2π i)
n(n−1)

2 (2m−2n+3)
n−1∏
r=1

P6r (M)
n−2∏
r ′=1

P6r ′(M ′). (4.12)

4.3. Critical values when n′ = 1

We repeat the above calculation but now assume n′ = 1 and weaken the polarization

hypothesis for M ′ = M(5′). We assume that M ′ is of weight −κ and that there is a

Dirichlet character α0 and a non-degenerate pairing as in [20, (1.6.2)]:

R(M ′)⊗ R(M ′)→ Q(α0 · εK)(κ). (4.13)

We assume moreover that there are Hecke characters χ and α, as in [20] (especially

§§ 2.9 and 3.5), so that 5′ = BC(χ) ·α, with χ∞(z) = z−k , α∞(z) = zκ , so that 5′∞(z) =
(z/z̄)−k · zκ . The motive R(M ′) then has Hodge types (k− κ,−k); (−k, k− κ). (The

parameter κ is needed for parity considerations and will in practice either be 0 or 1.) The

restriction of 5′ to the idèles of Q equals α0 multiplied by a power of the norm; thus the

notation of 4.13 is consistent with that introduced on [20, p. 92].

The indices b and u only take the value 1; we have r1 = k− κ and rc
1 = −k, and the

weight of R(M ⊗M ′) is n− 1− κ. By definition T (M(m),M ′) is the set of pairs (t, u) =
(t, 1) such that pc

t −m− k > n−κ−2m
2 .
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Remark 4.14. When n′ = 1, T (M(m),M ′) consists exactly of the set of pairs (t, 1) such

that

n− 2pc
t 6 −2k+ κ.

Since the pc
t are decreasing, T (M(m),M ′) is therefore the set of t 6 s(M ′) where

s(M ′) := s(M ′,M) := sup{t | n− 2pc
t 6 −2k+ κ} (4.15)

and it is of cardinality s(M ′). Let

r(M ′) := r(M ′,M) := n− s(M ′,M).

If we assume κ ≡ n (mod 2), then, given the relations pc
i = n− 1− pn+1−i = qn+1−i , we

find

2k− κ ∈ [n− 2pr(M ′), n− 2pr(M ′)+1− 2] = [n− 2qc
s(M ′)+1, 2pc

s(M ′)− n]. (4.16)

The set of critical values is determined in [20], (3.3.8.1). When n > 1 we choose κ

such that the weight w of R(M)⊗ R(M ′) is odd; then w+1
2 is always critical. When

n = n′ = 1 we take κ = 0 (respectively κ = 1) and k 6= 0; then the near-central point

s = 1 (respectively the central point s = 0) is always critical. As in the previous section,

we obtain the formula

c±(R(M ⊗M ′)∨) ∼
∏

t6s(M ′)
Qn+1−t (M)−1 Q1(M ′)−1 · δ(M ⊗M ′)−1

∼
∏

t6s(M ′)
Qt (Mc)Q1(M ′)−1 · δ(M)−1 · δ(M ′)−n

∼ (2π i)
n(n−1)

2 · P6s(M ′)(M) · Q1(M ′)−s(M ′)δ(M ′)−n . (4.17)

The polarizations define an isomorphism

R(M ⊗M ′) ∼= R(M ⊗M ′)∨(1− n+ κ)⊗Q(α0 · εK)
and so, as before

c+(R(M ⊗M ′)(m))

∼ (2π i)n(1−n+κ)+ n(n−1)
2 +nmG(α−1

0, f · εK, f )
n · P6s(M ′)(M) · Q1(M ′)−s(M ′)δ(M ′)−n

∼ (2π i)mn− n(n−1)
2 G(α−1

0, f · εK, f )
n · P6s(M ′)(M) · (2π i)nκQ1(M ′)−s(M ′)δ(M ′)−n .

(4.18)

4.4. Holomorphic automorphic forms on unitary groups and automorphic

critical intervals when n′ = 1

In [20] and its successor [21], expressions for the critical values of L-functions of unitary

groups are derived from the determination of fields of rationality of Eisenstein series

for the Siegel parabolic, on the one hand, and from the construction of holomorphic
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differential operators. The latter are used to specify the signature of the unitary similitude

group whose associated Shimura variety realizes the critical values as the Petersson

square norm of a (rational) holomorphic automorphic form, up to elementary factors.

Unfortunately the definitions of the parameters are scattered in several places with

confusing sign changes between successive appearances. For the reader’s convenience, the

definitions of all relevant parameters and the main results on the existence of differential

operators are reproduced here.

Page numbers refer to [20]. The parameter (µ1, . . . , µn) of 5 is denoted (a1, . . . , an),

starting on p. 104; we replace the a’s with µ’s in what follows. There is also a central

parameter c (denoted c in [20]; we use boldface to distinguish the parameter from complex

conjugation) and assumed (on p. 103) to be of the same parity as
∑n

i=1 µi , and such that

the motives realized on the degree i cohomology of unitary group Shimura varieties are

of weight i − c (see p. 104). The main results of [20] apply to self-dual 5 and with our

conventions there it follows (though this is not adequately explained) that c = 0. Here

we assume for simplicity that c =∑n
i=1 µi = C(µ) in the notation of p. 105. This implies

that the integers P(µ) and Q(µ) defined on p. 105 are given by

P(µ) = −c and Q(µ) = 0.

We fix a signature (r, s), with n = r + s. For any integer k one defines

µ(k) := (µ1− k, µ2− k, . . . , µn − k;−nk+ c),
3(µ(k); r, s) := (µs+1− k− s, . . . , µn − k− s;µ1− k+ r, . . . , µs − k+ r;−nk+ c).

(buried on p. 136 between (2.9.8) and (2.9.9), with r and s switched).

The motive M(5) attached abstractly to 5 has the Hodge types given by 4.2. These

cannot always be realized as cohomological motives, for several reasons. If 5 descends

to an (L-packet of) automorphic representations π of a unitary group U (V ), V is a

Hermitian space over K of signature (r, s), then we obtain a motive with coefficients in K,

denoted M ′(π, V ; r) on p. 118, in the cohomology of the corresponding Shimura variety,

denoted Sh(V ) in [20]. The L-packet contains the holomorphic type representation

denoted πr,s above. When 5 is self-dual, as in [20], this is sufficient2, provided there

is a unitary group U (V ) of signature (n− 1, 1) to which 5 descends. When n is even

there is a local obstruction and one may only be able to realize even exterior powers
of the desired M(5), even in the self-dual case. We therefore make the following

hypothesis:

Hypotheses 4.19. For every signature (r, s) with r + s = n, there is a unitary group U (V )
of signature (r, s) such that the cuspidal automorphic representation5 of G(AK) descends

to an L-packet of automorphic representations {π} of U (V ). Moreover, the L-packet

{π} contains a member whose archimedean component is in the holomorphic discrete

series.

2More precisely, to get (the Betti realization of) a legitimate motive M ′(π, V ; r) we need to take the sum
M ′(π, V ; r)⊕M ′(π,−V ; s), as on p. 118, and this is necessary to define the archimedean Frobenius as an
operator on automorphic forms; but for the de Rham structure it suffices to work with M ′(π, V ; r).
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This hypothesis will be assumed implicitly in the remainder of this section. In the

statements of the main theorems in § 6 the hypothesis will be included explicitly; there

will also be a discussion of substitutes.

When 5 is conjugate self-dual but not self-dual – more precisely, when the central

character ω5 of 5 is not trivial, in particular when the integer C(µ) defined above is not

even – there may be an additional obstruction. We need to choose a Hecke character ξ

such that

ξ̃ := ξ/ξ c = ω−1
5 . (4.20)

Such a choice is always possible, cf. [6, Proposition 1.2.4] (which cites the book of Harris

and Taylor). This is because the Shimura variety is defined in terms of GU (V ) and not

U (V ), and an automorphic representation π of GU (V ) gives rise by base change to a

pair of automorphic representations (5, ξ) of GLn(AK)×GL1(AK). The parameter c is

determined by the archimedean component ξ∞ of ξ :

ξ∞(t) = t−c.

The Hodge type of the motive realized in the cohomology of Sh(V1), with (r, s) = (n− 1, 1)
(see [20, Example 2.2.5]) – call it M ′(π, V1; n− 1) (and don’t confuse this M ′ with the

M ′ for GLn−1) – is called the principal Hodge type in [20, § 2.2.9]; it is given by

(pi (µ), qi (µ)) = (pi +P(µ), qi +Q(µ)) = (pi − c, qi ), (4.21)

where (pi , qi ) are attached to 5 as in 4.2. Observe that by (4.3), the pairs (pi , qi ) also

depend on µ (although this has been hidden in the notation). More generally, if Vs has

signature (r, s), the motive M ′(πr,s, Vs; r) attached to the (holomorphic) representation

πr,s of GU (V ) that is nearly equivalent to π , in the sense that π and πr,s have the same

base change (5, ξ) to GLn(AK)×GL1(AK), is expected to bear the following relation to

the desired M(5):
M ′(πr,s, Vs; r) ∼= ∧r (M(5)∨)⊗M(ξ c). (4.22)

This is known to be true in most cases at the level of Galois representations (cf. [6,

Proposition 4.3.8], as well as the more complete results of Shin and Scholze–Shin), but

in the absence of the Tate conjecture one can’t even give a precise definition to the rank

one motive M(ξ c), much less prove a result such as (4.22). The best we can do is to

show how the expressions for special values obtained by analytic methods are products

of expressions that resemble those that would be expected if there were a complete theory

of motives. The choice of ξ should have no bearing on the expression of the special value

of the L-function of 5; we return to this point below3.

We can now restate [20, Corollary 3.3.8], which is the main result on the existence of

holomorphic differential operators. In what follows, notation is as on p. 145. In particular,

Em,κ is a line bundle on the Shimura variety Sh(n, n) (attached to a quasi-split unitary

similitude group of size 2n and E3,3](κ) is an automorphic vector bundle on the Shimura

variety Sh(V,−V ) (essentially Sh(V )× Sh(−V )).

3Actually, the Tate conjecture is more than we need. It would be enough to show that an isomorphism
at the level of Galois representations implies an isomorphism at the level of motives for absolute Hodge
cycles.
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Lemma 4.23. Let n′ = 1 and 5′, M ′ = M(5′), k, and κ be as in 4.3. Let (r, s) =
(r(M ′), s(M ′)) and let V be a Hermitian space of signature (r, s). Let m be a critical

value of R(M ⊗M ′) to the right of (the central point) 1
2 (n− κ). There is a (non-trivial)

differential operator

1(m, κ,3) : Em,κ → E3,3](κ)
where 3 = 3(µ∨(k); r, s) on the Shimura variety Sh(V,−V ).

Proof. Keeping in mind that in absence of the self-duality hypothesis for µ we have to

replace µ by µ∨ in [20, Corollary 3.3.8], we obtain such a differential operator for the

pair (r, s), provided

1
2 (n− κ) 6 m 6 min(qs+1(µ

∨)+ k− κ −Q(µ∨), ps(µ
∨)− k−P(µ∨))

= min(qc
s+1+ k− κ, pc

s − k),

where the second equality is (4.21) for µ∨. In particular, we have 2qc
s+1+ 2k > n+ κ and

2pc
s − 2k > n− κ; in other words

2k− κ ∈ [n− 2qc
s+1, 2pc

s − n]. (4.24)

So (4.16) implies that (4.24) is true exactly when s = s(M ′) = s(M ′,M).

We now summarize informally the constructions of [20, § 3] and the corresponding

sections of [21]. We let α and χ be Hecke characters of AK and U (1)(A), respectively,

with parameters κ and k as above. Let π be an anti-holomorphic representation of

GU (V )(A) and identify its contragredient π∨ with an anti-holomorphic representation

of GU (−V )(A) as in [20] (this identification is spread out over several sections; the

most important statements are Corollary 2.5.11.2, Lemma 2.8.8, and (2.8.9.5)). If Eis ∈
0(Sh(n, n), Em,κ) – in practice a holomorphic Eisenstein series – and f ∈ π , f ′ ∈ π∨, and

fχ = f ⊗χ ◦ det, f ′χ = f ′⊗χ−1 ◦ det, then the value of the standard L-function at s = m
can be identified, up to elementary and local terms, with the cup product (Serre duality)

pairing

1(m, κ,3)∪ [ fχ ⊗ ( f ′χ ⊗α−1 ◦ det)] → C. (4.25)

This pairing is well defined provided (in the notation of p. 147)

fχ ⊗ ( f ′χ ⊗α−1 ◦ det) ∈ H
2rs(

Sh(V,−V ),�top
Sh ⊗ E∨

3,3](κ)

)
(4.26)

where �
top
Sh is the canonical bundle on Sh(V,−V ) and H is the version of coherent

cohomology used in [20]. Now there is an isomorphism of automorphic vector bundles:

�
top
Sh ⊗ E∨

3,3](κ)
∼= Eµ(−k),µ(k−κ), (4.27)

with 3 = 3(µ∨(k); r, s) as in Lemma 4.23. This isomorphism is stated in the third

displayed formula on [20, p. 150] with µ in place of µ∨ inside 3, which is legitimate

in that setting because of the self-duality hypothesis. Now (4.27) implies that (4.26)

holds, since 5∞ has cohomology with respect to Eµ.

Therefore, the above calculations apply and give us the following version of [20,

Theorem 3.5.13] and [21, Theorem 4.3]. Recall that when β is a Hecke character, we
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have defined β̌ = (βc)−1 on [20, p. 82]. This should not be confused with β∨ = β−1. In

what follows, we let π = π(5, ξ) be an anti-holomorphic automorphic representation

of GU (V )(A), for some Hermitian space V to be specified, whose base change equals

(5, ξ). For any integer j ∈ [0, n] define P( j)(5, ξ) to be the period denoted P( j)(π, ?, β)

in [20, (2.8.2)]: it is the Petersson inner product with itself of a rationally normalized

holomorphic form on GU (V ) whose restriction to U (V ) is weakly equivalent to π on a

Hermitian space of signature (n− j, j). We set

P( j)(5) := (2π)c P( j)(5∨, ξ−1). (4.28)

This can be shown to be independent of the choice of ξ when appropriate L-functions have

non-vanishing critical values (see 4.33 for an explanation). The twist by the contragredient

is used for notational purposes only. We write

G(5′) := (2π i)k p(χ̌ (2) · α̌, 1).

The notation α f,0 for the restriction of (the finite part of) a Hecke character to the idèles

of Q, and G for the Gauß sum, are as in § 3.

Theorem 4.29. Let m > 1
2 (n− κ) be a critical value of L(s, R(M(5)⊗M(5′))). Let

(r, s) = (r(M ′), s(M ′)) and let V be a Hermitian space of dimension n over K with

signature (r, s). Let ξ be a Hecke character of K satisfying 4.20. Then,

L(m, R(M(5)⊗M(5′))) ∼KE(5)E(5′)

(2π i)mn− n(n−1)
2 G(εK, f )

d n
2 eP(s)(5∨)[(2π i)κG(α−1

f,0)]s G(5′)n−2s .

As mentioned above, this is a restatement of [20, Theorem 3.5.13] and [21, Theorem

4.3]. At the suggestion of the referee, we remind the reader that this result is proved

by using the doubling method of Piatetski-Shapiro–Rallis and Garrett to identify the

L-function with an integral of a degenerate Eisenstein series on a quasi-split unitary

group to which the Shimura variety Sh(n, n) is attached, against antiholomorphic forms

on the Shimura subvariety Sh(V,−V ). The statement concerns critical values to the right

of the center of symmetry; these correspond precisely to values of the Eisenstein series

that are nearly holomorphic in Shimura’s sense, and also to the differential operators

described in 4.23. The critical values can thus be analyzed in terms of cup products in

coherent cohomology of Sh(V,−V ). Note that the motivic interpretation of these critical

values depends on an interpretation involving coherent cohomology, whereas the critical

values of the Rankin–Selberg L-function of GL(n)×GL(n− 1) are interpreted as cup

products in topological cohomology.

Theorem 4.29 has the following equivalent reformulation. To this end, we recall that

R(M(5)⊗M(5′)) ≡ R(M(5c)⊗M(5′,c)) = R(M(5∨)⊗M(5′,c)).

Hence, by replacing µ by µ∨ in (4.27), we may apply Theorem 4.29 to the pair

(M(5∨),M(5′,c)), but still obtain an expression for our original L-value L(m, R(M(5)⊗
M(5′))). Let us write

5′,c = BC(χ)cαc = BC(χ ′) ·α′, M ′,c = M(5′,c).
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Then, a simple calculation shows that k′ = −k+ κ and κ ′ = κ, where k′ is attached to

χ ′ (respectively κ ′ to α′) as k has been attached to χ (respectively κ to α). Hence,

replacing M ′ by M ′,c in (4.16), we obtain 2k′− κ ′ ∈ [n− 2qc
s+1(5), 2pc

s (5)− n] if and

only if s = s(M ′,c,M). Inserting the above values for k′ and κ ′ and inverting the interval,

we end up with

2k− κ ∈ [n− 2pc
s (5), 2qc

s+1(5)− n] = [n− 2qr+1(5), 2pr (5)− n],
if and only if r = r(M ′,c,M). Now, recall that

2k− κ ∈ [n− 2qs+1(5), 2ps(5)− n] = [n− 2qc
s+1(5

∨), 2pc
s (5
∨)− n]

if and only if s = s(M ′,M∨). Thus,

(r(M ′,c,M∨), s(M ′,c,M∨)) = (s(M ′,M), r(M ′,M)). (4.30)

We may hence reformulate Theorem 4.29 by

Theorem 4.31. Let m > 1
2 (n− κ) be a critical value of L(s, R(M(5)⊗M(5′))). Let

(r, s) = (s(M ′), r(M ′)) and let V be a Hermitian space of dimension n over K with

signature (r, s). Let ξ be a Hecke character of K satisfying 4.20. Then,

L(m, R(M(5)⊗M(5′))) ∼KE(5)E(5′)

(2π i)mn− n(n−1)
2 G(εK, f )

d n
2 eP(r(M

′))(5)[(2π i)κG(α−1
f,0)]r(M

′)

×G(5′,c)n−2r(M ′).

4.5. A comparison to Deligne’s periods

Now let us compare this to the critical value predicted by Deligne’s conjecture, namely

(4.18):

(2π i)mn− n(n−1)
2 G(α−1

0, f · εK, f )
n · P6s(M ′)(M) · (2π i)nκQ1(M ′)−s(M ′)δ(M ′)−n .

Or rather let us make the following

Optimistic Comparison 4.32. Compare

G(εK, f )
d n

2 eP(r(M
′))(5)[(2π i)κG(α−1

0, f )]r(M
′)G(5′,c)n−2r(M ′) (Aut)

to
G(α−1

0, f · εK, f )
n · P6s(M ′)(M) · (2π i)nκQ1(M ′)−s(M ′)δ(M ′)−n . (Mot)

Applying (4.22), and bearing in mind that the base change of π is (5, ξ), we see that

ic P(r(M
′))(5) is the correct normalization for the Petersson inner product of a rational

class in the bottom stage of the Hodge filtration of ∧s(M ′)M(5∨)⊗M((ξ c)−1). (The

presence of the power ic, which will disappear in our applications in any case, is explained

in [20, Lemma 2.8.8].) On the other hand, P6s(M ′)(M) = Q6s(M ′)(M) · q(M) is the product

with q(M) of the Petersson norm of a rational class in the bottom stage of the Hodge

filtration of ∧s(M ′)M(5∨), and plausible arguments can be made to justify identifying

(2π i)cq(M) with the Petersson norm of M((ξ c)−1) (cf. [20, (3.7.9.3)–(3.7.9.5)], where

however it is assumed that c = 0).
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Remark 4.33. Note that the automorphic side (Aut) of the comparison involves a

Petersson norm on the unitary similitude group, and therefore depends in principle on

the auxiliary Hecke character ξ defined in (4.20). The motivic side (Mot), on the other

hand, is independent of this choice. Now Theorem 4.29 shows that replacing ξ with

ξ ′, also assumed to satisfy (4.20), gives another expression for the same critical value.

In particular, if the critical value does not vanish, then we see that P(r(M
′))(5∨, ξ) ∼

P(r(M
′))(5∨, ξ ′), where ∼ is taken over a simultaneous field of definition for 5, ξ, and ξ ′.

The ‘plausible arguments’ mentioned above give a motivic interpretation for this identity.

It thus remains to justify an identification

G(α−1
0, f · εK, f )

n ·(2π i)nκQ1(M ′)−s(M ′)δ(M ′)−n

∼ G(εK, f )
d n

2 e(2π i)κr(M ′)G(α−1
0, f )

r(M ′)G(5′,c)n−2r(M ′).
(4.34)

We provide such a justification, at least up to Galois conjugation over K, in the next

section.

4.6. The case of a Hecke character

We now assume n = 1 and 5 = 1 is the trivial character, so M = Q(0). We have s(M ′) =
s(M ′,Q(0)) = 1 if −2k+ κ > 1, s(M ′) = 0 if −2k+ κ 6 0. Then, if R(M ′)(m) is critical,

(4.18) becomes

c+(R(M ′)(m)) ∼
 (2π i)m+κG(α−1

0, f · εK, f ) · Q1(M ′)−1δ(M ′)−1, if 2k− κ 6 −1

(2π i)m+κG(α−1
0, f · εK, f ) · δ(M ′)−1 if 2k− κ > 0.

(4.35)

Since Deligne’s conjecture is known for critical values of L(s, R(M ′)), we thus have

L(m, R(M ′)) ∼
 (2π i)m+κG(α−1

0, f · εK, f ) · Q1(M ′)−1δ(M ′)−1, if 2k− κ 6 −1

(2π i)m+κG(α−1
0, f · εK, f ) · δ(M ′)−1 if 2k− κ > 0.

(4.36)

Here ∼ means ∼Q(M ′);K as in [20], because we are going to compare this with the result

of Theorem 4.29.

L(m, R(M ′)) ∼ (2π i)m+r(M ′)κG(εK, f )G(α−1
0, f )

r(M ′)G(5′,c)1−2r(M ′). (4.37)

Assume s(M ′) = 0, so 2k− κ > 0. Then comparing (4.37) and (4.36) we find

G(α−1
0, f · εK, f ) · δ(M ′)−1 ∼ G(εK)G(α−1

0, f )G(5
′,c)−1. (4.38)

Let us now get back to (4.34). Suppose for the moment α = 1, i.e., κ = 0. So we compare

G(εK, f )
n Q1(M ′)−s(M ′)δ(M ′)−n to G(εK, f )

d n
2 eG(5′,c)n−2r(M ′). Inserting (4.38), we finally

have to compare

G(εK, f )
n Q1(M ′)−s(M ′)δ(M ′)−n

to

G(εK, f )
d n

2 eδ(M ′)n−2r(M ′).
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Now observe that [23, Lemma 1.2.7] and [23, (1.2.5)] imply that Q1(M ′) ∼ δ(M ′)−2. So

we find that

G(εK, f )
n Q1(M ′)−s(M ′)δ(M ′)−n ∼ G(εK, f )

nδ(M ′)2s(M ′)−n ∼ G(εK, f )
nδ(M ′)n−2r(M ′).

Hence, the two side of (4.34) coincide up to a power of the Gauß sum G(εK, f ). We remark

that the same conclusion holds if one uses the case s(M ′) = 1 in order to obtain a relation

for G(5′c). Moreover, the case of non-trivial α is only slightly more complicated, and will

not be used in the sequel.

5. Rational Eisenstein classes of abelian type

5.1. Boundary cohomology

Recall the abelian representation 5′ from § 2.5 and the space Sn−1 from § 3.1. We denote

by Sn−1 the Borel–Serre compactification of Sn−1 and by ∂Sn−1 its boundary; cf. [3, 41].

The face coming from the Borel subgroup B ′ of G ′ is denoted ∂B′ Sn−1. It is given by

∂B′ Sn−1 = B ′(K)\G ′(AK)/K ′.

Since the only automorphic representations of the torus T ′ ⊂ B ′ are its Hecke characters

χ , it follows that

Hq(∂B′ Sn−1, Eλ) =
⊕
χ

Hq(g′, K ′, Ind
G ′(AK)
B′(AK)

[χ ]⊗ Eλ);

see, e.g., Harder [17]. Observe that induction is unitary here and that π0(G ′(C)) =
π0(B ′(C)) = 0, which simplifies things. Recall the character τ̃ = BC(χ1)γ ⊗ · · ·⊗
BC(χn−1)γ from § 3.4, and let W (G ′) be the Weyl group of G ′. For w ∈ W (G ′), we

let τ̃w be the representation

τ̃w := BC(χw−1(1))γ ⊗ · · ·⊗ BC(χw−1(n−1))γ

of T ′(AK), where w is viewed as a permutation. In particular, we may write

Hq(∂B′ Sn−1, Eλ) =
⊕

w∈W (G ′)
Hq(g′, K ′, Ind

G ′(AK)
B′(AK)

[τ̃w]⊗ Eλ)

⊕
⊕
χ 6=τ̃w
∀w∈W (G ′)

Hq(g′, K ′, Ind
G ′(AK)
B′(AK)

[χ ]⊗ Eλ),

and there is no weak G ′(A f )-intertwining between the two sums. Hence, for degree q =
bn−1, we obtain

Hbn−1(∂B′ Sn−1, Eλ) =
⊕

w∈W (G ′)
Ind

G ′(A f )

B′(A f )
[τ̃wf ]⊕

⊕
χ 6=τ̃w
∀w∈W (G ′)

Hbn−1(g′, K ′, Ind
G ′(AK)
B′(AK)

[χ ]⊗ Eλ),

(5.1)

and the summands in the first sum are all irreducible.
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Proposition 5.2. For all σ ∈ Aut(C), the following diagram of G ′(A f )-equivariant

homomorphisms commutes:

Hq(g′, K ′,5′⊗ Eλ)
� � //

σ ∗
��

Hq(Sn−1, Eλ)

σ ∗
��

resq
// Hq(∂Sn−1, Eλ)

σ ∗
��

resq
B′ // Hq(∂B′ Sn−1, Eλ)

σ ∗
��

Hq(g′, K ′, σ5′⊗ σEλ)
� � // Hq(Sn−1,

σEλ)
resq
// Hq(∂Sn−1,

σEλ)
resq

B′ // Hq(∂B′ Sn−1,
σEλ).

Furthermore, there are sections sB′ to the composition rB′ of the morphisms in the rows

of the diagram,

sB′ : Hbn−1(∂B′ Sn−1,
σEλ) −→ Hbn−1(g′, K ′, σ5′⊗ σEλ).

Proof. We only prove the last assertion. Recall the archimedean vectors ξ5′∞, j,β ∈
W (5′∞) from § 3.3. Then, for every non-zero ξ f ∈ W (5′f ), we let

E5′, j,β := W−1(ξ5′∞, j,β ⊗ ξ f ) ∈ 5′

be the corresponding Eisenstein series. Hence,∑
j,β

(
X ′∗j ⊗ E5′, j,β ⊗ e′β

)
∈ Hbn−1(g′, K ′,5′⊗ Eλ)

is a non-zero cohomology class by the choice of ξ5′∞, j,β . Via the inclusion

Hbn−1(g′, K ′,5′⊗ Eλ) ↪→ Hbn−1(Sn−1, Eλ),

it is mapped onto ∑
j,β

(E5′, j,β ⊗ e′β)dx j ∈ Hbn−1(Sn−1, Eλ),

and finally, when restricting to the Borel stratum, we obtain∑
j,β

(
E5′, j,β |B′ ⊗ e′β

)
dx j ∈ Hbn−1(∂B′ Sn−1, Eλ).

Here, E5′, j,β |B′ is the constant term of the Eisenstein series E5′, j,β with respect to the

Borel subgroup B ′; see [43, Satz 1.10]. According to [36, Proposition II.7], this constant

term can be written as

E5′, j,β |B′ =
∑

w∈W (G ′)
M(w, τ̃ ) f5′, j,β ,

where f5′, j,β is a K ′-finite section in Ind
G ′(AK)
B′(AK)

[τ̃ ], used to define the Eisenstein series

E5′, j,β , and M(w, τ̃ ) is the corresponding intertwining operator,

M(w, τ̃ ) : Ind
G ′(AK)
B′(AK)

[τ̃ ] → Ind
G ′(AK)
B′(AK)

[τ̃w];
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cf. [36, II.6]. As a consequence, the Eisenstein cohomology class, when restricting to the

Borel stratum, yields the class∑
w∈W (G ′)

∑
j,β

(
M(w, τ̃ ) f5′, j,β ⊗ e′β

)
dx j ,

which, via the isomorphism (5.1), lies in
⊕

w∈W (G ′) Ind
G ′(A f )

B′(A f )
[τ̃wf ]. Here, we observe that

there is no weak intertwining of the two sums in (5.1). This class is non-zero, since all

Eisenstein series E5′, j,β are holomorphic at their point of evaluation s = 0; cf. [43, proof of

Theorem 4.11]. Hence, since all representations Ind
G ′(A f )

B′(A f )
[τ̃wf ] are irreducible, the various

summands of the image of rB′ are either trivial or the whole target space. The assertion

follows now from the irreducibility of the source 5′f = Hbn−1(g′, K ′,5′⊗ Eλ).

5.2. A rationality result

Recall Proposition 2.5. It is clear that Hbn−1(∂B′ Sn−1, Eλ) inherits from Eλ a natural

Q(Eλ)-structure. By Proposition 2.4 and the temperedness of 5′∞, there is the equality

of number fields Q(Eλ) = Q(5′∞). Hence, by Strong Multiplicity One for isobaric

automorphic representations, Q(Eλ) ⊆ Q(5′f ). Next, observe that, by Proposition 2.5,

5′f = Hbn−1(g′, K ′,5′⊗ Eλ) carries a natural Q(5′f )-structure. We deduce the following

corollary.

Corollary 5.3. The morphism rB′ is Q(5′f )-rational, i.e., it maps the natural

Q(5′f )-structure of the cohomology Hbn−1(g′, K ′,5′⊗ Eλ) to the natural Q(5′f )-structure

of Hbn−1(∂B′ Sn−1, Eλ). The same holds true for the section sB′ .

Proof. This is clear by the commutativity of the diagram in Proposition 5.2.

Remark 5.4. We would like to point out that for regular coefficients Eλ, Theorem 7.23

in Grobner and Raghuram [15], should provide an alternative approach to Corollary 5.3.

Recall from § 3.4 that the rational structure on 5′f is given by the natural rational

structure on the induced representation. Let F 7→ F |B′ denote the constant term on

functions (Eisenstein series) F ∈ 5′, and let F |B′(τ̃ ) denote its τ̃ -component with respect

to the action of the maximal torus in B ′. It follows from the proof of Proposition 5.2 that

the following holds.

Lemma 5.5. Let F = F∞⊗ F f ∈ 5′ be a function with F∞ in the K ′-type contributing

to the cohomology space Hbn−1(g′, K ′,5′∞⊗ Eλ). Let L ⊇ Q(5′f ) be a field extension.

Then F defines an L-rational cohomology class [F] if and only if F f , viewed as an

element of Ind
G ′(A f )

B′(A f )
[τ̃ f ], takes values in L, which is furthermore equivalent to F |B′(τ̃ ),

viewed as an element of Ind
G ′(A f )

B′(A f )
[τ̃ f ], taking values in L. Moreover, for all σ ∈ Aut(C),

σ [F] = σ F∞⊗ σ(F f ) (the notation having the obvious meaning).
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5.3. Whittaker coefficients

Let f = ⊗′w fw be a K ′-finite decomposable section in Ind
G ′(AK)
B′(AK)

[τ̃ ]. We let E( f ) = E( f, 0)
be the attached Eisenstein series, evaluated at 0, where it is always holomorphic. We will

consider its global ψ-Whittaker functional (ψ-Fourier coefficient):

Eψ ( f )(g) :=
∫

U ′(K)\U ′(AK)
E( f )(u′g)ψ−1(u′)du′ ∈ W (5′).

To each ‘function’ ϕ ∈ τ̃ (which is of course simply a constant), we can associate a K ′-finite

decomposable section fϕ = ⊗′w fϕ,w ∈ Ind
G ′(AK)
B′(AK)

[τ̃ ], as in [42, 6.3]. Recall the choice of an

element w0 ∈ G ′(K), representing the longest element in the Weyl group of G ′/K. Then

we obtain the following result.

Proposition 5.6. The value at the identity id ∈ G ′(AK) of the ψ-Whittaker functional

Eψ ( fϕ) equals

Eψ ( fϕ)(id) =
∏

w∈S(5′)
Ww(idw) ·

∏
w/∈S(5′)

16i< j6n−1

L(1, BC(χi )wBC(χ−1
j )w)

−1,

where

Ww(idw) =
∫

U ′(Kw)

fϕ,w(w−1
0 n′w)ψ−1

w (n′w)dn′w.

In particular, Eψ ( fϕ)(id) has an Euler factorization.

Proof. This is [42, Theorem 7.1.2]. One simply observes that Shahidi’s functional λ0
w

(cf. [42, p. 122]) gives the complex number fϕ,w(w−1
0 n′w), viewed as an element in τ̃ .

We recall the Q-rational (and hence by our assumption also Q(Eλ)-rational) basis

vectors X ′∗j , respectively, the Q(Eλ)-basis {e′β} of Eλ from § 3.3. Moreover, we assume from

now on that ξ5′∞, j,β was chosen in a way such that the generator [5′∞] is Q(Eλ)-rational

in the sense of § 2.7.

We now choose a section fϕ such that fϕ,∞ is one of the vectors W−1(ξ5′∞, j,β) appearing

in the definition of [5′∞] (or rather its transfer by W−1), and that the non-archimedean

part of fϕ lies in the given Q(5′f )-structure of 5′f . Then, the evaluated Eisenstein series

E( fϕ) appears as a factor in the tensor product
∑

j,β(X
′∗
j ⊗ E5′, j,β ⊗ e′β), which defines

a Q(5′f )-rational Eisenstein cohomology class.

Corollary 5.7. There is a constant �(5′∞) ∈ C×, depending only on 5′∞ and on the

choice of basis vectors ξ5′∞, j,β , such that

p(5′) ∼Q(5′f ) �(5
′∞) ·

∏
16i< j6n−1

L(1, BC(χi ·χ−1
j ) f ).

Proof. It follows from Corollary 5.3 and Lemma 5.5, and the definitions that the

period p(5′) can be represented by the ratio between the value at the identity of the

τ̃ -component of the constant term and the value at the identity of the ψ-Whittaker
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functional Eψ ( fϕ), if the latter does not vanish. We have chosen fϕ in such a way

that E( fϕ) defines a Q(5′f )-rational class, which means that p(5′) is the inverse of

of Eψ ( fϕ)(id), which by Proposition 5.6 equals

W∞(id∞) ·
∏

w∈S(5′)\{∞}
16i< j6n−1

Ww(idw) · L(1, BC(χi )wBC(χ−1
j )w)

·
∏

16i< j6n−1

L(1, BC(χi ) f BC(χ−1
j ) f )

−1.

We take �(5′∞) = W∞(id∞)−1. Since the local L-factors belong to Q(5′f ) and

transform under the Galois group along with 5′, we will finish the proof if we can show

that fϕ,w can be chosen in such a way that the integral defining Ww(idw) is a rational

constant. Now, as in Lemma 5.5, the Q(5′w)-rational structure on the principal series

representation 5′w is given by that on the boundary cohomology, and coincides with the

one defined (adelically) in 2.6, namely the space of functions in the principal series whose

restrictions to a fixed maximal compact subgroup K ′w take values in Q(5′w). We take

U1 ⊂ U ′(Kw) to be a subgroup of the kernel of ψw. Possibly shrinking U1 further, we can

assume that fϕ,w(w0n′w) is supported in U1 as a function of n′w and takes value 1 there.

Then the integral is just a volume factor and belongs to Q.

6. Period relations - the main results

In this section we always assume 5 and 5′ to be obtained by base change from unitary

groups of all signatures; in other words, that they both satisfy Hypothesis 4.19.

6.1. Critical values of tensor products when one of the representations is of

abelian type

Let 5′ be the abelian automorphic representation of 2.5, attached to the (n− 1)-tuple

χ = (χ1, . . . , χn−1) and the auxiliary character γ ; we write 5′ = 5′(χ, γ ). Recall that

χ j,∞(eiθ ) = eik j θ and γ∞(z) = (z/z̄)t for k j ∈ Z and t ∈ n
2 +Z. If n is odd, we henceforth

assume t = 1
2 , to apply the formulas of [21].

Define γ+(x) as in Remark 2.6, i.e., γ+(x) = γ (x) · ‖x‖ 1
2 if n is odd and γ+(x) = γ (x)

if n is even. Then, if n is odd:

L(s, R(M(5)⊗M(5′))) =
n−1∏
j=1

L
(

s+ 3− 2n
2

,5⊗ BC(χ j ) · γ
)

=
n−1∏
j=1

L
(

s− n− 1
2

,M(5)⊗M(BC(χ j ) · γ+)
)
. (6.1)

Moreover, if n is odd, γ+∞(z) = z and thus, γ+ is of type η` with ` = −1, in the

notation of [20, (2.9.7)] and (especially) [21, Theorem 4.3], see p. 177. If n is even, then

γ+∞(z) = 1, so γ+ is of type η` with ` = 0. In what follows, we let α = γ+ and so the

restriction α0 = εn
K for all n. Thus, with this choice of α, the term (2π i)κr(M ′)G(α−1

0, f )
r(M ′)
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in Theorem 4.31 is just (2π i)κr(M ′) ·G(εn
K, f )

r(M ′). Let s0 = n− 1+m, where m is as in

4.7 above. We apply Theorem 4.31 to the critical values of L(s, R(M(5)⊗M(5′)) =
L(s, R(M(5∨)⊗M(5′c)). The results are as follows. If n is even, α = γ+ is the trivial

character and we have

L(n− 1+m, R(M(5)⊗M(5′))) =
n−1∏
j=1

L
(

n
2
+m,M(5∨)⊗M(BC(χ j )

c)

)

∼KE(5)E(5′)

n−1∏
j=1

(2π i)(
n
2+m)n− n(n−1)

2 ·G(εK, f )
n
2 · P(r(M+j ))(5)G(5+,cj )

n−2r(M+j )

∼KE(5)E(5′) (2π i)(n−1)(mn)+ n(n−1)
2 G(εK, f )

n(n−1)
2

n−1∏
j=1

P(r(M
+
j ))(5)G(5+,cj )

n−2r(M+j ),

∼KE(5)E(5′) (2π i)(n−1)(mn)+ n(n−1)
2 G(εK, f )

n(n−1)
2

n−1∏
j=1

P( j)(5)G(5′,cj )
n−2 j (6.2)

with 5
+,c
j = (BC(χ j )γ

+)c = BC(χ j )
−1 = 5′cj and M+j = M(5+j ) = M ′j . In order to

obtain the last line, note that the character χ j has infinity type (z/z̄)k j which in the

conventions of 4.2 means that the parameter is −k j . Then the set T (M,M ′j ) is the set of t
such that 2k j > n− 2pc

t . On the other hand, we are given that 2k j ∈ [n− 2q j+1, 2p j − n],
i.e., j is the largest integer such that 2k j > n− 2q j+1 = n− 2pc

n− j . Thus, s(M ′j ) = n− j
by (4.16) and so r(M+j ) = r(M ′j ) = j . If n is odd, then α = γ+ and we have

L(n− 1+m, R(M(5)⊗M(5′))) =
n−1∏
j=1

L
(

n− 1
2
+m,M(5∨)⊗M((BC(χ j )γ

+)c)
)

∼KE(5)E(5′)

n−1∏
j=1

(2π i)mn+r(M+j )G(εK, f )
d n

2 e+r(M+j )P(r(M
+
j ))(5)G(5+,cj )

n−2r(M+j )

∼KE(5)E(5′) (2π i)(n−1)(mn)+ n(n−1)
2 G(εK, f )

d n
2 e(n−1)+ n(n−1)

2

n−1∏
j=1

P( j)(5)G(5′,cj )
n−2 j .

(6.3)

Here5+,cj = (BC(χ j )γ
+)c = BC(χ j )

−1(γ+)c. The contribution of γ+ disappears because

the product of the periods of γ+ to the n− 2 j is just 1. In particular, the expressions

(6.2) and (6.3) are identical (up to the power G(εK, f )
n(n−1)

2 of the Gauß-sum, which we

may absorb into KE(5)E(5′)).

6.2. Whittaker periods and Petersson norms

In this section we combine the results of the previous sections to express the invariants

p(5) in terms of the P(s)(5). Notation is as above; in particular, 5 is cohomological and

obtained by base change from unitary groups and 5′ = 5′(χ, γ ).
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Proposition 6.4. Suppose 5 satisfies Hypothesis 4.19. Let s0 = n− 1+m, m > 0, be a

critical value of L(s, R(M(5)⊗M(5′))) satisfying L(n− 1+m, R(M(5)⊗M(5′))) 6= 0.

Then there are constants p(m,5∞,5′∞) ∈ C× and �(5′∞) ∈ C× such that

p(m,5∞,5′∞)�(5′∞) p(5)
∏

16i< j6n−1

L(1, BC(χiχ
−1
j ) f ) ∼KE(5)E(5′)

(2π i)(n−1)(mn)+ n(n−1)
2 G(εK, f )

d n
2 e(n−1)

n−1∏
j=1

P( j)(5)G(5′,c)n−2 j . (6.5)

A critical point s0 = n− 1+m, m > 0, giving L(n− 1+m, R(M(5)⊗M(5′))) 6= 0 exists

in particular, if the inequalities separating the archimedean parameters of 5 and 5′ are

strict:

µ1 > −λn−1 > µ2 > −λn−2 > · · · > −λ1 > µn .

Proof. This is obtained by comparing the expressions of 3.9, 5.7, 6.2, and 6.3 for the

non-vanishing value of the L-function, and bearing in mind that, by 3.10, the term

G(ω5′f,0) in 3.9 is trivial. The last assertion follows from the description of 4.7: It implies

there is a critical value s0 strictly to the right of the center of symmetry. Since 5 is

cuspidal, it is a theorem of Shahidi and Jacquet-Shalika that the value L(s0, R(M(5)⊗
M(5′))) 6= 0.

Now, let M ′i j := M(BC(χiχ
−1
j )) with i < j . Then, the parameter of M ′i j is 2(k j − ki ) <

0. So r(M ′i j ) = 0 and we get

L(1,M ′i j ) ∼ (2π i)G(BC(χiχ
−1
j )c) = (2π i)G(5′ci )G(5

′c
j )
−1.

Then ∏
16i< j6n−1

L(1,M ′i j ) ∼ (2π i)
(n−1)(n−2)

2

n−1∏
j=1

G(5′cj )
n−2 j .

Putting this together we find that, assuming the hypotheses of the preceding

proposition are verified, we have

p(m,5∞,5′∞)�(5′∞) p(5)(2π i)
(n−1)(n−2)

2

n−1∏
j=1

G(5′cj )
n−2 j ∼KE(5)E(5′)

(2π i)(n−1)(mn)+ n(n−1)
2 G(εK, f )

d n
2 e(n−1)

n−1∏
j=1

P( j)(5)

n−1∏
j=1

G(5′cj )
n−2 j

or more simply

p(m,5∞,5′∞)�(5′∞) p(5) ∼KE(5)E(5′) (2π i)(nm+1)(n−1)
n−1∏
j=1

P( j)(5). (6.6)

Now, we can state our first main theorem:
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Theorem 6.7. Let µ be the parameter of 5, and suppose µi −µi+1 > 2 for all i , so

that there is a parameter λ for G ′ and an integer m > 0 such that s0 = n− 1+m is

a critical value of the tensor product L-function L(s, R(M(5)⊗M(5′))) (in the motivic

normalization) for any 5′ with parameter λ. Suppose 5 satisfies Hypothesis 4.19. Then

there is a non-zero constant Z(5∞) which depends only on the local representation 5∞
and such that

p(5) ∼KE(5) Z(5∞)
n−1∏
j=1

P( j)(5).

Proof. The hypothesis on µ implies that there exist 5′ of abelian type such that the

comparison of (6.6) is valid. By letting 5′ vary among abelian type representations with

parameter λ, we can remove the E(5′) from the equivalence relation. Initially one obtains

the relation

p(5) ∼KE(5) Z(m,5∞,5′∞)
n−1∏
j=1

P( j)(5), (6.8)

where Z(m,5∞,5′∞) = [�(5′∞)p(m,5∞,5′∞)]−1 · (2π i)(nm+1)(n−1). But since the

left-hand side of 6.8 is independent of m and 5′∞, so is the right-hand side.

Remark 6.9. Two substitutes are possible for Hypothesis 4.19 when it is not satisfied.

As noted above, there is only an obstruction if n is even. Under the regularity hypothesis

on the parameter µ, it can be shown that the standard L-function of 5 can be realized,

up to an abelian twist, as the L-function of a holomorphic automorphic representation

of U (n+ 1− j, j) for any j ; this was done in most cases using the theta correspondence

in [22]. The Petersson norm of an arithmetically normalized form in this representation

can then be used in place of the missing P( j)(5).

Even in the absence of the regularity hypothesis, one can use quadratic base change,

as in [47], to define versions of the missing P( j)(5). These are only well-defined up to

square roots of elements in the coefficient field, so are less precise than the ones defined

motivically.

6.3. General tensor products

Combining the comparison in Theorem 6.7 with Theorem 1.3, we obtain the following

general result, when 5∞ and 5′∞ are both sufficiently regular.

Theorem 6.10. Let 5 = BC(π) and 5′ = BC(π ′) be cuspidal automorphic represen-

tations of G(AK) and G ′(AK) which are cohomological with respect to Eµ and Eλ,

respectively. Suppose

(1) µi −µi+1 > 2 for all i and λ j − λ j+1 > 2 for all j .

(2) Both 5 and 5′ satisfy Hypothesis 4.19.
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Then for every critical point s0 = 1
2 +m of L(s,5×5′) with m > 0,

L
(

1
2
+m,5 f ×5′f

)
∼KE(5)E(5′)

p(m,5∞,5′∞)Z(5∞)Z(5′∞)
n−1∏
j=1

P( j)(5)

n−2∏
k=1

P(k)(5′).

Equivalently, for every critical point s0 = n− 1+m of L(s, R(M(5)⊗M(5′))) with

m > 0,

L(n− 1+m, R(M(5)⊗M(5′))) ∼KE(5)E(5′)

p(m,5∞,5′∞)Z(5∞)Z(5′∞)
n−1∏
j=1

P( j)(5)

n−2∏
k=1

P(k)(5′).

6.4. The archimedean constant

The constants �(5′∞), p(m,5∞,5′∞), and p(5) all depend on choices of test vectors in

the induced and Whittaker models of 5∞ and 5′∞. We have decided to choose vectors

rational over K, but we could also choose test vectors with the property that W∞(5′) = 1.

Since this choice depends only on 5′∞, it makes sense for cuspidal as well as Eisenstein

representations. This provides a unique normalization of p(5) and thus a unique value

for p(m,5∞,5′∞) (as does the choice of rational vectors).

In [33], Jie Lin proves a period relation for5 and5′ obtained by automorphic induction

from Hecke characters. Using this relation, she deduces the following refinement of

Theorem 6.10.

Theorem 6.11 (Jie Lin). Under the hypotheses of Theorem 6.10, we have the following

relations:

L
(

1
2
+m,5 f ×5′f

)
∼KE(5)E(5′) (2π i)(m+

1
2 )n(n−1)

n−1∏
j=1

P( j)(5)

n−2∏
k=1

P(k)(5′)

or equivalently,

L(n− 1+m, R(M(5)⊗M(5′))) ∼KE(5)E(5′) (2π i)(m+
1
2 )n(n−1)

n−1∏
j=1

P( j)(5)

n−2∏
k=1

P(k)(5′),

provided m > 0.

If m = 0 her result remains true under a certain global non-vanishing hypothesis. In

view of formula (4.12), this is exactly what is predicted by Deligne’s conjecture, assuming

the validity of Optimistic Comparison 4.32.

6.5. Whittaker periods and adjoint L-values

The results of this section, in contrast to Theorem 6.7, are unconditional, but for the

moment they only apply under slightly restrictive hypotheses. This is because they
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are based on Wei Zhang’s version [51] of the Ichino–Ikeda–Neal Harris conjecture for

automorphic forms on unitary groups, see [19], and for the moment neither the local nor

global properties of the relative trace formula are known in sufficient generality to allow

a complete comparison. The simplifying hypotheses in [51] are analogous to those used

in earlier applications of the Arthur-Selberg trace formula, and the history of the latter

gives us reason to be optimistic that the restrictions will soon be unnecessary.

For ease of reference, the simplifying hypotheses are listed separately.

6.5.1. Simplifying hypotheses. The unitary groups H and H ′ are as in the earlier

sections. We let π and π ′ be unitary cuspidal automorphic representations of H(A),
respectively H ′(A), which occur with multiplicity one in the discrete spectrum of H ,

respectively H ′. Say a prime p is split if it splits in the quadratic extension K. Since we

want to use Wei Zhang’s results, we have to assume

Hypotheses 6.12. • (a) There exists some split prime p such that πp and π ′p are both

supercuspidal.

• (b) Every prime p < M is split, where M is the ‘algorithmically computable’

constant that arises in [12] in the transfer to characteristic zero of the Jacquet–Rallis

fundamental lemma (see below).

• (c) If p is not split, then πp and π ′p are both unramified.

Remark 6.13. (a) Let 5 = BC(π) and 5′ = BC(π ′) denote the base change

representations of π and π ′, to G(AK) and G ′(AK), respectively. Hypothesis (a) above

implies that 5 and 5′ are both cuspidal automorphic representations. Moreover, by

Theorem 2.2, 5 and 5′ are both of cohomological type. Hence, the Asai L-functions

L(s,5, As(−1)n−1
) and L(s,5′, As(−1)n−2

) have a pole at s = 1, by [24] or [37, Corollary

2.5.9 and (2.5.12)]. As a consequence, Zhang’s additional set of assumptions RH(I) (cf.

[51], p. 544) is satisfied in our case. Moreover, Zhang’s second set of assumptions RH(II)

(cf. [51, pp. 544–545]) is fulfilled by the work of Beuzart-Plessis [2]. (We should, however,

mention that the latter paper depends on the (expected) properties of local L-packets

for unitary groups. See [2, § 18.1] for the precise expectations.)

(b) In [51] it is also assumed that π and π ′ are locally tempered at all places. Due

to Caraiani [4, Theorem 1.2], 5 = BC(π) and 5′ = BC(π ′) are tempered at all places

(under hypothesis (a) it was also proved in the book of Harris and Taylor). We expect

that by [30] and forthcoming work of Kaletha et al., it should automatically follow that

π and π ′ are also tempered at all places, whence we did not assume this explicitly.

However, the extremely careful reader may restrict himself/herself in what follows to the

case where π and π ′ are locally tempered at all primes p.

(c) Yun proves the Jacquet–Rallis fundamental lemma in [49] for local fields of

characteristic > n. In her appendix to Yun’s paper, Gordon derives the Jacquet–Rallis

fundamental lemma for a local field K of characteristic 0, but at present her methods

(from motivic integration) require her to assume that the residue characteristic of K
is greater than an unspecified positive constant M . This is the M that appears in (b)

above; it is effectively computable but no one has carried out the computation. For split
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primes the Jacquet–Rallis fundamental lemma is vacuous. The requirement that a prime

p be split in the results of [51] can be removed whenever the Jacquet–Rallis fundamental

lemma is known in residue characteristic p.

Since H(R) and H ′(R) are both assumed compact we are in case (2) of [51], Theorem

1.2. We define

L(π, π ′) := 1n ·
L( 1

2 ,5×5′)
L(1, π, Ad)L(1, π ′, Ad)

,

where 1n is the L-function of the Gross motive:

1n =
n∏

i=1

L(i, εi
K, f ).

For φ ∈ π and φ′ ∈ π ′, we let

P(φ, φ′) :=
∫

H ′(Q)\H ′(A)
φ(h′)φ′(h′)dh′;

〈φ, φ〉 :=
∫

H(Q)\H(A)
φ(h)φ̄(h)dh.

We use Tamagawa measures for dh and dh′. Here is Zhang’s theorem.

Theorem 6.14 [51]. Assume π , π ′, and K satisfy hypothesis 6.12. Then there is a non-zero

constant c(π∞, π ′∞), depending only on the archimedean components of π and π ′, such

that, for every factorizable φ ∈ π and φ′ ∈ π ′,

2−2c(π∞, π ′∞)Zloc(φ, φ
′)L(π, π ′) = |P(φ, φ′)|2

〈φ, φ〉〈φ′, φ′〉 .

Here Zloc =
∏
v∈S Zv is a product of normalized local integrals of matrix coefficients; Zv

is denoted
α
′\
v (8v,8v)

(8v,8v)v

in [51], with 8v = φv ⊗φ′v (Zhang uses φv for this tensor product).

Remark 6.15. The theorem in [51] is stated under a more general version of hypothesis

(c). With a bit more work we could derive the consequences below in this more general

situation; however, hypothesis (c) is destined to disappear in the short term, so this seems

unnecessary.

As in [23, (4.1.2)], we have

1n ∼K (2π i)
n(n+1)

2 ·G(εK, f )
d n+1

2 e. (6.16)

In [23] n is assumed even, but the same argument gives the above result. (Observe

moreover that the field Q(εK), which appears in [23] reduces to the field of rational
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numbers, as εK is a quadratic Hecke character.) Since H and H ′ are both definite unitary

groups, the archimedean local integral Z∞ is an algebraic number, rational over the field

of definition of (the finite-dimensional representation) π∞⊗π ′∞. The discussion leading

to [23, § 4.1.6] thus yields:

Corollary 6.17. Assume π , π ′, and K satisfy hypothesis 6.12. Then there exists a non-zero

constant cπ∞,π ′∞ such that

•

3(π, π ′) := cπ∞,π ′∞G(εK, f )
d n+1

2 e(2π i)
n(n+1)

2 · L( 1
2 ,5 f ×5′f )

L(1, π f , Ad)L(1, π ′f , Ad)
∈ Q̄. (6.18)

• For all σ ∈ Aut(C),
σ(3(π, π ′)) = 3(σπ, σπ ′). (6.19)

The only difference with [23, (4.1.6.2)] is the inclusion of the factor cπ∞,π ′∞ – since the

Ichino–Ikeda–Neal Harris conjecture is only known up to a factor c(π∞, π ′∞) – and of the

power of the Gauß sum is not omitted.

Theorem 1.3 gives a different expression for the numerator of (6.18). Before we compare

the two expressions, we need the following non-vanishing result, which is essentially due

to Zhang.

Proposition 6.20. Let π be an automorphic representation of H(A) satisfying hypothesis

6.12. Then there exists an automorphic representation π ′ of H ′(A) satisfying hypothesis

6.12 and φ ∈ π , φ′ ∈ π ′, such that P(φ, φ′) 6= 0 and L( 1
2 , BC(π)× BC(π ′)) 6= 0.

Proof. This is essentially [50, Lemma 2.15]. Let p be a split place such that πp is

supercuspidal. Since the center of H is anisotropic, the central character of πp is unitary.

Let µp be a supercuspidal representation of H ′(Qp) with unitary central character.

Since H(Qp) ∼= GLn(Qp) and H ′(Qp) ∼= GLn−1(Qp), it is known that HomH ′(Qp)((5p ⊗
µp),C) 6= 0. Since both πp and µp are tempered, it follows from a result of Sakellaridis

and Venkatesh (quoted as [26, Theorem A.1]) that the local integral∫
H ′(Qp)

f (h′) f ′(h′)dh′ 6= 0

for some matrix coefficients f, f ′ of πp and µp, respectively. It follows that (the dual of)

µp is weakly contained in the restriction to H ′(Qp) of πp.

Now we assume µp is induced from an irreducible representation of GLn−1(Zp) · Z ,

where Z is the center of H ′(Qp); by the theory of types, there are supercuspidal

representations with this property. Choose an irreducible component µ∞ of the restriction

to H ′(R) of (the finite-dimensional representation) π∞. Then we can apply [50, Lemma

2.15] to obtain an automorphic representation π ′ of H ′, whose archimedean component is

µ∞ and whose p-component is supercuspidal (a twist of µp), for which there exist φ ∈ π
and φ′ ∈ π ′ such that P(φ, φ′) 6= 0. This implies the non-vanishing of the L-value by the

main result of [51], provided we know that π ′ is unramified at all non-split places.
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Lemma 6.21. Let π be an irreducible representation of H(A) when n = 1; in other words,

π is a character of U (1)(A). Then L(s, π, Ad) = L(s, εK). In particular, L(1, π f , Ad) ∼K
(2π i)G(εK, f ).

Proof. This is an obvious calculation: The Lie algebra of H is one-dimensional and the

adjoint representation of L G is trivial on the Langlands dual group C× and is given by

the quadratic character εK.

Theorem 6.22. Let π be an irreducible unitary cuspidal automorphic representation of

H(A) which is cohomological with respect to Eunt
µ . Assume π satisfies hypothesis 6.12.

Then there are a non-zero complex constant a(π∞), depending only on π∞, and an integer

g(n) ∈ Z, such that

p(BC(π)) ∼KQ(π) a(π∞)G(εK, f )
g(n)L(1, π f , Ad).

Proof. We prove this by induction on n. When n = 1 the Whittaker period p(BC(π)) is

rational and the claim follows from 6.21.

Suppose the theorem is known for n− 1. Choose π and let π ′ be an automorphic

representation of H ′(A) satisfying 6.20 relative to π . As π and π ′ both satisfy hypothesis

6.12, 5 = BC(π) and 5′ = BC(π ′) are cuspidal automorphic representations matching

the conditions of Theorem 1.3. In particular, p(BC(π)) and p(BC(π ′)) exist. By the very

construction of π ′, Lemmas 2.1 and 4.7, s0 = 1
2 is critical for L(s, BC(π)× BC(π ′)), so

p(BC(π)∞, BC(π ′)∞) is well-defined. Now, let

3W (π, π
′) := cπ∞,π ′∞G(εK, f )

d n+1
2 e(2π i)

n(n+1)
2 · p(BC(π))p(BC(π ′))p(BC(π)∞, BC(π ′)∞)

L(1, π f , Ad)L(1, π ′f , Ad)
.

We apply (6.18) and Theorem 1.3 to the pair (π, π ′) and conclude that 3W (π, π
′) ∈

Q̄. By [23, Proposition 2.6], σ5 (respectively σ5′) descends to σπ (respectively σπ ′),
which are cuspidal automorphic representations satisfying hypothesis 6.12. Hence, using

Proposition 6.20, (6.19) and Theorem 1.3 again,

σ(3W (π, π
′)) = 3W (

σπ, σπ ′), (6.23)

for all σ ∈ Aut(C). But by induction, we can rewrite

3W (π, π
′) ∼KQ(π ′)

p(BC(π))
L(1, π f , Ad)

·[a(π ′∞)cπ∞,π ′∞G(εK, f )
d n+1

2 e+g(n−1)(2π i)
n(n+1)

2 ·p(BC(π)∞, BC(π ′)∞)].

It follows from (6.23) that

p(BC(π)) ∼KQ(π)Q(π ′)

L(1, π f , Ad)·[a(π ′∞)cπ∞,π ′∞G(εK, f )
d n+1

2 e+g(n−1)(2π i)
n(n+1)

2 ·p(BC(π)∞, BC(π ′)∞)].
The term in brackets on the right-hand side depends only on π∞ (since π ′∞ is an

irreducible component of the restriction to H ′(R) of π∞) and the degree n, whereas

the left-hand side depends only on π , so we conclude by induction.
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Remark 6.24. For a different approach to a similar (in fact more general) result, we refer

to our forthcoming work with Lapid [14].

Corollary 6.25. Let 5 and 5′ be cuspidal automorphic representations of G(AK) and

G ′(AK) which are cohomological with respect to Eµ and Eλ, respectively. We assume 5 =
BC(π) and 5′ = BC(π ′) where π and π ′ are irreducible unitary cuspidal automorphic

representations of the definite unitary groups H(A) and H ′(A), respectively. Suppose

moreover that both π and π ′ satisfy hypothesis 6.12 and that the coefficients Eµ and Eλ
satisfy the equivalent conditions of Lemma 2.1. Then for every critical point s0 = 1

2 +m
of L(s,5×5′) with m > 0, there are a non-zero complex constant a(m,5∞,5′∞),
depending only on the archimedean components of 5 and 5′, and an integer a(n),
depending only on n, such that,

L( 1
2 +m,5 f ×5′f ) ∼KQ(π)Q(π ′) a(m,5∞,5′∞)G(εK, f )

a(n)L(1, π f , Ad)L(1, π ′f , Ad).

Equivalently, for every critical point s0 = n− 1+m of L(s, R(M(5)⊗M(5′))) with m >
0,

L(n− 1+m, R(M(5)⊗M(5′f )))

∼KQ(π)Q(π ′) a(m,5∞,5′∞)G(εK, f )
a(n)L(1, π f , Ad)L(1, π ′f , Ad).

Proof. Indeed, it follows from the Theorems 6.22 and 1.3 and the fact that Q(5 f ) ⊆ Q(π)
(respectively Q(5′f ) ⊆ Q(π ′)) that we can define

a(m,5∞,5′∞) := a(π∞)a(π ′∞)p(m,5∞,5′∞) ∈ C×

and a(n) := g(n)+ g(n− 1) ∈ Z.

6.6. Generalizations

The methods of this paper apply to pairs 5,5′ of representations when the critical values

of their L-functions can be related directly to cup products of the cohomology classes

they define. This is only possible when the coefficients satisfy the inequalities of Lemma

2.1, a condition that is equivalent to relations on the Hodge types of the corresponding

motives that are summarized as 4.6.

We have seen in 4.12 that the Deligne periods of tensor products of motives satisfying

these hypotheses can be expressed, up to a certain power of 2π i , as products of terms

denoted P6s(M) and P6s′(M ′), each occuring to the first power (for 1 6 s 6 n− 1 and

1 6 s′ 6 n− 2). Deligne periods of tensor products are calculated more generally in [23,

§ 1.4]. As explained in [23], the motivic periods that occur in this calculation belong

to a tableau, and it follows without difficulty that in all cases these Deligne periods are

products of certain integral powers of the same P6s(M) and P6s′(M ′); the powers depend

on the relative positions of the Hodge types of M and M ′. In optimistic comparison 4.32 we

argue that P6s(M) and P6s′(M ′) can be identified with certain Petersson (square) norms

of normalized holomorphic automorphic forms P(i)(5) and P( j)(5′). Thus we would

expect that the critical values of L(s,5×5′) can always be expressed, up to algebraic

factors, as powers of 2π i multiplied by powers of these Petersson inner products.
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In fact, one can always find integers N > n and Hecke characters χi , i = 1, . . . N − n;

χ ′j , j = 1, . . . , N − n, all obtained by base change from U (1), such that the (tempered)

Eisenstein representations

Σ = 5�χ1�χ2� · · ·�χN−n; Σ ′ = 5′�χ ′1�χ ′2� · · ·�χ ′N−n

are cohomological and have coefficients satisfying the inequalities of Lemma 2.1. (In

alluding to ‘base change’ we are ignoring the parity issue that we have already seen in

2.5; all the parameters of the Eisenstein representations have to be either integers or

half-integers, depending on the parity of N . But this can always be arranged.) Suppose

for the moment that the assertion of Theorem 3.9 was valid for the pair (Σ,Σ ′). Then we

would find that, up to algebraic factors, the critical values of L(s,Σ ×Σ ′) were powers

of 2π i multiplied by
N−1∏
r=1

P(r)(Σ) ·
N−2∏
r ′=1

P(r
′)(Σ ′).

On the other hand, the L-function admits a factorization

L(s,Σ ×Σ ′) = L(s,5×5′) ·
N−n∏
i=1

L(s,5′⊗χi ) ·
N−n∏
j=1

L(s,5⊗χ ′j ) ·
N−n∏
i, j=1

L(s, χi ·χ j ).

Now we have expressions of the last three factors on the right-hand side in terms of

P(i)(5) and P( j)(5′) and CM periods of χi and χ ′j , and we can expect that P(r)(Σ) and

P(r
′)(Σ ′) can also be expressed in terms of the periods of 5, 5′, and the auxiliary Hecke

characters. In this way one would obtain an expression of the critical values of interest,

namely those of the remaining term L(s,5×5′), as powers of P(i)(5) and P( j)(5′), as

expected.

The problem is that the integral representation used in Theorem 3.9 does not converge

when the automorphic form on GLN is an Eisenstein series. In [25], Ichino and Yamana

obtain the Rankin–Selberg product for Eisenstein representations of GLN ×GLN−1 as a

regularized period integral. It seems to be difficult to interpret this regularized integral

as a regularized cup product in rational cohomology.

Alternatively, assuming both Σ and Σ ′ descend to definite unitary groups, which must

certainly be possible for appropriate choices of χi and χ ′j , we could apply the method

described in § 6.5 to obtain an expression for the central critical value L( 1
2 ,5×5′)

analogous to that in Corollary 6.25, provided the χi and χ ′j could be chosen, with the

given infinity types, so that the central critical values L( 1
2 ,5

′⊗χi ) and L( 1
2 ,5⊗χ ′j )

were all non-zero. It would then be possible to deduce the expected expressions for more

general central critical values from the expected generalization of recent results of Harder

and Raghuram [18]. Unfortunately, proving the existence of such χi and χ ′j seems to be

an extremely difficult problem.

Yet another method would be to ignore the cup product altogether. The

Rankin–Selberg integral

φ⊗φ′ 7→ Im(φ, φ
′) :=

∫
G ′(K)\G ′(AK)

φ(g′)φ′(g′)‖ det(g)‖mdg (6.26)
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defines a (g, K ,G(A f ))-invariant bilinear pairing on the space 5(K )⊗5′(K ′) of K ×
K ′-finite elements in 5⊗5′, indexed by the integer m (where this is defined

by analytic continuation of the integral where necessary). On the other hand, its

realization in cohomology determines a natural Q(5 f )Q(5′f )-rational structure on

5 f ⊗5′f , and therefore L(5,5′) := Hom(g,K ,G(A f ))(5(K )⊗5′(K ′),C) also has a natural

Q(5 f )Q(5′f )-rational structure. Under the so-called automatic continuity hypothesis,

any element of L(5,5′) extends continuously to the smooth Fréchet completions of

moderate growth. In this case, it is known that L(5,5′) is of dimension 1. Thus,

there is a Rankin–Selberg period invariant P(5,5′) ∈ C× such that P(5,5′)−1 Im is

Q(5 f )Q(5′f )-rational; moreover, these invariants can be defined consistently for all

Aut(C)-conjugates of 5, 5′. Verification of Deligne’s conjecture then comes down

to identifying these P(5,5′), whether or not the pairing Im can be related to a

cohomological cup product. If 5′ is abelian automorphic, the P(5,5′) can be related as

above to Petersson norms of holomorphic forms on unitary groups and periods of Hecke

characters. It would seem that P(5,5′) factors in general as a product of a period

invariant attached to 5 and one attached to 5′, each independent of the other factor,

but we see no way to prove this in general.

In a forthcoming joint paper with S. Yamana, we avoid these difficulties by applying

a different combinatorial argument. We anticipate that our method will give a version of

Theorem 6.10 without assuming the inequalities of Lemma 2.1.
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