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WHITTAKER-SHINTANI FUNCTIONS FOR ORTHOGONAL GROUPS
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Abstract. As generalizations of zonal spherical functions and Whittaker functions,
certain special functions on p-adic orthogonal groups closely related to automorphic forms
are introduced. Their multiplicity one property and explicit formula are established.

Introduction.

0.1. The object of this paper is to study certain special functions on orthogonal groups
over p-adic fields, which naturally arise from the investigation of automorphic L-functions
for these groups.

Let G = SOm be a split special orthogonal group of degree m = m′ + 2r + 1 (r ≥ 0)
defined over a non-archimedean local field k with the ring of integers o. Let Q be a parabolic
subgroup of G whose Levi subgroup is isomorphic to SOm′+1 × (GL1)

r . We embed another
split special orthogonal group G′ = SOm′ into SOm′+1 as the stabilizer of an anisotropic
vector, and regard G′ as a subgroup of G. Let U be the unipotent radical of Q. We denote
by G = G(k) and G′ = G′(k) the groups of k-rational points of G and G′, respectively. (As
above, algebraic groups are denoted in boldface letters, while the corresponding groups of
k-rational points in italic letters.) We also let K = G ∩ GLm(o) and K ′ = G′ ∩ GLm′(o) be
maximal open compact subgroups of G and G′, respectively. We choose a generic character
ψU : U → C

× invariant under the action ofG′ on U .
Let us denote by L and R the left and the right regular representations ofG on a suitable

function space on G, respectively. Let C∞(G,ψU ) be the space of smooth functions F on
G satisfying L(u)F = ψU (u)F for u ∈ U . Under the assumption on ψU , the group G′ acts
on C∞(G,ψU ) via the left translation so that C∞(G,ψU ) becomes a G ×G′ module. (The
G-action is the right regular one.)

Let H = H(G,K) (resp. H′ = H(G′,K ′)) be the Hecke algebra of (G,K) (resp.
(G′,K ′)) over C. They act on C∞(G,ψU )

K×K ′
, the space of K × K ′-fixed vectors in

C∞(G,ψU ). For ω ∈ HomC-alg(H,C) and ω′ ∈ HomC-alg(H
′,C), we define the space of

Whittaker-Shintani functions attached to (ω, ω′) to be the space of (ω, ω′)-eigenvectors in
C∞(G,ψU )

K×K ′
. Namely, a function F on G is said to be a Whittaker-Shintani function
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attached to (ω, ω′) if it satisfies the following two conditions:

L(uk′)R(k)F = ψU (u)F (u ∈ U, k′ ∈ K ′, k ∈ K) ;(0.1.1)

L(ϕ′)R(ϕ)F = ω′(ϕ′)ω(ϕ)F (ϕ′ ∈ H′, ϕ ∈ H) .(0.1.2)

0.2. In this paper, with an application to the theory of automorphicL-functions in mind,
we prove that the space of Whittaker-Shintani functions with arbitrary eigenvalues (ω, ω′) is
one-dimensional, and give an explicit formula for the Whittaker-Shintani functions in terms of
the Satake parameters attached to (ω, ω′). In a subsequent paper, by using the uniqueness and
the explicit formula presented here, we will show that certain Rankin-Selberg convolutions
actually give integral expressions of the standard L-functions for SO×GL (see [KMS]). This
kind of convolution is also studied in [GPR].

Our Whittaker-Shintani functions are studied by several authors. When m′ = 0 or 1,
the functions considered here are the usual Whittaker functions. The explicit formula has
been given by Casselman-Shalika [CS] and one of the authors [K1] independently. In the
case where m′ = 2, Novodvorsky studied these functions, whose explicit formula is given
in [BFF]. We note that G′ is abelian for m′ ≤ 2. The case where m′ ≥ 3 is considered
in [GPR]. On the other hand, if r = 0, the Whittaker-Shintani functions coincide with the
special functions studied in [MS2], in which they are called Shintani functions.

In the course of our investigation of Whittaker-Shintani functions, it is indispensable to
study the double coset decomposition UK ′\G/K , since those functions satisfy (0.1.1). We
shall show that we can choose essentially a subset of maximal torus as representative for the
decomposition. This result may be considered as an analogue/mixture of usual Cartan and
Iwasawa decompositions for p-adic groups.

0.3. We now explain our results more precisely. Let P (resp. T) be the Borel sub-
group (resp. the maximal torus) of G consisting of upper triangular matrices (resp. diagonal
matrices) in G. We assume that P ⊂ Q. We denote by P′ and T′ the subgroups of G′ cor-
responding to the above P and T. We have the Cartan decompositions G = KT ++K and
G′ = KT ′++

K ′ for some subsemigroups T ++ ⊂ T and T ′++
⊂ T ′.

THEOREM 0.4 (See Theorems 5.1 and 6.1.).
(1) There exist an element gm,r ∈ G and a subsemigroup T̃ ++ of T containing T ++

such that the decomposition G = UK ′T ′++
gm,r T̃

++K holds.

(2) The support of any Whittaker-Shintani function is contained in UK ′T ′++
gm,r

T ++K .

Thus Whittaker-Shintani functions are determined by the value on the “torus” as zonal
spherical functions and Whittaker functions are.

Let (ω, ω′) be a pair of “eigenvalues” as in 0.1. The Satake parameter of ω is an element
Ξ of Xnr (T ), the group of unramified characters of T ([Sa]). We shall naturally identify
Xnr (T ) with (C×)l, l = dim T so that Ξ = (Ξ1, . . . , Ξl) ∈ (C×)l . Similarly, we let ξ
be the Satake parameter of ω′; hence ξ = (ξ1, . . . , ξl′) ∈ (C×)l

′
≃ Xnr (T

′) (l′ = dim T′).
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The Weyl group W = W(G, T ) canonically acts on Xnr (T ) (via permutation of coordinates
{Ξi,Ξ

−1
i (1 ≤ i ≤ l)}). The same holds for the action ofW ′ = W(G′, T ′) on Xnr (T ′).

Since UK ′T ′++
gm,rT

++K = UK ′T ′++
gm,rwℓ(T

++)−1K , where wℓ ∈ K is a repre-
sentative of the longest element of W , Whittaker-Shintani functions are determined by their
values on T ′++

gm,rwℓ(T
++)−1.

Let us define a rational function cWS(Ξ, ξ) in Ξ and ξ by

cWS(Ξ, ξ) =
b(Ξ, ξ)

dm(Ξ)dm′(ξ)
,

where

b(Ξ, ξ) =
∏

1≤i≤l′

1≤j≤l

(1 − q−1/2(ξ−1
i Ξj )

ηij )(1 − q−1/2ξiΞj )

(q=the cardinality of the residue field of k; ηij = 1 (j ≤ r + i), = −1 (j > r + i))

and

dm(Ξ) =


















∏

1≤i<j≤l

(1 − ΞiΞ
−1
j )(1 −ΞiΞj )

∏

1≤i≤l

(1 −Ξ2
i ) if m = 2l + 1 ,

∏

1≤i<j≤l

(1 − ΞiΞ
−1
j )(1 −ΞiΞj ) if m = 2l .

(The definition of dm′ (ξ) is similar.)

THEOREM 0.5 (See Theorem 10.9). For any (ω, ω′), the space of Whittaker-Shintani

functions attached to (ω, ω′) is one-dimensional, and is spanned by the function F given by

the following formula,

F (t ′gm,rwℓt
−1) =

∑

w∈W
w′∈W ′

cWS(wΞ,w
′ξ)((wΞ)−1δ1/2)(t)((w′ξ)−1δ′

1/2
)(t ′) .

Here δ (resp. δ′) is the modulus character of P (resp. P’).

The resemblance between this formula and that for zonal spherical functions ([Mac])
or Whittaker functions ([CS], [K1]) is obvious. These Whittaker-Shintani functions, zonal
spherical functions, and Whittaker functions are interpreted as spherical functions on spherical
homogeneous spaces. (This will be explained in 4.3.) Actually, this fact plays an important
role in our study of Whttaker-Shintani functions. It is to be noted that Shintani functions
for GLn(k) ([MS3]) and Whittaker-Shintani functions for Sp2n(k) ([Sh2], [MS1]) are also
examples of those functions. We can give explicit formulas for these (Whittaker-) Shintani
functions by the same method as that in this paper. Details will appear elsewhere.

0.6. This paper is organized as follows. The sections 1 through 3 are of preliminary
nature. In Sections 1 and 2, we shall review several facts on unramified principal series repre-
sentations of p-adic groups and give some results for our later use in the study of Whittaker-
Shintani functions. In Section 3, we shall give several notation, definitions and preparatory
results concerning the special orthogonal group G = SOm and their subgroups.
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In Section 4, we shall define Whittaker-Shintani functions precisely and give some rep-
resentation theoretic interpretations (including an integral expression) of these functions.

A double coset decomposition UK ′\G/K is presented in Section 5. For some technical
reasons, we first give the corresponding decomposition for the full orthogonal group Om(k)

and then handle the case for G = SOm(k). The support of Whittaker-Shintani functions,
which turns out to be a proper subset of G if r > 0, is studied in Section 6.

In Section 7, we shall show that the dimension of the space of Whittaker-Shintani func-
tions (with fixed eigenvalues of Hecke algebras) is at most one. (Later we shall prove that
the dimension is exactly one.) This theorem is deduced from Section 6 by using a system of
difference equations as in the case of Whittaker functions [Sh1], [K1].

Section 8 is devoted to the calculation of some integrals relevant to Whittaker-Shintani
functions. The calculation is done by case-by-case considerations.

Then we shall give the main results of this paper, the uniqueness (up to a scalar multi-
ple) of Whittaker-Shintani functions and an explicit formula of them for fixed eigenvalues of
Hecke algebras, in Section 10. The method employed here is similar to that in [CS]. To estab-
lish these results, we use the calculation in Section 8 together with a new rationality argument
in Section 9 (see also Section 2).

In the final section 11, we shall evaluate the value of Whittaker-Shintani functions at the
identity element by using a combinatorial argument.

0.7. Main results of this paper were announced at the meeting on “Automorphic forms
on algebraic groups”, 1996 (RIMS, Kyoto University, Japan), [KMS]. See also [M].

NOTATION. We let k be a non-archimedean local field, o the ring of integers in k and
π a prime element in o. The cardinality of the residue field o/πo is denoted by q .

We assume that the characteristic of k is different from 2 for simplicity.
The normalized absolute value on k is denoted by | · |. The normalized additive valuation

is given by v : k× → Z so that |x| = q−v(x) for x ∈ k×.
For any algebraic group, say G, we shall denote by G the locally compact group of its

k-rational points G(k).
The symbols Matm,n and Altn denote the variety ofm×n-matrices and that of alternating

matrices of size n over k, respectively.
If A ⊂ G, then we let chA be the characteristic function of A.

1. Unramified principal series representations. In this section, we shall give some
preliminary results on the unramified principal series representations of reductive groups.
The main references are [C1], [C2]. We follow the notation in [C2] unless otherwise stated.
Throughout this and the next sections, we work with general reductive groups instead of
orthogonal groups which are the main subjects of this paper.

1.1. Let G be a connected reductive group over k and P a minimal parabolic subgroup
of G. We restrict ourselves to the case where G is split over k for simplicity, since later we
shall work only in this situation. However we remark here that all the statements given in
Sections 1 and 2 are valid also for non-split groups with suitable modifications.
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We fix a maximal split torus T in P. The group P is actually a Borel subgroup from
our assumption. Then we have the Levi decomposition P = TN, where N is the unipotent
radical of P. We denote by Σ the root system of (G,T) and by Σ+ the set of positive roots
corresponding to P. The unipotent radical of the opposite of P is denoted by N−. Since G is
split, we can assume that G and other subgroups T, P, N are defined over o.

Let K = G(o) be the maximal compact subgroup of G consisting of o-rational points of
G. Then G = G(k) admits the Iwasawa decomposition G = PK = NTK and the Cartan
decomposition G = KT ++K , where

T ++ = {t ∈ T | |α(t)| ≤ 1 (α ∈ Σ+)} .

Denote by W = NG(T )/T the Weyl group of G with respect to T . We shall often identify
each element w ∈ W with a representative in K , and regard W as a subset of K . We let
ℓ : W → Z≥0 be the length function with respect to Σ+. The longest element of W is
denoted by wℓ, and the reflection associated with α ∈ Σ by wα .

LetB be the Iwahori subgroup contained inK corresponding toΣ+ so thatB (mod π)=
P(o/πo). We have various Bruhat-type decompositions G = PWP, G = PWB, G =

BWT B andK = BWB.
1.2. Let

Xnr (T ) := {χ ∈ Hom(T ,C×) | χ |T∩K ≡ 1}

be the group of unramified characters of T . We also denote Xnr (T ) simply by X. We set
χ(tn) = χ(t) for t ∈ T , n ∈ N so that χ ∈ X defines an element of Hom(P,C×). For
χ ∈ X, the space of unramified principal series representation I (χ) is given by

I (χ) = {f ∈ C∞(G) | f (pg ) = (χδ1/2)(p)f (g ) (p ∈ P, g ∈ G)} .

Here δ : P → R
×
>0 is the modulus character of P . The group G acts on I (χ) by the right

regular action f �→ R(g )f for g ∈ G, where (R(g )f )(x) = f (xg ). Note that, by the
Iwasawa decomposition, I (χ) is canonically isomorphic to C∞

c (P ∩K\K) as a K-module.
We denote by Pχ the G-projection from C∞

c (G) to I (χ) defined by

Pχ (f )(g ) =

∫

P

(χ−1δ1/2)(p)f (pg )dp (f ∈ C∞
c (G)) .

Here dp is the left invariant Haar measure of P with
∫

P∩K
dp = 1 (see [C2]).

1.3. Let Q be an algebraic subgroup of G. Let U be a locally closed subset of G
invariant under the left and right translations by P andQ, respectively. We denote by I (χ;U)

theQ-module consisting of f ∈ C∞(U) with compact support modulo P , such that f (px) =

(χδ1/2)(p)f (x) for p ∈ P, x ∈ U . If U is open in G, then I (χ;U) is a Q-submodule of
I (χ) via extension by zero outside of U .

PROPOSITION 1.4 ([C1, 6.1.1], see also [BZ]). Let U,V be two P ×Q-invariant open

subsets ofG such that U ⊃ V . Then the sequence ofQ-modules

0 −→ I (χ;V)
i

−→ I (χ;U)
res

−→ I (χ;U − V) −→ 0
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is exact. Here i is the natural inclusion and res is the restriction map.

1.5. Now we put Q = P in the above setting. Let us put Gw =
⋃

PyP (y =

w, or ℓ(y) > ℓ(w)) for w ∈ W . It is known that Gw is open in G, and that PwP is closed in
Gw. Thus we have, from 1.4, an exact sequence of P -modules,

0 −→
∑

ℓ(v)>ℓ(w)

I (χ;Gv) −→ I (χ;Gw) −→ I (χ;PwP) −→ 0 .(1.5.1)

Since the Jacquet module I (χ;PwP)N is isomorphic to the one-dimensional representation
(w−1χ)δ1/2 of T , we have

I (χ)N ≃
⊕

w∈W

(wχ)δ1/2(1.5.2)

for χ ∈ Xreg, whereXreg = {χ ∈ X | wχ 
= χ for any w ∈ W } is the set of regular characters
in X.

1.6. We assume χ to be regular until the end of 1.10. Let Tw,χ : I (χ) → I (wχ) be
the intertwining operator given by the following integral

Tw,χ (φ)(x) =

∫

N∩wNw−1\N

φ(w−1nx)dṅ(1.6.1)

for φ ∈ I (χ). Here dṅ is the invariant measure of N ∩wNw−1\N with
∫

(Image of N∩K)
dṅ =

1. (This integral (1.6.1) converges under certain conditions on χ and is continued holo-
morphically to Xreg. See [C2], [Mat].) By the Frobenius reciprocity [C1], this Tw,χ cor-
responds to the projection I (χ)N → (wχ)δ1/2 arising from (1.5.2). We note that the image
Ty−1,yχ (I (yχ;Gyw)) is contained in I (χ;Gw) if ℓ(yw) = ℓ(y) + ℓ(w) (see [C1, 6.4.3]).
The next proposition will be used in Section 2.

PROPOSITION 1.7. For any y,w ∈ W with ℓ(yw) = ℓ(y)+ ℓ(w),

Ty−1,yχ(I (yχ;Gyw))+
∑

ℓ(v)>ℓ(w)

I (χ;Gv) = I (χ;Gw) .

PROOF. In view of (1.5.1), it suffices to show that the composite of the maps

res ◦ Ty−1,yχ : I (yχ;Gyw)
T
y−1,yχ
−→ I (χ;Gw)

res
−→ I (χ;PwP)

is surjective. We note that, for any z ∈ W , P\PzP is naturally isomorphic to (N ∩ z−1Nz)\N .
Hence we have an isomorphism as vector spaces

ιz,χ = ιz : I (χ;PzP) −→ C∞
c (N ∩ z−1Nz\N)

given by

ιz(φ)(n) = φ(zn) (φ ∈ I (χ;PzP), n ∈ N) .

The inverse of ιz is given by

ι−1
z (a)(pzn) = (χδ1/2)(p)a(n) (a ∈ C∞

c (N ∩ z−1Nz\N), p ∈ P, n ∈ N) .
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Now we put ι = ιyw,yχ and ι′ = ιw,χ . We calculate res ◦ Ty−1,yχ(φ) for φ ∈ I (yχ;Gyw)

with φ|PywP = ι−1(a) (a ∈ C∞
c (N ∩ (yw)−1N(yw)\N)). We then have

(ι′ ◦ res ◦ Ty−1,yχ )(φ)(n) = (Ty−1,yχφ)(wn)

=

∫

N∩y−1Ny\N

φ(yn1wn)dṅ1

=

∫

w−1Nw∩(yw)−1N(yw)\w−1Nw

φ(ywn2n)dṅ2 .

Note that the conditions α > 0 and wα < 0 imply that ywα < 0 . This shows that

N ∩ w−1Nw ∩ (yw)−1N(yw) = N ∩ (yw)−1N(yw)

and

w−1Nw ∩ (yw)−1N(yw)\w−1Nw = N ∩ (yw)−1N(yw)\N ∩w−1Nw .

Thus the integral in the right hand side above is written as
∫

w−1Nw∩(yw)−1N(yw)\w−1Nw

φ(ywn2n)dṅ2 =

∫

N∩(yw)−1N(yw)\N∩w−1Nw

a(n3n)dṅ3 .

Obviously the map π from C∞
c (N ∩ (yw)−1N(yw)\N) to C∞

c (w
−1Nw ∩N\N) given by

π(a)(n) =

∫

N∩(yw)−1N(yw)\N∩w−1Nw

a(n3n)dṅ3

is surjective. Thus the map res ◦ Ty−1,yχ = ι′
−1

◦ π ◦ ι is surjective. �

1.8. Let H = H(G,K) be the Hecke algebra of (G,K). For χ ∈ Xnr (T ), we let
φK = φK,χ be the function on G given by φK (ntk) = (χδ1/2)(t) (n ∈ N, t ∈ T , k ∈ K).
This is a basis element of the one-dimensional space I (χ)K , the space of K-fixed vectors in
I (χ). After Satake [Sa], we define a C-homomorphism ωχ of H to C by

ωχ (ϕ) =

∫

G

φK (g )ϕ(g )dg (ϕ ∈ H) ,

where dg is the Haar measure of G with vol(K) = 1. Hence we have

R(ϕ)φK = ωχ (ϕ)φK ,

where

(R(ϕ)φK )(x) =

∫

G

ϕ(g )φK(xg )dg

by definition. Thenχ �→ ωχ gives rise to a bijection betweenW\Xnr (T ) and HomC-alg(H,C).
1.9. Let us put φw = φw,χ = Pχ (chBwB) (w ∈ W) so that

φw(g ) =







(χδ1/2)(t) if k ∈ BwB ,

0 otherwise ,
(1.9.1)
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for g =ntk (n ∈ N, t ∈T , k∈K). Then {φw (w∈W)} is a basis for I (χ)B . Let cα(χ)

(α ∈ Σ) be the c-function in [C2] (see also [Mac]). According to [C2], there is another basis
{fw (w ∈ W)} for I (χ)B satisfying

(1.9.2) R(chBtB)fw = vol(BtB)(wχ)δ1/2(t)fw (t ∈ T ++) ,

(1.9.3) fwℓ = φwℓ ,

and

(1.9.4) φK =
∑

w∈W

cw(χ)fw ,

where cw(χ) =
∏

cα(χ) (α > 0, wα < 0). We easily see that Tw−1,wχ (φwℓ,wχ ) = fwℓw.

PROPOSITION 1.10. There is a basis {gw(w ∈W)} for I (χ)B satisfying the follow-

ing properties:

(1.10.1) R(chBt−1B)gw = vol(BtB)(wχ)−1δ1/2(t)g w (t ∈ T ++) ;

(1.10.2) g 1 = φ1 ;

(1.10.3) φK = qℓ(wℓ)
∑

w∈W

c̄w(χ)gw ,

where c̄w(χ) =
∏

cα(χ) (α > 0, wα > 0).

PROOF. We note that wℓ(t)−1 ∈ T ++ if t ∈ T ++. For t ∈ T ++, we have

BwℓB · Bt−1B = Bwℓt
−1B = Bwℓ(t)

−1B · BwℓB(1.10.4)

by using the Iwahori factorization B = (B∩N−)(B∩T )(B∩N) and the facts t (B∩N)t−1 ⊂

B ∩ N and t−1(B ∩ N−)t ⊂ B ∩ N−. Let H(G,B) be the Hecke algebra of (G,B). This
is a C-algebra under the convolution product with a basis {chBwB (w ∈ W)}, where
vol(B)−1chB is the unit element. Then (1.10.4) implies that

chBwℓB · chBt−1B = vol(B)chBwℓt−1B = chBwℓ(t)−1B · chBwℓB

in the Hecke algebra H(G,B). Note that basis elements chBwB (w ∈ W) are invertible.
Therefore we have (1.10.1) if we put gw = R(chBwℓB)

−1fwℓw for w ∈ W . Since fwℓ =

φwℓ = Pχ (chBwℓB), we see that

g 1 = vol(B)R(chBwℓB)
−1Pχ (chBwℓB) = Pχ (chB) = φ1 .

Finally applying vol(B)R(chBwℓB)
−1 on both sides of (1.10.3), we get

q−ℓ(wℓ)φK =
∑

w∈W

cw(χ)gwℓw =
∑

w∈W

c̄w(χ)gw . �

We note that

gw = Tw−1,wχ (φ1,wχ )(1.10.5)

for w ∈ W (cf. [Mat], [K2]).
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1.11. For a suitable subset VX of X = Xnr (T ), we consider an analytic family of
representations I (χ) (χ ∈ VX) (see [C1, 2.7]) in a certain algebraic way.

Let C[X] be the coordinate ring of the affine variety X ≃ (C×)dimT . Since X =

Hom(T /T ∩ K,C×), we see that each element t of T (modulo T ∩ K) defines a regular
function η(t) on X by η(t)(χ) = χ(t) (χ ∈ X). Note that η : T → C[X]× is a homomor-
phism. We regard η as a homomorphism from P to C[X]×. As in [K2], we define aG-module
I over C[X] by

I = {f ∈ C[X] ⊗C C
∞(G) | f (pg ) = (ηδ1/2)(p)f (g ) (p ∈ P, g ∈ G)}

≃ C[X] ⊗C C
∞(P ∩K\K) (as C[X]-modules) .

This C[X]-module I reduces to I (χ) under the specialization at χ ∈ X. Also, under the
notation of 1.3, we can define C[X]-module I (U) for a P × Q-stable open subset U of G.
The specialization of I (U) at χ ∈ X is I (χ;U).

Let VX be a Zariski open subset of X. We denote by C[VX] the ring of regular functions
on VX. Then we define a G-module over C[VX], the restriction of I to VX by I |VX :=

C[VX] ⊗C[X] I . We use a similar notation I (U)|VX for I (U) above. Let Xreg be the set
of all the regular elements in X. We know that the intertwining operator Tw,χ : I (χ) →

I (wχ) (χ ∈ X) is regular on Xreg, i.e., Tw,χ (Pχ (f ))(g ) is regular in χ ∈ Xreg for any
f ∈ C∞

c (G) and g ∈ G (see [C2]). This follows from the following two facts:

(1.11.1) The restriction of Tw on I (χ)B is regular in χ ∈ Xreg (see [Mat], [C2]).
(1.11.2) The space I (χ)B generates I (χ); or more strongly, IB generates I as a G-module
over C[X] (see [Mat, 5.3.14]).

Let Iw (w ∈ W) be the C[X]-module whose specialization at χ is given by I (wχ).
(Hence I1 = I by definition.) Since the intertwining operators Tw,χ (w ∈ W) are regular in
χ ∈ Xreg, we have G-homomorphisms over C[Xreg], Tw,z : Iz|Xreg → Iwz|Xreg that induce
Twz−1,zχ : I (zχ) → I (wχ) for any w, z ∈ W and χ ∈ Xreg.

1.12. We say that a linear form lχ : I (χ) → C is rational in χ if lχ is obtained from the
specialization of a C[VX]-homomorphism l : I |VX → C[VX] for some Zariski open subset VX
ofX. More generally, if a family of subspaces I ′(χ) of I (χ) (χ ∈ VX) is the specialization of
a C[VX]-submodule I ′ of I |VX , we can define the rationality of a linear form l′χ : I ′(χ) → C

as well. Let P be the canonical G-map from C∞
c (G) to I given by

P(f )(g ) =

∫

P

(η−1δ1/2)(p)f (pg )dp (f ∈ C∞
c (G))

(see 1.11). The image of P generates I as a C[X]-module. Hence, in order to see that a linear
form lχ : I (χ) → C is rational, it is enough to check that, for any f ∈ C∞

c (G), the function
of χ ∈ X given by lχ (Pχ (f )) is in C[VX] for some open VX (independent of f ).

Suppose that a linear form lχ,σ : I (χ) → C has a parameter σ ∈ Y , where Y is a
parameter space (a Zariski open subset of C

s, s ≥ 0, for example). Then we say that lχ,σ
is rational in (χ, σ ) if lχ,σ is the specialization of C[VX×Y ]-homomorphism C[VX×Y ] ⊗C[X]

I → C[VX×Y ] for some open subset VX×Y ⊂ X × Y .
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Finally, we remark here that we can formulate 1.7 as a statement for C[Xreg]-modules:

Ty−1,y(Iy(Gyw))+
∑

ℓ(v)>ℓ(w)

I (Gv) = I (Gw)(1.12.1)

for any y,w ∈ W with ℓ(yw) = ℓ(y)+ℓ(w). This shows that a linear form lχ : I (χ;Gw) →

C is rational in χ if both the restriction of lχ to Ty−1,yχ (I (yχ;Gyw) and that to
∑

ℓ(v)>ℓ(w) I (χ;Gv) are rational.

2. Equivariant linear forms. In this section, we study the space HomQ(I (χ), ρ) for
a subgroupQ ofG and a one-dimensional representation ρ ofQ. We note that HomQ(I (χ), ρ)
is naturally isomorphic to the space of distributions F on G satisfying L(p)R(x)F =

(χ−1δ1/2)(p)ρ(x)F for p ∈ P, x ∈ Q. Here L and R are respectively the left and right
regular actions of G on the space of distributions.

2.1. Let Q be an algebraic subgroup of G such thatQ has finitely many orbits on P\G.
We let {ρ = ρσ : Q → C

×} be a family of one-dimensional representations with a parameter
σ ∈ Y , where the parameter space Y = {σ } is a Zariski open subset of C

s for some s ≥ 0.

LEMMA 2.2. Let O be a P ×Q-orbit in G. Then dim HomQ(I (χ;O), ρ) ≤ 1.

PROOF. We have

I (χ;O) ≃ Indc(g
−1(χδ1/2) | Q ∩ g

−1P g ,Q)

by definition, if O = P gQ for some g ∈ G. Here the right hand side denotes the space
of smooth functions f on Q with compact support modulo Q ∩ g

−1P g such that f (px) =

(χδ1/2)(gpg
−1)f (x) for p ∈ Q ∩ g

−1P g , x ∈ Q. Thus, if we let δg be the modulus
character ofQ ∩ g

−1P g , we get

dim HomQ(I (χ;O), ρ) = dim HomQ(Indc(g
−1(χδ1/2)⊗ ρ−1 | Q ∩ g

−1P g ,Q),C)

= dim HomQ∩g−1Pg
(g −1(χδ1/2)⊗ ρ−1, δg ) ([C1, 2.4.3])

≤ 1 . �

Now we assume the following properties on P, Q, χ and ρ.

ASSUMPTION 2.3.
(2.3.1) There exists a unique open P ×Q-orbit O0 in G.
(2.3.2) There exists an open dense subset Z of X × Y such that

HomQ(I (χ;O), ρσ ) = {0}

for any P ×Q-orbit O distinct from O0 if (χ, σ ) ∈ Z.

PROPOSITION 2.4. Suppose that Assumption 2.3 holds. Then the restriction map from

HomQ(I (χ), ρσ ) to HomQ(I (χ;O0), ρσ ) is injective for (χ, σ ) ∈ Z, and hence

dim HomQ(I (χ), ρσ ) ≤ 1 .
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PROOF. Let us set Ud =
⋃

O (codimO ≤ d) for d ≥ 0. Then Ud are P ×Q-stable
open subsets of G for d ≥ 0. Note that U0 = O0 and that Ud = G for d large enough. We
have exact sequences ofQ-modules

0 −→ I (χ;Ud−1) −→ I (χ;Ud ) −→
∑

codimO=d

I (χ;O) −→ 0

for any d ≥ 1 by 1.4. Thus, from (2.3.1) and (2.3.2), the restriction map is injective and

dim HomQ(I (χ), ρσ ) ≤ dim HomQ(I (χ;O0), ρσ ) .(2.4.1) �

REMARK 2.5. (1) The argument in 2.4 actually shows that

dim HomQ(I (χ;U), ρσ ) ≤ 1

for any P ×Q-stable open subset U of G under the assumption 2.3.
(2) Similar result holds when there are finitely many open P ×Q-orbits with a suitable

modification (of 2.3 and 2.4).

2.6. Now we shall work with Q satisfyingQ ⊂ P in the following situation:

(2.6.1) For some open (but not necessarily Zariski open) subset Z+ of X × Y , there exists
a family of non-zero elements lχ,σ ∈ HomQ(I (χ), ρσ ) ((χ, σ ) ∈ Z+).

We shall give conditions on lχ,σ ∈ HomQ(I (χ), ρσ ) to be meromorphically (rationally)
continued to the whole X× Y (see 1.12). Note that PwℓP is a P ×Q-stable open subvariety
of G. We impose the following condition on the family of lχ,σ for (χ, σ ) ∈ Z+.

ASSUMPTION 2.7. The restriction of lχ,σ to I (χ;PwℓP) depends rationally on
X × Y . Namely, there exists a Zariski open subset Z′ of X × Y so that the function of
(χ, σ ) given by lχ,σ (Pχ (f )) for a fixed f ∈ C∞

c (PwℓP) is a regular function on Z′. In
particular, one can extend lχ,σ |I (χ;PwℓP) to generic (χ, σ ).

2.8. The Weyl groupW acts onX×Y by (natural action)×(trivial action). We may sup-
pose that Z in 2.3 is identical to Z′ above, and moreover that Z isW -invariant and contained
in Xreg × Y , by replacing Z by a dense subset if necessary.

Let Tw = Tw,w−1χ : I (w−1χ) → I (χ) be the intertwining operator in 1.6. Then

T ∗
wlχ,σ = lχ,σ ◦ Tw ∈ HomQ(I (w−1χ), ρσ ) for (χ, σ ) ∈ Z+.

Thus the uniqueness property 2.5 (1) shows that (under 2.3 and 2.7), if (χ, σ ) ∈ Z∩Z+,

T ∗
wlχ,σ |I (w−1χ;PwℓP)

= a(w, χ, σ )lw−1χ,σ |I (w−1χ;PwℓP)
(2.8.1)

with some scalar factor a(w, χ, σ ). (Note that lw−1χ,σ |I (w−1χ;PwℓP)
in the right hand side is

rational in (χ, σ ) by Assumption 2.7.)

ASSUMPTION 2.9. The scalar factor a(wα, χ, σ ) for any simple root α depends ratio-
nally on (χ, σ ) ∈ X × Y .
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PROPOSITION 2.10. Under the assumptions 2.7 and 2.9, lχ,σ ∈ HomQ(I (χ), ρσ )
depends rationally on (χ, σ ) ∈ X × Y . In particular, for generic (χ, σ ), lχ,σ is defined and

satisfies HomQ(I (χ), ρσ ) = C · lχ,σ .

PROOF. We shall prove that the restriction of lχ,σ to I (χ;Gwwℓ ) depends rationally on
(χ, σ ) by induction on ℓ(w). (For the definition of Gwwℓ , see 1.5.) This is valid for w = 1
from the assumption 2.7. We assume that ℓ(w) > 0 and that lχ,σ |I (χ;Gywℓ)

for any y ∈ W

with ℓ(y) < ℓ(w) depends rationally in (χ, σ ). We decompose w as w = wαy (ℓ(w) =

ℓ(y)+ 1, α ∈ ∆). Then, by (2.8.1),

T ∗
wα
lχ,σ |I (wαχ;Gwℓ )

= a(wα, χ, σ )lwαχ,σ |I (wαχ;Gwℓ )

for (χ, σ ) ∈ Z∩Z+. Since the right hand side above is defined on I (wαχ;Gywℓ) for generic
(χ, σ ) (and is rational) by the induction hypothesis, the uniqueness 2.4 implies that

T ∗
wα
lχ,σ |I (wαχ;Gywℓ )

= a(wα, χ, σ )lwαχ,σ |I (wαχ;Gywℓ )
.

The intertwining operator Tw = Tw,χ depends rationally on χ (see 1.11). Thus the restriction
lχ,σ |Twα (I (wαχ;Gywℓ ))

depends rationally on χ . The induction hypothesis and 1.7 (see also
1.12, especially (1.12.1)) show that lχ,σ |I (χ;Gwwℓ )

is rational in (χ, σ ). Therefore we see that
lχ,σ is rational in (χ, σ ), and hence is defined for generic (χ, σ ). Moreover the uniqueness
argument 2.4 shows that HomQ(I (χ), ρσ ) = C · lχ,σ for generic (χ, σ ). �

2.11. In Section 9 we shall construct a family of the equivariant linear forms lχ,σ in
the following way. Suppose that there exist an open subset Z+ of X × Y and a family of
continuous functions Yχ,σ ((χ, σ ) ∈ Z+) satisfying

Yχ,σ (pg x) = (χ−1δ1/2)(p)ρσ (x)
−1Yχ,σ (g ) (p ∈ P, g ∈ G, x ∈ Q) .(2.11.1)

These Yχ,σ give elements lχ,σ of HomQ(I (χ), ρσ ) by setting

lχ,σ (Pχ (f )) =

∫

G

f (g )Yχ,σ (g )dg (f ∈ C∞
c (G)) .

3. Orthogonal groups. In what follows, we shall give several notation, definitions
and preliminary results concerning the split special orthogonal groups Gm = SOm (m =

1, 2, . . . ) and their subgroups. We often handle the odd case (where m is odd) and the even
case (where m is even) separately.

3.1. Let m be a positive integer and put l = [m/2], the integral part of m/2. Let Sm be
a symmetric matrix of degree m given by

Sm =



















(

0 Jl
Jl 0

)

if m is even ,





0 0 Jl
0 2 0
Jl 0 0



 if m is odd ,
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where

Jl =





0 1
.·
·

1 0



 ∈ GLl(k) .

Denote by Gm (or SOm) the special orthogonal group of the symmetric matrix Sm:

Gm = SOm = SO(Sm) = {g ∈ SLm | tg Smg = Sm} .

The group Gm is split over k and defined over o. The rank of Gm is l = [m/2].
3.2. Let Tm = {dm(t1, . . . , tl) | t1, . . . , tl ∈ GL1} be the subgroup of diagonal matri-

ces in Gm, which is a maximal split torus of Gm. Here dm(t1, . . . , tl) denotes the diagonal
matrix diag(t1, . . . , tl, 1, t

−1
l , . . . , t−1

1 ) if m is odd (resp. diag(t1, . . . , tl , t
−1
l , . . . , t−1

1 ) if m
is even).

We let Pm be the standard Borel subgroup consisting of all upper triangular matrices in
Gm. Then Pm = TmNm, where Nm is the unipotent radical of Pm consisting of all upper
triangular unipotent matrices in Gm. We also denote by N−

m the group of lower triangular
unipotent elements in Gm so that the group TmN−

m is the opposite of Pm.
We let Km = Gm(o) be a maximal compact subgroup of Gm = Gm(k). Let ̟ : Km →

Gm(o/πo) be the reduction modulo π . Then Bm := ̟−1(Pm(o/πo)) is an Iwahori subgroup
of Gm. We have the Iwahori factorization Bm = N−

m,(1)Tm,(0)Nm,(0). Here, for any subgroup
V of Gm over o, we set

V(0) := V(o) (= V ∩Km)

and

V(1) := Ker(̟ |V(0) : V(0) → V(o/πo)) .

We denote by dk the normalized Haar measure of Km. Let dn (resp. dt) be the Haar
measure of Nm (resp. Tm) normalized so that vol(Nm ∩Km) = 1 (resp. vol(Tm ∩Km) = 1).
We denote by δm the modulus character of Tm (or of Pm). Namely, δm is defined to be
δm(t) = d(tnt−1)/dn. For t = dm(t1, . . . , tl) ∈ Tm, δm(t) is given explicitly as δm(t) =
∏l
i=1 |ti |

m−2i . Then the Haar measure dg ofGm with vol(Km) = 1 is given by, symbolically,
dg = δm(t)dndtdk as usual. (See the Iwasawa decomposition given below.)

The Weyl group Wm := NGm(Tm)/Tm acts on Tm. As in Section 1, we shall choose
representatives ofWm in Km and often regardWm as a subset of Km.

3.3. Let Hom(Tm,GL1) be the character group of Tm and Hom(GL1,Tm) the group of
its one-parameter subgroups. We give {εi (1 ≤ i ≤ l)}, the standard basis of Hom(Tm,GL1)

so that εi(dm(t1, . . . , tl)) = ti for t1, . . . , tl ∈ k×. Let {di (1 ≤ i ≤ l)} be the ba-
sis of Hom(GL1,Tm) that is dual to {εi (1 ≤ i ≤ l)}. Namely, di is given by di(t) =

dm(1, . . . , 1,
i
t , 1, . . . , 1) (t ∈ GL1) for 1 ≤ i ≤ l. We denote the canonical pairing on

Hom(Tm,GL1)× Hom(GL1,Tm) by 〈 , 〉 so that 〈εi , dj 〉 = δij .
Set Λm = Z

l . For λ ∈ Λm, we put t (λ) = dm(π
λ1, . . . , πλl ) ∈ Tm. We can naturally

identify Λm with Hom(GL1,Tm) by the map η : Λm → Hom(GL1,Tm) defined to be
〈γ, η(λ)〉 = v(γ (t (λ))) (γ ∈ Hom(Tm,GL1), λ ∈ Λm). For simplicity, we identifyΛm with



14 S. KATO, A. MURASE AND T. SUGANO

Hom(GL1,Tm) through η so that we write 〈γ, λ〉 instead of 〈γ, η(λ)〉 (see Section 7). We
have a bijective correspondence between Λm and Tm/(Tm ∩Km) given as

λ ∈ Λm ←→ t (λ) (mod Tm ∩Km) ∈ Tm/(Tm ∩Km) .

The Iwasawa decomposition shows that

Gm =
⊔

λ∈Λm

Nmt (λ)Km .

Let us denote by Λ+
m the subsemigroup of Λm given by

Λ+
m =







{λ = (λ1, . . . , λl) ∈ Λm | λ1 ≥ · · · ≥ λl ≥ 0} if m is odd ,

{λ = (λ1, . . . , λl) ∈ Λm | λ1 ≥ · · · ≥ λl−1 ≥ |λl |} if m is even .

Under the identification above,Λ+
m corresponds to the dominant coweights in Hom(GL1,Tm).

Then we have the following Cartan decomposition:

Gm =
⊔

λ∈Λ+
m

Kmt (λ)Km .

The Weyl group Wm acts on Λm in a natural manner. We may regard Wm as a subgroup
of GL(Λm), which induces permutations on {±ε1, . . . ,±εl}.

3.4. Let Xnr (k×) be the group of unramified characters of k×. We shall identify
Xnr (k

×) with C
× by the correspondence Xnr (k×) ∋ χ ↔ χ(π) ∈ C

×. Moreover, by
abuse of notation, we shall often denote χ(π) simply by χ in the above correspondence. We
denote byXm = Xnr (Tm) the group of unramified characters of Tm. Then, as in the above, we
can identify Xm with (C×)l so that Ξ(t (λ)) = Ξ

λ1
1 · · ·Ξ

λl
l for Ξ = (Ξ1, . . . , Ξl) ∈ (C×)l .

The Weyl group Wm acts on Xm by wΞ(t) = Ξ(w−1(t)) (w ∈ Wm, Ξ ∈ Xm, t ∈ Tm). It
induces permutations on {Ξ1,Ξ

−1
1 , . . . , Ξl ,Ξ

−1
l }.

3.5. The root system of (Gm,Tm), which is a subset of Hom(Tm,GL1), is denoted by
Σm = Σ(Gm,Tm) and given as follows:

Σm =







{±εi ± εj (1 ≤ i < j ≤ l) , ±εi (1 ≤ i ≤ l)} if m = 2l + 1 ,

{±εi ± εj (1 ≤ i < j ≤ l)} if m = 2l .

For α ∈ Σm, we let Xα be the corresponding root subgroup. More precisely, we choose
each isomorphism xα : k̄ → Xα over Z in the following way: xα(t) (t ∈ k̄) is given by

I + t (Ei,j − Em−j+1,m−i+1) if α = εi − εj (1 ≤ i 
= j ≤ l) ;

I + t (Ei,m−j+1 − Ej,m−i+1) if α = εi + εj (1 ≤ i < j ≤ l) ;

I − t (Em−i+1,j − Em−j+1,i) if α = −εi − εj (1 ≤ i < j ≤ l) ;

I + t (2Ei,l+1 − El+1,m−i+1)− t
2Ei,m−i+1 if α = εi (1 ≤ i ≤ l,m = 2l + 1) ;

I − t (2Em−i+1,l+1 − El+1,i)− t
2Em−i+1,i if α = −εi (1 ≤ i ≤ l,m = 2l + 1) .

Here Eij denotes the matrix unit (1 ≤ i, j ≤ m), and k̄ the algebraic closure of k.
Let α∨ ∈ Hom(GL1,Tm) be the coroot corresponding to α ∈ Σm. We put aα :=

t (α∨) ∈ Tm.
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We record here a well-known formula:

xα(t) = x−α(t
−1)wαa

−v(t)
α hx−α(t

−1) (α ∈ Σm, t ∈ k×)(3.5.1)

with some element h ∈ Tm,(0) = Tm ∩Km. Here wα is the reflection associated with α. This
is a consequence of the decomposition

(

1 t

0 1

)

=

(

1 0
t−1 1

)(

0 −1
1 0

)(

−t−1 0
0 −t

)(

1 0
t−1 1

)

for t 
= 0.
Let Σ+

m ⊃ ∆m be the standard sets of positive roots and simple roots, respectively, with
respect to Pm:

Σ+
m =







{εi ± εj (1 ≤ i < j ≤ l) , εi (1 ≤ i ≤ l)} if m = 2l + 1 ,

{εi ± εj (1 ≤ i < j ≤ l)} if m = 2l ,

and

∆m =







{αi = εi − εi+1 (1 ≤ i ≤ l − 1) , αl = εl } if m = 2l + 1 ,

{αi = εi − εi+1 (1 ≤ i ≤ l − 1) , αl = εl−1 + εl} if m = 2l .

Hence the standard Borel subgroup Pm corresponds to ∅ ⊂ ∆m, and Nm, the unipotent radical
of Pm, is written as Nm =

∏

α>0 Xα .
3.6. We let Qm,r (1 ≤ r ≤ l) be the standard maximal parabolic subgroup correspond-

ing to J = ∆m − {αr }. When r = 0, we put Qm,0 = Gm for convenience. The standard Levi
decomposition of Qm,r is given by Qm,r = Mm,rUm,r . Here

Mm,r ≃ GLr × SOm′+1 (m = 2r +m′ + 1)

is the standard Levi part containing Tm, and Um,r is the unipotent radical of Qm,r . We write
Mm,r = G(1) × G(2) where G(1) ≃ GLr (resp. G(2) ≃ SOm′+1). The root systems of G(1)

and G(2) are given by

Σ(1) = {±(εi − εj ) (1 ≤ i < j ≤ r)}

and

Σ(2) =









{±εi ± εj (r + 1 ≤ i < j ≤ r + l′) , ±εi (r + 1 ≤ i ≤ r + l′)}

if m = 2r + 2l′ + 1 ,

{±εi ± εj (r + 1 ≤ i < j ≤ r + l′ + 1) } if m = 2r + 2l′ + 2 ,

respectively.
Subgroups of G(i) (i = 1, 2) are denoted by P(i) (the standard Borel subgroup of upper

triangular matrices), N(i) (the unipotent radical of P(i)), T(i) (the standard maximal torus of
diagonal matrices), etc. In matrix form, some of these subgroups are given as follows: We set

νm,r (x, y) :=





1r Jr
txSm−2r Jr (y − 1

2Sm−2r [x])

0 1m−2r −x

0 0 1r



 ∈ Qm,r
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for x ∈ Matm−2r,r , y ∈ Altr . Then we have

Um,r = {νm,r(x, y) | x ∈ Matm−2r,r , y ∈ Altr } .

We also have

Mm,r =






µm,r (a, h) :=





a 0
h

0 ã





∣
∣
∣
∣
∣
∣

a ∈ GLr , h ∈ Gm−2r






.

Here ã = Jr
ta−1Jr for a ∈ GLr . Let Zr be the group of unipotent upper triangular matrices

in GLr . Then N(1) = {µm,r (z, 1) | z ∈ Zr }.
3.7. Henceforth we fix two non-negative integersm′ and r satisfyingm = m′ + 2r+ 1.

Note that Mm,r ≃ GLr×Gm′+1 in this setting. We set G = Gm, G′ = Gm′ and so on. Hence
we put

K = Km , T = Tm , H = Hm , l = [m/2] ,

X = Xm ∋ Ξ = (Ξ1, . . . , Ξl)

and

K ′ = Km′ , T ′ = Tm′ , H
′ = Hm′ , l′ = [m′/2] ,

X′ = Xm′ ∋ ξ = (ξ1, . . . , ξl′) ,

for example.
3.8. We define an embedding ι = ιm′ of Gm′ into Gm′+1 as follows:
(a) If m′ = 2l′ is even,

ι

((

a b

c d

))

=





a 0 b

0 1 0
c 0 d



 ,

where

(

a b

c d

)

∈ Gm′ is the block decomposition corresponding to the partition m′ =

l′ + l′.
(b) If m′ = 2l′ + 1 is odd,

ι









a1 a2 a3
b1 b2 b3

c1 c2 c3







 =







a1 a2/2 a2/2 a3

b1 (b2 + 1)/2 (b2 − 1)/2 b3
b1 (b2 − 1)/2 (b2 + 1)/2 b3

c1 c2/2 c2/2 c3






,

where





a1 a2 a3

b1 b2 b3
c1 c2 c3



 ∈ Gm′ is the block decomposition corresponding to the partition

m′ = l′ + 1 + l′.
Note that the image of ιm′ is the stabilizer in Gm′+1 of the anisotropic vector

t (0, . . . , 0,
l′+1
1 , 0, . . . , 0) (resp. t (0, . . . , 0,

l′+1
1 ,

l′+2
−1, 0, . . . , 0))
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in k̄m
′+1 for m′ = 2l′ (resp. m′ = 2l′ + 1). Henceforth we shall regard G′ = Gm′ as a

subgroup of G = Gm under the map g
′ �→ µm,r (1, ιm′(g ′)) (g ′ ∈ G′) unless otherwise

stated.
3.9. We shall call the case where m = 2r + 2l′ + 1, m′ = 2l′ (hence l = r + l′) the

odd case and the case wherem = 2r + 2l′ + 2, m′ = 2l′ + 1 (hence l = r + l′ + 1) the even

case, respectively.
In the odd case (where m′ = 2l′ is even), we take T(2) = T ∩ G(2) as a maximal torus T′

of G′. Then the embedding G′ →֒ G(2) corresponds to the injection

Σ ′ = {±ε′i ± ε
′
j (1 ≤ i < j ≤ l′)} → Σ(2)

given by ε′i �→ εr+i (1 ≤ i ≤ l′).
In the even case (where m′ = 2l′ + 1 is odd), we take Ker(εr+l′+1) ∩ T(2) as a maximal

torus T′ of G′. The embedding G′ →֒ G(2) corresponds to the surjection

Σ(2) → Σ ′ = {±ε′i ± ε
′
j (1 ≤ i < j ≤ l′), ε′i (1 ≤ i ≤ l′)}

induced by the natural projection

Hom(T(2),GL1) =
∑

r+1≤i≤r+l′+1

Zεi → Hom(T′,GL1) =
( ∑

r+1≤i≤r+l′+1

Zεi

)/

Zεr+l′+1 .

(We denote the image of εr+i under this projection by ε′i .) The root subgroups of G′ are given
by

X±ε′i
= {x±ε′i

(t) := x±εr+i∓εr+l′+1
(t)x±εr+i±εr+l′+1

(t) | t ∈ k̄} ; X±ε′i±ε
′
j

= X±εr+i±εr+j .

As in the case of G(i) (i = 1, 2), we denote by P′, T′, N′ etc., the counterparts of the
objects for G.

3.10. Let Q be the parabolic subgroup of G with P ⊂ Q ⊂ Qm,r whose Levi factor is
T (1) × G(2) ≃ (GL1)

r × SOm′+1. The unipotent radical of Q is given by U := N(1)Um,r .
Then the group G′ normalizes U (see 0.1). Let us denote by H the semidirect product of G′

and U. Obviously the unipotent radical of H is U.
Let ψ be an additive character of k with conductor o. We define a character ψU of U by

ψU (νm,r (x, y)µm,r(z, 1)) = ψ
(

xl′+1,1 − ǫmxl′+2,1 +

r−1
∑

i=1

zi,i+1

)

for x ∈ Matm−2r,r(k), y ∈ Altr(k) and z ∈ Zr , where we put

ǫm =

{

1 if m is even ,
0 if m is odd .

The character ψU is invariant under the conjugation by G′. (This is a consequence of the fact
that G′ is the stabilizer in G(2) of certain anisotropic vector, see 3.8. See also [GP] for the
definition of ψU in an algebraic way.) Thus we can extend ψU to the character of H , which
we denote by the same symbol ψU , by putting ψU |G′ = 1.
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It is convenient to see the restriction of ψU to each root subgroups in U for our later use.
The set of roots appearing in U is Ψ := Σ+\Σ(2)

+
. Let us define a characterψα : Xα → C

×

by ψα(xα(t)) = ψ(t) (t ∈ k). Then we have

ψU |Xεi−εi+1
= ψεi−εi+1 (1 ≤ i ≤ r − 1) ,

ψU |Xεr = ψεr (in the odd case) ,

ψU |Xεr−εn = ψεr−εn , ψU |X
εr+ε

′
l

= ψ−1
εr+ε

′
l

(in the even case) ,

and
ψU |Xα = 1 (otherwise) .

3.11. Set PH = P′U = P′N(1)Um,r . This is a Borel subgroup of H. The unipotent
radical of PH is NH = N′U and hence PH = T′NH, where T′ = Tm′ is a maximal torus of G′.

We are concerned with the open orbit in P\G/PH , where PH = PH(k). Henceforth we
restrict ourselves to the case where l′ > 0. We can easily modify the argument below in the
case where l′ = 0; we put gm,r = 1 in that case, for example. For y = t (y1, . . . , yl′) ∈ kl

′
, let

gm,r (y) be an element of G given by

gm,r (y) =

















µm,r



1r ,





1l′ 2y −Jl′y
ty

0 1 −tyJl′

0 0 1l′







 if m is odd ,

µm,r

(

1r ,

(

a(y) 0
0 ã(y)

))

if m is even ,

where a(y) =

(

1l′ y

0 1

)

∈ GLl′+1(k). We put

gm,r = gm,r (1) (1 := t (1, . . . , 1) ∈ kl
′

) .

In the odd case,

gm,r (y) = xεr+1(y1) · · · xεr+l′ (yl′)n
′(3.11.1)

for some n′ ∈ N ′. Thus we have

{ gm,r (y) | y ∈ kl
′

} × NH ≃ N ((gm,r (y), nH ) ↔ gm,r (y)nH )(3.11.2)

(as topological spaces). Note that, for any permutation σ of 1, . . . , l′, there exists n′′ ∈ N ′

(depending on y and σ ) such that

xεr+σ(1)(yσ(1)) · · · xεr+σ(l′)(yσ(l′)) = xεr+1(y1) · · · xεr+l′ (yl′)n
′′ .

On the other hand, in the even case,

gm,r (y) = xεr+1−εr+l′+1
(y1) · · · xεr+l′−εr+l′+1

(yl′) .

(Observe that the factors in the right hand side are mutually commutative.) We note that

gm,r (y)N
′ = xεr+1+εr+l′+1

(y1) · · · xεr+l′+εr+l′+1
(yl′)N

′ ,(3.11.3)

since xεr+i−εr+l′+1
(t)xεr+i+εr+l′+1

(t) ∈ N ′. Hence we also have (3.11.2) in the even case.
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PROPOSITION 3.12. (1) One has

G =
⋃

w∈W

⋃

y∈{0,1}l
′

Pwg m,r (y)PH .

(2) The orbit O0 = Pwℓgm,rPH is open dense in G .

(3) O0 ≃ P × PH ≃ P × P ′ × U .

PROOF. The Bruhat decomposition of G shows that

G =
⋃

w∈W, y∈kl
′

Pwg m,r (y)PH .

We know that Pwg m,r (y)PH = Pwg m,r (yǫ)PH , where yǫ = t (ǫ1, . . . ǫl′) ∈ {0, 1}l
′
⊂ kl

′
is

defined to be ǫi = 0 if and only if yi = 0; see for example, the equality

gm,r (y) = d · gm,r (1) · d
−1(3.12.1)

with

d =
















dm(

r
︷ ︸︸ ︷

1, . . . , 1,
l′

︷ ︸︸ ︷

y1, . . . , yl′) (in the odd case; m = 2r + 2l′ + 1) ,

dm(

r
︷ ︸︸ ︷

1, . . . , 1,

l′+1
︷ ︸︸ ︷

y1, . . . , yl′, 1) (in the even case; m = 2r + 2l′ + 2)

for y = (y1, . . . , yl′) with y1 · · · yl′ 
= 0. Thus (1) is proved. Since O0 is the open subset of
the big cell PwℓP ≃ P × N given by

O0 = {pwℓn ∈ PwℓN | n = gm,r (y)nH (y1 · · · yl′ 
= 0, nH ∈ NH )} ,(3.12.2)

(3.12.1) shows (2) and (3.11.2) does (3) of the proposition. �

REMARK 3.13. Obviously, the proof of this proposition works over k̄ instead of k. In
particular, we see that Pwℓgm,rPH ⊂ G is Zariski open.

3.14. We construct some relative invariants on G under the action of P × PH, and
describe the open orbit O0 = Pwℓgm,rPH (or O0

−1 = PH gm,rwℓP ) in terms of these
relative invariants.

From now on, we shall fix wℓ, a representative of the longest element ofW , as follows:

wℓ =





Jl
(−1)l

Jl



 if m = 2l + 1 ,

=

(

Jl
Jl

)

if m = 2l, l even ,

=







Jl−1

1 0
0 1

Jl−1







if m = 2l, l odd .
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Let I = {i1, . . . , is} and J = {j1, . . . , js} be two subsets of {1, . . . ,m} with cardinality
s. For g ∈ Matm(k), we define a polynomial function ∆I,J on Matm(k) by

∆I,J (g ) = det(g I,J ) ,

where g I,J = (g ik,jl )1≤k,l≤s ∈ Mats(k).
Now we define polynomial functions αi on G = SOm by the following formula

αi(g ) = ∆{1,... ,i},{1,... ,i}(wℓg ) (1 ≤ i ≤ l) .

We put α0(g ) = 1 for convenience. Then g ∈ G is contained in the big cell PwℓP if and
only if αi(g ) 
= 0 for any i = 1, . . . , l. Obviously,

αi(gm,r (y)wℓ) = 1 (y ∈ kl
′

)

and
αi(p

(1)
gp(2)) = (t

(1)
1 · · · t

(1)
i )

−1(t
(2)
1 · · · t

(2)
i )αi(g )

for p(a) = dm(t
(a)
1 , . . . , t

(a)
l ) · n(a) ∈ P (a = 1, 2) with t(a)i ∈ k×, n(a) ∈ N . Set ̟i = ε1 +

· · ·+ εi ∈ Hom(T,GL1) (1 ≤ i ≤ l) and̟ ′
j = ε′1 + · · ·+ ε′j ∈ Hom(T′,GL1) (1 ≤ j ≤ l′).

These are dominant weights of G and G′ (relative to P and P′) respectively. Then the above
formula shows that αi has a highest weight

(̟i, 0) (1 ≤ i ≤ r) ,

(̟i,̟
′
i−r ) (r + 1 ≤ i ≤ r + l′) ,

or
(̟r+l′+1,̟

′
l′ ) (i = r + l′ + 1 = l; in the even case)

under the P × P′ action.
To obtain the open orbit O0, we need other functions: For g ∈ G, we set

βj (g ) = ∆{1,... ,r+j−1,r+l′+1},{1,... ,r+j}(wℓg ) (1 ≤ j ≤ l′)

in the odd case (m = 2r + 2l′ + 1) and

βj (g ) = ∆{1,... ,r+j−1,r+l′+1},{1,... ,r+j}(wℓg )

−∆{1,... ,r+j−1,r+l′+2},{1,... ,r+j}(wℓg ) (1 ≤ j ≤ l′ + 1)

in the even case (m = 2r + 2l′ + 2), respectively. For each j with 1 ≤ j ≤ l′ in the odd case
and 1 ≤ j ≤ l′ + 1 in the even case, it is easily checked that

|βj (gm,r (y)wℓ)| =







1 if j = l′ + 1 in the even case ,

|yj | otherwise

for y ∈ kl
′
, and

βk(pH gp) = (t ′1 · · · t ′j−1)
−1(t1 · · · tr+j )βj (g )

for pH = dm′(t ′1, . . . , t
′
l′
) · nH ∈ PH , p = dm(t1, . . . , tl) · n ∈ P with ti, t ′i ∈ k×, nH ∈

NH , n ∈ N . This formula shows that βj has a highest weight

(̟r+j ,̟
′
j−1)

under the P × P′ action. Here we put̟ ′
0 = 0 for convenience.
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Then we easily have the following lemmas.

LEMMA 3.15. For g ∈ G, g ∈ PH gm,rwℓP if and only if

αi(g ) 
= 0, βj (g ) 
= 0

for any i, j .

LEMMA 3.16. Suppose that g ∈ PH gm,rwℓP is written in the form

g = nH · dm′(t ′1, . . . , t
′
l′)gm,rwℓdm(t1, . . . , tl) · n

for some nH ∈ NH , n ∈ N, and ti , t
′
j ∈ k× (1 ≤ i ≤ l, 1 ≤ j ≤ l′). Then the absolute

values of ti , t
′
j (1 ≤ i ≤ l, 1 ≤ j ≤ l′) are given by

|ti | =

∣
∣
∣
∣

αi(g )

αi−1(g )

∣
∣
∣
∣

(1 ≤ i ≤ r) ,

|tr+i | =

∣
∣
∣
∣

βi(g )

αr+i−1(g )

∣
∣
∣
∣

(

1 ≤ i ≤ l′ in the odd case

1 ≤ i ≤ l′ + 1 in the even case

)

,

and

|t ′j | =

∣
∣
∣
∣

βj (g )

αr+j (g )

∣
∣
∣
∣

(1 ≤ j ≤ l′) .

4. Whittaker-Shintani functions. In this section, we shall introduce the Whittaker-
Shintani functions on orthogonal groups that are the main subject of this paper. Then we shall
give an integral expression of these functions through a representation-theoretic interpretation.

DEFINITION 4.1. For (Ξ, ξ) ∈ X × X′, a function F ∈ C∞(G) is said to be a
Whittaker-Shintani function attached to (Ξ, ξ), if the following two conditions hold:

(4.1.1) L(uk′)R(k)F = ψU (u)F (u ∈ U, k′ ∈ K ′, k ∈ K) ,

(4.1.2) L(ϕ′)R(ϕ)F = ωξ (ϕ
′)ωΞ (ϕ)F (ϕ′ ∈ H′, ϕ ∈ H) .

Here L (resp. R) denotes the left (resp. right) regular representation of G (or its restric-
tion to subgroups) on C∞(G) so that (L(g 1)R(g 2)f )(x) = f (g −1

1 xg 2) (g 1, g 2, x ∈ G).
We denote the space of Whittaker-Shintani functions attached to (Ξ, ξ) byWS(Ξ, ξ).

REMARK 4.2. These functions are the special functions on G already studied in the
following cases. When r = 0 (hence U is trivial), they coincide with the Shintani functions
first introduced and studied in [MS2]. On the other hand, whenm′ = 0 or 1 so thatU = Nm (a
maximal unipotent subgroup of G), they turn out to be the class-1 (or unramified) Whittaker
functions of G = SOm(k) (see [CS], [K1]). In the case m′ = 2, they appear in the context of
Bessel models (see [BFF]).

REMARK 4.3. These functions are examples of spherical functions on spherical ho-
mogeneous spaces. To explain this, let G1 be a reductive group defined over k and H1 an
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algebraic subgroup of G1. Let K1 = G1(o) be a “good” maximal open compact subgroup of
G1 and H1 = H(G1,K1) the corresponding Hecke algebra. For a character ψ1 of H1, we set

C∞(G1, ψ1) = {f ∈ C∞(G) | L(h)f = ψ1(h)f (h ∈ H1)} ,

on which G acts on the right, as above. Then for ω1 ∈ HomC-alg(H(G1,K1),C), we call a
function f ∈ C∞(G1, ψ1)

K1 satisfying

(4.3.1) R(ϕ1)f = ω1(ϕ1)f (ϕ1 ∈ H1)

a spherical function of the homogeneous space H1\G1 (with the representation ψ1) attached
to ω1.

If H1\G1 is spherical, namely a Borel subgroup of G1 has an open dense orbit on
H1\G1, then we can expect that spherical functions on H1\G1 have good properties, such
as multiplicity-one (-finite), an explicit formula, and so on. Zonal spherical functions and
Whittaker functions are well-known examples of them. Such spherical functions, which are
of interest in representation theory in its own right, have often been playing important roles in
number theory in various context, especially in the theory of automorphic L-functions. (See,
e.g., [K3] and [M].) We refer [HS1], [HS2] and [H] for spherical functions on symmetric
spaces (which form an important family of spherical homogeneous spaces) and other number
theoretic applications of these spherical functions.

Now we return to our case. Let us define a subgroup H of G = SOm to be the semi-direct
product of G′ ≃ SOm′ and U, as in 3.10. (Note that H is not reductive when r > 0.) We set
G1 = G × G′,

H1 = {(h, p(h)) ∈ G1 | h ∈ H} ≃ H ,

where p : H → G′ is the natural projection. Then 3.13 shows that H1\G1 is spherical.
Since ψU : U → C

× is G′-invariant, ψU naturally defines a character ψ1 : H1 → C
× by

ψ1((h, p(h))) = ψU (u) for h = g
′u ∈ H (g ′ ∈ G′, u ∈ U). Note that H1\G1 ≃ U\G.

Thus we can see that our Whittaker-Shintani functions are spherical functions on a spherical
homogeneous space H1\G1.

As is noted in the introduction, Shintani functions for GLn(k) ([MS3]) and Whittaker-
Shintani functions for Sp2n(k) ([Sh2], [MS1]) are also examples of those functions. Explicit
formulas for these functions are obtained in a similar manner.

4.4. Let I (ξ) be the unramified principal series representation of G′ for ξ ∈ X′. The
group H = G′ · U (semidirect product) acts on I (ξ) via H → G′ = H/U . On the other
hand, we have a character ψU ofH (see Sect.3). Thus we can define “the unramified principal
series representation of H ”, I (ξ, ψU ) := I (ξ) ⊗ ψU ( = Ind(ξδ′1/2 ⊗ ψU | PH ,H)). Note
that the underlying G′-space of I (ξ, ψU ) is the same as I (ξ). The action of g

′u ∈ G′U = H

on I (ξ) is given by φ0 �→ ψU (u)R(g
′)φ0 (φ0 ∈ I (ξ)).



WHITTAKER-SHINTANI FUNCTIONS 23

Denote by 〈 , 〉0 = 〈 , 〉0,ξ the canonical G′-invariant pairing on I (ξ) × I (ξ−1) given
by

〈φ0, φ
′
0〉0 =

∫

K ′
φ0(k

′)φ′
0(k

′)dk′ (φ0 ∈ I (ξ), φ′
0 ∈ I (ξ−1)) .

This 〈 , 〉0 naturally defines an H -invariant pairing on I (ξ, ψU ) × I (ξ−1, ψ−1
U ) by the

same formula. (We still denote this extension by 〈 , 〉0.) Let T be an element of
HomH (I (Ξ), I (ξ−1, ψ−1

U )). Then the function ST on G given by

ST (g ) = 〈φK ′,ξ , T (R(g )φK,Ξ )〉0(4.4.1)

is a Whittaker-Shintani function attached to (ξ,Ξ). (Recall 1.8.)
Let Ω : I (ξ, ψU ) × I (Ξ) → C be an H -invariant bilinear form. Namely, Ω is a

bilinear form on I (ξ) × I (Ξ) satisfyingΩ(R′(g ′)φ0, R(g
′u)φ) = ψU (u)Ω(φ0, φ) for φ0 ∈

I (ξ), φ ∈ I (Ξ), g ′ ∈ G′ and u ∈ U . Then the function SΩ on G given by

SΩ (g ) = Ω(φK ′,ξ , R(g )φK,Ξ )(4.4.2)

is a Whittaker-Shintani function attached to (ξ,Ξ).
It is easy to see that the construction of (4.4.1) and (4.4.2) are equivalent. Actually,

T and Ω above correspond each other in the following way. If we have T ∈

HomH (I (Ξ), I (ξ−1, ψ−1
U )), then the bilinear form ΩT on I (ξ, ψU ) × I (Ξ) given by

ΩT (φ0, φ) = 〈φ0, T (φ)〉0 is H -invariant. Conversely, let Ω be an H -invariant bilinear
form on I (ξ, ψU ) × I (Ξ). We can define TΩ ∈ HomH (I (Ξ), I (ξ, ψU )∗) by TΩ(φ)(φ0) =

Ω(φ0, φ). (Here I (ξ, ψU )∗ is the dual of I (ξ, ψU ).) Since I (Ξ) is a smooth G′-module, the
image of TΩ is also smooth. Hence we may regard T ∈ HomH (I (Ξ), I (ξ−1, ψ−1

U )).
4.5. Suppose that Y = YΞ,ξ (Ξ ∈ X, ξ ∈ X′) is a continuous function (or a distribu-

tion) onG satisfying

Y (pgp′u) = (Ξ−1δ1/2)(p)(ξδ′
−1/2

)(p′)ψU (u)Y (g ) (p ∈ P,p′ ∈ P ′, u ∈ U) .(4.5.1)

Then we have an equivariant linear form lΞ,ξ ∈ HomPH (I (Ξ), ξ
−1δ′

1/2
⊗ψ−1

U ) defined from
YΞ,ξ as

lΞ,ξ (PΞ (f )) =

∫

G

f (g )Y (g )dg (f ∈ C∞
c (G)) .

(See 1.2 for the definition of PΞ : C∞
c (G) → I (Ξ).) The intertwining operator TΞ,ξ ∈

HomH (I (Ξ), I (ξ−1, ψ−1
U )) corresponding to lΞ,ξ via Frobenius reciprocity is given by

TΞ,ξ (PΞ (f ))(x
′) = lΞ,ξ (R(x

′)PΞ (f ))

=

∫

G

f (xx ′)Y (x)dx (f ∈ C∞
c (G), x

′ ∈ G′) .

Hence the H -invariant bilinear formΩΞ,ξ = ΩTΞ,ξ attached to TΞ,ξ is given by

ΩΞ,ξ (Pξ (f0),PΞ (f )) =

∫

G′×G

f0(x
′)f (x)Y (x(x ′)−1)dx ′dx(4.5.2)
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for f0 ∈ C∞
c (G

′), f ∈ C∞
c (G). Here we identified the space I (ξ), the image of Pξ , with

I (ξ, ψU ). In particular, the function STΞ,ξ is given by the integral

STΞ,ξ (g ) =

∫

K ′×K

Y (kg −1k′)dk′dk(4.5.3)

(see also [MS3, 4.8 – 4.9]).
4.6. In the rest of this section, we shall show how to construct a function YΞ,ξ on G

satisfying (4.5.1). Consider the function ΥΞ,ξ on PH gm,rwℓP = UP ′
gm,rwℓP given by

ΥΞ,ξ (up
′
gm,rwℓp) = ψU (u)

−1(Ξδ−1/2)(p)(ξ−1δ′
1/2
)(p′) (u ∈ U,p ∈ P,p′ ∈ P ′) .

We extend this ΥΞ,ξ to the whole G by putting ΥΞ,ξ (g ) = 0 if g 
∈ UP ′
gm,rwℓP .

LEMMA 4.7. If g ∈ UP ′
gm,rwℓP, then

ΥΞ,ξ (g ) =ψU (u(g ))
−1

r
∏

i=1

(ΞiΞ
−1
i+1| · |−1)(αi(g ))

×

l′−1
∏

j=1

(ξjΞ
−1
r+j+1| · |−1/2)(αr+j (g )) · ξl′(αr+l′(g ))

×

l′
∏

k=1

(ξ−1
k Ξr+k | · |−1/2)(βk(g ))

(4.7.1)

in the odd case (m = 2r + 2l′ + 1, m′ = 2l′), and

ΥΞ,ξ (g ) =ψU (u(g ))
−1

r
∏

i=1

(ΞiΞ
−1
i+1| · |−1)(αi(g ))

×

l′−1
∏

j=1

(ξjΞ
−1
r+j+1| · |−1/2)(αr+j (g ))

×

l′
∏

k=1

(ξ−1
k Ξr+k| · |−1/2)(βk(g )) ·Ξr+l′+1(βl′+1(g ))

(4.7.2)

in the even case (m = 2r + 2l′ + 2, m′ = 2l′ + 1). Here u(g ) is the U -component of g .

PROOF. This is a consequence of 3.14. �

Then the lemma above shows the following proposition.

PROPOSITION 4.8. Let Zc be the nonempty open subset of X ×X′ given by

Zc =










(Ξ, ξ) ∈ X ×X′

∣
∣
∣
∣
∣
∣
∣
∣

|ΞiΞ
−1
i+1|<q

−1 (1 ≤ i ≤ r)

|ξjΞ
−1
r+j+1|<q

−1/2 (1 ≤ j ≤ l′)

|ξ−1
k Ξr+k|<q

−1/2 (1 ≤ k ≤ l′)

|ξl′ |<1










(4.8.1)
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in the odd case (m = 2r + 2l′ + 1, m′ = 2l′), and

Zc =











(Ξ, ξ) ∈ X ×X′

∣
∣
∣
∣
∣
∣
∣
∣

|ΞiΞ
−1
i+1|<q

−1 (1 ≤ i ≤ r)

|ξjΞ
−1
r+j+1|<q

−1/2 (1 ≤ j ≤ l′)

|ξ−1
k Ξr+k|<q

−1/2 (1 ≤ k ≤ l′)

|Ξr+l′+1|<1











(4.8.2)

in the even case (m = 2r+2l′ +2, m′ = 2l′ +1). Then the function ΥΞ,ξ onG is continuous

for (Ξ, ξ) ∈ Zc.

4.9. Now let us set

YΞ,ξ (g ) = ΥΞ,ξ (g
−1) (g ∈ G) .

For (Ξ, ξ) ∈ Zc, this YΞ,ξ is a continuous function onG. Moreover it satisfies the condition

YΞ,ξ (pgp′u) = ψU (u)(Ξ
−1δ1/2)(p)(ξδ′

−1/2
)(p′)YΞ,ξ (g )

for u ∈ U,p ∈ P,p′ ∈ P ′ with

YΞ,ξ (wℓgm,r) = 1 .

(Note that g −1
m,r ∈ N ′T ′

(0)gm,rT(0).) Thus we can construct a Whittaker-Shintani function SΞ,ξ
from this YΞ,ξ as in (4.5.3) for (Ξ, ξ) ∈ Zc.

5. Cartan-type decompositions. In this section, we shall give a double coset decom-
position UK ′\G/K explicitly, where UK ′ is a subgroup of H = UG′. This decomposition
is indispensable for our study of Whittaker-Shintani functions.

Let gm,r = gm,r (1) be an element of G defined in 3.11.

THEOREM 5.1. The double coset decomposition

G =
⊔

UK ′t ′(λ′)gm,r t (λ)K

holds, where λ runs over Z
r ×Λ+

m−2r ⊂ Λm and λ′ overΛ+
m′ .

First we shall show that this theorem can be reduced to the special case of the theorem
where r = 0, that is, m′ = m− 1:

THEOREM 5.2. The double coset decomposition

Gm =
⊔

Km−1tm−1(λ
′)gm,0tm(λ)Km

holds, where λ runs over Λ+
m and λ′ overΛ+

m−1.

5.3. PROOF OF 5.1 BY USING 5.2. Recall the definition of the parabolic subgroup
Qm,r introduced in 3.6. By the Iwasawa decomposition, we have

Gm = Qm,rKm = Um,rMm,rKm .(5.3.1)

SinceMm,r ≃ GLr (k)×Gm−2r ,

Mm,r/(Km ∩Mm,r ) ≃ GLr (k)/GLr(o)×Gm−2r/Km−2r .
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We know that

GLr (k) =
⊔

κ=(κ1,... ,κr )∈Z
r

Zrdiag(πκ1, . . . , πκr )GLr (o)(5.3.2)

from the Iwasawa decomposition for GLr , and that

Gm−2r =
⊔

λ∈Λm−2r
λ′∈Λm−2r−1

Km−2r−1tm−2r−1(λ
′)gm−2r,0tm−2r (λ)Km−2r(5.3.3)

from 5.2. Hence, by applying µm,r to (5.3.2) and (5.3.3), we get the decomposition

G =
⊔

(Um,rN
(1))Km−2r−1tm−2r−1(λ

′)gm,rµm,r (diag(πκ1 , . . . , πκr ), tm−2r (λ))Km

from (5.3.1), where λ, λ′ and κ run overΛ+
m−2r ,Λ

+
m′ and Z

r , respectively. This is nothing but
the decomposition of 5.1,

G =
⊔

UK ′t ′(λ′)gm,r t (λ)K (λ ∈ Z
r × Λ+

m−2r ⊂ Λm; l′ ∈ Λ+
m′) . �

5.4. In order to prove Theorem 5.2, we need a variant of the theorem for orthogonal
groups

Om = {g ∈ GLm | tg Smg = Sm} .

Set G∗
m = Om(k) and K∗

m = Om(o). Hence Gm and Km are subgroups of G∗
m and K∗

m,
respectively. Define Λ∗+

m , a subset of Λm, by

Λ∗+
m = {λ = (λ1, . . . , λl) | λ1 ≥ · · · ≥ λl ≥ 0} .

We embed Om−1 into Om as in 3.8.

THEOREM 5.5. The double coset decomposition

G∗
m =

⊔

K∗
m−1tm−1(λ

′)gm,0tm(λ)K
∗
m

holds, where λ runs over Λ∗+
m and λ′ over Λ∗+

m−1.

REMARK 5.6. We shall not give a proof for the disjointness of the decompositions
appearing in these theorems 5.1, 5.2 and 5.5 in this section. The disjointness of 5.1 will be
shown in Section 7. (That for 5.5 follows similarly.)

5.7. Subsections 5.7 through 5.11 are devoted to a proof of Theorem 5.5. We put
G∗ = G∗

m, G
∗′ = G∗

m−1, K∗ = K∗
m andK∗′ = K∗

m−1.
Let W(Bl) be the Weyl group of type Bl . We regard this W(Bl) as a subgroup of

GL(Λm) as in 3.3. We remark that the “Weyl group of G∗", W∗ = NG∗(T )/ZG∗(T ) is
naturally isomorphic to

W∗ ≃

{

W = W(Bl) if m is odd ,
W · 〈γm〉 (semidirect product) ≃ W(Bl) if m is even ,

where γm ∈ GL(Λm) is an involution given by

γm(εl) = −εl , γm(εi) = εi (i 
= l) .
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As in the case of G, we identify all the elements inW∗ with their representatives in K∗.
Note first that the Cartan decomposition

G∗ = K∗T ∗++K∗ ,

where

T ∗++
= {dm(t1, . . . , tl) | v(t1) ≥ · · · ≥ v(tl) ≥ 0 (ti ∈ k×)}

yields the decomposition

G∗ = BW∗T ∗++K∗ .(5.7.1)

Let us define V , a subset of G∗, by

V := K∗′
· { gm,0(y) | y ∈ on} .(5.7.2)

Then we have

N+
(0) ⊂ V(5.7.3)

from 3.11.2. (Note that the decomposition in 3.11.2 is defined over o). In the even case, we
also remark that

V = K∗′
· { γm(gm,0(y)) | y ∈ ol

′

}(5.7.4)

(see (3.11.3)). Set

Uw = VN−
w,(1)wT

∗++K∗

for w ∈ W∗, where
N−
w,(1) =

∏

α>0, w−1α<0

X−α,(1) .

In particular, U1 = VT ∗++K∗.
Now we prove the following proposition.

PROPOSITION 5.8. For any w ∈ W∗, Uw is a subset of U1.

This proposition implies the following factorization.

COROLLARY 5.9. One hasG∗ = V · T ∗++ ·K∗.

5.10. PROOF OF PROPOSITION 5.8. We proceed by induction on ℓ(w) := #{α > 0 |

w−1α < 0} for w ∈ W∗.
First consider the case ℓ(w) = 0. If w = 1, then 5.8 is obvious. Otherwise we have

w = γm. (Hence m should be even.) In this case, we may assume that γm is represented by
the matrix







1l′
0 −1

−1 0
1l′







(m = 2l′ + 2) ,

which is in the image of the embedding of G∗′ in G∗ (see 3.8). Hence Uγm = U1 by (3.11.3).
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To prove the proposition 5.8, it suffices to show that

Uw ⊂ Uy

for some y ∈ W∗ with ℓ(y) < ℓ(w) from the assumption of the induction.
Suppose that ℓ(w) 
= 0. Then there exists a simple root α so that w−1α < 0. This

implies that w is written as w = wαw
′ with ℓ(w′) < ℓ(w). In this setting, we note that

(5.10.1) N−
w,(1)w = X−α,(1) ·wα · N−

w′,(1)w
′

and that

(5.10.2) X−α,(0) · N
−
w′,(1)w

′ ⊂ N−
w′,(1)w

′N−
(0) ,

since (w′)
−1
(−α) < 0.

We now consider the odd case (case A; m = 2l′ + 1) and the even case (case B; m =

2l′ + 2) separately. Furthermore, we divide each case into several subcases.
• Case A-1: α = αi = εi − εi+1 (1 ≤ i ≤ l′ − 1)

In this case, we have

VX−α,(1)wα ⊂ V ,

since X−α,(1) (⊂ K∗′) and wα (∈ K∗′) normalize K∗′ · {gm,0(y) | y ∈ ol
′
}. Thus, by using

(5.10.1), we have Uw ⊂ Uw′ .
• Case A-2: α = αl′ = εl′

In this case, we have

Uw = Vwα ·Xα,(1) ·N
−
w′,(1)w

′T ∗++K∗

⊂ VX−α,(0)Xα,(1) ·N
−
w′,(1)w

′T ∗++K∗

(

since we may assume that
wα = γm−1 ∈ K∗′ = Om−1(o)

)

= VXα,(1)X−α,(0) ·N
−
w′,(1)w

′T ∗++K∗

⊂ Uw′ (by (5.10.2)) .

• Case B-1: α = αi = εi − εi+1 (1 ≤ i ≤ l′ − 1)
We can show that Uw ⊂ Uw′ exactly in the same way as in the case A-1.

• Case B-2: α = αn = εn − εl′+1 and w′−1
(αl′+1) < 0

In this case, we have the decomposition w = wαl′wαl′+1
w′′ with ℓ(w′′) = ℓ(w)− 2. We

may assume thatwαl′wαl′+1
∈ K∗′. Herewαl′wαl′+1

gives a permutation εl′ → −εl′, εl′+1 →

εl′+1 in Σ , which induces a permutation ε′
l′

→ −ε′
l′

in Σ ′. Namely, wαl′−1
wαl′ corresponds

to wε′
l′

inW∗′. Thus

Uw = Vwαl′wαl′+1
·Xαl′ ,(1)Xαl′+1,(1) ·N

−
w′′,(1)w

′′T ∗++K∗

⊂ VX−αl′ ,(0)X−αl′+1,(0)Xαl′ ,(1)Xαl′+1,(1) · N
−
w′′,(1)w

′′T ∗++K∗

= VXαl′ ,(1)Xαl′+1,(1)X−αl′ ,(0)X−αl′+1,(0) · N
−
w′′,(1)w

′′T ∗++K∗

⊂ Uw′′ (by (5.10.2)) .

• Case B-3: α = αl′ = εl′ − εl′+1 and w′−1
(αl′+1) > 0
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Since VX−αl′ ,(1)(T ∩K) = VX−αl′+1,(1)(T ∩K), we have

Uw = Vwαl′ ·X−αl′+1,(1) ·N
−
w′,(1)w

′T ∗++K∗

⊂ Vwαl′ ·N−
w′,(1)w

′T ∗++K∗ .

Hence we get, by using (5.10.2),

(5.10.4) Uw ⊂ K∗′
Nwαl′ ·N−

w′,(1)w
′T ∗++K∗ ,

where we put N = Xε1−εl′+1,(0) · · ·Xεl′−1−εl′+1,(0) so that V = K ′NXαl′ ,(0). Now recall that
we can decompose wαl′ in the form wαl′ = x−x+x− (mod T ∩K), x± ∈ X±αl′ ,(0) from
(3.5.1). Substituting this in (5.10.4), we have

Uw ⊂ K∗′
Nx−x+ · N−

w′,(1)w
′T ∗++K∗ .

Note that there exists an x̄− ∈ X−αl′ ,(0) such that

K∗′
Nx− = K∗′

x−N = K∗′
x̄−N = K∗′

N x̄− .

Hence we finally see that

Uw ⊂ K∗′
Nx+x̄− · N−

w′,(1)w
′T ∗++K∗

⊂ K∗′
Nx+ · N−

w′,(1)w
′T ∗++K∗ (by (5.10.2))

⊂ V ·N−
w′,(1)w

′T ∗++K∗ = Uw′ .

• Case B-4: α = αl′ = εl′−1 + ε′l and (w′)−1αl′−1 < 0
We can show that Uw ⊂ Uw′ exactly in the same way as in the case B-2.

• Case B-5: α = αl′ = εl′−1 + ε′l and (w′)−1αl′−1 > 0
We can show that Uw ⊂ Uw′ exactly in the same way as in the case B-3.
Combining all of these, we have completed the proof of Proposition 5.8. �

5.11. PROOF OF THEOREM 5.5. For g 1, g 2 ∈ G∗, let us write g 1 ∼ g 2 if g 1 =

k′g 2k for some k ∈ K∗, k′ ∈ K∗′. Then, by 5.9, proof of Theorem 5.5 (except the disjoint-
ness) is reduced to the following lemma. Recall that gm,0 = gm,0(1).

LEMMA 5.12. For any y ∈ ol
′

and ν ∈ Λ∗++
m , there exist λ ∈ Λ∗++

m and λ′ ∈ Λ∗++
m−1

such that

(5.12.1) gm,0(y)t (ν) ∼ t (λ′)gm,0(1)t (λ) .

PROOF. We prove the lemma in the case where m = 2l′ + 1 is odd. The proof in the
even case is almost similar and is omitted. Recall that

N ′
(0)gm,0(y) = N ′

(0)xεi (y1) · · · xεl′ (yl′)

for y = t (y1, . . . , yl′). We may assume that y = t (πµ1, . . . , πµl′ ), µ1, . . . , µl′ ≥ 0.
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Suppose first that µ1 ≥ · · · ≥ µi and µi < µi+1 for some i, 1 ≤ i ≤ l′ − 1. Then, by
commutator relations, we have

xεi+1−εi (1 − πµi+1−µi )gm,0(y)t (ν)

∈ N ′
(0)gm,0(y1)t (ν)xεi+1−εi (π

νi−νi+1(1 − πµi+1−µi )) ,

where y1 is the element of ol
′

obtained by substituting the (i + 1)-st entry of y by πµi , that

is, y1 = t (πµ1 , . . . ,
i

πµi ,
i+1

πµi , . . . , πµl′ ). Therefore gm,0(y)t (ν) ∼ gm,0(y1)t (ν), which
implies that we can assume µ1 ≥ · · · ≥ µl′ . Next, we shall show that we may assume
νl′ − µl′ ≥ 0. Actually, if νl′ − µl′ < 0, we have

gm,0(y)t (ν)xεl′ (1 − πµl′−νl′ ) ∈ N ′
(0)gm,0(y2)t (ν)

with y2 = t (πµ1, . . . , πµl′−1, πνl′ ). Hence gm,0(y)t (ν) ∼ gm,0(y2)t (ν). Now suppose that

νi − µi < νi+1 − µi+1 , νi+1 − µi+1 ≥ · · · ≥ νl′ − µl′

for some i, 1 ≤ i ≤ l′ − 1. Then

gm,0(y)t (ν)xεi−εi+1(−1 + πµi−µi+1−νi+νi+1)

∈ N ′
(0)xεi−εi+1(π

µi−µi+1 − πνi−νi+1)gm,0(y3)t (ν) ,

where y3 is the element of ol
′

obtained by substituting the i-th entry of y by πµi+1+νi−νi+1 ,

that is, y3 = t (πµ1, . . . ,
i

πµi+1+νi−νi+1, . . . , πµl′ ). Therefore, if we put

λ′
i = µi+1 + νi − νi+1 , λ′

i+1 = µi+1, . . . , λ
′
l′ = µl′ ,

we have

νi − λ
′
i = νi+1 − λ′

i+1 ≥ · · · ≥ νl′ − λ′
l′ ≥ 0

and

gm,0(y)t (ν) ∼ gm,0(y4)t (ν)

with y4 = t (πµ1 , . . . , πµi−1 , πλ
′
i , . . . , π

λ′
l′ ). Since µ1 ≥ · · · ≥ µi−1 ≥ λ′

i ≥ · · · ≥ λ′
l′

≥ 0
from µi > λ′

i ≥ µi+1, we have

λ′
1 ≥ · · · ≥ λ′

l′ ≥ 0 , ν1 − λ′
1 ≥ · · · ≥ νl′ − λ′

l′ ≥ 0

by repeating this argument. Thus we finally get

gm,0(y)t (ν) ∼ gm,0(y
∗)t (ν) = t ′(λ′)gm,0(1)t (λ) ,

where y∗ = t (πλ
′
1, . . . , π

λ′
l′ ) and λ1 = ν1 − λ′

1, . . . , λl′ = νl′ − λ′
l′

. �

5.13. PROOF OF THEOREM 5.2. Now we shall give a proof of Theorem 5.2 by using
its variant for Om, Theorem 5.5.

Suppose that g ∈ G is decomposed as g = k′t ′(λ′)gm,0t (λ)k for λ ∈ Λ∗++
m , λ′ ∈

Λ∗++
m−1, k ∈ K∗, k′ ∈ K∗ with det k = det k′ = −1. (We have nothing to do for the case

det k = det k′ = 1.)
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We first handle the case where m is odd (m = 2l′ + 1). Set

sodd =









1l′−1
1

1
1

1l′−1









∈ K∗
m−1 ⊂ K∗

m .

This sodd corresponds to γm−1 ∈ W∗
m−1 so that we have soddt

′(λ′)s−1
odd = t (γm−1(λ

′)) and
γm−1(λ

′) ∈ Λ++
m−1. Then sodd is written as

sodd = x−εl′ (−1)xεl′ (1)x−εl′ (−1)h ,

where

h =





1l′−1
−13

1l′−1



 ∈ T ∗ ∩K∗ (deth = −1 = det sodd) .

Since gm,0 = uxε1(1) · · · xεl′ (1) for some u ∈ N ′
(0), we have

soddgm,0 = (soddus
−1
odd)xε1(1) · · · xεl′−1

(1)x−εl′ (1)sodd

= (soddus
−1
odd)xε1(1) · · · xεl′−1

(1)xεl′ (1)x−εl′ (−1)h .

Note that soddus
−1
odd ∈ N ′

(0). Thus we have

g = (k′sodd)(soddt
′(λ′)s−1

odd)soddgm,0t (λ)k

= (k′sodd)t
′(γm−1(λ

′))xε1(1) · · · xεl′−1
(1)xεl′ (1)x−εl′ (−1)t (λ)(hk)

= (k′sodd)t
′(γm−1(λ

′))gm,0t (λ)(t (λ)
−1x−εl′ (−1)t (λ)hk) .

Since det(k′sodd) = det(t (λ)−1x−εl′ (−1)t (λ)hk) = 1, we see that k′sodd ∈ K ′ and that
t (λ)−1x−εl′ (−1)t (λ)hk ∈ K . Therefore we are done in this case.

Now we shall consider the remaining even case m = 2l′ + 2. Set

seven =







1l′
−1

−1
1l′







∈ K∗
m−1 ⊂ K∗

m .

This seven ∈ K∗ corresponds to γm ∈ W∗
m. Then we see that, since sevent

′(λ′)s−1
even = t ′(λ′)

and k′seven ∈ K ′, g = (k′seven)t
′(λ′)sevengm,0t (λ)k is contained in

K ′t ′(λ′)xε1+εl′+1
(−1) · · · xεl′+εl′+1

(−1)(sevent (λ)s
−1
even)(sevenk)

= K ′t ′(λ′)xε1−εl′+1
(−1) · · ·xεl′−εl′+1

(−1)t (γm(λ))(sevenk) (by (3.11.3))

⊂ K ′t ′(λ′)gm,0t (γm(λ))K.

Thus we have completed the proof of Theorem 5.2 (except the disjointness of the decomposi-
tion). �
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6. Support of Whittaker-Shintani functions. The following theorem gives the sup-
port of Whittaker-Shintani functions.

THEOREM 6.1. For F ∈ WS(Ξ, ξ),

supp F ⊂
⊔

UK ′t ′(λ′)gm,r t (λ)K ,

where λ runs overΛ+
m and λ′ over Λ+

m′ .

PROOF. In what follows, we shall give a proof of this theorem in the odd case. The
proof in the even case is similar and is omitted. Recall the decomposition 5.1,

G =
⊔

UK ′t ′(λ′)gm,r t (λ)K ,

where λ runs over Z
r×Λ+

m−2r ⊂ Λm and λ′ overΛ+
m′ . We shall show thatF(t ′(λ′)gm,r t (λ)) =

0 unless λ1 ≥ . . . ≥ λr ≥ λr+1 for λ = (λ1, . . . , λr , λr+1, . . . , λl) ∈ Z
r × Λ+

m−2r . Let
α = εi − εi+1 (1 ≤ i ≤ r − 1). Then, for u ∈ o,

F(t ′(λ′)gm,r t (λ)) = F(t ′(λ′)gm,r t (λ)xα(u))

= F(xα(π
λi−λi+1u)t ′(λ′)gm,r t (λ))

= ψ(πλi−λi+1u)F (t ′(λ′)gm,r t (λ)) .

Since the conductor of ψ is o, this implies that F(t ′(λ′)gm,r t (λ)) = 0 if λi < λi+1. Next, let
α = εr − εr+1. We note that

xα(u) = νm,r (xu, 0)

for xu = (u, 0, . . . , 0) ∈ Matm−2r,r(k) with u = t (0, . . . , 0, u) ∈ k2l′+1 (m− 2r = 2l′ + 1).
Then we have, by a direct calculation,

t ′(λ′)gm,r t (λ)xα(u) = t ′(λ′)gm,rxα(π
λr−λr+1u)t (λ)

= t ′(λ′)νm,r (π
λr−λr+1x ′

u, 0)gm,r t (λ)

= νm,r (π
λr−λr+1d2l′+1(π

λ′
1, . . . , π

λ′
l′ )x ′

u, 0)t
′(λ′)gm,r t (λ) ,

where x ′
u = (u′, 0, . . . , 0) ∈ Matm−2r,r(k) with u′ = t (−u, . . . ,

l′+1
−u, 0, . . . , 0, u) ∈ k2l′+1.

Therefore, as in the first case, the definition of the character ψU of U shows that

F(t ′(λ′)gm,r t (λ)) = F(t ′(λ′)gm,r t (λ)xα(u)) = ψ(−πλr−λr+1u)F (t ′(λ′)gm,r t (λ))

for u ∈ o. This implies that F(t ′(λ′)gm,r t (λ)) = 0 if λr < λr+1. �

7. Multiplicity one. In this section, we shall prove the following theorem that shows
the multiplicity one property of Whittaker-Shintani functions.

THEOREM 7.1. Suppose that F ∈ WS(Ξ, ξ) for (Ξ, ξ) ∈ X × X′. Then F = 0 if

F(1) = 0. In particular, dimCWS(Ξ, ξ) ≤ 1 for any (Ξ, ξ) ∈ X ×X′.

To prove this theorem, we shall study closely the double cosets in Theorem 5.1. For the
purpose, we introduce a partial order “≥WS” on the set Λm ×Λ′

m.
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DEFINITION 7.2. For any (µ,µ′), (λ, λ′) ∈ Λm×Λm′ , we write (µ,µ′) ≥WS (λ, λ
′)

if the following conditions hold:

µi = λi (1 ≤ i ≤ r) ,

j
∑

s=1

µr+s +

j
∑

t=1

µ′
t ≥

j
∑

s=1

λr+s +

j
∑

t=1

λ′
t (1 ≤ j ≤ l′) ,

j
∑

s=1

µr+s +

j−1
∑

t=1

µ′
t ≥

j
∑

s=1

λr+s +

j−1
∑

t=1

λ′
t

(

1 ≤ j ≤ l′ in the odd case
1 ≤ j ≤ l′ + 1 in the even case

)

.

We can rewrite the conditions in 7.2 above by using dominant weights ̟i , ̟ ′
j in 3.14

as follows:

〈̟i , µ〉 = 〈̟i , λ〉 (1 ≤ i ≤ r) ;

〈̟r+j , µ〉 + 〈̟ ′
j , µ

′〉 ≥ 〈̟r+j , λ〉 + 〈̟ ′
j , λ

′〉 (1 ≤ j ≤ l′) ;

〈̟r+j , µ〉 + 〈̟ ′
j−1, µ

′〉 ≥ 〈̟r+j , λ〉 + 〈̟ ′
j−1, λ

′〉

(

1 ≤ j ≤ l′ in the odd case
1 ≤ j ≤ l′ + 1 in the even case

)

.

Incidentally, we recall the usual order “≥” on the character group Hom(T,GL1); σ ≥

τ (σ, τ ∈ Hom(T,GL1)) if σ − τ is a linear combination of positive roots with nonnegative
coefficients. (We denote the corresponding order on Hom(T′,GL1) by the same symbol “≥”.)

Now we can state the following theorem. (Compare with [BT; (4.4.4) (i), (ii)].)

THEOREM 7.3. Suppose µ ∈ Λ+
m and µ′ ∈ Λ+

m′ .

(1) If λ ∈ Λm and λ′ ∈ Λm′ satisfy the condition

K ′t ′(µ′)Kt(µ)−1K ∩ UK ′t ′(λ′)gm,rwℓt (λ)
−1K 
= ∅ ,

then (µ,µ′) ≥WS (λ, λ
′).

(2) If u ∈ U satisfies the condition

K ′t ′(µ′)Kt(µ)−1K ∩ uK ′t ′(µ′)gm,rwℓt (µ)
−1K 
= ∅ ,

then ψU (u) = 1.

PROOF. (1) By the assumption, the element g = t ′(λ′)gm,rwℓt (λ)
−1 is written as

g = uk′t ′(µ′)k1t (µ)
−1k for some u ∈ U, k, k1 ∈ K, k′ ∈ K ′. Let f = αr+j (1 ≤ j ≤ l′)

(see 3.14). Then f ∈ k[G] is a highest weight vector under the right G-action with highest
weight ̟j (resp. highest weight vector under the left G′-action with highest weight ̟ ′

j ).
Since

f (t ′(λ′)gm,rwℓt (λ)
−1) = ̟r+j (t (λ))

−1̟ ′
j (t

′(λ′))−1f (gm,rwℓ)

= ̟r+j (t (λ))
−1̟ ′

j (t
′(λ′))−1 ,

we have

v(f (g )) = −〈̟r+j , λ〉 − 〈̟ ′
j , λ

′〉 .
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On the other hand, we know that f ∈ o[G], the coordinate ring of G over o. Since o[G] is a
Hopf algebra, we have

f (uk′t ′(µ′)k1t (µ)
−1k) =

∑

f(1)(k
′)f(2)(t

′(µ′)k1t (µ)
−1)f(3)(k)

by using the comultiplication in o[G]. Here we may assume that all f(2) ∈ o[G] above are
weight vectors under both the left G′ and the right G-actions so that

f(2)(t
′(µ′)k1t (µ)

−1) = σ ′(t ′(µ′))−1σ(t (µ))−1f(2)(k1)

for some σ ∈ Hom(T,GL1) and σ ′ ∈ Hom(T′,GL1). Note that σ ≤ ̟r+j and σ ′ ≤ ̟ ′
j .

Therefore

v(f (g )) = v
(∑

f(1)(k
′)f(2)(t

′(µ′)k1t (µ)
−1)f(3)(k)

)

≥ inf
k∈K,k′∈K ′

(v(f(1)(k
′)f(2)(t

′(µ′)k1t (µ)
−1)f(3)(k)))

≥ inf
σ,σ ′
(−〈σ,µ〉 − 〈σ ′, µ′〉)

≥ −〈̟r+j , µ〉 − 〈̟ ′
j , µ

′〉 .

This shows that

〈̟r+j , λ〉 + 〈̟ ′
j , λ

′〉 ≤ 〈̟r+j , µ〉 + 〈̟ ′
j , µ

′〉 .

Similarly, if we apply the same argument for f = βj (1 ≤ j ≤ l′ in the odd case and
1 ≤ j ≤ l′ + 1 in the even case), then we have

〈̟r+j , λ〉 + 〈̟ ′
j−1, λ

′〉 ≤ 〈̟r+j , µ〉 + 〈̟ ′
j−1, µ

′〉 ,

since βj ∈ o[G] is a highest weight vector with highest weight̟r+j under the right G-action
(resp. that with highest weight̟ ′

j−1 under the left G′-action). Here we put̟ ′
0 = 0. Also, in

the case where f = αi (1 ≤ i ≤ r), we have

〈̟i , λ〉 = 〈̟i , µ〉 .

These prove (1).
(2) It is sufficient to show that

t ′(µ′)kt (µ) = uk′t ′(µ′)gm,r t (µ)k1 (k, k1 ∈ K, k′ ∈ K ′, u ∈ U) �⇒ ψU (u) = 1 .

We shall prove this by induction on r . If r = 0, the group U is trivial so that there is nothing
to prove. We shall assume that r ≥ 1. Set g = t ′(µ′)kt (µ). Then for (0, . . . , 0, 1) ∈ t (om),

(0, . . . , 0, 1)g = (0, . . . , 0, 1)kt (µ) = tk[m]t (µ) .

Here tk[i] is the i-th row of the m × m matrix k. On the other hand, the expression g =

uk′t ′(µ′)gm,r t (µ)k1 shows that

(0, . . . , 0, 1)g = (0, . . . , 0, 1)t (µ)k1 = π−µ1(tk1,[m]) .

Therefore the vector tv = πµ1(tk[m])t (µ) (=
tk1,[m]) is primitive, i.e., v ∈ om and v

(mod π) 
= 0. Suppose that µ = (µ1, . . . , µa, µa+1, . . . , µl) satisfies the condition µ1 =

· · · = µa > µa+1 ≥ · · · ≥ µl . If we put tv = (v1, . . . , vm), we see that at least one of
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vm−a+1, . . . , vm (say, vm−i+1) is in o×. Let w be an element ofW transposing 1 and i. Then
the (m,m)-coefficient of kw−1 is in o×. Let us set

S† = Sm−2 ;

G† = SO(S†) , K† = G†(o) = G† ∩ GLm−2(o) ;

nx = νm,1(x, 0) =





1 −txS† − 1
2S

†[x]

0 1m−2 x

0 0 1



 (x ∈ om−2) ;

ny = wℓ(ny) (y ∈ om−2) .

The Bruhat decomposition of K (mod π) implies that kw−1 is written as

kw−1 = nx





ǫ

k†

ǫ−1



 ny

for some k† ∈ K†, x, y ∈ om−2, and ǫ ∈ o×. Hence we have

t ′(µ′)kt (µ) = t ′(µ′)nx





ǫ

k†

ǫ−1



 nywt(µ)

= (t ′(µ′)nxt
′(µ′)−1)t ′(µ′)





ǫ

k†

ǫ−1



 t (µ)(t (µ)−1nywt(µ)) .

Here t ′(µ′)nxt
′(µ′)−1 ∈ U and t (µ)−1nywt(µ) ∈ K , since w commutes with t (µ). On the

other hand, we have ψU (t ′(µ′)nxt
′(µ′)−1) = 1. (Recall the definition of the character ψU .)

Set µ† = (µ2, . . . , µr+n) ∈ Λ+
m−2. Then, from the decomposition

t ′(µ′)kt (µ) = uk′t ′(µ′)gm,r t (µ)k1 ,

we see that

t ′(µ′)k†t (µ†) = u†k′1t
′(µ′)gm,r t (µ

†)k
†
1

for some k′1 ∈ K ′, k
†
1 ∈ K†, u† ∈ U† = G† ∩ U with (t ′(µ′)nxt

′(µ′)−1)u† = u. Note that
the induction hypothesis implies that ψU†(u†) = 1. (Here ψU† is the counterpart of ψU for
U†.) Therefore we finally have

ψU (u) = ψU ((t
′(µ′)nxt

′(µ′)−1)u†) = 1 . �

7.4. PROOF OF THE DISJOINTNESS OF THE DECOMPOSITION IN 5.1. The proof of
7.3 above and the decomposition G =

⋃

UK ′t ′(λ′)gm,r t (λ)K given in Section 5 show that
g ∈ UK ′t ′(λ′)gm,r t (λ)K if and only if the minimum values

min
k′∈K ′

k∈K

v(f (k′g k))
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for the relative invariants f defined in 3.14 are given by

−〈̟i , λ〉 for f = αi (1 ≤ i ≤ r) ,

−〈̟r+j , λ〉 − 〈̟ ′
j , λ

′〉 for f = αr+j (1 ≤ j ≤ l′) ,

and

−〈̟r+j , λ〉 − 〈̟ ′
j−1, λ

′〉 for f = βj

(

1 ≤ j ≤ l′ in the odd case
1 ≤ j ≤ l′ + 1 in the even case

)

.

This implies the disjointness of the decomposition. �

REMARK 7.5. The above approach using relative invariants (see also the proof of The-
orem 7.3 (1)) to the study of double cosets is effective for general spherical homogeneous
spaces. Details will appear elsewhere.

7.6. PROOF OF THEOREM 7.1. Now we can prove a “multiplicity one” result for
Whittaker-Shintani functions.

Let us put F(µ,µ′) = F(t ′(µ′)gm,r t (µ)) for µ ∈ Λ+
m and µ′ ∈ Λ+

m′ . By Sections 5
and 6 and the definition of Whittaker-Shintani functions (Section 4), we have only to show
that F(0, 0) = 0 implies that F(µ,µ′) = 0 for any (µ,µ′). (Note that F(0, 0) = F(gm,r ) =

F(1), since gm,r ∈ K .)
Let chKt(µ)K and chK ′t ′(µ′)−1K ′ be the characteristic functions of Kt(µ)K and

K ′t ′(µ′)−1K ′, respectively. We then have
∫

K ′t ′(µ′)Kt(µ)K

F(x) dx = (L(chK ′t ′(µ′)−1K ′)R(chKt(µ)K)F )(1)

= ωΞ (chKt(µ)K)ωξ (chK ′t ′(µ′)−1K ′)F (1) .

Therefore, if we write

K ′t ′(µ′)Kt(µ)K =

a
⊔

i=1

u(i)K
′t (λ′

(i))gm,r t (λ(i))K

(u(i) ∈ U, λ(i) ∈ Z
r ×Λ+

m−2r , λ
′
(i) ∈ Λ+

m′ )

according to the decomposition in Section 5, we have a system of difference equations on
F(λ, λ′) ((λ, λ′) ∈ Λm ×Λm′),

ωΞ (chKt(µ)K)ωξ (chK ′t ′(µ′)−1K ′)F (0, 0) =
∑

λ∈Λm
λ′∈Λm′

cλ,λ′F(λ, λ′)(7.6.1)

for every (µ,µ′) ∈ Λ+
m ×Λ+

m′ , where

cλ,λ′ = vol(K ′t (λ′)gm,r t (λ)K)
∑

iwith (λ(i),λ′
(i)
)=(λ,λ′)

ψU (u(i)) .

Now 7.3 (2) shows that cµ,µ′ above is positive and hence is non-zero. On the other hand,
by 7.3 (1), F(λ, λ′) 
= 0 only when (µ,µ′) ≥WS (λ, λ

′). Thus we can see that the solution
to (7.6.1) is uniquely determined by the initial value F(0, 0) and that, especially, F = 0 if
F(0, 0) = 0. �



WHITTAKER-SHINTANI FUNCTIONS 37

REMARK 7.7. The system of difference equations employed here is similar to those
appeared in [Sh1], [K1] (see also [MS1], [MS3]). This argument implies that each value of
the Whittaker-Shintani function F(µ,µ′) of F with F(1) = 1 is, if it exists, regular in (Ξ, ξ).

8. Rank 1 calculation. In this section, we shall evaluate some integrals related to
simple roots inG×G′. These results are essential in our later use for the determination of an
explicit formula of Whittaker-Shintani functions.

8.1. Let us denote by {Φw (w ∈ W)} (Φw = PΞ (chBwB)) and {φw′ (w′ ∈ W ′)} (φw′ =

Pξ (chB ′w′B ′)) the natural bases of I (Ξ)B and I (ξ)B
′

arising from Bruhat decompositions
K = BWB andK ′ = B ′W ′B ′ (see 1.10), respectively.

We shall evaluate the values

Iα := vol(B)−1vol(B ′)−1Ω(φ1, R(g m,rwℓ)(Φ1 +Φwα )) (α ∈ ∆)

and

Jβ := vol(B)−1vol(B ′)−1Ω(φ1 + φwβ , R(g m,rwℓ)Φ1) (β ∈ ∆′) .

HereΩ = ΩΞ,ξ : I (ξ, ψU )× I (Ξ) → C is a bilinear form introduced in Section 4, given by

Ω(Pξ (f
′),PΞ (f )) =

∫

G′×G

f ′(x ′)f (x)Y (xx ′−1
)dx ′dx

for f ′ ∈ I (ξ, ψU ), f ∈ I (Ξ). We recall that Y = YΞ,ξ is a distribution on G satisfying

Y (tnwℓgm,r t
′n′u) = (Ξ−1δ1/2)(t)(ξδ′

−1/2
)(t ′)ψU (u)

for t ∈ T , n ∈ N, t ′ ∈ T ′, n′ ∈ N ′ and u ∈ U . Throughout this section, we assume that the
parameter (Ξ, ξ) belongs to Zc so that YΞ,ξ is actually a continuous function on G (see 4.9).

LEMMA 8.2. The following inclusions hold:

N(1)gm,r ⊂ T(0)gm,rT
′
(0)N

′
(1)U(1) ,(8.2.1)

N−
(1)wℓgm,r ⊂ T(0)wℓgm,rT

′
(0)N

′
(1)U(1) ,(8.2.2)

wℓgm,rN
′
(1) ⊂ N−

(1)wℓgm,r .(8.2.3)

PROOF. By the commutation relations, there exists y ∈ (o×)n ⊂ on such that

ngm,r ∈ gm,r (y)N
′
(1)U(1)

for n ∈ N(1). Therefore gm,r (y) ∈ T(0)gm,rT
′
(0) shows (8.2.1). (8.2.2) is a consequence

of (8.2.1). As for (8.2.3), since n ≡ 1 (mod π) for any n ∈ N ′
(1), wℓgm,rN

′
(1)g

−1
m,rw

−1
ℓ ⊂

N−
(1). �

LEMMA 8.3. One has

vol(B)−1vol(B ′)−1Ω(φ1, R(g m,rwℓ)Φ1) = 1 .

PROOF. Since

R(g m,rwℓ)Φ1 = PΞ (R(gm,rwℓ)chB) = PΞ (chB(gm,rwℓ)−1) ,
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we have

vol(B)−1vol(B ′)−1Ω(φ1, R(g m,rwℓ)Φ1)

= vol(B)−1vol(B ′)−1
∫

B ′×B

Y (x(gm,rwℓ)
−1x ′)dx ′dx

= vol(B)−1vol(B ′)−1
∫

B ′×B

Y (xwℓgm,rx
′)dx ′dx .

Note that g
−1
m,r ∈ T(0)gm,rT

′
(0)N

′
(0) in the above. By Lemma 8.2, we have

Bwℓgm,rB
′ = Bwℓgm,rN

′−
(1)N

′
(0)T

′
(0) = Bwℓgm,rN

′
(0)T

′
(0)

⊂ T(0)N(0)wℓgm,rT
′
(0)N

′
(0)U(1) = P(0)wℓgm,rPH (0) .

(8.3.1)

This implies that

Y (xwℓgm,rx
′) = 1 (x ∈ B, x ′ ∈ B ′) . �

LEMMA 8.4. For α ∈ ∆, with the normalized Haar measure dt of o,

Iα = 1 + q

∫

o

(Ξδ−1/2)(av(t)α )Y (wℓx−wℓα(t
−1)gm,r)dt .

PROOF. As in Lemma 8.3, we have

vol(B)−1vol(B ′)−1Ω(φ1, R(g m,rwℓ)Φwα )

= vol(B)−1vol(B ′)−1
∫

B ′×BwαB

Y (x(gm,rwℓ)
−1x ′)dx ′dx

= vol(B)−1vol(B ′)−1
∫

BwαB

Y (xwℓgm,r )dx .

In view of the decomposition

BwαB = T(0)N(0)wαXα,(0)N
−
(1)

and the fact vol(BwαB) = q · vol(B), we see that
∫

BwαB

Y (xwℓgm,r )dx = q · vol(B)
∫

o

Y (wαxα(t)wℓgm,r )dt

by using 8.2 again. Recall the formula

xα(t) = x−α(t
−1)wαa

−v(t)
α hx−α(t

−1)

with some element h of T(0) (t 
= 0), see (3.5.1). Since

Y (wαxα(t)wℓgm,r ) = (Ξ−1δ1/2)(a−v(t)
α )Y (wℓx−wℓα(t

−1)gm,r ) ,

we have the lemma. �

Similarly, we have the following lemma.
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LEMMA 8.5. For β ∈ ∆′,

Jβ = 1 + q

∫

o

(ξδ′
−1/2

)(a′
β
v(t)
)Y (wℓgm,rx

′
−β (t

−1))dt .

We shall give without proof the following elementary lemma which is useful in our
calculation.

LEMMA 8.6. Let χ, χ ′ ∈ Xnr (k
×) be two unramified characters of k×. If |χ |,

|χ ′| < q , then

1 + q

∫

o

χ(t)χ ′(1 + t)dt = (q − 1)
1 − q−2χχ ′

(1 − q−1χ)(1 − q−1χ ′)
,

where χ and χ(π) ∈ C
× (resp. χ ′ and χ ′(π) ∈ C

×) are identified as in 3.4.

By virtue of (4.8.1) and (4.8.2), we can apply this lemma to the calculation given below.
8.7. THE EVALUATION IN THE ODD CASE. Now we shall evaluate Iα (α ∈ ∆) and

Jβ (β ∈ ∆′) in the odd case first. Namely, we handle the case G′ = SO2l′(k) ⊂ G =

SO2l′+2r+1(k). In this case, the double coset NTwℓgm,rN
′T ′U is open dense in G. We note

here that gm,rN
′ = xεr+1(1) · · · xεr+l′ (1)N

′. Note also that −wℓα = α for any α ∈ ∆.

PROPOSITION 8.8. For α = εi − εi+1 (1 ≤ i ≤ r),

Iα = q(1 − q−1ΞiΞ
−1
i+1) .

PROOF. We have

(Ξ−1δ1/2)(a−v(t)
α ) = (ΞiΞ

−1
i+1| · |−1)(t)

for aα = di(π)di+1(π)
−1. Consider first the case where 1 ≤ i ≤ r−1. We see xα(t−1)gm,r =

gm,rxα(t
−1) so that

Y (wℓxα(t
−1)gm,r ) = Y (wℓgm,rxα(t

−1)) = ψ(t−1) .

On the other hand, in the case i = r ,

xεr−εr+1(t
−1)gm,r = gm,rxεr−εr+1(t

−1)xεr (t
−1)xεr+εr+1(−t

−1) .

Since the support of the character ψU is on εi − εi+1 (1 ≤ i ≤ r − 1) and εr (see Section 3),
we have

Y (wℓx−wℓα(t
−1)gm,r ) = Y (wℓgm,rxεr−εr+1(t

−1)xεr (t
−1)xεr+εr+1(−t

−1))

= ψ(t−1)

also in this case. By 8.4, we see that

Iα = 1 + q

∫

o

(ΞiΞ
−1
i+1| · |−1)(t)Y (wℓx−wℓα(t

−1)gm,r )dt

= 1 + q

∞
∑

k=0

(1 − q−1)q−k(ΞiΞ
−1
i+1)

kqk
∫

o×
ψ(π−ku)du ,
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where du is the normalized Haar measure on o×. This completes the proof of our proposition,
since

∫

o×

ψ(π−ku)du =









1 (k = 0) ,

−1/(q − 1) (k = 1) ,

0 (k > 1) . �

PROPOSITION 8.9. For α = εr+i − εr+i+1 (1 ≤ i ≤ l′ − 1),

Iα = (q − 1)
1 − q−1Ξr+iΞ

−1
r+i+1

(1 − q−1/2ξ−1
i Ξr+i)(1 − q−1/2ξiΞ

−1
r+i+1)

.

PROOF. By 8.4,

Iα = 1 + q

∫

o

(Ξr+iΞ
−1
r+i+1| · |−1)(t)Y (wℓxα(t

−1)gm,r )dt ,

since aα = dr+i(π)dr+i+1(π)
−1. The commutator relation shows that

xα(t
−1)gm,r = xεr+i−εr+i+1(t

−1)gm,r

∈ xεr+1(1) · · · xεr+i−1(1)xεr+i (1 + t−1)xεr+i+1(1) · · · xεr+n(1)N
′

= dr+i(1 + t−1)gm,rdr+i(1 + t−1)−1N ′.

This implies that

Y (wℓxα(t
−1)gm,r ) = (Ξ−1δ1/2)(dr+i(1 + t−1)−1)(ξδ′

−1/2
)(dr+i(1 + t−1)−1)Y (wℓgm,r )

= (ξi
−1Ξr+i | · |−1/2)(1 + t−1) .

Thus, by 8.6, we finally have

Iα = 1 + q

∫

o

(ξiΞ
−1
r+i+1| · |−1/2)(t)(ξ−1

i Ξr+i | · |−1/2)(1 + t)dt

= (q − 1)
1 − q−1Ξr+iΞ

−1
r+i+1

(1 − q−1/2ξ−1
i Ξr+i)(1 − q−1/2ξiΞ

−1
r+i+1)

. �

PROPOSITION 8.10. For α = εr+l′,

Iα = (q − 1)
1 − q−1Ξ2

r+l′

(1 − q−1/2ξl′Ξr+l′)(1 − q−1/2ξ−1
l′
Ξr+l′)

.

PROOF. The evaluation is similar to that of 8.9. Since aα = dr+l′(π)
2, we have

(Ξ−1δ1/2)(a−v(t)
α ) = (Ξ2

r+l′ | · |−1)(t) .

On the other hand,

xα(t
−1)gm,r ∈ xεr+1(1) · · · xεr+l′−1

(1)xεr+l′ (1 + t−1)N ′

= dr+l′(1 + t−1)gm,rdr+l′(1 + t−1)−1N ′ .
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Hence we have

Y (wℓxα(t
−1)gm,r ) = (Ξ−1δ1/2)(dr+l′(1 + t−1)−1)(ξδ′

−1/2
)(dr+l′(1 + t−1)−1)Y (wℓgm,r )

= (ξ−1
l′
Ξr+l′ | · |−1/2)(1 + t−1)

and, by 8.6,

Iα = 1 + q

∫

o

(ξl′Ξr+l′ | · |−1/2)(t)(ξ−1
l′
Ξr+l′ | · |−1/2)(1 + t)dt

= (q − 1)
1 − q−1Ξ2

r+l′

(1 − q−1/2ξl′Ξr+l′)(1 − q−1/2ξ−1
l′
Ξr+l′)

.
�

PROPOSITION 8.11. For β = ε′i − ε
′
i+1 (1 ≤ i ≤ l′ − 1),

Jβ = (q − 1)
1 − q−1ξiξ

−1
i+1

(1 − q−1/2ξiΞ
−1
r+i+1)(1 − q−1/2ξ−1

i+1Ξr+i+1)
.

PROOF. In this case, a′
β = dr+i(π)dr+i+1(π)

−1. Note that

gm,rx−β(t
−1) = gm,rx−εr+i+εr+i+1(t

−1)

is contained in

xεr+1(1) · · · xεr+l′ (1)x−εr+i+εr+i+1(t
−1)N ′

= x−εr+i+εr+i+1(t
−1)xεr+1(1) · · · xεr+i−1(1)xεr+i (1 + t−1)xεr+i+1(1) · · · xεr+l′ (1)N

′

= x−β(t
−1)dr+i(1 + t−1)gm,rdr+i(1 + t−1)−1N ′

(see 3.11). We have

Jβ = 1 + q

∫

o

(ξδ′
−1/2

)(a
v(t)

β ′ )(Ξ
−1δ1/2)(dr+i(1 + t−1)−1)(ξδ′

−1/2
)(dr+i(1 + t−1)−1)dt

= 1 + q

∫

o

(ξiΞ
−1
r+i+1| · |−1/2)(t)(ξ−1

i+1Ξr+i+1| · |−1/2)(1 + t)dt

= (q − 1)
1 − q−1ξiξ

−1
i+1

(1 − q−1/2ξiΞ
−1
r+i+1)(1 − q−1/2ξ−1

i+1Ξr+i+1)
.

�

PROPOSITION 8.12. For β = ε′
l′−1 + ε′

l′
,

Jβ = (q − 1)
1 − q−1ξl′−1ξl′

(1 − q−1/2ξl′−1Ξr+l′)(1 − q−1/2ξl′Ξ
−1
r+l′
)
.
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PROOF. In order to calculate Jβ in this case, we consider gm,rx−β(t
−1) explicitly by

using matrix form. It is sufficient to handle only the case r = 0. Set s = t−1. Since

gm,r =






1l′ 21 −1t1

1 −t1

1l′






and

x−β(s) = x−εl′−1−εl′
(s) =














1l′−2
1

1

1

s 1
−s 1

1l′−2














,

we have

gm,rx−β(s) =






















−s s

1l′−2
...

...

−s s 21 −1t1

0 · · · 0 1 − s s

0 · · · 0 −s 1 + s

−s s 1 −t1

s 0 1
0 −s 1

1l′−2






















= x−β(s)




















1l′−2
1

1

−s s 1

s2 −s2 −2s 1
−s2 s2 2s 1

1l′−2




















d(A)gm,r ,
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where d(A) =





A

1
Jl′
tA

−1
Jl′



 with

A =










−s s

1l′−2
...

...

−s s

1 − s s

−s 1 + s










∈ GLl′(k) .

Set

B =








1
. . .

1
−s

1−s
1








∈ GLl′(k)

and

C =










1 −s s

. . .
...

...

1 −s s

1 − s s
1

1−s










∈ GLl′(k) .

Then A = BC so that d(A) = d(B)d(C). Hence

d(A)gm,r = d(B)d(C)g m,r

= d(B)






1l′ 2C1 −C1t (C1)Jl′

1 −t (C1)Jl′

1l′




d(C)

∈ N−xε1(1) · · · xεl′−1
(1)xεl′ ((1 − s)−1)dr+l′−1(1 − s)dr+l′((1 − s)−1)N ′ .

Therefore we see that

gm,rx−β(t −1) ∈ N−dr+l′((1 − t−1)−1)gm,rdr+l′−1(1 − t−1)N ′ .

Since aβ = dr+l′−1(π)dr+l′(π), we finally have

Jβ = 1 + q

∫

o

(ξδ′
−1/2

)(a′
β
v(t)
)Y (wℓgm,rx

′
−β(t

−1))dt

= 1 + q

∫

o

(ξl′Ξ
−1
r+l′

| · |−1/2)(t)(ξl′−1Ξr+l′ | · |−1/2)(1 − t)dt

= (q − 1)
1 − q−1ξl′−1ξl′

(1 − q−1/2ξl′−1Ξr+l′)(1 − q−1/2ξl′Ξ
−1
r+l′
)
. �

This completes the evaluation in the odd case.
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8.13. THE EVALUATION IN THE EVEN CASE. We evaluate Iα (α ∈ ∆) and Jβ (β ∈

∆′) in the even case where G′ = SO2l′+1(k) ⊂ G = SO2l′+2r+2(k). In this case, gm,r =

xεr+1−εr+l′+1
(1) · · · xεr+l′−εr+l′+1

(1) so that NTwℓgm,rN
′T ′U is open dense in G.

Let γ be the outer automorphism of G which arises from the non-trivial graph automor-
phism of ∆ . This γ is given by the conjugation by







1r+l′
0 1
1 0

1r+l′






,

which induces the substitution εi → εi (i 
= l′+r+1), εr+l′+1 ↔ −εr+l′+1 on Hom(T,GL1).
Note that γ (gm,r ) = xεr+1+εr+l′+1

(1) · · · xεr+l′+εr+l′+1
(1) and γ (gm,r ) ∈ gm,rN

′. The sub-
groups N, T , G′, N ′, T ′, U are invariant under γ . This implies that the open dense sub-
set NTwℓgm,rN

′T ′U is also γ -invariant. Since γ naturally acts on X as Ξi ↔ Ξi (i 
=

r + l′ + 1), Ξr+l′+1 ↔ Ξ−1
r+l′+1, we see that

YΞ,ξ (γ (g )) = Yγ (Ξ),ξ (g ) (g ∈ G) .

Note also that

−wℓα =







α if r + l′ + 1 is even,

γ (α) if r + l′ + 1 is odd

for any α ∈ ∆. Hence we have

−wℓεi =







εi (i 
= r + l′ + 1) ,

±εr+l′+1 (i = r + l′ + 1).

PROPOSITION 8.14. For α = εi − εi+1 (1 ≤ i ≤ r),

Iα = q(1 − q−1ΞiΞ
−1
i+1) .

PROOF. The calculation of Iα in this case is similar to that of 8.8. Note that the support
of the characterψU is on εi−εi+1 (1 ≤ i ≤ r−1), εr −εr+l′+1 and εr +εr+l′+1 (see Section
3). If 1 ≤ i ≤ r − 1, xα(t−1)gm,r = gm,rxα(t

−1) so that

Y (wℓxα(t
−1)gm,r ) = ψ(t−1) .

On the other hand, the equality

xεr−εr+1(t
−1)gm,r = gm,rxεr−εr+1(t

−1)xεr−εr+l′+1
(t−1)

shows that

Y (wℓx−wℓα(t
−1)gm,r ) = ψ(t−1)

also in this case. Hence exactly as in 8.8, we are done. �
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PROPOSITION 8.15. For α = εr+i − εr+i+1 (1 ≤ i ≤ l′),

Iα = (q − 1)
1 − q−1Ξr+iΞ

−1
r+i+1

(1 − q−1/2ξ−1
i Ξr+i)(1 − q−1/2ξiΞ

−1
r+i+1)

.

PROPOSITION 8.16. For α = εr+l′ + εr+l′+1,

Iα = (q − 1)
1 − q−1Ξr+l′Ξr+l′+1

(1 − q−1/2ξ−1
l′
Ξr+l′)(1 − q−1/2ξl′Ξr+l′+1)

.

PROOF OF 8.15 AND 8.16 First we note that 8.15 for α = εr+l′ − εr+l′+1 and 8.16 are
equivalent via γ (see 8.13). Hence it suffices to calculate

Iα = 1 + q

∫

o

(Ξδ−1/2)(av(t)α )Y (wℓx−wℓα(t
−1)gm,r )dt

for −wℓα = εr+i − εr+i+1 (1 ≤ i ≤ l′). Note that

α = −wℓ(εr+i − εr+i+1) = εr+i − eεr+i+1

for some e = ±1. (We remark that e = 1 when i < l′.) From 3.11, we see that

xεr+i−εr+i+1(t
−1)gm,r =

















xεr+1−εr+l′+1
(1) · · · xεr+i−1−εr+l′+1

(1)

× xεr+i−εr+l′+1
(1 + t−1)xεr+i+1−εr+l′+1

(1) · · ·

× xεr+l′−εr+l′+1
(1)xεr+i−εr+i+1(t

−1)

if i < l′ ,

xεr+1−εr+l′+1
(1) · · · xεr+l′−1−εr+l′+1

(1)

× xεr+l′−εr+l′+1
(1 + t−1)

if i = l′ .

Therefore we have

xεr+i−εr+i+1(t
−1)gm,r ∈ dr+i(1 + t−1)gm,rdr+i(1 + t−1)−1N ′

in either case. Hence we obtain

(Ξδ−1/2)(aα
v(t))Y (wℓxα(t

−1)gm,r )

= (Ξr+iΞ
−e
r+i+1| · |−1)(t)(Ξr+i | · |−l

′+1−i)(1 + t−1)(ξ−1
i | · |l

′−i−(1/2))(1 + t−1)

= (ξiΞ
−e
r+i+1| · |−1/2)(t)(ξ−1

i Ξr+i | · |−1/2)(1 + t) ,

which yields

Iα = (q − 1)
1 − q−1Ξr+iΞ

−e
r+i+1

(1 − q−1/2ξ−1
i Ξr+i)(1 − q−1/2ξiΞ

−e
r+i+1)

for α = εr+i − eεr+i+1 (1 ≤ i ≤ l′) by 8.6. �

PROPOSITION 8.17. For β = ε′i − ε
′
i+1 (1 ≤ i ≤ l′ − 1),

Jβ = (q − 1)
1 − q−1ξiξ

−1
i+1

(1 − q−1/2ξiΞ
−1
r+i+1)(1 − q−1/2ξ−1

i+1Ξr+i+1)
.
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PROOF. The calculation of Jβ in this case is similar to that of 8.11 and is omitted. �

PROPOSITION 8.18. For β = ε′
l′
,

Jβ = (q − 1)
1 − q−1ξ2

l′

(1 − q−1/2ξl′Ξr+l′+1)(1 − q−1/2ξl′Ξ
−1
r+l′+1)

.

PROOF. We handle gm,rx−β(t
−1) explicitly by using matrix form, as in 8.12. We may

assume r = 0. Set s = t−1. Since

gm,r =








1l′ 1 0

1 t0

1 −t1

1l′








and

x−β(s) = x−εl′−εl′+1
(s)x−εl′−εl′+1

(s) =













1l′−1

1

s 1

s 1

−s2 −s −s 1

1l′−1













in G = SO2l′+2(k),

gm,rx−β(s) =





















s

1l′−1
...

s

1 + s

s 1

s + s2 s 1 + s −1 · · · −1

−s2 −s −s

1l′





















= x−εl′+εl′+1
(−s2/(1 + s))x−β(s)dl′+1(1 + s)−1

gm,rd(A)
−1

∈ N−dl′+1(1 + s)−1
gm,rdl′(1 + s)−1N ′,
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where d(A) =

(

A

J tA−1J

)

with

A =












s

1l′−1
...

s

1 + s

1












∈ GLl′+1(k) .

This shows that

(ξδ′
−1/2

)(a′v(t)
β )Y (wℓgm,rx

′
−β(t

−1))

= (ξδ′
−1/2

)(a′v(t)
β )(Ξδ1/2)(dl′+1(1 + t−1)e)(ξδ′

−1/2
)(dl′(1 + t−1)−1)

= (ξl′Ξ
−e
r+l′+1| · |−1/2)(t)(ξl′Ξ

e
r+l′+1| · |−1/2)(1 + t) .

Here we put wℓ(εl′+1) = −eεl′+1 for some e = ±1 as in the proof of 8.15 and 8.16. There-
fore, using 8.6 as before, we have the proposition. �

9. Rationality. The purpose of this section is to show the rationality of the linear
form lΞ,ξ introduced in Section 4 with respect to the parameters (Ξ, ξ).

We first show that Assumption 2.3 holds in our case (see 9.1, 9.2 below).

PROPOSITION 9.1. For any (Ξ, ξ), dim HomPH (I (Ξ;O0), ξ
−1δ′

1/2
⊗ ψU ) = 1 .

PROOF. This is obvious from 3.12 (3). �

PROPOSITION 9.2. Let O be a P × PH -orbit in G different from O0. Then

dim HomPH (I (Ξ;O), ξ−1δ′
1/2

⊗ ψU ) = 0

for generic (Ξ, ξ).

PROOF. For O = P gPH , we have

dim HomPH (I (Ξ;O), ξ−1δ
1/2
0 ⊗ ψU )

= dim HomPH∩g−1Pg
(g −1(Ξδ1/2)⊗ (ξδ

−1/2
0 )⊗ ψ−1

U , δg ) ,

where δg is the modulus character of PH ∩ g
−1P g (see 2.2). Hence we must show that

g
−1(Ξδ1/2)|PH∩g −1Pg · ((ξδ

−1/2
0 )⊗ ψ−1

U )|PH∩g −1Pg · δ−1
g


≡ 1

on PH ∩ g
−1P g for generic (Ξ, ξ). To do this, it is sufficient to see that we can choose a

representative g of the P × PH -orbit O = P gPH such that
(a) T ′ ∩ g

−1T g contains a non-trivial torus;
or

(b) ψU |NH∩g−1Ng 
≡ 1.
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Here NH = N ′U is the unipotent radical of PH . Let O = Pwg m,r (y)PH (w ∈ W, y ∈

{0, 1}l
′
) be a P × PH -orbit in G. Let us put

g
∗
m,r (y) =







xεr+1(y1) · · · xεr+l′ (yl′) in the odd case ,

xεr+1−εr+l′+1
(y1) · · · xεr+l′−εr+l′+1

(yl′) = gm,r (y) in the even case .

Since g
∗
m,r (y)NH = gm,r (y)NH , we may take g = wg

∗
m,r (y) as a representative of O.

Suppose that O 
= O0. Then either w 
= wℓ or y 
= 1 = t (1, . . . , 1) holds. We first
consider the case where y 
= 1 so that the i-th component of y is 0 for some i with 1 ≤ i ≤ l′.
In this case, we have

T ′ ∩ g
−1T g ⊃ Image of dr+i .

Hence the condition (a) holds.
We next consider the case where y = 1 and w 
= wℓ. We put g = wg

∗
m,r (1). By

the assumption, there exists a simple root α satisfying wα > 0. Assume first that α =

εi − εi+1 (1 ≤ i ≤ r − 1). Then, since

Nwg
∗
m,r (1) = Nwg

∗
m,r(1)xεi−εi+1(t) ,

we have

NH ∩ g
−1Ng ∋ xεi−εi+1(t)

for any t ∈ k, and we see that (b) holds. Next we assume that α = εr − εr+1. In the odd case,

Nwg
∗
m,r (1) = Nwxεr−εr+1(t)g

∗
m,r (1)

= Nwg
∗
m,r (1)xεr−εr+1(t)xεr (t)xεr+εr+1(−t)

for any t ∈ k. Hence

NH ∩ g
−1Ng ∋ xεr−εr+1(t)xεr (t)xεr+εr+1(−t)

for any t ∈ k, which implies that (b) holds. Similarly, in the even case,

Nwg
∗
m,r (1) = Nwxεr−εr+1(t)g

∗
m,r (1)

= Nwg
∗
m,r (1)xεr−εr+1(t)xεr−εr+l′+1

(t)

for any t ∈ k. Hence

NH ∩ g
−1Ng ∋ xεr−εr+1(t)xεr−εr+l′+1

(t)

for any t ∈ k so that (b) holds. When α = εi − εi+1 (r + 1 ≤ i ≤ r + l′ − 1) in the odd case,

Pwg
∗
m,r (1) = Pwxεi−εi+1(−1)g ∗

m,r (1)

= Pwg
∗
m,r (y)xεi−εi+1(−1)xεi+εi+1(1)

with y = t (1, . . . , 1,
i

0, 1, . . . , 1) so that

Pwg
∗
m,r (1)PH = Pwg

∗
m,r (y)PH ,
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and (a) holds. We can handle the even case where α = εi − εi+1 (r + 1 ≤ i ≤ r + l′) in a
similar manner. Finally, if α = εr+l′ in the odd case, an argument similar to the above shows
that

Pwg
∗
m,r(1)PH = Pwg

∗
m,r (y)PH

for y = t (1, . . . , 1, 0), hence (a) holds. On the other hand, if α = εr+l′ + εr+l′+1 in the even
case, since

xεr+l′−εr+l′+1
(1)xεr+l′+εr+l′+1

(1) = xε′
r+l′
(1) ∈ NH ,

we have

Pwg
∗
m,r (1)PH = Pwxεr+l′ +εr+l′+1

(1)g ∗
m,r (1)PH

= Pw(xε1−εr+l′+1
(1)xε1+εr+l′+1

(−1))× · · ·

× (xεl′−1−εr+l′+1
(1)xεl′−1+εr+l′+1

(−1))xεl′−εr+l′+1
(1)xεl′+εr+l′+1

(1)PH

= Pwg
∗
m,r (y)PH

for y = t (1, . . . , 1, 0). Therefore (a) also holds in this case. �

Together with 2.4, this proposition shows the following generic multiplicity one result.

COROLLARY 9.3. Let V be a P × PH -stable open subset ofG. Then

dim HomPH (I (Ξ;V), ξ−1δ′
1/2

⊗ ψU ) ≤ 1

for generic (Ξ, ξ). In particular,

dim HomPH (I (Ξ), ξ
−1δ′

1/2
⊗ ψU ) ≤ 1.

9.4. As in Section 4, we define lΞ,ξ ∈ HomPH (I (Ξ), ξ
−1δ′

1/2
⊗ ψU ) by

lΞ,ξ (PΞ (f )) =

∫

G

f (g )Y (g )dg (f ∈ C∞
c (G))

for (Ξ, ξ) ∈ Zc. Here Y = YΞ,ξ is a continuous function onG defined to be

Y (g ) = Y (pwℓgm,rpH ) = (Ξ−1δ1/2)(p)(ξδ′
−1/2

⊗ ψU )(pH ) (p ∈ P,pH ∈ PH )

for g = pwℓgm,rpH ∈ O0 ≃ P × PH and Y (g ) = 0 for g 
∈ O0. Obviously, lΞ,ξ |I (Ξ,O0) is
defined (and rational) for any (Ξ, ξ).

Now we proceed to the rationality argument. We shall show that the equivariant linear
form lΞ,ξ on I (Ξ) defined above is rational in (Ξ, ξ). First we shall see that the assumption
2.7 holds.

PROPOSITION 9.5. The restriction of lΞ,ξ on I (Ξ;PwℓP) is rational in (Ξ, ξ).

PROOF. For χ ∈ Xnr (k
×), we first note that the function χ∼ on k defined by

χ∼(x) =

{
χ(x) (x ∈ k×) ,

0 (x = 0)
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can be viewed as a distribution on k with rational parameter χ = χ(π) ∈ C
×. Actually,

the integral I (χ, f ) =
∫

k f (x)χ
∼(x)dx converges for any f ∈ C∞

c (k) when |χ | < q and
(1 − q−1χ)I (χ, f ) is regular in χ . If y = t (y1, . . . , yl′) with yi 
= 0 for any i, we have
gm,r (y) = d(y)gm,rd(y)

−1 for some d(y) ∈ T ′ ⊂ T . See (3.12.1) for an explicit form of
d(y). This shows that

Y (pwℓgm,r (y)nH ) = (Ξ−1δ1/2)(pwℓ(d(y)))(ξδ
′−1/2

⊗ ψU )(d(y)
−1nH )

= (Ξ−1δ1/2)(p)ψU (nH )(wℓ(Ξ
−1δ1/2)ξ−1δ′

1/2
)(d(y))

= (Ξ−1δ1/2)(p)ψU (nH )

l′
∏

i=1

(Ξr+iξ
−1
i | · |−1/2)(yi)

for p ∈ P, nH ∈ NH . Since

{pwℓn ∈ PwℓN | n = gm,r (y)nH (y1 · · · yl′ 
= 0)} (= O0)

≃ P × (k×)l
′

×NH

is an open dense subset of PwℓP ≃ P × kl
′
× NH , the function Y∼ on PwℓP defined by

Y∼(pwℓg m,r(y)nH ) = (Ξ−1δ1/2)(p)ψU (nH )

l′
∏

i=1

(Ξr+iξ
−1
i | · |−1/2)

∼
(yi)

(p ∈ P, y ∈ kl
′

, nH ∈ NH )

gives a linear form lΞ,ξ on I (Ξ;PwℓP) if (Ξ, ξ) ∈ Zc. Therefore lΞ,ξ on I (Ξ;PwℓP) is
rational in (Ξ, ξ). �

REMARK 9.6. The above proof shows that
∏l′

i=1(1−q1/2Ξr+1ξ
−1
i ) · lΞ,ξ is regular in

(Ξ, ξ). Hence, together with the argument given below, we can evaluate the “denominator”
of the linear form lΞ,ξ .

9.7. Proposition 9.5 above (see also Section 2) implies that we can extend lΞ,ξ |I (Ξ ;PwℓP)

for generic (Ξ, ξ). Then 9.3 shows that, for generic (Ξ, ξ),

HomPH (I (Ξ;PwℓP), ξ
−1δ′

1/2
⊗ ψU ) = C · lΞ,ξ |I (Ξ ;PwℓP) .(9.7.1)

Let Twα = Twα ,wαΞ : I (wαΞ) → I (Ξ) be the standard intertwining operator for wα ∈

W, α ∈ ∆ (see Section 1). Consider generic (Ξ, ξ) ∈ Zc. We know from 9.3 that the equi-
variant linear forms T ∗

wα
lΞ,ξ |I (wαΞ ;PwℓP) = (lΞ,ξ◦Twα )|I (wαΞ ;PwℓP) and lwαΞ,ξ |I (wαΞ ;PwℓP)

in HomPH (I (wαΞ;PwℓP), ξδ
′1/2 ⊗ ψU ) are proportional. Note that lwαΞ,ξ |I (wαΞ ;PwℓP) is

rational in the parameters thanks to 9.5.
The following result gives the explicit form of proportional constants which is crucial

for our discussion on the rationality of lΞ,ξ (Assumption 2.9) and the explicit formula of
Whittaker-Shintani functions.
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PROPOSITION 9.8. Let wα ∈ W be the simple reflection associated with α ∈ ∆. Then

for generic (Ξ, ξ) ∈ Zc, the constant a(wα,Ξ, ξ) defined by

T ∗
wα
lΞ,ξ |I (wαΞ ;PwℓP) = a(wα,Ξ, ξ)lwαΞ,ξ |I (wαΞ ;PwℓP)(9.8.1)

is given as follows:

a(wα,Ξ, ξ) =
1 − q−1ΞiΞ

−1
i+1

1 − Ξ−1
i Ξi+1

(α = εi − εi+1, 1 ≤ i ≤ r) ,

a(wα,Ξ, ξ) =
(1 − q−1ΞiΞ

−1
i+1)(1 − q−1/2ξ−1

i Ξi+1)(1 − q−1/2ξiΞ
−1
i )

(1 −Ξ−1
i Ξi+1)(1 − q−1/2ξ−1

i Ξi)(1 − q−1/2ξiΞ
−1
i+1)

(α = εi − εi+1, r + 1 ≤ i ≤ r + l′ − 1) ,

a(wα,Ξ, ξ) =
(1 − q−1Ξ2

l′
)(1 − q−1/2ξ−1

l′
Ξ−1
l′
)(1 − q−1/2ξl′Ξ

−1
l′
)

(1 −Ξ−2
l′
)(1 − q−1/2ξ−1

l′
Ξl′)(1 − q−1/2ξl′Ξl′)

(α = εr+l′ in the odd case) ,

a(wα,Ξ, ξ) =
(1 − q−1Ξl′−1Ξl′)(1 − q−1/2ξ−1

l′−1Ξ
−1
l′
)(1 − q−1/2ξl′−1Ξ

−1
l′−1)

(1 −Ξ−1
l′−1Ξ

−1
l′
)(1 − q−1/2ξ−1

l′−1Ξl′−1)(1 − q−1/2ξl′−1Ξl′)

(α = εl′−1 + εl′ in the even case) .

PROOF. For α ∈ ∆, let us define the elements Ψ1, Ψwα ∈ I (Ξ) by putting

Ψ1 = Ψ1,Ξ := R(chB ′gm,rwℓB
)Φ1,Ξ = PΞ (R(chB ′gm,rwℓB

)chB)

and

Ψwα = Ψwα ,Ξ := R(chB ′gm,rwℓB
)Φwα ,Ξ = PΞ (R(chB ′gm,rwℓB

)chBwαB).

(Note that Φ1 = PΞ (chB) and Φwα = PΞ (chBwαB).) In particular, Ψ1 ∈ I (Ξ;PwℓP)

because the support of R(chB ′gm,rwℓB
)chB is B(g mrwℓ)

−1B ′ ⊂ PwℓP (see the proof of 8.2).
From Sections 4 and 8, we have

lΞ,ξ (Ψ1,Ξ ) = lΞ,ξ (PΞ (R(chB ′gm,rwℓB
)chB))

=

∫

B×B ′gm,rwℓB

Y (xg −1)dxdg

= vol(B)
∫

B ′gm,rwℓB

Y (g −1)dg

= vol(B ′
gm,rwℓB)vol(B ′)−1

∫

B×B ′
Y (g (gm,rwℓ)

−1
g

′)dg dg ′

= vol(B ′
gm,rwℓB)vol(B ′)−1Ω(φ1, R(gm,rwℓ)Φ1)

= vol(B ′
gm,rwℓB)vol(B) .
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Similarly,

lΞ,ξ (Ψwα ,Ξ ) = vol(B ′
gm,rwℓB)vol(B ′)−1

∫

BwαB×B ′
Y (g (gm,rwℓ)

−1
g

′)dg dg ′

= vol(B ′
gm,rwℓB)vol(B)×Ω(φ1, R(gm,rwℓ)Φwα ) .

On the other hand, we have

TwαΦ1,wαΞ = (cα(Ξ
−1)− 1)Φ1,Ξ + q−1Φwα ,Ξ

from [C2, 3.4]. Hence we get

TwαΨ1,wαΞ = (cα(Ξ
−1)− 1)Ψ1,Ξ + q−1Ψwα ,Ξ .

Therefore we finally have

T ∗
wα
lΞ,ξ (Ψ1,wαΞ )

= lΞ,ξ (TwαΨ1,wαΞ )

= (cα(Ξ
−1)− 1)lΞ,ξ (Ψ1,Ξ )+ q

−1lΞ,ξ (Ψwα ,Ξ )

= vol(B ′
gm,rwℓB)vol(B)

×{(cα(Ξ
−1)− 1)Ω(φ1, R(gm,rwℓ)Φ1)+ q

−1Ω(φ1, R(g m,rwℓ)Φwα )}

= vol(B ′
gm,rwℓB)vol(B)

×{(cα(Ξ
−1)− 1 − q−1)+ q−1Ω(φ1, R(g m,rwℓ)(Φ1 + Φwα ))}

for generic (Ξ, ξ) ∈ Zc. This shows that

a(wα,Ξ, ξ) = (cα(Ξ
−1)− 1 − q−1)+ q−1Ω(φ1, R(g m,rwℓ)(Φ1 +Φwα ))

for any α ∈ ∆. Now substituting the values of Ω(φ1, R(g m,rwℓ)(Φ1 + Φwα )) calculated
in Section 8, we get the explicit form of a(wα,Ξ, ξ) from case-by-case consideration. This
completes the proof of the proposition. �

We have verified that all the assumptions in Section 2 are satisfied (9.1, 9.2, 9.5 and 9.8).
Thus we obtain the following theorem from 2.10.

THEOREM 9.9. The equivariant linear form lΞ,ξ is rational in (Ξ, ξ). In particular,

for generic (Ξ, ξ), lΞ,ξ is defined and satisfies

HomPH (I (Ξ), ξδ
′1/2 ⊗ ψU ) = C · lΞ,ξ .

COROLLARY 9.10. Up to a constant factor, there uniquely exists an H -invariant bi-

linear form ΩΞ,ξ : I (ξ, ψU ) × I (Ξ) → C for generic (Ξ, ξ). This ΩΞ,ξ is rational in

(Ξ, ξ).

PROOF. Recall that H -invariant bilinear forms Ω : I (ξ, ψU ) × I (Ξ) → C and PH -
equivariant linear forms l ∈ HomPH (I (Ξ), ξδ

′1/2 ⊗ ψU ) are in one-to-one correspondence
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(see Section 4). Hence the existence and the uniqueness follow from 9.9. On the other hand,
the rationality of lΞ,ξ implies that ofΩΞ,ξ . Actually, we have for f ∈ C∞

c (G), f0 ∈ C∞
c (G

′),

ΩΞ,ξ (Pξ (f0),PΞ (f )) =

∫

G′×G

f0(g
′)f (g )Y (g g

′−1
)dg ′dg

= lΞ,ξ (Pf
∗) ,

where f ∗ ∈ C∞(G) is defined as

f ∗(x) =

∫

G′

f0(g
′)f (xg ′)dg ′ . �

REMARK 9.11. By the rationality of ΩΞ,ξ , the formulas on the values of Iα and Jβ
calculated in Section 8 hold for generic (Ξ, ξ).

10. An explicit formula.

10.1. In this section, we shall give an explicit formula for the Whittaker-Shintani func-
tion SΞ,ξ given by

SΞ,ξ (g ) = ΩΞ,ξ (φK ′,ξ , R(g )ΦK,Ξ )

=

∫

K ′×K

YΞ,ξ (kg
−1k′)dk′dk

introduced in Section 4. Recall that the integral above defines a rational function in (Ξ, ξ) by
“analytic continuation” (see Section 9).

10.2. Let Ξ ∈ X and ξ ∈ X′. We shall identify Ξ and ξ with (Ξ1, . . . , Ξl) ∈ (C×)l

and (ξ1, . . . , ξl′) ∈ (C×)l
′

respectively, as before.
For α ∈ Σ (resp. β ∈ Σ ′), we let eα(Ξ) (resp. e′

β(ξ)) be the numerator of the c-function

cα(Ξ) (resp. c′
β(ξ)); namely eα(Ξ) = 1 − q−1Ξ(aα) and e′

β(ξ) = 1 − q−1ξ(a′
β). We set

e(Ξ) =
∏

α∈Σ+ eα(Ξ) and e′(ξ) =
∏

β∈Σ ′+ e′
β(ξ). We also let dα(Ξ) be the denominator

of cα(Ξ) so that dα(Ξ) = 1 − Ξ(aα). We set d(Ξ) =
∏

α∈Σ+ dα(Ξ). Similarly we define
d′
β(ξ) and d′(ξ).

10.3. We let

b(Ξ, ξ) =
∏

1≤i≤l′

1≤j≤l

(1 − q−1/2(ξ−1
i Ξj )

ηij )(1 − q−1/2ξiΞj ) ,

where

ηij =

{

1, if j ≤ r + i ,
−1, if j > r + i .

Let us put

ζ(Ξ, ξ) =
e(Ξ)e′(ξ)

b(Ξ, ξ)
.
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LEMMA 10.4. (1) For any α ∈ ∆,

ζ(wαΞ, ξ)

ζ(Ξ, ξ)
=
ΩwαΞ,ξ (φ1, R(g m,rwℓ)(Φ1 +Φwα ))

ΩΞ,ξ (φ1, R(g m,rwℓ)(Φ1 + Φwα ))
.(10.4.1)

(2) For any β ∈ ∆′,

ζ(Ξ,wβξ)

ζ(Ξ, ξ)
=
ΩΞ,wβξ (φ1 + φwβ , R(g m,rwℓ)Φ1)

ΩΞ,ξ (φ1 + φwβ , R(g m,rwℓ)Φ1)
.(10.4.2)

PROOF. We can verify these equalities from case-by-case considerations. For example,
if α = εr+i − εr+i+1 (1 ≤ i ≤ l′ − 1), it is easily seen that the left hand side of (10.4.1) is
equal to

(1 − q−1/2ξ−1
i Ξr+i)(1 − q−1/2ξiΞ

−1
r+i+1)(1 − q−1Ξ−1

r+iΞr+i+1)

(1 − q−1/2ξ−1
i Ξr+i+1)(1 − q−1/2ξiΞ

−1
r+i)(1 − q−1Ξr+iΞ

−1
r+i+1)

.

On the other hand, the results of Section 8 (8.9 and 8.15) show that the right hand side of
(10.4.1) is identical to the above. We can check the other cases in similar ways. �

THEOREM 10.5. For generic (Ξ, ξ), the value SΞ,ξ (g )/ζ(Ξ, ξ) (g ∈ G) isW ×W ′-

invariant as a function of (Ξ, ξ).

PROOF. We first recall that, by the uniqueness argument in Section 7, any H -invariant
bilinear form on I (ξ, ψU ) × I (Ξ) is a scalar multiple of ΩΞ,ξ for generic (Ξ, ξ). Since a
bilinear form on I (ξ, ψU )× I (Ξ) given by

(Tw′,ξ × Tw,Ξ )
∗ΩwΞ,w′ξ = ΩwΞ,w′ξ ◦ (Tw′,ξ × Tw,Ξ )

is also H -invariant, there exists a scalar factor bw,w′(Ξ, ξ) such that

(Tw′,ξ × Tw,Ξ )
∗ΩwΞ,w′ξ = cw(Ξ)c

′
w′(ξ)bw,w′(Ξ, ξ)ΩΞ,ξ

for generic (Ξ, ξ). Consider the case where w = wα (α ∈ ∆) and w′ = 1. Since

Twα (Φ1 +Φwα ) = cα(Ξ)(Φ1 + Φwα ) ,

we have

cα(Ξ)bwα ,1(Ξ, ξ)ΩΞ,ξ (φ1, R(g m,rwℓ)(Φ1 +Φwα ))

= (TwαΞ × 1)∗ΩwαΞ,ξ (φ1, R(g m,rwℓ)(Φ1 +Φwα ))

= cα(Ξ)ΩwαΞ,ξ (φ1, R(gm,rwℓ)(Φ1 +Φwα ))

and hence

bwα,1(Ξ, ξ) =
ΩwαΞ,ξ (φ1, R(g m,rwℓ)(Φ1 +Φwα ))

ΩΞ,ξ (φ1, R(g m,rwℓ)(Φ1 + Φwα ))

=
ζ(wαΞ, ξ)

ζ(Ξ, ξ)
.
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Therefore we have

SwαΞ,ξ (g )/ζ(wαΞ, ξ) = ΩwαΞ,ξ (φK ′, R(g )ΦK )/ζ(wαΞ, ξ)

= cα(Ξ)
−1ΩwαΞ,ξ (φK ′, Twα (R(g )ΦK ))/ζ(wαΞ, ξ)

= bwα ,1(Ξ, ξ)ΩΞ,ξ (φK ′, R(g )ΦK )/ζ(wαΞ, ξ)

= ΩΞ,ξ (φK ′, R(g )ΦK )/ζ(Ξ, ξ)

= SΞ,ξ (g )/ζ(Ξ, ξ) .

This implies that the function of Ξ given by SΞ,ξ (g )/ζ(Ξ, ξ) is invariant under W . The
W ′-invariance follows exactly in the same manner. �

10.6. We are now in a position to give an explicit formula of Whittaker-Shintani func-
tion SΞ,ξ in a form analogous to the case of zonal spherical functions or Whittaker functions
([Mac], [CS], [K1]).

Recall 6.1. It suffices to know the value SΞ,ξ (g ) with g = t ′(λ′)gm,rwℓt (λ)
−1 for λ′ ∈

Λ+
m′ , λ ∈ Λ+

m, since −wℓ(Λ
+
m) = Λ+

m and

t ′(λ′)gm,rwℓt (λ)
−1 = t ′(λ′)gm,r t (−wℓ(λ))wℓ (λ ∈ Λ+

m, λ
′ ∈ Λ+

m′) .

Let us put

cWS(Ξ, ξ) =
c(Ξ)c′(ξ)

ζ(Ξ, ξ)
=

b(Ξ, ξ)

d(Ξ)d′(ξ)
.

Then we can give the following theorem by using an argument similar to that in [CS].

THEOREM 10.7. For λ′ ∈ Λ+
m′ and λ ∈ Λ+

m,

SΞ,ξ (t
′(λ′)gm,rwℓt (λ)

−1)/ζ(Ξ, ξ) = q l(wℓ)+l(w
′
ℓ)vol(B)vol(B ′)

×
∑

w∈W
w′∈W ′

cWS(wΞ,wξ)((wΞ)
−1δ1/2)(t (λ))((w′ξ)−1δ′

1/2
)(t ′(λ′)) .

PROOF. We fix generic parameters (Ξ, ξ). We first note that

SΞ,ξ (t
′(λ′)gm,rwℓt (λ)

−1) = vol(B ′t ′(λ′)−1B ′)vol(Bt (λ)−1B)

× L(chB ′t ′(λ′)−1B ′)R(chBt(λ)−1B)SΞ,ξ (gm,rwℓ)
(10.7.1)

for λ′ ∈ Λ+
m′ and λ ∈ Λ+

m. To show this, it is sufficient to prove that

B ′t ′(λ′)B ′
gm,rwℓBt(λ)

−1B ⊂ U(0)K
′t ′(λ′)gm,rwℓt (λ)

−1K .

By the Iwahori factorization B = N−
(1)T(0)N(0) and B ′ = N ′

(0)T
′
(0)N

′−
(1) ,

B ′t ′(λ′)B ′
g m,rwℓBt(λ)

−1B ⊂ K ′t ′(λ′)N ′−
(1)gm,rwℓN

−
(1)t (λ)

−1K .
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(Note that t (λ)N(0)t (λ)−1 ⊂ N(0) and t ′(λ′)N ′
(0)t

′(λ′)−1 ⊂ N ′
(0).) Then we see exactly as in

Proposition 8.3 (see also Lemma 8.2) that

N ′−
(1)gm,rwℓN

−
(1) ⊂ gm,rwℓN

−
(1)N(1)

⊂ gm,rwℓN
−
(1)T(0)N(1) ⊂ U(0)N

′
(1)T

′
(0)gm,rwℓT(0)N(1) .

This implies (10.7.1).
By 1.10, we have a basis {gw (w ∈ W)} for I (Ξ)B satisfying

R(chBt(λ)−1B)gw = vol(Bt (λ)B)(wΞ)−1δ1/2(t (λ))gw (λ ∈ Λ+
m) ;(10.7.2)

g 1 = φ1 ;(10.7.3)

φK = qℓ(wℓ)
∑

w∈W

c̄w(Ξ)gw(10.7.4)

with c̄w(Ξ) =
∏

cα(Ξ) (α > 0, wα > 0). We also have a basis {g ′
w′ (w

′ ∈ W ′)} for
I (ξ)B = I (ξ, ψU )

B with the similar properties

φK ′ = qℓ(w
′
ℓ)

∑

w′∈W ′

c̄′
w′(ξ)g

′
w′(10.7.5)

and so on. Put

S = SΞ,ξ (t
′(λ′)gm,rwℓt (λ)

−1)/ζ(Ξ, ξ) .

Then we have, by substituting (10.7.4) and (10.7.5) in 10.1,

S = qℓ(wℓ)+ℓ(w
′
ℓ)

b(Ξ, ξ)

e(Ξ)e′(ξ)

×
∑

w∈W
w′∈W ′

c̄w(Ξ)c̄
′
w′(ξ)(wΞ)

−1δ1/2(t (λ))(w′ξ)−1δ′
1/2
(t ′(λ′))ΩΞ,ξ (g

′
w′ , R(gm,rwℓ)gw)

from (10.7.1), (10.7.3) (and its counterpart for {g ′
w′ (w

′ ∈ W ′)}). We know that

ΩΞ,ξ (g
′
1, R(gm,rwℓ)g 1) = vol(B)vol(B ′)

from 8.3. Thus the coefficient for w = 1, w′ = 1 in S is

qℓ(wℓ)+ℓ(w
′
ℓ)vol(B)vol(B ′)

b(Ξ, ξ)

e(Ξ)e′(ξ)
= qℓ(wℓ)+ℓ(w

′
ℓ)vol(B)vol(B ′)cWS(Ξ, ξ).

Hence theW ×W ′-invariance of S and the linear independence of characters show that

S = q l(wℓ)+l(w
′
ℓ)vol(B)vol(B ′)

×
∑

w∈W
w′∈W ′

cWS(wΞ,wξ)((wΞ)
−1δ1/2)(t (λ))((w′ξ)−1δ′

1/2
)(t ′(λ′)) .

�

The value SΞ,ξ (1)/ζ(Ξ, ξ) = SΞ,ξ (gm,r )/ζ(Ξ, ξ) = SΞ,ξ (gm,rwℓ)/ζ(Ξ, ξ) is given
by the following theorem.



WHITTAKER-SHINTANI FUNCTIONS 57

THEOREM 10.8. The value of SΞ,ξ at 1, SΞ,ξ (1), is given as

SΞ,ξ (1)/ζ(Ξ, ξ) = qℓ(wℓ)+ℓ(w
′
ℓ)vol(B)vol(B ′)×Qm′ ,

where Qm′ is the constant given by

Qm′ =















(1 − q−l′)

l′−1
∏

i=1

(1 − q−2i) if m′ = 2l′ ,

l′
∏

i=1

(1 − q−2i) if m′ = 2l′ + 1 .

We shall prove this theorem in the next section and assume this for the moment.
Now we define the Whittaker-Shintani function FΞ,ξ by normalizing SΞ,ξ :

FΞ,ξ (g ) = SΞ,ξ (g )/SΞ,ξ (gm,rwℓ) .

Since we already know that SΞ,ξ/ζ(Ξ, ξ) is rational in (Ξ, ξ), the explicit formula 10.7 of
SΞ,ξ/ζ(Ξ, ξ) shows that the value FΞ,ξ (g ) is regular in (Ξ, ξ) with FΞ,ξ (1) = 1.

Thus we finally have the following theorem from 10.7, 10.8 and the multiplicity one
result in Section 7.

THEOREM 10.9. For any (Ξ, ξ) ∈ X × X′, dimCWS(Ξ, ξ) = 1. The basis of

WS(Ξ, ξ), FΞ,ξ ∈ WS(Ξ, ξ) with FΞ,ξ (1) = 1, is given by the formula

FΞ,ξ (t
′(λ′)gm,rwℓt (λ)

−1)

=
1

Qm′

∑

w∈W
w′∈W ′

cWS(wΞ,w
′ξ)((wΞ)−1δ1/2)(t (λ))((w′ξ)−1δ′

1/2
)(t ′(λ′))(10.9.1)

for (λ, λ′) ∈ Λ+
m ×Λ+

m′ .

11. The value at the identity: Proof of 10.8. We shall calculate the sum

Ar,m′ = Ar,m′(Ξ, ξ) =
∑

w∈W
w′∈W ′

b(wΞ,w′ξ)

d(wΞ)d′(w′ξ)

for regular (Ξ, ξ) ∈ X ×X′. (Recall that m = 2r +m′ + 1.) We have

SΞ,ξ (1) = SΞ,ξ (gm,rwℓ) = ζ(Ξ, ξ)qℓ(wℓ)+ℓ(w
′
ℓ)vol(B)vol(B ′)× Ar,m′

from 10.7. Therefore we can rewrite Theorem 10.8 as follows:

THEOREM 11.1. The sum Ar,m′ is a constant, and is equal toQm′ given in 10.8.

In what follows, we shall calculate

A
†
r,m′ := Ar,m′(Ξ−1, ξ−1) =

∑

w∈W
w′∈W ′

b(wΞ−1, w′ξ−1)

d(wΞ−1)d′(w′ξ−1)
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instead of Ar,m′ , and show that A†
r,m is equal to the above constant.

11.2. From now on, we shall consider the odd case m = 2r + 2l′ + 1, m′ = 2l′. We
can handle the even case in a similar way.

We shall regard Ξi (1 ≤ i ≤ r + l′) and ξj (1 ≤ j ≤ l′) as indeterminates. Hence A†
r,m′

is in the Laurent polynomial ring C[Ξ±1
i , ξ±1

j ] by Weyl’s character formula. We put

b
†
r,m′(Ξ, ξ) : = b(Ξ−1, ξ−1)

=
∏

1≤i≤l′

1≤j≤r+i

(1 − q−1/2ξiΞ
−1
j )

∏

1≤i≤l′

r+i<j≤r+l′

(1 − q−1/2ξ−1
i Ξj )

×
∏

1≤i≤l′

1≤j≤r+l′

(1 − q−1/2ξ−1
i Ξ−1

j ) ,

d(Ξ)† : = d(Ξ−1) =
∏

1≤i<j≤r+l′

(1 − Ξ−1
i Ξj )(1 −Ξ−1

i Ξ−1
j )

∏

1≤i≤r+l′

(1 −Ξ−2
i )

and

d′(ξ)† : = d′(ξ−1) =
∏

1≤i<j≤l′

(1 − ξ−1
i ξj )(1 − ξ−1

i ξ−1
j ) .

11.3. Set

ρ = ρm = (r + l′, r + l′ − 1, . . . , 2, 1) ∈ Λm = Z
r+l′

and

ρ′ = ρ′
m′ = (l′ − 1, l′ − 2, . . . , 1, 0) ∈ Λm′ = Z

l′ .

Then ρ (resp. ρ′) is the half-sum of positive roots in Cr+n (resp. Dn). We put

Ξρ = Ξ r+l
′

1 Ξ r+l
′−1

2 · · ·Ξ2
r+l′−1Ξr+l′

and

ξρ
′

= ξ l
′−1

1 ξ l
′−2

2 · · · ξ2
l′−2ξl′−1 .

As in the case of Weyl’s character formula, we have

A
†
r,m′ = D(Ξ)−1D′(ξ)−1

∑

w∈W
w′∈W ′

sgn(w)sgn(w′)ww′(Ξρξρ
′

b
†
r,m′(Ξ, ξ)) ,

where

D(Ξ) = Dm(Ξ) =
∏

1≤i<j≤r+l′

(Ξi − Ξj )(1 −Ξ−1
i Ξ−1

j )
∏

1≤i≤r+l′

(Ξi − Ξ
−1
i )

and

D′(ξ) = D′
m′(ξ) =

∏

1≤i<j≤l′

(ξi − ξj )(1 − ξ−1
i ξ−1

j ) .
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We say that λ ∈ Λm = Z
r+l′ or the monomial Ξλ = Ξ

λ1
1 · · ·Ξ

λr+l′

r+l′
(resp. µ ∈ Λm′ =

Z
l′ or ξµ = ξ

µ1
1 · · · ξ

µl′

l′
) is regular if the stabilizer of λ inW = W(Cr+l′) (resp. the stabilizer

of µ in W ′ = W(Dl′)) is trivial. We also call the monomial Ξλξµ regular if both Ξλ and
ξµ are regular. Let us set Br,m′ = Ξρξρ

′
b

†
r,m′(Ξ, ξ). Then, by expanding Br,m′ as Br,m′ =

∑

cλ,µΞ
λξµ, we have

A
†
r,m′ = D(Ξ)−1D′(ξ)−1

∑

Ξλξµ regular

cλ,µ
∑

w∈W(Cr+l′ )
w′∈W(Dl′ )

sgn(w)sgn(w′)ww′(Ξλξµ) .

11.4. REDUCTION TO THE CASE r = 0. Now we look at the expansion of Br,m′ in
the above more closely to study regular terms in it. We write down Br,m′ as

Br,m′ =
∏

1≤i≤l′

1≤j≤r+i

(Ξj − q−1/2ξi)
∏

1≤i≤l′

r+i<j≤r+l′

(ξi − q
−1/2Ξj )

×
∏

1≤i≤l′

1≤j≤r+l′

(1 − q−1/2ξ−1
i Ξ−1

j )

r
∏

j=1

Ξ
r−j+1
j .

If a monomial Ξλξµ in the expansion of Br,m′ is regular, then we must have
{

|λσ(1)| > |λσ(2)| > · · · > |λσ(r+l′)| > 0 ,
|µτ (1)| > |µτ (2)| > · · · > |µτ (l′)| ≥ 0

for some permutations σ ∈ Sr+l′ and τ ∈ Sl′ . In particular, we have
{

|λσ(i)| ≥ r + l′ + 1 − i ,

|µτ (j)| ≥ l′ − j .
(11.4.1)

However we can see easily that the exponent λi of the power of Ξi in Br,m′ must satisfy
{

−l′ + r − i + 1 ≤ λi ≤ r + l′ − i + 1 if i ≤ r,

−l′ ≤ λi ≤ l′ if r < i .

This shows that

λσ(1) = λ1 = l′ + r > λσ(2) = λ2 = l′ + r − 1 > · · · > λσ(r) = λr = l′ ,(11.4.2)

and that

|λσ(r+i)| = l′ − i (1 ≤ i ≤ l′) .(11.4.3)

In particular, we have λ = y(ρ) for some y ∈ W(Cl′). Here we regardW(Cl′) as the subgroup
ofW = W(Cr+l′) which acts trivially on the first r entries. Note that

∏

1≤i≤l′

(Ξj − q−1/2ξi) = Ξ l
′

j + (lower terms in Ξj )

and
∏

1≤i≤l′

(1 − q−1/2ξ−1
i Ξ−1

j ) = 1 +Ξ−1
j · (a polynomial in Ξ−1

j )
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for 1 ≤ j ≤ r . Therefore we have

A
†
r,m′ = D(Ξ)−1D′(ξ)−1

∑

w∈W
w′∈W ′

sgn(w)sgn(w′)ww′(B∗
r,m′) ,

where

B∗
r,m′ =

∏

1≤i≤l′

r+1≤j≤r+i

(Ξj − q−1/2ξi)
∏

1≤i≤l′

r+i<j≤r+l′

(ξi − q
−1/2Ξj )

×
∏

1≤i≤l′

r+1≤j≤r+l′

(1 − q−1/2ξ−1
i Ξ−1

j )

r
∏

j=1

Ξ
r+l′−j+1
j .

But then the equalities

sgn(y) = D2r+2l′+1(Ξ)
−1

∑

w∈W(Cr+l′ )

sgn(w)w(Ξy(ρ2r+2l′+1))

= D2l′+1(Ξ)
−1

∑

w∈W(Cl′ )

sgn(w)w(Ξy(ρ2l′+1))
(11.4.4)

for y ∈ W(Cl′) ⊂ W(Cr+l′) imply the following lemma.

LEMMA 11.5. The sum A
†
r,m′ is constant in Ξ and is independent of r . In particular,

A
†
r,m′ = A

†
0,m′ .

11.6. THE CASE r = 0. Now we shall study

A = A
†
0,m′ = Dm′+1(Ξ)

−1D′
m′(ξ)

−1
∑

w∈W(Cl′ )
w′∈W(Dl′ )

sgn(w)sgn(w′)ww′(B0,m′) ,

where

B0,m′ =
∏

1≤i≤l′

1≤j≤i

(Ξj − q−1/2ξi)
∏

1≤i≤l′

i<j≤l′

(ξi − q
−1/2Ξj )

×
∏

1≤i,j≤l′

(1 − q−1/2ξ−1
i Ξ−1

j ) .

(11.6.1)

Recall that the inequalities |λi | ≤ l′ and |µj | ≤ l′ hold if the monomial Ξλξµ appears in the
expansion of B0,m′ .

Suppose that a monomial Ξλξµ with µi = l′ for some i = i0 appears in the expansion
of B0,m′ . Note that

∏

1≤j≤i0

(Ξj − q−1/2ξi0)
∏

i0<j≤l
′

(ξi0 − q−1/2Ξj ) = c · ξ l
′

i0
+ (lower terms in ξi0)
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for some non-zero constant c, and
∏

1≤j≤l′

(1 − q−1/2ξ−1
i0
Ξ−1
j ) = 1 + ξ−1

i0
· (a polynomial in ξ−1

i0
) .

Therefore, for any j , only the product
∏

j≤k≤l′

k 
=i0

(Ξj − q−1/2ξk)
∏

1≤k<j
k 
=i0

(ξk − q−1/2Ξj )

contributes to the power Ξ
λj
j in Ξλξµ. This implies that 0 ≤ λj < l′ for any j , and hence

Ξλξµ is not regular. Similarly, we can see that Ξλξµ appearing in B0,m′ is not regular if
µi = −l′ for some i.

Thus we see that |µi | < l′ for any i if the monomial Ξλξµ that appears in B0,m′ is
regular. This and (11.4.1) show that µ = u(ρ′) for some u ∈ W(Dl′ ). Therefore, as in 11.5,
we have:

LEMMA 11.7. The sum A
†
0,m′ is a constant.

11.8. THE EVALUATION OF THE CONSTANT. To evaluate the constant A = A
†
0,m′ ,

we specialize (Ξ, ξ) to (Ξ̃ , ξ̃ ), where Ξ̃k = q l
′−k+1/2 and ξ̃i = q l

′−i (1 ≤ i, k ≤ l′). Namely,

A =
∑

w∈W(Cl′ )
w′∈W(Dl′ )

b
†
0,l′(wΞ̃,w

′ξ̃ )

d†(wΞ̃)d′†(w′ξ̃ )
.

Note that d(wΞ̃ )d′(w′ξ̃ ) 
= 0 for any w ∈ W(Cl′),w′ ∈ W(Dl′ ).
Now, to every w ∈ W(Cl′ ), w′ ∈ W(Dl′), we shall assign permutations σ, τ ∈ Sl′ and

εi, ε
′
j = ±1 with

∏

ε′j = 1 in the following way:

wΞ = (Ξ
ε1
σ(1), . . . , Ξ

εl′

σ(l′)
) , w′ξ = (ξ

ε′1
τ (1), . . . , ξ

ε′
l′

τ (l′)
) .

LEMMA 11.9. If the product b
†
0,m′(wΞ̃,w

′ξ̃ ) 
= 0, then w = w′ = 1.

PROOF. To show the lemma, we first rewrite b
†
0,m′(wΞ̃,w

′ξ̃ ) as

b
†
0,m′(wΞ̃,w

′ξ̃ ) =
∏

1≤j≤i≤l′

(1 − qα(i,j))
∏

1≤i<j≤l′

(1 − qβ(i,j))
∏

1≤i,j≤l′

(1 − qγ (i,j)) ,

where we put

α(i, j) = −
1

2
− εj

(

l′ − σ(j)+
1

2

)

+ ε′i(l
′ − τ (i)) ,

β(i, j) = −
1

2
+ εj

(

l′ − σ(j)+
1

2

)

− ε′i(l
′ − τ (i)) ,
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and

γ (i, j) = −
1

2
− εj

(

l′ − σ(j)+
1

2

)

− ε′i(l
′ − τ (i)) .

If b
†
0,m′(wΞ̃,w

′ξ̃ ) 
= 0, we must have

α(i, j) 
= 0 (1 ≤ j ≤ i ≤ l′) , β(i, j) 
= 0 (1 ≤ i < j ≤ l′) , γ (i, j) 
= 0 (1 ≤ i, j ≤ l′) .

Define i1, . . . , il′ and j1 . . . , jl′ by

τ (is) = l′ − s + 1 (1 ≤ s ≤ l′)

and

σ(jt ) = l′ − t + 1 (1 ≤ t ≤ l′)

so that l′ − τ (is) = s − 1 and l′ − σ(jt ) = t − 1. Then we can deduce Lemma 11.9 easily
from the following lemma, since the conditions (11.10.1) and (11.10.2) given below occur
only when w = w′ = 1. Actually, we have ε′i1 = 1 from

∏

ε′i = 1. (Note that w′ ∈ W(Dl′).)

LEMMA 11.10. If the product b
†
0,m′(wΞ̃,w

′ξ̃ ) 
= 0, then the following hold:

i1 ≥ j1 > i2 ≥ j2 > · · · > il′ ≥ jl′ ,(11.10.1)

ε′i2 = · · · = ε′il′
= εj1 = · · · = εjl′ = 1 .(11.10.2)

The proof of this lemma is as follows. Since γ (i1, j1) = −1/2 − εj1(1/2) 
= 0, we
have εj1 = 1. Then β(i1, j1) = −1/2 + εj1(1/2) = 0 implies that j1 ≤ i1. Next consider
γ (i2, j1) = −1/2 − 1/2 − ε′i2

. The assumption γ (i2, j1) 
= 0 shows that ε′i2 = 1, which in
turn implies that i2 < j1, since α(i2, j1) = −1/2 − εj1(1/2)+ ε

′
i2

= 0. In this way, we have

i1 ≥ j1 > i2 ≥ j2 > · · · > il′ ≥ jl′

and

ε′i2 = · · · = ε′il′
= εj1 = · · · = εjl′ = 1

by induction. Details are left to the readers. �

As for the value of A = A
†
0,m′ = A

†
r,m′ , Lemma 11.9 and the direct calculation show that

A =
b

†
0,m′(ξ̃ , Ξ̃ )

d†(Ξ̃ )d′†(ξ̃ )
= (1 − q−l′)

l′−1
∏

i=1

(1 − q−2i) .

Therefore we have proved Theorem 11.1, and hence Theorem 10.8, and have completed the
proof of Theorem 10.9. �



WHITTAKER-SHINTANI FUNCTIONS 63

REFERENCES

[BT] F. BRUHAT AND J. TITS, Groupes rèductifs sur un corps local. I, Données radicielles valuées, Inst. Hautes.
Études Sci. Publ. Math. 41 (1972), 5–251; II, Schémas en groupes, Inst. Hautes. Études Sci. Publ. Math.
60 (1984), 197–376.

[BZ] I. N. BERNSTEIN AND A. V. ZELEVINSKY, Representations of the group GL(n, F) where F is a non-
archimedean local field, Russian Math. Surveys 31 (1976), 1–68.

[BFF] D. BUMP, S. FRIEDBERG AND M. FURUSAWA, Explicit formulas for the Waldspurger and Bessel models,
Israel J. Math. 102 (1997), 125–177.

[C1] W. CASSELMAN, Introduction to the theory of admissible representations of p-adic reductive groups,
preprint.

[C2] W. CASSELMAN, The unramified principal series of p-adic groups I, The spherical function, Compositio
Math. 40 (1980), 387–406.

[CS] W. CASSELMAN AND J. SHALIKA, The unramified principal series of p-adic groups II, The Whittaker
function, Compositio Math. 41 (1980), 207–231.

[GPR] D. GINZBURG, I. PIATETSKI-SHAPIRO AND S. RALLIS, L functions for the orthogonal groups, Mem.
Amer. Math. Soc. 128 (1997), no. 611.

[GP] B. GROSS AND D. PRASAD, On irreducible representations of SO2n+1 × SO2m, Canad. J. Math. 46
(1994), 930–950.

[H] Y. HIRONAKA, Spherical functions and local densities of hermitian forms , J. Math. Soc. Japan 51 (1999),
553–581.

[HS1] Y. HIRONAKA AND F. SATO, Spherical functions and local densities of alternating forms, Amer. J. Math.
110 (1988), 473–512.

[HS2] Y. HIRONAKA AND F. SATO, Eisenstein series on reductive symmetric spaces and representations of Hecke
algebras, J. Reine Angew. Math. 445 (1993), 45–108.

[IM] N. IWAHORI AND H. MATSUMOTO, On some Bruhat decompositions and the structure of Hecke ring of
p-adic Chevalley groups, Inst. Hautes. Études Sci. Publ. Math. 25 (1965), 5–48.

[K1] S. KATO, On an explicit formula for class-1 Whittaker functions on split reductive groups over p-adic
fields, preprint, 1978.

[K2] S. KATO, Irreducibility of principal series representations for Hecke algebras of affine type, J. Fac. Sci.
Univ. Tokyo 28 (1982), 929–943.

[K3] S. KATO, Spherical functions on spherical homogeneous spaces (in Japanese), Proc. 3rd Number Theory
Summer School (1995), 54–77.

[KMS] S. KATO, A. MURASE AND T. SUGANO, Spherical functions on certain spherical homogeneous spaces
and Rankin-Selberg convolution, RIMS Kôkyûroku 965 (1996), 12–22.

[Mac] I. G. MACDONALD, Spherical functions on a group of p-adic type, Publ. of the Ramanujan Inst. 2, Bombay,
1971.

[Mat] H. MATSUMOTO, Analyse harmonique dans les systèmes de Tits bornologiques de type affine. Lecture
Notes in Math. 590, Springer-Verlag, Berlin-New York, 1977.

[M] A. MURASE, Automorphic L functions and Rankin-Selberg method II: Spherical homogeneous spaces and
Rankin-Selberg convolution (in Japanese), Proc. 3rd Number Theory Summer School (1995), 90–120.

[MS1] A. MURASE AND T. SUGANO, Whittaker-Shintani functions on the symplectic group of Fourier-Jacobi
type, Compositio Math. 79 (1991), 321–349.

[MS2] A. MURASE AND T. SUGANO, Shintani function and its application to automorphic L-functions for clas-
sical groups: I, The orthogonal group case, Math. Ann. 299 (1994), 17–56.

[MS3] A. MURASE AND T. SUGANO, Shintani functions and automorphic L-functions forGL(m), Tôhoku Math.
J. 48 (1996), 165–202.

[Sa] I. SATAKE, Theory of spherical functions on reductive algebraic groups over p-adic fields, Inst. Hautes.
Études Sci. Publ. Math. 18 (1963), 5–69.

[Sh1] T. SHINTANI, On an explicit formula for class-1 “Whittaker functions" on GLn over �-adic fields, Proc.
Japan Acad. 52 (1976), 180–182.

[Sh2] T. SHINTANI, Unpublished notes, 1979.



64 S. KATO, A. MURASE AND T. SUGANO

DIVISION OF MATHEMATICS DEPARTMENT OF MATHEMATICS

FACULTY OF INTEGRATED HUMAN STUDIES FACULTY OF SCIENCE

KYOTO UNIVERSITY KYOTO SANGYO UNIVERSITY

KYOTO 606–8501 KYOTO 603–8555
JAPAN JAPAN

E-mail address: kato@math.h.kyoto-u.ac.jp E-mail address: murase@cc.kyoto-su.ac.jp

DEPARTMENT OF MATHEMATICS

FACULTY OF SCIENCE

KANAZAWA UNIVERSITY

KANAZAWA 920–1192
JAPAN

E-mail address: sugano@kappa.s.kanazawa-u.ac.jp


