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WHITTAKER-SHINTANI FUNCTIONS FOR ORTHOGONAL GROUPS
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Abstract. As generalizations of zonal spherical functions and Whittaker functions,
certain special functions on p-adic orthogonal groups closely related to automorphic forms
are introduced. Their multiplicity one property and explicit formula are established.

Introduction.

0.1. The object of this paper is to study certain special functions on orthogonal groups
over p-adic fields, which naturally arise from the investigation of automorphic L-functions
for these groups.

Let G = SO,;, be a split special orthogonal group of degree m = m' +2r + 1 (r > 0)
defined over a non-archimedean local field k& with the ring of integers o. Let Q be a parabolic
subgroup of G whose Levi subgroup is isomorphic to SO,/ ;1 x (GL1)". We embed another
split special orthogonal group G’ = SO, into SO, . as the stabilizer of an anisotropic
vector, and regard G as a subgroup of G. Let U be the unipotent radical of Q. We denote
by G = G(k) and G’ = G’(k) the groups of k-rational points of G and G’, respectively. (As
above, algebraic groups are denoted in boldface letters, while the corresponding groups of
k-rational points in italic letters.) We also let K = G N GL,,(0) and K’ = G’ N GL,, (0) be
maximal open compact subgroups of G and G’, respectively. We choose a generic character
Yy : U — C* invariant under the action of G’ on U.

Let us denote by L and R the left and the right regular representations of G on a suitable
function space on G, respectively. Let C*°(G, ¥y) be the space of smooth functions F on
G satisfying L(u)F = ¢y (u)F for u € U. Under the assumption on v/, the group G’ acts
on C*°(G, ¥y) via the left translation so that C*°(G, ¥y) becomes a G x G’ module. (The
G-action is the right regular one.)

Let H = H(G, K) (resp. H' = H(G', K')) be the Hecke algebra of (G, K) (resp.
(G', K')) over C. They act on C®(G, yy)X*K’, the space of K x K'-fixed vectors in
C*(G, yy). For v € Homc_qg(H, C) and o’ € Homc.qe(H', C), we define the space of
Whittaker-Shintani functions attached to (w, @) to be the space of (w, w')-eigenvectors in
C>®(G, 1//U)K <K' Namely, a function F' on G is said to be a Whittaker-Shintani function
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attached to (w, ') if it satisfies the following two conditions:

0.1.1) LwkYRKF =yywF weU, kekK', ke K);
(0.1.2) L(@R(@)F =o' (@hw(@)F (@' €eH, 9 €H).

0.2. Inthis paper, with an application to the theory of automorphic L-functions in mind,
we prove that the space of Whittaker-Shintani functions with arbitrary eigenvalues (w, ') is
one-dimensional, and give an explicit formula for the Whittaker-Shintani functions in terms of
the Satake parameters attached to (w, «’). In a subsequent paper, by using the uniqueness and
the explicit formula presented here, we will show that certain Rankin-Selberg convolutions
actually give integral expressions of the standard L-functions for SO x GL (see [KMS]). This
kind of convolution is also studied in [GPR].

Our Whittaker-Shintani functions are studied by several authors. When m’ = 0 or 1,
the functions considered here are the usual Whittaker functions. The explicit formula has
been given by Casselman-Shalika [CS] and one of the authors [K1] independently. In the
case where m’ = 2, Novodvorsky studied these functions, whose explicit formula is given
in [BFF]. We note that G’ is abelian for m’ < 2. The case where m’ > 3 is considered
in [GPR]. On the other hand, if r = 0, the Whittaker-Shintani functions coincide with the
special functions studied in [MS2], in which they are called Shintani functions.

In the course of our investigation of Whittaker-Shintani functions, it is indispensable to
study the double coset decomposition U K'\G /K, since those functions satisfy (0.1.1). We
shall show that we can choose essentially a subset of maximal torus as representative for the
decomposition. This result may be considered as an analogue/mixture of usual Cartan and
Iwasawa decompositions for p-adic groups.

0.3. We now explain our results more precisely. Let P (resp. T) be the Borel sub-
group (resp. the maximal torus) of G consisting of upper triangular matrices (resp. diagonal
matrices) in G. We assume that P C Q. We denote by P’ and T’ the subgroups of G’ cor-
responding to the above P and T. We have the Cartan decompositions G = KTTTK and
G’ = KT'"T K’ for some subsemigroups 7T+ c T and T'*1 c 7.

THEOREM 0.4 (See Theorems 5.1 and 6.1.).

(1) There exist an element g,,, € G and a subsemigroup T+ of T containing T++
such that the decomposition G = UK'T'* g, .T**K holds.

(2) The support of any Whittaker-Shintani function is contained in UK xans g
TTtK.

m,r

Thus Whittaker-Shintani functions are determined by the value on the “torus” as zonal
spherical functions and Whittaker functions are.

Let (w, ') be a pair of “eigenvalues™ as in 0.1. The Satake parameter of w is an element
E of X,(T), the group of unramified characters of 7 ([Sa]). We shall naturally identify
X, (T) with (C*)!, | = dimT so that & = (&1,..., &) € (C*)! . Similarly, we let &
be the Satake parameter of '; hence & = (§1,...,&) € €' ~ X, (T") (' = dimT)).
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The Weyl group W = W(G, T) canonically acts on X, (T) (via permutation of coordinates
(&), Efl (1 <i <0D)}). The same holds for the action of W = W(G', T') on X,,, (T").
Since UK'T'**g,, ,T*HK = UK'T" " g,, ,we(T*+)"'K, where w; € K is a repre-
sentative of the longest element of W, Whittaker-Shintani functions are determined by their
values on T/++gm),wg(T++)’1.
Let us define a rational function cws(Z, £) in = and & by

b(E, )

ews(&, &) = — >
d;, (E)d, (8)
where
b(E. &)= [] A—q "¢ " 2" —q ' 5E))
1<i<l
1=j=l
(g=the cardinality of the residue field of k; n;; =1 (j <r +1i), =—=1(j >r+1))
and
]_[ (1- E,-E;‘)(l - 5:8)) ]_[ (1-8%) ifm=2+1,
- I<i<j<l 1<i<l
d,(&) = _ )
]_[ (1-58H1-5:8) if m=2l.
I<i<j<l

(The definition of d,,,/ (&) is similar.)

THEOREM 0.5 (See Theorem 10.9). For any (w, '), the space of Whittaker-Shintani
functions attached to (w, ') is one-dimensional, and is spanned by the function F given by
the following formula,

F(t'g,,wet™) = Y ewswd w'e)(wE) 6@y w'e)~'e ).
weW
w'eWw’
Here § (resp. 8') is the modulus character of P (resp. P’).

The resemblance between this formula and that for zonal spherical functions ([Mac])
or Whittaker functions ([CS], [K1]) is obvious. These Whittaker-Shintani functions, zonal
spherical functions, and Whittaker functions are interpreted as spherical functions on spherical
homogeneous spaces. (This will be explained in 4.3.) Actually, this fact plays an important
role in our study of Whttaker-Shintani functions. It is to be noted that Shintani functions
for GL, (k) (IMS3]) and Whittaker-Shintani functions for Sp,, (k) ([Sh2], [MS1]) are also
examples of those functions. We can give explicit formulas for these (Whittaker-) Shintani
functions by the same method as that in this paper. Details will appear elsewhere.

0.6. This paper is organized as follows. The sections 1 through 3 are of preliminary
nature. In Sections 1 and 2, we shall review several facts on unramified principal series repre-
sentations of p-adic groups and give some results for our later use in the study of Whittaker-
Shintani functions. In Section 3, we shall give several notation, definitions and preparatory
results concerning the special orthogonal group G = SO,, and their subgroups.
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In Section 4, we shall define Whittaker-Shintani functions precisely and give some rep-
resentation theoretic interpretations (including an integral expression) of these functions.

A double coset decomposition U K'\G/K is presented in Section 5. For some technical
reasons, we first give the corresponding decomposition for the full orthogonal group O, (k)
and then handle the case for G = SO,, (k). The support of Whittaker-Shintani functions,
which turns out to be a proper subset of G if r > 0, is studied in Section 6.

In Section 7, we shall show that the dimension of the space of Whittaker-Shintani func-
tions (with fixed eigenvalues of Hecke algebras) is at most one. (Later we shall prove that
the dimension is exactly one.) This theorem is deduced from Section 6 by using a system of
difference equations as in the case of Whittaker functions [Sh1], [K1].

Section 8 is devoted to the calculation of some integrals relevant to Whittaker-Shintani
functions. The calculation is done by case-by-case considerations.

Then we shall give the main results of this paper, the uniqueness (up to a scalar multi-
ple) of Whittaker-Shintani functions and an explicit formula of them for fixed eigenvalues of
Hecke algebras, in Section 10. The method employed here is similar to that in [CS]. To estab-
lish these results, we use the calculation in Section 8 together with a new rationality argument
in Section 9 (see also Section 2).

In the final section 11, we shall evaluate the value of Whittaker-Shintani functions at the
identity element by using a combinatorial argument.

0.7. Main results of this paper were announced at the meeting on “Automorphic forms
on algebraic groups”, 1996 (RIMS, Kyoto University, Japan), [KMS]. See also [M].

NOTATION. We let k be a non-archimedean local field, o the ring of integers in k and
7 a prime element in 0. The cardinality of the residue field o/mo is denoted by g.

We assume that the characteristic of & is different from 2 for simplicity.

The normalized absolute value on k is denoted by | - |. The normalized additive valuation
is given by v : kX — Z so that |x| = ¢ ™ for x € k*.

For any algebraic group, say G, we shall denote by G the locally compact group of its
k-rational points G (k).

The symbols Mat,, , and Alt,, denote the variety of m x n-matrices and that of alternating
matrices of size n over k, respectively.

If A C G, then we let chy be the characteristic function of A.

1. Unramified principal series representations. In this section, we shall give some
preliminary results on the unramified principal series representations of reductive groups.
The main references are [C1], [C2]. We follow the notation in [C2] unless otherwise stated.
Throughout this and the next sections, we work with general reductive groups instead of
orthogonal groups which are the main subjects of this paper.

1.1. Let G be a connected reductive group over k£ and P a minimal parabolic subgroup
of G. We restrict ourselves to the case where G is split over k for simplicity, since later we
shall work only in this situation. However we remark here that all the statements given in
Sections 1 and 2 are valid also for non-split groups with suitable modifications.
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We fix a maximal split torus T in P. The group P is actually a Borel subgroup from
our assumption. Then we have the Levi decomposition P = TN, where N is the unipotent
radical of P. We denote by X' the root system of (G, T) and by X7 the set of positive roots
corresponding to P. The unipotent radical of the opposite of P is denoted by N™. Since G is
split, we can assume that G and other subgroups T, P, N are defined over o.

Let K = G(o) be the maximal compact subgroup of G consisting of o-rational points of
G. Then G = G(k) admits the Iwasawa decomposition G = PK = NTK and the Cartan
decomposition G = KT+ K, where

TV =t eT||la@®)| <1(@eZh)}.

Denote by W = Ng(T)/T the Weyl group of G with respect to 7. We shall often identify
each element w € W with a representative in K, and regard W as a subset of K. We let
¢ : W — Zxq be the length function with respect to X*. The longest element of W is
denoted by wy, and the reflection associated with @ € X by wyg.

Let B be the Iwahori subgroup contained in K corresponding to X T so that B (mod 7) =
P(o/mo0). We have various Bruhat-type decompositions G = PWP, G = PWB, G =
BWTB and K = BWB.

1.2. Let

Xu(T) = {x € Hom(T,C™) | x|rngx =1}

be the group of unramified characters of 7. We also denote X, (T") simply by X. We set
x(tn) = x(@) fort € T,n € N so that xy € X defines an element of Hom(P, C*). For
X € X, the space of unramified principal series representation I () is given by

1(X)=1{feC®G) | f(pg) = x8Y(P)f(g9) (pe P,g € G)}.

Here 6 : P — Rio is the modulus character of P. The group G acts on I (x) by the right

regular action f +— R(g)f for g € G, where (R(g)f)(x) = f(xg). Note that, by the

Iwasawa decomposition, / (x) is canonically isomorphic to CZ°(P N K\K) as a K-module.
We denote by P, the G-projection from C2°(G) to I () defined by

Py ()(9) =/P(x—18”2>(p)f(pg>dp (f € CX(G)).

Here dp is the left invariant Haar measure of P with f prg dp = 1 (see [C2]).

1.3. Let Q be an algebraic subgroup of G. Let U/ be a locally closed subset of G
invariant under the left and right translations by P and Q, respectively. We denote by I (x; U)
the Q-module consisting of f € C°(Uf) with compact support modulo P, such that f(px) =
(x8Y?)(p)f(x) for p € P,x € U. If U is open in G, then I (x;U) is a Q-submodule of
I (x) via extension by zero outside of /.

PROPOSITION 1.4 ([C1, 6.1.1], see also [BZ]). Let U,V be two P x Q-invariant open
subsets of G such thatUU D V. Then the sequence of Q-modules

res

0— IGEV) =5 ToaU) =5 16U —V) — 0
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is exact. Here i is the natural inclusion and res is the restriction map.

1.5. Now we put Q = P in the above setting. Let us put G, = |JPyP (y =
w, or £(y) > £(w)) for w € W. It is known that G, is open in G, and that Pw P is closed in
G . Thus we have, from 1.4, an exact sequence of P-modules,

(1.5.1) 0—> Z I(x: Gy) — I(x: Gy) —> I(x; PwP) — 0.
L(v)>L(w)

Since the Jacquet module 7 (x; PwP)y is isomorphic to the one-dimensional representation
(w_l)()él/2 of T, we have
(1.5.2) IGOn ~ @ wx)s'/?
weW

for x € X8, where X™8 = {x € X | wx # x for any w € W} is the set of regular characters
in X.

1.6. We assume x to be regular until the end of 1.10. Let Ty, , : I1(x) — I(wy) be
the intertwining operator given by the following integral

(1.6.1) Ty, (@) (x) = / ¢(w_1nx)dr'z
NNwNw~\N

for ¢ € I1(x). Here dn is the invariant measure of N NwNw ™'\ N with f(lmage of NNK) dn =
1. (This integral (1.6.1) converges under certain conditions on x and is continued holo-
morphically to X™. See [C2], [Mat].) By the Frobenius reciprocity [C1], this Ty, , cor-
responds to the projection I (x)y — (wy)8'/? arising from (1.5.2). We note that the image
Ty-1 (I (yx; Gyw)) is contained in I(x; Gy) if L(yw) = £(y) + £(w) (see [Cl, 6.4.3]).
The next proposition will be used in Section 2.

PROPOSITION 1.7. Foranyy,w € W with £(yw) = £(y) + £(w),

Tyt T Gx: G+ Y 1(x: Go) = 1(x: Gu).
L(v)>L(w)

PROOF. In view of (1.5.1), it suffices to show that the composite of the maps

res

T;—] "
reso Ty-1 ¢ 1(yx: Gyw) —" I(x: Gw) —> I(x;: PwP)

X

is surjective. We note that, forany z € W, P\ Pz P is naturally isomorphic to (N Nz~ ' Nz)\N.
Hence we have an isomorphism as vector spaces

ley =tz 2 I(x; PzP) —> C°(N Nz 'Nz\N)
given by

() (n) = ¢(zn) (¢ €I(x;: PzP),n € N).
The inverse of ¢, is given by

;@) (pzn) = (x8YH)(p)a(n) (@ e C(NNz 'NZ\N), pe P, ne N).
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Now we put ¢ = tyy, yy and U = 1y, . We calculate res o Tyfl,yx(qb) forg € I(yx; Gyw)
with | pywp = t~1(a) (a € C°(N N (yw) ' N(yw)\N)). We then have

(' oreso Ty-1 ) (P)(n) = (Ty-1 ,, $)(wn)

= / ¢ (ynywn)dn;
NNy~INy\N

= / ¢ (ywnan)dns .
wo INwNOw) "IN (yw)\w I Nw

Note that the conditions & > 0 and wa < 0 imply that ywa < 0. This shows that
NNnw 'NwnGw 'Now) = NN Gw)  'Nyw)
and
wINw N Gw)  INow\w ' Nw = NN Gw) ' Now\N Nw 'Nw.

Thus the integral in the right hand side above is written as

(ywnan)diy = / a(nan)diis

/wleﬂ(yw)lN(yw)\wle NNGyw)~IN(yw)\NNw~Nw

Obviously the map 7 from CZ°(N N (yw) 'N(yw)\N) to Cf?o(w_le N N\N) given by

m(a)(n) = / a(n3n)dn3
NNGyw)~INGw)\NNnw=1Nw

is surjective. Thus the mapreso 71\, = lomouis surjective. (I

1.8. Let H = H(G, K) be the Hecke algebra of (G, K). For x € X, (T), we let
$x = ¢k, be the function on G given by ¢x (ntk) = (x6'/%)(t) (n € N, t € T, k € K).
This is a basis element of the one-dimensional space I ()X, the space of K-fixed vectors in
I(x). After Satake [Sa], we define a C-homomorphism w, of H to C by

wy(p) = /G ¢k (9)e(9)dg (9 eH),
where d g is the Haar measure of G with vol(K) = 1. Hence we have
R(p)pk = wy (9)dk .
where

(R(¢)¢1<)(X)=/G§0(g)¢1((xg)dg

by definition. Then x — w, givesrise to a bijection between W\ X, (T') and Hom¢_aig (H, C).
1.9. Letus put ¢y = ¢y, y = Py(chpyp) (w € W) so that

(x8Y%)(t) if k € BwB,
0 otherwise ,

(1.9.1) Pu(g) ={
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for g=ntk (n € N,teT,keK). Then {¢, (weW)}is a basis for I(})Z. Let cu(x)
(¢ € X)) be the c-function in [C2] (see also [Mac]). According to [C2], there is another basis
{fw (w € W)} for I(x)8 satisfying

(1.9.2) R(chpp) fu = Vol(BtBY(wx)8V (1) fry (r € TH),
(1.9.3) Jwe = Guy
and
(1.9.4) dk = Y Cw(X)fu
weWw

where ¢, (x) = [[ca(x) (@ > 0, wa < 0). We easily see that wal,wx(qﬁwé,wx) = fuwew-

PROPOSITION 1.10. There is a basis {g,,(w € W)} for 1(x)? satisfying the follow-
ing properties:

(1.10.1) R(chg,-15)g, = vol(BtB)(wx)~'8%(t)g,, (1 eT™);
(1.10.2) g1 =¢1;
(1.10.3) ¢k =q""" Y Ew()gw

weW

where ¢, (x) =[] ca(x) (@ > 0, wax > 0).
PROOE. We note that we(z)~! € Tt ifr € TT+. Fort € TT*, we have
(1.10.4) Bw¢B - Bt™'B = Bwit™'B = Bw;(t)"'B- BuyB
by using the Iwahori factorization B = (BNN~)(BNT)(BNN) and the facts 1 (BNN)t~!
BNNand ' (BNN")t ¢ BN N~. Let H(G, B) be the Hecke algebra of (G, B). This

is a C-algebra under the convolution product with a basis {chp,p (w € W)}, where
vol(B)~!chgp is the unit element. Then (1.10.4) implies that

chpu, s - chp;-1p = vol(B)chp,, ;-15 = chyg, \-1p - ChpuB

in the Hecke algebra H(G, B). Note that basis elements chp,p (w € W) are invertible.
Therefore we have (1.10.1) if we put g, = R(chngg)’lfw{w forw € W. Since f,, =
¢uw, = Py(chpy,B), we see that

g1 = Vol(B)R(chpy,p) "' Py(chpu,5) = Py(chp) = 1 .
Finally applying vol(B) R(chpy, )" on both sides of (1.10.3), we get

qie(wz)(bK — Z cw(X)ngw = Z (_:w(X)gw' U

weW weW
‘We note that

(1.10.5) Gw = Ty 4y (D1,wx)
for w € W (cf. [Mat], [K2]).
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1.11. For a suitable subset Vy of X = X,,(T), we consider an analytic family of
representations I (x) (x € Vx) (see [C1, 2.7]) in a certain algebraic way.

Let C[X] be the coordinate ring of the affine variety X ~ (C*)4™7  Since X =
Hom(T/T N K, C*), we see that each element t of T (modulo T N K) defines a regular
function n(¢) on X by n(t)(x) = x(@) (x € X). Note thaty : T — C[X]* is a homomor-
phism. We regard n as a homomorphism from P to C[X]*. As in [K2], we define a G-module
I over C[X] by

I={feClX1®cC®G)| f(pg) =" (p)f(g9) (p e P, g € G))
>~ C[X]®c C®(PNK\K) (as C[X]-modules).

This C[X]-module I reduces to I(x) under the specialization at x € X. Also, under the
notation of 1.3, we can define C[X]-module 7 (/) for a P x Q-stable open subset U of G.
The specialization of 1 (Uf) at x € X is [ (x; U).

Let Vx be a Zariski open subset of X. We denote by C[Vx] the ring of regular functions
on Vy. Then we define a G-module over C[Vx], the restriction of I to Vx by I|y, =
C[Vx] ®crx1 I. We use a similar notation [ (U)|y, for I(U) above. Let X" be the set
of all the regular elements in X. We know that the intertwining operator T, , : I(x) —
I(wy) (x € X) is regular on X™%, ie., Ty (P, (f))(g) is regular in x € X" for any
f € CX(G)and g € G (see [C2]). This follows from the following two facts:

(1.11.1)  The restriction of Ty, on I (x)? is regular in y € X™2 (see [Mat], [C2]).
(1.11.2) The space I ( X)B generates I (x); or more strongly, / B generates I as a G-module
over C[X] (see [Mat, 5.3.14]).

Let I, (w € W) be the C[X]-module whose specialization at x is given by I (wy).
(Hence I1 = I by definition.) Since the intertwining operators Ty, , (w € W) are regular in
X € X™8 we have G-homomorphisms over C[X™8], Ty, ; : I |xree — I,;|xree that induce
Tyo-1.y - 1(zx) = I(wy) forany w,z € Wand x € Xxreg,

1.12.  We say that a linear form/, : I (x) — Cis rational in x if [, is obtained from the
specialization of a C[ Vx]-homomorphism! : /|y, — C[Vx] for some Zariski open subset Vx
of X. More generally, if a family of subspaces I’ (x) of I(x) (x € Vx) is the specialization of
a C[Vx]-submodule I’ of I|y,, we can define the rationality of a linear form l; () > C
as well. Let P be the canonical G-map from CZ°(G) to I given by

P(f)(g) = /P =82 (p) f(pg)dp (f € C(G))

(see 1.11). The image of P generates [ as a C[ X]-module. Hence, in order to see that a linear
form/, : I(x) — C is rational, it is enough to check that, for any f € CZ°(G), the function
of x € X given by I, (P, (f)) isin C[Vx] for some open Vx (independent of f).

Suppose that a linear form I, , : I(x) — C has a parameter 0 € Y, where Y is a
parameter space (a Zariski open subset of C°, s > 0, for example). Then we say that [, ,
is rational in (x, o) if [, is the specialization of C[Vx xy]-homomorphism C[Vxxy] ®c|x]
I — C[Vxxy] for some open subset Vyxy C X x Y.
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Finally, we remark here that we can formulate 1.7 as a statement for C[ X™#]-modules:
(1.12.1) T ((Gy)) + Y 1(Gy) =1(Gu)
L(v)>L(w)

forany y, w € W with £(yw) = £(y) +£(w). This shows that a linear form [, : I (x; Gy) —
C is rational in x if both the restriction of Iy to Ty-1, (I(yx;Gyw) and that to
Ze(v)%(w) I(x; G,) are rational.

2. Equivariant linear forms. In this section, we study the space Homg (1 (x), p) for
asubgroup Q of G and a one-dimensional representation p of Q. We note that Homg (I (x), p)
is naturally isomorphic to the space of distributions F on G satisfying L(p)R(x)F =
(x~1812)(p)p(x)F for p € P,x € Q. Here L and R are respectively the left and right
regular actions of G on the space of distributions.

2.1.  Let Q be an algebraic subgroup of G such that Q has finitely many orbits on P\G.
We let {p = p, : Q — C*} be a family of one-dimensional representations with a parameter
o € Y, where the parameter space Y = {0} is a Zariski open subset of C* for some s > 0.

LEMMA 2.2. Let O bea P x Q-orbitin G. Then dimHomg (I (x; O), p) < 1.

PROOF. We have

I(x; 0) ~Ind.(¢ ' (x8*) | 0ng~'Pg, Q)

by definition, if O = PgQ for some g € G. Here the right hand side denotes the space
of smooth functions f on Q with compact support modulo Q N g ~! Pg such that f(px) =
X8V (gpg~f(x) for p € QN g~'Pg,x € Q. Thus, if we let §; be the modulus
character of Q N g~ Py, we get
dimHomg (I (x; 0), p) = dimHomg(Ind (9~ (x8") ® p~' | 0N g~ ' Py, 0),0)
= dimHomg,-1p, (g7 ' (x8") @ p7'.8)  (IC1,2.4.3))
<1. O

Now we assume the following properties on P, Q, x and p.

ASSUMPTION 2.3.
(2.3.1) There exists a unique open P x Q-orbit Oy in G.
(2.3.2) There exists an open dense subset Z of X x Y such that

Homo (1(x: O), ps) = {0}

for any P x Q-orbit O distinct from Oy if (x,0) € Z.

PROPOSITION 2.4. Suppose that Assumption 2.3 holds. Then the restriction map from
Homg (I (x), ps) to Homo (I (x; Ov), ps) is injective for (x, o) € Z, and hence

dimHomg (I (x), ps) < 1.
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PROOF. Letus setUy = (JO (codimO < d) ford > 0. Then Uy are P x Q-stable
open subsets of G for d > 0. Note that Uy = Op and that U; = G for d large enough. We
have exact sequences of Q-modules

0— I0GGU—) — TOGUD) — Y T(:0) — 0
codim O=d

for any d > 1 by 1.4. Thus, from (2.3.1) and (2.3.2), the restriction map is injective and

(2.4.1) dim Homg (I (x), ps) < dimHomg (I (x; Oo), ps) - m

REMARK 2.5. (1) The argument in 2.4 actually shows that
dimHomg (I (x; U), ps) < 1

for any P x Q-stable open subset I/ of G under the assumption 2.3.
(2) Similar result holds when there are finitely many open P x Q-orbits with a suitable
modification (of 2.3 and 2.4).

2.6. Now we shall work with Q satisfying Q C P in the following situation:

(2.6.1)  For some open (but not necessarily Zariski open) subset Z+ of X x Y, there exists
a family of non-zero elements [, , € Homo(I(x), ps) ((x,0) € Z7h).

We shall give conditions on /, , € Homg(/ (), ps) to be meromorphically (rationally)
continued to the whole X x Y (see 1.12). Note that Pw, P is a P x Q-stable open subvariety
of G. We impose the following condition on the family of [, , for (x,0) € Z™.

ASSUMPTION 2.7. The restriction of [, , to I(x; Pw¢P) depends rationally on
X x Y. Namely, there exists a Zariski open subset Z’ of X x Y so that the function of
(x,0) given by I, o (Py(f)) for a fixed f € CX(PwgP) is a regular function on Z’. In
particular, one can extend Iy ¢ |7 (y; Pw, P) 1O generic (x, o).

2.8. The Weyl group W acts on X x Y by (natural action)x (trivial action). We may sup-
pose that Z in 2.3 is identical to Z’" above, and moreover that Z is W-invariant and contained
in X™8 x Y, by replacing Z by a dense subset if necessary.

Let Ty = Ty -1y 2 1 (w~'y) — I(x) be the intertwining operator in 1.6. Then
Tilyo =1lyo o Ty € Homg(I(w™'x), p5) for (x,0) € Z*.

Thus the uniqueness property 2.5 (1) shows that (under 2.3 and 2.7),if (x,0) € ZNZ™,

28.1) Tolxo w1y Pwepy = W, X 0)y-1y o115 Puy )

with some scalar factor a(w, x, o). (Note that,,~1, ,|;y-1y: py, py I the right hand side is
rational in (), o) by Assumption 2.7.)

ASSUMPTION 2.9. The scalar factor a(wy, x, o) for any simple root @ depends ratio-
nallyon (x,0) € X x Y.
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PROPOSITION 2.10. Under the assumptions 2.7 and 2.9, 1, » € Homg(I(x), po)
depends rationally on (x,0) € X x Y. In particular, for generic (x,0), I, - is defined and
satisfies Homg (I (x), ps) =C - 1y .

PROOF. We shall prove that the restriction of [, s to I (x; Gyuw,) depends rationally on
(x. o) by induction on £(w). (For the definition of Gy, see 1.5.) This is valid for w = 1
from the assumption 2.7. We assume that £(w) > 0 and that [, » |I(X§Gyw4) forany y e W
with £(y) < €(w) depends rationally in (x, o). We decompose w as w = wgyy (£(w) =
£(y) 4+ 1, € A). Then, by (2.8.1),

Tufalx,a|l(wax;Gwé) = a(Wa, X, U)lwax,ah(wax;GW)

for (x,0) € ZNZ™. Since the right hand side above is defined on I (wq X ; G yy,) for generic
(x, o) (and is rational) by the induction hypothesis, the uniqueness 2.4 implies that

* —
TwalXao' |l(wotX;Gywe) - a(wa’ X5 G)lwax!all(waX;Gywe) .

The intertwining operator T;, = Ty, , depends rationally on x (see 1.11). Thus the restriction
Ly.o | Ty (1 (wax;Gyu,y)) depends rationally on x. The induction hypothesis and 1.7 (see also
1.12, especially (1.12.1)) show that/, » |1(X;wa) is rational in (x, o). Therefore we see that
ly o is rational in (x, o), and hence is defined for generic (x, o). Moreover the uniqueness
argument 2.4 shows that Homg (/(x), ps) = C - I, for generic (x, o). U

2.11. In Section 9 we shall construct a family of the equivariant linear forms [, , in
the following way. Suppose that there exist an open subset Z™ of X x Y and a family of
continuous functions Y, » ((x,0) € Z*) satisfying

QALY Yye(pgx) = (8 (p)oo )Yy 0(9) (peP, g€G, x€Q).

These Yy » give elements [, , of Homg (I (x), ps) by setting

Lo (Px(f)) =/Gf(g)YX,a(g)d9 (f € C(G)).

3. Orthogonal groups. In what follows, we shall give several notation, definitions
and preliminary results concerning the split special orthogonal groups G, = SO,, (m =
1,2,...) and their subgroups. We often handle the odd case (where m is odd) and the even
case (where m is even) separately.

3.1. Letm be a positive integer and put / = [m /2], the integral part of m /2. Let S,, be
a symmetric matrix of degree m given by

0 J if m is even,
J 0

Sm = 0 0
0o 2 0 if misodd,
J 0 0
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where

0 1
Ji = e GL; (k) .
1 0

Denote by G, (or SO,,) the special orthogonal group of the symmetric matrix Sp,:
Gy =80, =SO0(S;) ={g € SL,, | tgsmg = Sm}.
The group Gy, is split over k and defined over o. The rank of G, is [ = [m/2].

32. LetT,, ={dn(t1,...,1) | t1,...,1 € GL1} be the subgroup of diagonal matri-
ces in G,,, which is a maximal split torus of G,,. Here d,,(¢1, ... , #;) denotes the diagonal
matrix diag(t, ..., 1, 1t ..., 17 1) if mis odd (resp. diag(r1, ..., 1,4, ", ... .17 ) if m
is even).

We let P, be the standard Borel subgroup consisting of all upper triangular matrices in
G,,. Then P,, = T,,N,,, where N,, is the unipotent radical of P,, consisting of all upper
triangular unipotent matrices in G,,. We also denote by N, the group of lower triangular
unipotent elements in Gy, so that the group T,,N,, is the opposite of P,,.

We let K, = G,,(0) be a maximal compact subgroup of G, = G, (k). Letw : K, —
G/, (0/m o) be the reduction modulo 7r. Then B, := o '(P (0 /1 o)) is an Iwahori subgroup
of G,,. We have the Iwahori factorization B,, = N (1) Ton,0)Nm,(0). Here, for any subgroup
V of G,, over o, we set

Vi) :=V() (=VNKy,)
and
V(l) = Ker(arlv(o) . V(()) — V(O/TL’O)) .

We denote by dk the normalized Haar measure of K,,. Let dn (resp. dt) be the Haar
measure of N, (resp. T,,,) normalized so that vol(N,, N K;;;) = 1 (resp. vol(T;, N K,;;) = 1).
We denote by §,, the modulus character of 7, (or of P,). Namely, §, is defined to be
Sm(t) = d(tnt_l)/dn. Fort = d,(t1,...,1) € Ty, §,(t) is given explicitly as §,,(t) =
]_[ﬁ:1 |t;| 2. Then the Haar measure dg of G,, with vol(K,,) = 1 is given by, symbolically,
dg = 6, (t)dndtdk as usual. (See the Iwasawa decomposition given below.)

The Weyl group W,, := Ng,, (T;n)/ T acts on T,,,. As in Section 1, we shall choose
representatives of W, in K,, and often regard W,, as a subset of K,,.

3.3. LetHom(T,,, GL) be the character group of T,, and Hom(GL, T,,) the group of
its one-parameter subgroups. We give {¢; (1 < i <)}, the standard basis of Hom(T,,, GL1)
so that ¢;(d,,(t1,...,t)) = t; forty,...,4y € k*. Let {d; (1 < i < I)} be the ba-
sis of Hom(GL1, T,,) that is dual to {¢; (1 < i < [)}. Namely, d; is given by d;(¢) =

d,d1,..., 1,;, I,...,1) (t € GLy) for 1 < i < [. We denote the canonical pairing on
Hom(T,,, GL1) x Hom(GLy, T,,,) by (, ) so that {¢;, d;) = §;;.
Set A,, = Z'. For » € Ay, we putt(A) = d,, (7™, ..., 7™) € T;,. We can naturally

identify A,, with Hom(GL, T,,) by the map  : A,, — Hom(GL1, T,,) defined to be
(y,n(V)) = vy (X)) (y € Hom(T,,, GL1), A € A,,). For simplicity, we identify A,, with
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Hom(GL1, T,,) through n so that we write (y, A) instead of (y, n(})) (see Section 7). We
have a bijective correspondence between A,, and T, /(T,,, N K,;,) given as

rAeA, «<— t(A) (mod T,, NKp) € T /(T N Kpy) .

The Iwasawa decomposition shows that

Gm=|_| NutKn.
)"EAIN

Let us denote by A}, the subsemigroup of A,, given by

At = A=01, ..., e, | M ==X >0} if misodd,
" =01, ..., M) €A | A >--->X_1>|N|} if miseven.

Under the identification above, Aj,g corresponds to the dominant coweights in Hom(GL1, T,,).
Then we have the following Cartan decomposition:

Gy = |_| Kt (W) Ko, .
reAy

The Weyl group W,, acts on 4, in a natural manner. We may regard W, as a subgroup
of GL(A,,), which induces permutations on {%e¢y, ... , &}.

34. Let X, (k*) be the group of unramified characters of k*. We shall identify
Xpnr (k) with C* by the correspondence X, (k*) > x < x(w) € C*. Moreover, by
abuse of notation, we shall often denote x (;r) simply by x in the above correspondence. We
denote by X,, = X,,»(T;;,) the group of unramified characters of 7,,. Then, as in the above, we

can identify X,, with (C*) so that E(1(A)) = &' --- &} for & = (&1,... , &) € (C*)\.
The Weyl group W,, acts on X,, by w& (t) = Ew'@) (we Wy, EeXn teTy.lt
induces permutations on { &, El_l, RGN El_l}.

3.5. The root system of (G,,, T),), which is a subset of Hom(T,,, GL1), is denoted by
2m = 2(Gy, T,,) and given as follows:

MEei e (I <i<j=<D, (1 <i=z=D} fm=2I+1,
"Tlka ke A <i<j <) if m=2l.
For « € X, we let X, be the corresponding root subgroup. More precisely, we choose
each isomorphism x, : k — X, over Z in the following way: x4 (¢) (t € k) is given by
I+t(Eij — Em—jti,m—i+1) if a=¢—-¢;(1=<i#j=<I);
I+ t(Eim—jr1 — Ejm—it1) if a=¢+¢e(1<i<j=<D;

I —t(Ep—iv1,j — Em—j+1,0) if a=—g—-¢;(1<i<j=<D;
I +1QEi 141 — Erx1m—it1) — 1 Ei m—is1 if a=¢(0=<i<lm=20+1);
I —1tQEm—i+1141 — Eis10) = *Em—it1,i if a=—(1<i<l,m=2I+1).

Here E;; denotes the matrix unit (1 < i, j < m), and k the algebraic closure of k.
Let ¥ € Hom(GLj, T,,) be the coroot corresponding to a € X,,. We put a, =
t(aY) eTy.
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‘We record here a well-known formula:
(3.5.1) Xo (1) = X0t Dwea, " Phx_o (7Y (0 € Dt € k)

with some element & € T,, (o) = T,n N K. Here wy, is the reflection associated with «. This
is a consequence of the decomposition

fm#@.(é =0 D0 20

Let X7 O Ay, be the standard sets of positive roots and simple roots, respectively, with
respect to Py,:

o _Jleitezi<jsh,a(=ish) fm=2+1,
leite;(1<i<j<I) if m=2l,
and
Amz{ai=8[—8[+1(1§i§l—1),ozlzsl} if m=2l+1,
lai=ei—en(1<i<l-1), qy=¢g-1+e} if m=2I.

Hence the standard Borel subgroup P,, corresponds to § C A,,, and N,,, the unipotent radical
of Py, is written as Nj, = [~ Xa-

3.6. WeletQ, , (1 <r <) be the standard maximal parabolic subgroup correspond-
ingto J = A, — {or}. When r = 0, we put Q.0 = G, for convenience. The standard Levi
decomposition of Q,y , is given by Q,, , = M, U, . Here

M, >~ GL, xSOpyy (m=2r+m' +1)

is the standard Levi part containing T,,, and Uy, , is the unipotent radical of Q,, .. We write
M., = G x G® where GV ~ GL, (resp. G® ~ SO,,/11). The root systems of G
and G are given by

IW =+ —ep) (1 <i<j<r)

and
{feite r+1<i<j<r+l), e (r+1<i<r+10)}
TP = if m=2r420'+1,
{feitej r+1<i<j<r+0'4+1)} if m=2r+2l'+2,
respectively.

Subgroups of G® (i = 1, 2) are denoted by P) (the standard Borel subgroup of upper
triangular matrices), N) (the unipotent radical of P®)), T® (the standard maximal torus of
diagonal matrices), etc. In matrix form, some of these subgroups are given as follows: We set

1, thxsmf2r Jr(y — %Smer[x])
Vm,r(x’ y) = 0 Lin—2r —X € Qm,r
0 0 1,
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for x € Mat,,_», ,, y € Alt,. Then we have
Um,r = {Vm,r(xa y)lxe Matm—Zr,ra y e Alt, }.

We also have

a 0
Mm,r = /Lm,r(a’ h) = h a€GL,, heGp_y
0 a

Here @ = J,'a™'J, for a € GL,. Let Z, be the group of unipotent upper triangular matrices
in GL,. Then NV = {u,, ,(z, 1) | z € Z,}.

3.7. Henceforth we fix two non-negative integers m’ and r satisfying m = m’ +2r + 1.
Note that M, , >~ GL, x G,/ in this setting. We set G = G,,, G’ = G,,; and so on. Hence
we put

and
K/sz/’ T/sz’a H/sz’a l/=[m//2],

X/ZXm/ 9%‘ =(€:17"'a€:l/)a
for example.

3.8.  We define an embedding ¢ = ¢,y of G, into G,/ as follows:
(a) If m" = 2l is even,

a 0 b
L<<‘C’Z))= 01 0|,
c 0 d

where < Cé Z ) € G, is the block decomposition corresponding to the partition m’ =

'+,
) Ifm’ =20’ +11is odd,
a @ as aj a/?2 ax/?2 as
Ao 2w o o Gtz a2 b
) by (by—=1/2 (ba+1/2 b3 |’
cl c2/2 c2/2 c3

ay ay ajz
where | b1 by b3 € G,y is the block decomposition corresponding to the partition
1 ¢ c3
/ !/ /7
m =1"4+1+4+1.
Note that the image of ¢, is the stabilizer in G,/ of the anisotropic vector

I'+1 U'+1 I'+2
'©,...,0, 1,0,...,0) (resp.’(0,...,0, 1 ,—1,0,...,0))
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in k™! for m’ = 2I' (resp. m’ = 21’ + 1). Henceforth we shall regard G’ = G, as a
subgroup of G = Gy, under the map ¢’ — pp. (1, 4 (g") (¢’ € G’) unless otherwise
stated.

3.9. We shall call the case where m = 2r + 21"+ 1, m’ = 2l’ (hencel = r + ') the
odd case and the case where m = 2r +2I' +2, m’' =2’ + 1 (hencel =r + 1’ + 1) the even
case, respectively.

In the odd case (where m’ = 21’ is even), we take T® = TNGP as a maximal torus T’
of G'. Then the embedding G’ — G corresponds to the injection

T ={teitei(1<i<j<))— >

givenby &l > g4 (1 <i </').
In the even case (where m’ = 21’ 4 1 is odd), we take Ker(e,,41) N T as a maximal
torus T’ of G’. The embedding G’ — G® corresponds to the surjection

IO o S =k ke, (1<i<j<l) g 1<i<))
induced by the natural projection

Hom(T®, GL,) = Z Ze,-—>Hom(T’,GL1)=( Z Z8i>/Z8r+1’+1.
r+l<i<r+i’'+1 rl<i<r+l'+1

(We denote the image of &, ; under this projection by ¢/.) The root subgroups of G’ are given
by

X:I:st/. = {le:gt/.(t) = xié‘r+i:F3r+//+1 (t)xi€r+ii€r+1/+l (t) I t e k} 5 Xj:gt/_j:g} = Xié‘,.ﬁié‘,.w .

As in the case of G® (i = 1,2), we denote by P/, T’, N’ etc., the counterparts of the
objects for G.

3.10. Let Q be the parabolic subgroup of G with P C Q C Q,,,» whose Levi factor is
T x G® ~ (GL))" x SO,,/+1. The unipotent radical of Q is given by U := N(l)Um,r.
Then the group G’ normalizes U (see 0.1). Let us denote by H the semidirect product of G’
and U. Obviously the unipotent radical of H is U.

Let ¢ be an additive character of k with conductor 0. We define a character ¥y of U by

r—1

1;ﬁU(Vm,r(x’ y)l/Lm,r(Z’ 1) = 1ﬁ(xl/+l,1 — €mXr42,1 + ZZ[J’-H)

i=1

for x € Mat,,_p, ,(k), y € Alt, (k) and z € Z,, where we put

o = 1 if miseven,
™71 0 if misodd.

The character vy is invariant under the conjugation by G’. (This is a consequence of the fact
that G’ is the stabilizer in G® of certain anisotropic vector, see 3.8. See also [GP] for the
definition of v in an algebraic way.) Thus we can extend iy to the character of H, which
we denote by the same symbol ¢/, by putting Yy |gr = 1.
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It is convenient to see the restriction of ¥y to each root subgroups in U for our later use.
The set of roots appearing in Uis ¥ := X1\ S @% Letus define a character Yo : Xg > C*
by V(x4 (2)) = ¥ (t) (t € k). Then we have

1//U|X5i_5i+l = wgi—SH—l (1 = i <r— 1) )
Yulx,, = e, (inthe odd case),

-1 .
VUlXey—ey = Ver—en» YU Xy = wgr e (in the even case),

and
Yulx, =1 (otherwise).

3.11. Set Py = P'U = P'NVU,, ,. This is a Borel subgroup of H. The unipotent
radical of Py is Ng = N'U and hence Py = T'Ny, where T' = T,/ is a maximal torus of G'.

We are concerned with the open orbit in P\G/ Py, where Py = Py (k). Henceforth we
restrict ourselves to the case where I’ > 0. We can easily modify the argument below in the
case where I’ = 0; we put g, , = 1 in that case, for example. Fory = '(y1,..., y) € K, let
9m.r(y) be an element of G given by

Iy 2y —Jry'y

mr | s O 1 —yJy if m is odd,
0 O 1;/
I, Y) = :
aty) 0 .
A1, ~ if m is even,
o ( ( 0 aw) ))
where a(y) = < 1(;/ }17 ) € GLy 41 (k). We put
Gmr = Gm, D) (L:="(1,..., 1) ekl).
In the odd case,
(3.11.1) I (¥) = Xe, V1) -+ - xe,,, ()’
for some n’ € N’. Thus we have
(3.11.2) {9, Y €KY X Ng =N (g0 18) < Gy WNH)
(as topological spaces). Note that, for any permutation o of 1, ..., 7, there exists n” € N’

(depending on y and o) such that
Xer oy Do) Xe oo Do) = Xepy D) =+ Xe, (yin”.
On the other hand, in the even case,
G (V) = Xep =6, VD) - Xm0
(Observe that the factors in the right hand side are mutually commutative.) We note that

(3.11.3) gm,,(y)N/ = Xepyie, i VD 0 Xe,yybe, (N,

since x,, —& i1 (t))cgm._,r@rﬂ/+1 (t) € N'. Hence we also have (3.11.2) in the even case.
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PROPOSITION 3.12. (1) One has
6= U Pwg,, Pu.
wGWye{o)l}l’

(2)  The orbit Oy = Pweg,, , Py is open densein G .
B) Oy=PxPy~PxP xU.

PROOF. The Bruhat decomposition of G shows that
G= |J Pwg,, 0P
weW, yek!’

We know that Pwg,, ,(y) Py = Pwg,, ,(Ye) Pu, where y. = "(e1,...€r) €10, 1}1/ c k' is
defined to be ¢; = 0 if and only if y; = 0; see for example, the equality

(3.12.1) Imr¥) =d-g,, Q) -d”!
with
r l/
—— e —
d d,(1, ..., L, y1,...,y) (in the odd case; m = 2r + 21’ + 1),
= I'+1
/—’ra —_—~ .
d,(1,...,1,y1,...,y,1) (inthe evencase; m = 2r + 21’ +2)
fory = (y1,...,yr) with y; --- yp # 0. Thus (1) is proved. Since Oy is the open subset of
the big cell PwyP >~ P x N given by
(3.12.2) Oo ={pwen € PweN |n=g,,,Y)ng (1---yr #0, ng € Nu)},
(3.12.1) shows (2) and (3.11.2) does (3) of the proposition. [l

REMARK 3.13. Obviously, the proof of this proposition works over k instead of k. In
particular, we see that Pwyg,, ,Pu C G is Zariski open.

3.14. We construct some relative invariants on G under the action of P x Py, and
describe the open orbit Oy = Pwgg,, Py (or Oy = Py gy, »weP) in terms of these
relative invariants.

From now on, we shall fix wy, a representative of the longest element of W, as follows:

Ji
wy = (=)} if m=20+1,

Ji
= < Jl) if m =2I, [ even,

Ji

Ji-1
1 0 .

= 0 1 if m=2I, [ odd.

Ji—1
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LetI = {i1,...,is}and J = {j1, ..., js} be two subsets of {1, ..., m} with cardinality
s. For g € Mat,, (k), we define a polynomial function A; ; on Mat,, (k) by
Apy(g) =det(gy ),
where g; ; = (g, j)1<k1<s € Mat, (k).
Now we define polynomial functions ¢; on G = SOy, by the following formula
ai(g9) = A, i, iy(weg) (L =<i<1D).
We put ag(g) = 1 for convenience. Then ¢ € G is contained in the big cell Pw, P if and
only if o;(g) # Oforanyi =1, ..., [. Obviously,
o (g, W) =1 (y € k)
and
ai(pVgp®) =" 7P iPa9)
for p@ = d, (1, ..., 1) 0@ € P (a = 1,2) with 1/ € k*,n® € N. Set w; = 1 +
---+¢& € Hom(T,GL) (1 <i <) and w]f =& +- "+8; € Hom(T',GL)) (1 < j <.
These are dominant weights of G and G’ (relative to P and P’) respectively. Then the above
formula shows that «; has a highest weight
(i, 0) 1=<i=<r)),
(i, @]_,) r+l1<i<r+l!),
or
(@441, @) (@ =r+1"+1=1; inthe even case)
under the P x P’ action.
To obtain the open orbit Op, we need other functions: For g € G, we set

Bi(9) = A rtjm 1)1,y (weg) (1< j <1
in the odd case (m = 2r + 2/’ + 1) and

Bi(9) = Au,. rtj-trtl+1(l,.. 4+ (Weg)
— A j L2 Ly (weg) (1< j<I'+1)
in the even case (m = 2r + 21’ + 2), respectively. For each j with 1 < j <’ in the odd case

and 1 < j <!’ + 1 in the even case, it is easily checked that

1 if j =1’ 4+ 1 in the even case,
1B (G Dwe)] = /=
lyjl otherwise

fory € kl/, and
Bi(prgp) = (15 )7 (t1- 11 B (9)
for pg = d, (1], ... ,tl’,)onH € Py, p=dy(t;,... . 1y) -n € Pwitht;, 1] € kX, ng €
Ny, n € N. This formula shows that 8; has a highest weight
(wr—i-j’ w_‘;fl)

under the P x P” action. Here we put ) = 0 for convenience.
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Then we easily have the following lemmas.
LEMMA 3.15. Forg € G, g € Pyg,, ,w¢P if and only if
ai(9) #0,  Bj(g) #0
foranyi, j.
LEMMA 3.16. Suppose that g € Pgg,, ,w¢P is written in the form
g=ng -dy(y, ... . 1))gp ,wedy(t, ..., 1) n

for some ng € Ng, n € N, and t;, t} ek* (1 <i=<lI 1< j<VU). Then the absolute
values of t;, t} (1<i<l, 1<j<l)aregiven by

5] = |29 (1<i<r),
ai-1(9)
] = | P19 1<i</l in the odd case
T aryi—1(9) 1<i<l'4+1 intheevencase |’
and
o= |29 <<y
ar+j(g)

4. Whittaker-Shintani functions. In this section, we shall introduce the Whittaker-
Shintani functions on orthogonal groups that are the main subject of this paper. Then we shall
give an integral expression of these functions through a representation-theoretic interpretation.

DEFINITION 4.1. For (5,§) € X x X/, a function F € C*®(G) is said to be a
Whittaker-Shintani function attached to (&, &), if the following two conditions hold:

4.1.1) Lwk" Y R(K)F =yyw)F weU, kK eK', keK),

(4.1.2) L@R@WF = wg(poz(@)F (¢ e H, g ™).

Here L (resp. R) denotes the left (resp. right) regular representation of G (or its restric-
tion to subgroups) on C*(G) so that (L(g)R(g2) /)(x) = f(g7'xg2) (91.92.x € G).
We denote the space of Whittaker-Shintani functions attached to (Z, £) by WS(Z, &).

REMARK 4.2. These functions are the special functions on G already studied in the
following cases. When r = 0 (hence U is trivial), they coincide with the Shintani functions
first introduced and studied in [MS2]. On the other hand, whenm’ = O or 1 sothat U = N,, (a
maximal unipotent subgroup of G), they turn out to be the class-1 (or unramified) Whittaker
functions of G = SO, (k) (see [CS], [K1]). In the case m’ = 2, they appear in the context of
Bessel models (see [BFF]).

REMARK 4.3. These functions are examples of spherical functions on spherical ho-
mogeneous spaces. To explain this, let G| be a reductive group defined over k and H; an
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algebraic subgroup of G1. Let K1 = G1(0) be a “good” maximal open compact subgroup of
G1 and H1 = H(G1, K1) the corresponding Hecke algebra. For a character 1 of Hy, we set

C¥(G1 Y1) ={f €CG) | L f = y1(h) f (h € HD},

on which G acts on the right, as above. Then for w1 € Hom¢.yg(H(G1, K1), C), we call a
function f € C®(Gy, ¥1)X" satisfying

(4.3.1) R f =wi(enf (p1 € Hi)

a spherical function of the homogeneous space H1\G1 (with the representation ) attached
to wy.

If Hi\G; is spherical, namely a Borel subgroup of G; has an open dense orbit on
H;\G1, then we can expect that spherical functions on H;\G1 have good properties, such
as multiplicity-one (-finite), an explicit formula, and so on. Zonal spherical functions and
Whittaker functions are well-known examples of them. Such spherical functions, which are
of interest in representation theory in its own right, have often been playing important roles in
number theory in various context, especially in the theory of automorphic L-functions. (See,
e.g., [K3] and [M].) We refer [HS1], [HS2] and [H] for spherical functions on symmetric
spaces (which form an important family of spherical homogeneous spaces) and other number
theoretic applications of these spherical functions.

Now we return to our case. Let us define a subgroup H of G = SO, to be the semi-direct
product of G’ >~ SO,,» and U, as in 3.10. (Note that H is not reductive when r > 0.) We set
G =G x G/,

H; ={(h,p(h)) e G |h e H} ~H,

where p : H — G’ is the natural projection. Then 3.13 shows that H;\G is spherical.
Since ¥y : U — C* is G'-invariant, ¥y naturally defines a character v, : H] — C* by
Y1((h, p(h)) = yy) forh = g'u € H (¢’ € G’,u € U). Note that H}\G; ~ U\G.
Thus we can see that our Whittaker-Shintani functions are spherical functions on a spherical
homogeneous space H;\G1.

As is noted in the introduction, Shintani functions for GL,, (k) ((MS3]) and Whittaker-
Shintani functions for Sp,,, (k) ([Sh2], [MS1]) are also examples of those functions. Explicit
formulas for these functions are obtained in a similar manner.

4.4. Let I(£) be the unramified principal series representation of G’ for & € X’. The
group H = G’ - U (semidirect product) acts on I(¢§) via H — G’ = H/U. On the other
hand, we have a character ¥y of H (see Sect.3). Thus we can define “the unramified principal
series representation of H”, I (&, yy) := 1(§) @ Yy (= Ind(éé’l/2 Q@ Yy | Py, H)). Note
that the underlying G’-space of I (&, ¥y ) is the same as I (£). The action of g'u € G'U = H
on (&) is given by ¢o = Yy ()R(g")¢o (¢o € 1(§)).
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Denote by (, Yo = (, )o,¢ the canonical G'-invariant pairing on 7 (§) x I1(&~1) given
by

(b0, dp)o = /K/ Po(K)po(kdk'  (do € 1(5), ¢y € I(E™1)).

This ( , )o naturally defines an H-invariant pairing on I (&€, ¥y) X I(é’l, wljl) by the
same formula. (We still denote this extension by ( , )o.) Let T be an element of
Homy (I(Z), I(¢~",¥;")). Then the function S on G given by

(4.4.1) St(9) = (k& T(R(9)¢k.2))o

is a Whittaker-Shintani function attached to (¢, Z'). (Recall 1.8.)

Let 2 : I(§,yy) x I(E) — C be an H-invariant bilinear form. Namely, §2 is a
bilinear form on I (§) x I (&) satisfying £2(R'(g")¢o, R(g'u)¢) = vy (1) 2 (¢o, ¢) for ¢ €
1(&),¢ € I(E), g’ € G'andu € U. Then the function Sg; on G given by

(4.4.2) Se(g9) = 2(pk ¢, R(9)Pk,5)

is a Whittaker-Shintani function attached to (&, Z).

It is easy to see that the construction of (4.4.1) and (4.4.2) are equivalent. Actually,
T and §2 above correspond each other in the following way. If we have T €
Hompy (I(&), [(¢71, w(jl)), then the bilinear form 27 on (¢, yy) x I(&) given by
27 (do, ) = (¢o, T(¢))o is H-invariant. Conversely, let 2 be an H-invariant bilinear
form on I (&€, Yy) x I(&). We can define T, € Homy (I (&), (&, ¥y)*) by T (d)(do) =
2(¢o, ). (Here I(&, yry)* is the dual of 1(&, ¥y).) Since I(Z) is a smooth G’-module, the
image of T is also smooth. Hence we may regard T € Hompy (I(Z), I (67!, wal)).

4.5. SupposethatY = Yz (E € X,& € X') is a continuous function (or a distribu-
tion) on G satisfying

4.5.1) Y(pgp'u) = (&8 (p)Es D Wuw)Y(g) (peP,p ePucl).

Then we have an equivariant linear form [z ¢ € Homp, (1 (&), $_15’1/2 ® 1&&1 ) defined from
Yz as

la,g(Pa(f))=/Gf(g)Y(g)dg (f €CZ(G).

(See 1.2 for the definition of Pz : C°(G) — I(&).) The intertwining operator Tz ¢ €
Hompy (I(&), 1(¢7!, Yy ) corresponding to [z ¢ via Frobenius reciprocity is given by
Tz¢(Ps (X)) =156 (R&YPs(f))
= / FxxNY(x)dx (f € C(G), x' € G).
G

Hence the H-invariant bilinear form 2z ¢ = ‘QTE,s attached to Tz ¢ is given by

(4.5.2) Rz.:P:(f0), P=(f)) = /G Gfo(X’)f(X)Y(X(X’)*l)dx/dx

X
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for fo € C°(G’), f € CX(G). Here we identified the space I(§), the image of Pg, with
I(&, Yv). In particular, the function S, is given by the integral

(4.5.3) Stze(9) = / Y (kg™ 'k"dk dk
K'xK

(see also [MS3, 4.8-4.9)).
4.6. In the rest of this section, we shall show how to construct a function Yz ¢ on G
satisfying (4.5.1). Consider the function Yz ¢ on Py g,, ,w¢P = UP’g,, ,w¢P given by

1, ~o— _ 1/2
Yse@p' g, wep) = Yy (ET2)(p)E ) (p) weU peP,peP).
We extend this Y’z ¢ to the whole G by putting Yz :(9) =0if g ¢ UP'g,, ,w,P.
LEMMA 4.7. Ifg € UP'g,, ,w¢P, then

Yze(g) =vu (@) ' T]@E & 17D)@i9)
i=1
-1

“7.1) < [TEEL - 17Dy (9) - &g (9))
l/

< [TE &l - 175 Brl9))

k=1
in the odd case (m =2r +2I' + 1, m’ =2l'), and

Tz:(9) I/fu(u(g)r‘]"[(:,:,;ﬂ |- 17D (@i(g))

I'—1

(4.7.2) x H(s,u,ﬂm =) (@ (9))

x ]"[(s,:lsr+k| A7ABG)) - Ergr1 (Bria (9))
k=1
in the even case (m = 2r +2I' +2, m’ = 2I' + 1). Here u(g) is the U-component of g.
PROOF. This is a consequence of 3.14. 0
Then the lemma above shows the following proposition.
PROPOSITION 4.8. Let Z. be the nonempty open subset of X x X' given by
188 1<q™! (1<i=<r)

—~—1 —1/2 .
(4.8.1) zo=l@ e exxx | 5% nl<q 2o asjsl)
& Bkl <g™V? A <k<)
& <1
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in the odd case (m =2r +2I' +1, m’ =2l'), and
188 1<q7! (1<i=<r)

-1 —1/2 .
(4.82) zo— @ e exxx | ¥Emml<a?  A=j=D)
& Bl <q7V2 1<k <)

&1l <1
in the even case (m = 2r +21'+2, m’ = 2I' +1). Then the function Yz ¢ on G is continuous
for (E,&) € Z..
4.9. Now let us set

Yee(9) =Tze(g™) (9€G).

For (&,&) € Z, this Yz ¢ is a continuous function on G. Moreover it satisfies the condition
i -1/2
Yz.e(pgp'u) = yu@)(E 8 (p)E8 ™ (p) Yz 6(9)
foru e U, p e P, p' € P with
Yee(wegy,) =1.

(Note that g, !, € N’ (5,9 m.r T(0)-) Thus we can construct a Whittaker-Shintani function Sg ¢
from this Yz ¢ as in (4.5.3) for (5, §) € Z..

5. Cartan-type decompositions. In this section, we shall give a double coset decom-
position U K'\G/K explicitly, where UK’ is a subgroup of H = UG’. This decomposition
is indispensable for our study of Whittaker-Shintani functions.

Let g, , = g, (1) be an element of G defined in 3.11.

THEOREM 5.1. The double coset decomposition
G=| |UK''O)gp, t WK

+
m—2r

holds, where X runs over Z" x A C Ay and ) over A;/.

First we shall show that this theorem can be reduced to the special case of the theorem
where r = 0, thatis, m’ =m — 1:

THEOREM 5.2. The double coset decomposition
G =|_|Kn-1tn-10) g 0tm OV Knm
holds, where ) runs over A\, and )" over A;_l.

5.3. PROOF OF 5.1 BY USING 5.2. Recall the definition of the parabolic subgroup
QOm.r introduced in 3.6. By the Iwasawa decomposition, we have

(5.3.1) Gu=0m:Kn=Upn, My Kp.
Since My, » =~ GL, (k) x G2/,
Mm,r/(Km N Mm,r) >~ GL,(k)/GL;(0) X Gu—2r/Km—2r .
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‘We know that

(5.3.2) GL, (k) = |_| Z,diag(z*!, ..., 7" )GL,(0)
Kk=(Kk1,... .k )EZ"

from the Iwasawa decomposition for GL,, and that

(533) Gm—2r = I_I Km—Zr—ltm—Zr—l()‘/)gmf2r,()tm—2r ()\)Km—Zr

AEAm—Zr
’
MeEAp—2r-1

from 5.2. Hence, by applying w,,  to (5.3.2) and (5.3.3), we get the decomposition
G = || WUn N Kin—2r—ttm—2r -1 ) Gy i, (diag(x*" ., 7). b2y (1)) Ko

from (5.3.1), where A, A" and « run over A;:_Zr,
the decomposition of 5.1,

G=| |UK''O)gpu, t WK (€T’ x A}

m—2r

A:;, and Z", respectively. This is nothing but
CAm; '€ Al). O

5.4. In order to prove Theorem 5.2, we need a variant of the theorem for orthogonal
groups
Om = {g € GLm | thmg = Sm}

Set G}, = Oy (k) and K, = O,,(0). Hence G,, and K,, are subgroups of G}, and K\,
respectively. Define A*", a subset of A,,, by

m s
A== ) [z 2 a2 0},
We embed O, into O,, as in 3.8.
THEOREM 5.5. The double coset decomposition
G = |_| Kt 1 )G otm WK,
holds, where ) runs over A,";,Jr and ) over A;‘tl.

REMARK 5.6. We shall not give a proof for the disjointness of the decompositions
appearing in these theorems 5.1, 5.2 and 5.5 in this section. The disjointness of 5.1 will be
shown in Section 7. (That for 5.5 follows similarly.)

5.7. Subsections 5.7 through 5.11 are devoted to a proof of Theorem 5.5. We put
G*=G;, G =G _|,K*=K}and K* =K} _|.
Let W(B;) be the Weyl group of type B;. We regard this W(B;) as a subgroup of
GL(Ap) as in 3.3. We remark that the “Weyl group of G*", W* = Ng«(T)/Zg+(T) is
naturally isomorphic to
W*:{WzW(Bl) N if m is odd,
W - (Ym) (semidirect product) >~ W (B;) if miseven,

where y,, € GL(A,,) is an involution given by

Ym(e) = —&r,  ym(e) =& (@ #1).
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As in the case of G, we identify all the elements in W* with their representatives in K *.
Note first that the Cartan decomposition

G* = K*T*TTK*,

where
T = () | 0(0) 2 - 2 v(B) 2 0 (4 € k7))
yields the decomposition
(5.7.1) G* = BW*T*TTK*.
Let us define V, a subset of G*, by
(5.7.2) V=K {gno) |y €0"}.

Then we have
+
(5.7.3) N(O) cVv

from 3.11.2. (Note that the decomposition in 3.11.2 is defined over o). In the even case, we
also remark that

(5.7.4) V=K { Yn(gmo) | y €0}
(see (3.11.3)). Set

Uy = VN wT*TTK*

w, (1)
for w € W*, where

Ny = l_[ X_a,1)-

a>0, wla<0
In particular, U; = VT*TTK*,
Now we prove the following proposition.

PROPOSITION 5.8. Forany w € W*, Uy, is a subset of U].
This proposition implies the following factorization.
COROLLARY 5.9. One has G* =V - T*"t . K*

5.10. PROOF OF PROPOSITION 5.8.  We proceed by induction on £(w) := #{a > 0 |
wla < 0} forw € W*.

First consider the case £(w) = 0. If w = 1, then 5.8 is obvious. Otherwise we have
w = Y. (Hence m should be even.) In this case, we may assume that y;, is represented by
the matrix

(m=2I"+2),
1y
which is in the image of the embedding of G*' in G* (see 3.8). Hence U,,, = U; by (3.11.3).
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To prove the proposition 5.8, it suffices to show that

for some y € W* with £(y) < £(w) from the assumption of the induction.
Suppose that £(w) # 0. Then there exists a simple root o so that w—'a < 0. This
implies that w is written as w = wew’ with £(w’) < £(w). In this setting, we note that

(5.10.1) Nuj)(l)w:X—Oé,(l) 'wa'Nuj’,(l)w/
and that

— / - I AT
(5.10.2) X a0 Np (y®" C Ny s ' N

since (w’f1 (—a) < 0.

We now consider the odd case (case A; m = 2I’ + 1) and the even case (case B; m =
21’ + 2) separately. Furthermore, we divide each case into several subcases.
eCase A-lia=a;=¢ —¢gir1 (1 <i<l'—1)

In this case, we have

VX,Q)(l)wa cV,

since X_q (1) (C K*') and wy (€ K*') normalize K*' - {g,, o(y) | ¥ € 0''}. Thus, by using
(5.10.1), we have Uy, C U,
e Case A-2: . = ap = gy

In this case, we have
Uy = Vwy, - Xa,(l) . N;/’(l)w/T*++K*

CVX i Xay Noo o/ THH K ( since we may assume that >
—a. 0 Xe ) - Ny 1)

Wy = Ym—-1 € K* = 0,,-1(0)
= VXQ)(l)X,a’(o) . Nuj/!(l)w/T*-H_K>k
C Uy (by (5.10.2)).
eCaseB-lia=o; =6, —¢giy 1 (1 <i<l'—1)
We can show that U/,, C U, exactly in the same way as in the case A-1.
eCase B-2: @ = oy = ¢, — g4 and w/_l(oq/_H) <0
In this case, we have the decomposition w = wq, We, | w” with £(w”") = £(w) — 2. We
may assume that Way ey, € K*'. Here Way Way | gives a permutation &y — —¢&p, €41 —>
er41 in X, which induces a permutation &;, — —e¢;, in X’. Namely, wy, , wq, corresponds
0wy, in W*'. Thus
Uy = Ve Way ;Ko (1) Xaty 1) - Ny (yw" T K
- ++
C VX ), X0y, 1,0 Xay, (1) Xay, (1) - Nw,,)(l)w”T* K*
= - 1 kb
= VXoy. ) Xay 1.0 X~ @ X —ay4.0) - Ny (yw" T K
C Uy (by (5.10.2)).

e Case B-3: o = ap = gy — g1 and w’_l(a1/+1) >0
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Since VX—al/,(l)(T NK)= VX_D‘I/H!(I)(T N K), we have

Uy = Vwal/ 'X*O‘//-Hs(l) . Nu_)/’(l)w/T*—’_JrK*
C Vwe, - Ny w' T K.
Hence we get, by using (5.10.2),
(5.10.4) Uy C K* Nwg, - Ny, w' T*HK*,

where we put N = Xey—ey 1.0 Xy —ep,,.0) SO that V = K'N'Xq, (0). Now recall that
we can decompose Wy, in the form Wq, = X_XyX_ (mod TNK), x4 € Xta,.(0) from
(3.5.1). Substituting this in (5.10.4), we have
Uy C K¥Nx_xy - Nuj/’(l)w/T*++K* .
Note that there exists an x_ € X —ay,(0) such that
K*Nx_ = K*x_N = K¥3_N = K*Nx_.
Hence we finally see that
Up C K'NxyZo - Ny w'T* K
C K¥Nxy - N, , wT*TTK* (by(5.10.2))

w', (1)
- Ipdtt gk
CV- Ny W T K = Uy .

e Case B-4: « = apy = &1 + ¢ and W) lay_; <0
We can show that U, C U,y exactly in the same way as in the case B-2.
e Case B-5: o = apy = &1 + ¢ and W) lay_; >0
We can show that U/,, C U,y exactly in the same way as in the case B-3.
Combining all of these, we have completed the proof of Proposition 5.8. (I

5.11. PROOF OF THEOREM 5.5. For g;, g, € G*, letus write g; ~ g, if g| =
k'g,k for some k € K*, k' € K*'. Then, by 5.9, proof of Theorem 5.5 (except the disjoint-
ness) is reduced to the following lemma. Recall that g,,, o = g, o(1).

LEMMA 5.12. Foranyy € o' andv € A%, there exist . € A5 and ) € AR
such that

(5.12.1) ImoWMtW) ~ 1) g oD ().

PROOF. We prove the lemma in the case where m = 2/’ + 1 is odd. The proof in the
even case is almost similar and is omitted. Recall that

NEO)gm,O(Y) = N(,())xe; o) - “Xey )

fory ='(y1,...,yr). We may assume thaty = "(z#1, ..., w™'), uy,...,upy > 0.
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Suppose first that 1y > -+ > u; and u; < pijy) forsomei, 1 <i <[’ — 1. Then, by
commutator relations, we have

Xejy—g (L —whit =l g 0 (y)E(v)
€ N{oy gm0 WD (0)Xe -, (T 71 (1 — qhis1 =Hiy) |
where y is the element of o!" obtained by substituting the (i + 1)-st entry of y by w#i, that
is, y1 = (@™, ... ,nl“",rlrt‘l", ...,m""). Therefore ImoMt®) ~ gpo(yDt(v), which
implies that we can assume p; > --- > wup. Next, we shall show that we may assume
vy — up > 0. Actually, if vy — up < 0, we have
I 0V, (1= 7M7) € Nig g, 0(¥2)E (V)
withy, =(zx#, ..., o*'-1, 7). Hence Im.oNt (W) ~ g 0(y2)t(v). Now suppose that
Vi — Wi < Vitl — Mi+l,  Vidl — Hi+l = 2V — 4y
forsomei, 1 <i <[!'"—1. Then
I 00Xy gy (=1 A gl Hin1 itV
€ N{gyXe—epy, (T HH — TV g 0(ya)E (V)
where y3 is the element of o!" obtained by substituting the i-th entry of y by mHi+1HVi=Vi+1

i

thatis, y3 = "(H1, ..., g+ Tvi=visr i) Therefore, if we put
A= Wit F Vi = Vil Ay = Mitls e Ay = W,
we have
Vi —)»; = Vi1 —)\:-_H > > Ul/—)ug/ >0
and

Im.oWMEW) ~ g, 0(ya)t(v)

A

!
with yg = I(z#, ..., -1, ;,... ,n)‘l/). Since 1 > --- > pi—1 = A z---zk;, >0

from p; > A} > p;y1, we have
X 3...315/30, Vi — A 2"‘2”[/—)»;/20
by repeating this argument. Thus we finally get
ImoWMLW) ~ g, o(¥IEOV) = ' (W) g (D1,
where y* = HC 2 ,nk;’) and Ay = v —Aj, . A =0 — A O

5.13.  PROOF OF THEOREM 5.2. Now we shall give a proof of Theorem 5.2 by using
its variant for O,,, Theorem 5.5.

Suppose that ¢ € G is decomposed as g = k't'(X)g,, of (Wk for A € A%TT, A €
ATk e K*, k' € K* with detk = detk’ = —1. (We have nothing to do for the case

m—1°

detk = detk’ =1.)
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We first handle the case where m is odd (m = 21’ + 1). Set

Iy

Sodd = 1 e K* CK;;.

m—1
Ly
This sogq corresponds to y,—1 € W;Z_l so that we have soqat’ ()\’)s;dd = t(Ym-1(1)) and
Ym_1(\) € A;;fl. Then so4q is written as
Sodd = X—e, (=1)xe, (DX, (=Dh
where

Ly
h= —13 eT*NK* (deth = —1 = detsodq) .
Ly

Since g, o = uxe, (1) - - - x¢, (1) for some u € N(’O), we have

Soddgm,0 = (soddus(;fd)xe1 (1) -+ xg,_ (Dx—g, (1)Sodd
= (SoddtSgqq)Xe, (1) -+ Xg,_ (1)xe, (Dx_g, (= 1)h.

Note that soddus(;ild € N(’O). Thus we have

9 = (K's0da) (Sodat’ (W) 3q) Sodd g o (WK
= (k'sodd)?’ (Ym—1(1"))xe, (1) - - “Xey_ (Dxg, (1)x—g, (—=1)1(A)(hk)
= (K'Sodd)t' (Ym—1 (X)) g .ot W) (1 (K)ilx—el, (=Dt)hk) .
Since det(k'soqd) = det(t(A)_lx_g], (=Dt (A)hk) = 1, we see that k'sog¢ € K’ and that

t(k)_lx_gl, (=Dt(M)hk € K. Therefore we are done in this case.
Now we shall consider the remaining even case m = 21’ + 2. Set

11/
Seven — -1 € m—1 C Koy -
ll/
This seven € K* corresponds to y,, € W,. Then we see that, since sevent’ (A’ )se’wlm =)
and kseven € K', g = (kK'Seven)t’ (X)Seveng 0t (MK is contained in
K't' O xeytey, (=1 Xeytey (=1 (Sevent (M) Seyen) (Sevenk)
= K/t/()\/)xelfe,/_*_l =--- Xey—epy (=D (ym (1)) (Sevenk)  (by (3.11.3))
CK'1'W)gmot Ym)K.

Thus we have completed the proof of Theorem 5.2 (except the disjointness of the decomposi-
tion). U
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6. Support of Whittaker-Shintani functions. The following theorem gives the sup-
port of Whittaker-Shintani functions.

THEOREM 6.1. For F € WS(&, &),
supp F C | |UK'Y' (W)g, ,tOK
where A runs over A,;’; and ) over A;:,.

PROOF. In what follows, we shall give a proof of this theorem in the odd case. The
proof in the even case is similar and is omitted. Recall the decomposition 5.1,

G=| |UK''DW)gp, t WK,
where A runs over Z” x A;:_zr C Ay, and A over A:;,. ‘We shall show that F(t’()\’)gm!rt()»)) =
Ounless Ay > ... > A > Apyr for k. = (A, ..o, A, Apg s - - s A1) € Z7 X Ajn_fzr Let
a=¢ —¢&i+1 (1 <i <r—1). Then, foru € o,
F(t,()\,)gm,rt()‘)) = F(t,()\,)gm,rt()\)xa(u))
= F(xo (@51’ (V) g, 1 (1)
= Y@ T F (W) gt (V) -
Since the conductor of v is o, this implies that F(t'(1")g,, ,t(A)) = 0if A; < A;41. Next, let
o = & — &r41. We note that
Xo(u) = Vm,r(xus 0)
for x, = (u,0,...,0) € Mat,,_o,,(k) withu="(0,...,0,u) € k¥ (m —2r =20' +1).
Then we have, by a direct calculation,
)Gt Wxa ) = ' () g X (T 7450 U)E (1)
='W (1 x),0)g 1 (M)
= U (T T gy (ML )X, 0)E (W) gt (V)

. I'+1 ,
where x/, = (0,0, ...,0) € Mat,,_p,,(k) withu' = "(—u, ..., —u,0,...,0,u) € k*+1.
Therefore, as in the first case, the definition of the character vy of U shows that

F(' O gt W) = F(&' Q) gt )Xo ) = Y (=7 u)F (@ () gt (V)
for u € o. This implies that F(t'(X")g,, .t (X)) = 0if A, < Xr41. [l

7. Multiplicity one. In this section, we shall prove the following theorem that shows
the multiplicity one property of Whittaker-Shintani functions.

THEOREM 7.1. Suppose that F € WS(E,§) for (£,€6) € X x X'. Then F = 0 if
F(1) = 0. In particular, dim¢ WS(Z,&) < 1 forany (E,€) € X x X'.

To prove this theorem, we shall study closely the double cosets in Theorem 5.1. For the
purpose, we introduce a partial order “>s” on the set A, x A),.
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DEFINITION 7.2. Forany (i, '), (A, X)) € Ay X Ay, we write (i, ') >ws (A, 1)
if the following conditions hold:

Wi = Ai (I=i=<n),

J J J J
Zﬂr+s+2ﬂ;zz)\r+s+z)‘; (lfjfl/),
s=1 t=1 s=1 t=1
/ U / i 1 < j <! inthe odd case

/7 / — —
IITIES TED MRS ST RESEH ARk
§= t= s= t=

We can rewrite the conditions in 7.2 above by using dominant weights @, zzr]/. in 3.14
as follows:
(wi, n) = (@i, ) (I=<i=nr);
(@ i)+ (@) W) = (@, 1) + (), 1) (1<j<D);
, / , . , / 1 < j <! in the odd case
(@rjo i) + @y ) Z (@rajs M) + (@4, ) ( 1 < j <!’ + 1 in the even case

Incidentally, we recall the usual order “>" on the character group Hom(T, GL;); o >
7 (0, € Hom(T, GL)) if 0 — 7 is a linear combination of positive roots with nonnegative
coefficients. (We denote the corresponding order on Hom(T’, GL;) by the same symbol “>".
Now we can state the following theorem. (Compare with [BT; (4.4.4) (i), (ii)].)

THEOREM 7.3. Suppose u € A and ' € AT,
(1) Ifx € Ay and ) € A,y satisfy the condition

K't' (W)Kt(w) 'K NUK'Y (W) g, wet W) 'K #6,

then (w, ') >ws (A, 1').
(2) Ifu € U satisfies the condition

K't' (WKt~ K NuK't' (W) g wet (WK # 0,
then Yy (u) = 1.

PROOF. (1) By the assumption, the element g = t’()\')gm’rwgt()\)_l is written as
g = uk't' (W)kit(u) "'k for some u € U,k ky € K,k e K'. Let f =ap4j (1 < j <)
(see 3.14). Then f € k[G] is a highest weight vector under the right G-action with highest
weight @; (resp. highest weight vector under the left G'-action with highest weight w}).
Since

FEONG wet W)™ = @4 (1)) (W) f (G w0)
= wr+j(l()x))7lw;(t/()t/))il s
we have

v(f(9)) = —(@r4j, ) — (@}, 1)
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On the other hand, we know that ' € o[G], the coordinate ring of G over o. Since o[G] is a
Hopf algebra, we have
Fk't kit ™) = fay (k) fo (& Wkt ) ™) fz) (k)

by using the comultiplication in o[G]. Here we may assume that all f») € o[G] above are
weight vectors under both the left G’ and the right G-actions so that

fo @ wWikitw ™ =o' ¢’ (W o)™ fio) (k1)
for some 0 € Hom(T, GL) and 6’ € Hom(T’, GL;). Note that 0 < @, ; and 0’ < w;.
Therefore '

v(£(9) = v( Y fan®) for @ Wkt ™) f) ()
inf ,(U(f(l)(k')f(z)(f'(ﬂl)klf(M)_l)f(3)(k)))

keK ,k'eK
inf (—(o, u) — (o', 1))
0,0

v

v

v

_(wr+j7 H’) - <w_j,7 H'/> .
This shows that
(@1, 1)+ (@, X)) < (@, )+ (@, 1)

Similarly, if we apply the same argument for f =8; (1 < j < !’ in the odd case and
1 < j <! + 1 in the even case), then we have

<wr+ja A) + (ZD'](71 , )\/> =< (wr—i-j, w) + <ZD']/',1 s /,L/) s
since B; € o[G]is a highest weight vector with highest weight @ ; under the right G-action
(resp. that with highest weight w]’.fl under the left G'-action). Here we put o, = 0. Also, in
the case where f = «; (1 <i <r), we have
(@i, ) = (i, u) .

These prove (1).
(2) Itis sufficient to show that

1" (w)kt (u) = uk't' (W) g, 1 (ki (k. ki € K, k' € K',u e U) = yyu) =1.

We shall prove this by induction on r. If r = 0, the group U is trivial so that there is nothing
to prove. We shall assume that r > 1. Set ¢ = ¢'(u/)kt (w). Then for (0, ..., 0, 1) € '(o™),

©,...,0,1)g = (0,...,0, Dkt (1) = Kt (10) -

Here “ki;j is the i-th row of the m X m matrix k. On the other hand, the expression ¢ =
uk’t' (1) gyt (k1 shows that

(07 e 107 1)9 = (07 s 701 l)t(:u’)kl = 7[7“1 (tkl,[l/ﬂ]) .

Therefore the vector ‘v = n“l(tk[m])t(,u,) (= tkl’[m]) is primitive, i.e., v € 0" and v
(mod 7) # 0. Suppose that © = ((1, ..., la, ha+1, - - - » 41) satisfies the condition pu; =
o= g > Mga1 = -0 > . Ifweput'v = (vy, ..., vy), we see that at least one of
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Um—a+1s - - +» U (82Y, Uy—i+1) is in 0. Let w be an element of W transposing 1 and i. Then
the (m, m)-coefficient of kw =" is in 0*. Let us set
ST = Sm-2;

G" = S0, K'=G'(0)=G"NGL,_2(0);
1 —'xs" —1sT[x]

Vm,1(X,0) = 0 1, X (x€o
0 0 1

m—2) )

nx m—2) 5

ny

we(ny) (y€o

The Bruhat decomposition of K (mod ) implies that kw~! is written as

kw™" = ng kf ny

671

forsome kT € KT, x, y € 0™"2, and € € 0*. Hence we have
€

t'(u)kt () = t' (' )nx Kt nywr (14)

(' (Wnxt'(1)"He' (w) kT 1 () (t (W)~ ywe () -

€

Here ' (1/)nxt’ (n)~! € U and t(u)’ln_ywt(u) € K, since w commutes with #(u). On the
other hand, we have ¥y (¢’ (' )nxt' (') ~') = 1. (Recall the definition of the character yy.)
Set ;ﬁ = (U2, ..., Urgn) € A;gfz. Then, from the decomposition
' (uhke (w) = uk't' (/') g, o1 (WK1
we see that
(K (") = uTkit (1) g ot K]

for some k! € K', k| € KT, ut € Ut = GT N U with (¢/(W)nxt’ (') "yu' = u. Note that
the induction hypothesis implies that wUT(uT) = 1. (Here ¥ry+ is the counterpart of ¥y for
UT.) Therefore we finally have

Yy W) = Yy (' (Wnt' () Hu)y = 1. O

7.4. PROOF OF THE DISJOINTNESS OF THE DECOMPOSITION IN 5.1.  The proof of
7.3 above and the decomposition G = | J UK't'(1")g,, .t (M) K given in Section 5 show that
g € UK't'(M)g,, .t (M) K if and only if the minimum values

min v(f(k'gk))
k'eK’
keK
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for the relative invariants f defined in 3.14 are given by

— (@i, A) for f = q; (I1<i=<r),
—(@r1j, A) — (w]' LAY for f = arpj (I<j= 1,

and
; Y _ 3. 1 < j <! in the odd case
(@r4j, 2) =@y, &) for f = B ( | < <1+ 1inthe even case ) °
This implies the disjointness of the decomposition. 0

REMARK 7.5. The above approach using relative invariants (see also the proof of The-
orem 7.3 (1)) to the study of double cosets is effective for general spherical homogeneous
spaces. Details will appear elsewhere.

7.6. PROOF OF THEOREM 7.1. Now we can prove a “multiplicity one” result for
Whittaker-Shintani functions.

Let us put F(u, ') = F(' (W) g, t(n) for p € A and ' € A:’,. By Sections 5
and 6 and the definition of Whittaker-Shintani functions (Section 4), we have only to show
that F(0, 0) = 0 implies that F(u, u') = 0 for any (u, ). (Note that F(0,0) = F(g,,,) =
F(1),since g, , € K.)

Let chgsk and chgi,)-1x be the characteristic functions of K7(u)K and
K't' (W)~ K’, respectively. We then have

/ F(x)dx = (L(chgry (15 RChgrgor) F)(1)
K't'(W)Kt(u)K
= wz (chg (k) we (Chgrprn-1x) F (1) .

Therefore, if we write

a
K'Y (WKt K =|_[u@ Kt gt i) K
i=1
+ +
(i e U, L) € Z" x A 5 )‘,(i) € Am,)
according to the decomposition in Section 5, we have a system of difference equations on
FQOLA) (A A) € A x Ayy),

(7.6.1) wz (hi () K )@g (-1 k) F (0, 0) = Z o F )

for every (1, ') € A, x A, where

crpr = VOI(K't(X) g 11 G K) > Y () -
iwith (A, 2(;))=(,1)
Now 7.3 (2) shows that ¢, ,» above is positive and hence is non-zero. On the other hand,
by 7.3 (1), F(A, A") # 0 only when (i, u') >ws (A, A'). Thus we can see that the solution

to (7.6.1) is uniquely determined by the initial value F (0, 0) and that, especially, F = 0 if
F(0,0)=0. O
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REMARK 7.7. The system of difference equations employed here is similar to those
appeared in [Shl1], [K1] (see also [MS1], [MS3]). This argument implies that each value of
the Whittaker-Shintani function F (i, u’) of F with F(1) = 1 s, if it exists, regular in (Z, &).

8. Rank 1 calculation. In this section, we shall evaluate some integrals related to
simple roots in G x G’. These results are essential in our later use for the determination of an
explicit formula of Whittaker-Shintani functions.

8.1. Letusdenoteby (@, (w € W)} (P, = Pz (chpyp)) and {¢p,y (W' € W)} (¢ =
Pe(chpryyp)) the natural bases of 1 (8)8 and I (E)B/ arising from Bruhat decompositions
K = BWB and K’ = B'W’B’ (see 1.10), respectively.

We shall evaluate the values

Iy == vol(B)~'vol(B) ™' 2(¢1, R(g,, we) (@1 + Puy,)) (@ € A)
and
Jp = vol(B)'Vol(B) ™' 2(¢1 + ¢uy, R(g,,we) 1) (B e A).
Here 2 = 25 ¢ : 1(§,yy) x I(&) — Cis abilinear form introduced in Section 4, given by

QP:(f). P (f) = /

G’ x

FE) Y (ex’ ™ dx'dx
G

for f' € I(§,¥y), f € I(E). Werecall that Y = Yz ¢ is a distribution on G satisfying
€
Y (tnwe g, 0'n'u) = (878 (1) &8 ™))y ()

fort e T,n € N,t' € T',n’ € N andu € U. Throughout this section, we assume that the
parameter (=, &) belongs to Z. so that Yz ¢ is actually a continuous function on G (see 4.9).

LEMMA 8.2. The following inclusions hold:

(8.2.1) N(l)gm,r - T(O)gm,rT(/O)N/(l)U(l) ’
(8.2.2) Nywegm, C Toywegm ToyN' 1yUqy »
(8.2.3) wegm, N' 1y ©Nywegm,r -

PROOF. By the commutation relations, there exists y € (0>)" C 0" such that

NGmr € Gmr N U
for n € N(). Therefore g, ,(y) € T(O)gm,rT(,()) shows (8.2.1). (8.2.2) is a consequence
of (8.2.1). As for (8.2.3), since n = 1 (mod 7) for any n € N(’l), wgg,,,,,N(’l)g,;’lrwg1 -
Na). O
LEMMA 8.3. One has

vol(B)'vol(B)) "' 2(¢1, R(g,,,we)P1) = 1.

PROOF.  Since
R(gm,,we)P1 = Pz (R(g, ,we)chp) =Pz (chpg  w)-1)
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we have
vol(B) " 'vol(B) "' 2(¢1, R(g,.,we)P1)

=vol(B)*‘vol(B’)*‘/ Y (x (g we) " x)dx'dx
B'xB

= vol(B) " 'vol(B")~! / Y (xweg,, x")dx'dx .
B'xB

Note that g nj}, € T(o)gm,rT(/o) N(,()) in the above. By Lemma 8.2, we have
(8.3.1) Buwegy, B = Bwegm NiyNo)Tio) = Bwegm,NioyT(o)

C TioyNoywegm ToyNioy Uty = Poywegm,, Pr (o) -
This implies that

Y (xweg,,,x)=1 (xeB,x' €B).
LEMMA 8.4. Fora € A, with the normalized Haar measure dt of o,

lo=1+q / (E5712) (@2 O)Y (Wrx Vg )
o

PROOF. Asin Lemma 8.3, we have
vol(B) " 'vol(B)) " '2(¢1, R(g ., we)Pusy)

= vol(B) 'vol(B")~! / Y (x(g,, ,we)” ' x")dx'dx
B'xBwy B ’

=v01(B)_1v01(B/)_1/ Y(xweg,, )dx .
Bwe B ’

In view of the decomposition
Bwy B = T(0)N)wa X, 0) N(_l)

and the fact vol(Bwy B) = ¢ - vol(B), we see that
f Y (xweg,, )dx = q - vol(B) f Y (Waxa (Dweg,, )di
Bwy B o

by using 8.2 again. Recall the formula
X (1) = x_o (1" Hwgay " Ohx_ot71)
with some element & of T(g) (t # 0), see (3.5.1). Since
Y (WaXa(Oweg ) = (E7'82) @ " Y wex—uwa ™ gm,)
we have the lemma.

Similarly, we have the following lemma.
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LEMMA 8.5. ForB e A,

—-1/2 _
Ji=1+4q f €52, ") Y (wegx' 1
o

We shall give without proof the following elementary lemma which is useful in our
calculation.

LEMMA 8.6. Let x, x' € Xpr(k*) be two unramified characters of k*. If |x|,
x| < q, then
1—q2xx/
(I—g= U —g7 1))’
where x and y () € C* (resp. x' and x'(7w) € C*) are identified as in 3.4.

1 +q/x(t)x/(1 +0dt =(q—1)

By virtue of (4.8.1) and (4.8.2), we can apply this lemma to the calculation given below.

8.7. THE EVALUATION IN THE ODD CASE. Now we shall evaluate 1, (0« € A) and
Jg (B € A’) in the odd case first. Namely, we handle the case G’ = SOy (k) C G =
SOy 4241 (k). In this case, the double coset Nnggm),N/T/U is open dense in G. We note
here that g, ,N' = x, (1) - -x8r+],(1)N’. Note also that —w;a = « for any @ € A.

PROPOSITION 8.8. Fora=¢ —¢&+1 (1 <i <r),

Y
EiE ).

Ioc = Q(l —q
PROOF. We have
(7161 @" ) = & EZN - 1THO)

foray, = d,-(n)dpr](n)’l. Consider first the case where 1 < i < r—1. We see xa(t’l)gm,, =
gmvrxa(t_l) so that

Y (Wexe (17 g ,) = Y(Weg,, X)) =y
On the other hand, in the case i = r,
Xep—eri (til)gm,r = Im,rXer—er1 (til)xﬁr (til)x8r+8r+l (_til) :

Since the support of the character ¢y ison &; — ¢;4+1 (1 <i <r — 1) and &, (see Section 3),
we have

Y(wéx—wgoc(til)gm,r) = Y(w@gm,rXSr—Sr-H (til)x& (til)x8r+8r+l (_til))
=y

also in this case. By 8.4, we see that

Io=1+gq / EEN - ITHOY wex—we g, )dt
o
o

=1+q) (-qg g @& / Y *uydu,
0><

k=0
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where du is the normalized Haar measure on 0. This completes the proof of our proposition,
since

1 (k=0),
/Xw(n*ku)duz —1/(g—1) (=1,
¢ 0 k>1). O

PROPOSITION 8.9. Fora =g — &4ir1 (1 <i <I' = 1),

-1z .51
=47 Eri8 i

I, =(@—-1) — — .
(=g "2 B, )0 — g~ 258 )

PROOF. By 8.4,
Lh=1+gq / (Eri B TTHOY (wexa (g, d
o
since aq = dyyi (0)dy4i+1(r)~". The commutator relation shows that
xa(t_l)gm,r = Xerqi—€ryivl (t_l)gm,r
€ Xg, g (1-- “Xeppion (Dxe, ., (1 + til)x3r+i+l 1-- ‘xan(l)N/
=dri(1+17)g, ,dryi(1+17H7TIN
This implies that
- o - -1/2 e
Y Wexa(t ) g,,) = (B8 dryi(1+ 7)™ ET )i (L + 7)Y (wig )
=& Bl THA+ .
Thus, by 8.6, we finally have

I,=1+¢q f(s,-s,;,-+l| ATV E Bl 1TV + nat
o

e ol
=g E4i8 i

=(@-1 — — .
(=g 27 B ) —q 12557 )

PrROPOSITION 8.10. Foroa = &4y,

—152

1 - 4q S 4
(1 — g2 B, ) (1 — g2, 5,4 p)

Iy =(q—1)

PROOF. The evaluation is similar to that of 8.9. Since aq = d, 4y ()2, we have
(&1 (@) = (&2, ITHO).
On the other hand,
Xt G, € Xepy (Do xe,,  (Dxe, (L4 17HN'

=drpr(1+ 1 gy dryr (L +17H 7N
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Hence we have

Y Wexa (g m,) = (B8 (1417 YES ) Ay (L 4+ 7Y (wigy, )
=& Bl THA+H

and, by 8.6,

Iy=1+gq f(wrm A0 E " gl - 1T+ ndt
[

172

l—q &

=g e 0
—-q US4l —q 14l
(1 /2 )1 /2¢, )
PROPOSITION 8.11. Forp =¢, — 81/'+1 A<i<l'—1),

1 - qiléiéilll

=g 257 D0 —q 2% B

Jp=1(q—1

PROOF. In this case, a/’S =d,4;(m)d,1i+1(7)"!. Note that

—1 —1
gm,rxfﬂ(t ):gm,rx75r+i+5r+i+l(t )

is contained in

Xep (1) xe, (DX gy, i DN
= X—gryit+eryiv (t_l)x5r+l (1) (Dxg, (1 + t_l)x€r+i+1 1-- “Xe, (DN’

=x_p(t Ndrsi(1+1" g, depi (1 +17H7IN

(see 3.11). We have
Jp=1+q / & )@y (ET8YD) i (1417 THE T A drgi (117 D
o

=1l+gq / GELL 1 DO ED il 17D+ 0dt
o

1-q7 687,

=(@—-1 — — .
(=g 281 DU —q 26 B O

PROPOSITION 8.12. For B =¢,_, + ¢,

1—g~ & &
(=g~ &1 51— g2 57

Jp=1(q—1
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PROOF. In order to calculate Jg in this case, we consider gm,,x,ﬂ(t’l) explicitly by
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using matrix form. It is sufficient to handle only the case r = 0. Set s = #~!. Since

Iy 21| —-11
Imr = 1 -1
1y
and
Iy
1
1
X_p($) = X—g,_|—¢,(s5) = 1
s 1
-5 1
ly—»
we have
—s s
11/,2
—s 21 11
0 0|1—s )
0 0| —s 1+
Iim,rX—p(8) = —s s 1 -1
K 0 1
0 -5 1
ly—»
7
1
1
= x-p(s) —s s 1
s —s2 | =25 |1
—s2 52 2s 1
Iy

d(A)gm,r ’
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A
where d(A) = 1 with
T AT
—s s
11/,2 : :
A= —s s e GLy (k).
1—s s
—5 1+s
Set
1
B= 1 € GLy (k)
= 1
—5
and
1 -5 s
C= I —s s € GLy (k).
1—ys )
1
1—s

Then A = BC so that d(A) = d(B)d(C). Hence
d(A)g,,, = d(B)A(C) g, ,
1y | 2C1 | =C1(C1)Jy

=d(B) 1 DIy d(0)

1y
€ N™xe (1) - Xy, (Dxe, (1 =)™ D1 (1 = )y (1 = 5)"HN'.

Therefore we see that

Gmrx-pt =1) € N drpy (1=t Ng, pdrp (1=t HN'.

Since ag = dy1y—1 ()dr 4y (7r), we finally have

—1/2 _
=144 / €5 @) OV (weg k' st
o

=14gq /(spsr;‘,w AT E 1 g - 1TH A = Dt
o

1 —q & _ &
(=g 28 1B — g~ 2 B

=(@—-1

This completes the evaluation in the odd case.
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8.13. THE EVALUATION IN THE EVEN CASE. We evaluate I, (¢ € A) and Jg (8 €
A’) in the even case where G’ = SOy 1(k) C G = SOyy42,42(k). In this case, Imyr =
Xepp1—e, oy (D Xe =g, (1) so that NTweg,, .N'T'U is open dense in G.
Let y be the outer automorphism of G which arises from the non-trivial graph automor-
phism of A . This y is given by the conjugation by
1r+l/
0 1
1 0 ’
1r+l’

which induces the substitution &; — &; (i # I'+r+1), &,4y41 <> —&,4p+1 on Hom(T, GL).
Note that y (g, ,) = x£r+l+gr+],+l(1) - 'x8r+z/+8r+z/+1(1) and y(g,,,) € gm),N’. The sub-
groups N, T, G',N’, T’', U are invariant under y. This implies that the open dense sub-
set NTw¢g,, ,N'T'U is also y-invariant. Since y naturally acts on X as &; < &; (i #
r+l'+1), Brppyg < Erjrll,H, we see that

Ye:(v(9) =Yya),:(9) (g €G).
Note also that

o ifr+1" +11is even,
—wpa = ] ]
y(a) ifr+1+1isodd

for any o € A. Hence we have

&i i#r+l'+1),
—wee; = , )

ey G=r+01"4+1).
PROPOSITION 8.14. Fora =g —¢&iy1 (1 <i <r),
Iy = ‘I(l - q_IEiE,':_l) .

PROOF. The calculation of I, in this case is similar to that of 8.8. Note that the support
of the character Yy isong; —¢g;41 (1 <i <r—1),& —&r4r41 and &, + &,441 (see Section
3.I1<i<r—1,x0gu, = gnrx@")so that

Y (wexa (™) g ) = v,
On the other hand, the equality
Xepmeyis DG s = G Xep—ey ) Xy, (07
shows that

Y (WexX—wa ™) gm,) = ¥

also in this case. Hence exactly as in 8.8, we are done. O
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PROPOSITION 8.15. Fora = ¢&r4; — &rqir1 (1 <i <1,

1z =1
-4 E4i& iy

Iy =(qg—1) - -
(=g 278,00 —q 255 D

PROPOSITION 8.16. Foro = &4y 4+ €r41+1,

1—g ' By B
_ —1 = _ —~ :
(1—¢ 1/251/ Erpr)(1—¢q 1/2§l/¢’r+l’+1)

Iy =(q—1
PROOF OF 8.15 AND 8.16  First we note that 8.15 for« = &, — &,4,41 and 8.16 are
equivalent via y (see 8.13). Hence it suffices to calculate
o =1+ [ @572 Wixualt g i
o
for —wea = gp4; — &r4i+1 (1 < i <1’). Note that

= —we(Er4i — Erti+l) = Erti — €Ertitl

for some e = £1. (We remark that e = 1 wheni < [’.) From 3.11, we see that

Xerp1=e, 4011 () exe, &1+ (D

—1 e /
X Xeppi—€, 1 (1+1¢ )xe,+,-+176,+,/+] 1--- ifi<l’,
—1 _ —1
Xeppi—&rtit (t )gm,r = X Xe, =€y 4 (1)x6,+i76,+i+1 @)
Xerp1—e, 44 O ey 1 =Eryrg M ifi=1
—1 *
X Xep =€ (I+17)

Therefore we have
Xeyimersis DG € drai (1 + 17D g drgi (U417 HTIN
in either case. Hence we obtain
(87 (a" )Y (wexat™ g, )
= Eri B YOGl 17 DA+ 7 E YD) a4+
=GE S T YOE Bl T A+

which yields
1—g 5,575
Iy =(G—1) 71t’]_' rH Sy —
(1 - q71/2§j :fr+i)(1 - qil/zéi :‘r+i+1)
fora = gr4; —esryiv1 (1 <i <1') by8.6. O

PROPOSITION 8.17. For 8 =¢] — 81{+1 A<i<l'—-1),
1 _qiléiéilll

=g 257 D0 —q 12 B

Jp=1(q—1
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PROOF. The calculation of Jg in this case is similar to that of 8.11 and is omitted. [

PROPOSITION 8.18. Forf =¢,

1 - q_lg‘l%
=g 28 )L — g~ 258 )

Jp=1(q—1

PROOF. We handle g,, .x_p (t~1) explicitly by using matrix form, as in 8.12. We may
assume r = 0. Set s = ¢t~ 1. Since

111 0
. 1 0
gm,r - 1 —tl
1y
and
Ly
1
K 1
X_’B (S) = x—8[/—8[/+] (S)x—sl/—sl/_H (S) = s 1
—s2 | —s —s|1
Iy
in G = SOy 42 (k),
s
7
s
1+
ImrX-p(8) = s 1
s+s2| s 1+4s|—1 -1
—s2 | —s =5
1y

= X_gprep,, (=52 /(L +)Dx_p()dpr1(1+ )" g, ,d(A)"
eN“dp(1+95)"" g, dr(1+5)7'N,
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where d(A) = < A JiA-1g ) with

7
A= s € GLy 4 (k).

1+s

This shows that

&8 @Y (weg 5 —p™H)
= &)@ NES )y (117 €8 D (147D
= E@E 1T DOEE T+,

Here we put wy(g4+1) = —egp41 for some e = *£1 as in the proof of 8.15 and 8.16. There-
fore, using 8.6 as before, we have the proposition. 0

9. Rationality. The purpose of this section is to show the rationality of the linear
form Iz ¢ introduced in Section 4 with respect to the parameters (=, £).
We first show that Assumption 2.3 holds in our case (see 9.1, 9.2 below).

’

PROPOSITION 9.1. Forany (5, &), dimHomp, (I(Z; 0p), £~ 18" * @ yy) = 1.
PROOF. This is obvious from 3.12 (3). U

PROPOSITION 9.2. Let O bea P x Py-orbitin G different from Oy. Then
dimHomp, (1(8; 0),67'5""> @ yy) = 0

for generic (2, §).
PROOE. For O = Pg Py, we have

dim Homp,, (I (Z; 0), £ '8, ® y)

= dimHomyp, ;- 1p,(9 " (88D ® (68, @ vy, 8y)

where §, is the modulus character of Py N g ~1Pg (see 2.2). Hence we must show that

1= —1/2 - _
97N ES ) pyng-1pg - (€80 ) @ UG pyng-1pg 851 # 1
on Py N g~ ' Pg for generic (Z, £). To do this, it is sufficient to see that we can choose a
representative g of the P x Pg-orbit O = P g Py such that
(a) T'Ng¢g~'Tg contains a non-trivial torus;
or
(b) 1//U|1\/ng—1Ng # 1.
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Here Ny = N'U is the unipotent radical of Py. Let O = Pwg,,  (Y)Py (we W, ye
{0, 1}y be a P x Py-orbitin G. Let us put

Xe, o (V1) X6, (V1) in the odd case,

*
ImrY) = )
Xep 1=, VD) = Xe, =6, v V1) = G »(¥)  in the even case.

Since g, ,(Y)Nu = g, ,(Y)Nu, we may take g = wg,, .(y) as a representative of O.

Suppose that O # Og. Then either w # wy ory # 1 = (1,...,1) holds. We first
consider the case where y # 1 so that the i-th component of y is O for some i with 1 <i </'.
In this case, we have

T'Ng~'Tg > Image of d,; .

Hence the condition (a) holds.

We next consider the case wherey = 1 and w # wy. We put g = wgﬁw(l). By
the assumption, there exists a simple root « satisfying wa > 0. Assume first that « =
& —¢&i+1 (1 <i <r —1). Then, since

Nwgy (1) = Nwg,, ,(Dxe;— (1),
we have
NuNg~'Ng 3 xee,, (1)
for any ¢ € k, and we see that (b) holds. Next we assume that « = ¢, — &,41. In the odd case,
ng;kn’r(l) = Nwxe,—¢, (t)g;:,,r(l)
= Nwg,, ,(Dxe,—, ., (X6, ()Xe, e, (—1)
for any ¢ € k. Hence
NuNg7'Ng 3 xe,—e, 4 (Dxe, (DX, e,y (1)
for any ¢ € k, which implies that (b) holds. Similarly, in the even case,
Nwgy, ,(1) = Nwxe,—¢,,, (1)g,, (1)
= Nwg}, ,(Dxe, e, (DXe, ¢, ,, (D
for any ¢ € k. Hence
NuN g 'Ng 3 e, (DXe, e, ., ()
for any ¢ € k so that (b) holds. Whena = ¢; —¢g;4+1 (r +1 <i <r +1'— 1) in the odd case,
Pwgy, (1) = Pwxe; ¢, (=g, (D)
= Pwg,, ,(NXe;—e; 1 (= DXgiter,, (1)
withy ='(1,... 1,0, 1, ..., 1) so that

ngzw(l)PH = ngzw(y)PH,



WHITTAKER-SHINTANI FUNCTIONS 49

and (a) holds. We can handle the even case where o« = ¢; —g;4; (r +1 <i <r+10)ina
similar manner. Finally, if @ = &,4 in the odd case, an argument similar to the above shows
that

ng;;,r(l)PH = ng;;,r(y)PH

fory ='(1,...,1,0), hence (a) holds. On the other hand, if @ = &, + &,4 41 in the even
case, since

Yoyt (DX, b,y (1D = o (1) € Ny
we have
Pwgl, (DPy = Pwxe, +e,.,., (D95, (D Py
= Pw (e, (DXere, (< 1) X+
X ey ey (DXey e,y (= D%ey—e o (DXeype, sy (D PR
= Pwg,, ,(¥)Pu
fory ='(1,...,1,0). Therefore (a) also holds in this case. [l
Together with 2.4, this proposition shows the following generic multiplicity one result.
COROLLARY 9.3. LetV bea P x Py-stable open subset of G. Then
dimHomp, (1(&; V), 618" ? @ yy) < 1
for generic (&, &). In particular,

dim Homp,, (1(£), 6 '8''? @ yu) < 1.
9.4. Asin Section 4, we define Iz ¢ € Homp, (I(5),£7'8""/? @ yy) by

lz£(Pz(f) = /G f(@Y(g9)dg (f € CZ(G))
for (5,%) € Z.. Here Y = Yz ¢ is a continuous function on G defined to be

Y(9) = Y(pwegn,pu) = (B8 (p)E8 > @ wu)(pr) (p € P, pu € Pr)

for g = pweg,, ,pn € Op = P x Py and Y(g) = 0for g ¢ Op. Obviously, Iz ¢l7(z,0,) is
defined (and rational) for any (&, &).

Now we proceed to the rationality argument. We shall show that the equivariant linear
form Iz ¢ on I (Z) defined above is rational in (&, £). First we shall see that the assumption
2.7 holds.

PROPOSITION 9.5. The restriction of lg ¢ on I(Z; PwgP) is rational in (2, &).
PROOF. For x € X, (k™), we first note that the function x~ on k defined by

x(x) (x €kX),

x (x) = {0 (= 0)
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can be viewed as a distribution on k with rational parameter x = x(w) € C*. Actually,
the integral I (x, f) = fkf(x))(“(x)dx converges for any f € CZ°(k) when |x| < g and
(A —q Y0I(x, f)isregularin x . Ify = “(yq, ..., yr) with y; # 0 for any i, we have
Imr(y) = d(y)gm’rd(y)’l for some d(y) € T’ C T. See (3.12.1) for an explicit form of
d(y). This shows that

Z7152) (pwedy))(ES ™ @ yu)d(y) 'nm)

7Y (pyu () (we(E7'8VHE18 ) A (y))
l/
= (E7" A (pyyu ) [ [Eri& "1 17D 00)

i=1

Y(pweg,, M) = (
(

for p € P, ny € Ny. Since

{pwen € PugN | n =g, ,(Y)ng (y1---yr #0)} (= Op)
~ P x k" x Ny

is an open dense subset of PwyP >~ P X K x Npg, the function Y™ on Pwy P defined by

l/
Y™ (pweg W) = (E78 () ) [ [ Ersi 117" ()
i=l

(peP.yek ,nyeNp)

gives a linear form Iz ¢ on I(Z; Pw¢P) if (E,&) € Z.. Therefore [z ¢ on I(&; Pw,P) is
rational in (&, &). [l

REMARK 9.6. The above proof shows that ]_[f/=1 (11— ql/zErHéfl ) -l ¢ isregular in
(&, &). Hence, together with the argument given below, we can evaluate the “denominator”
of the linear form /5 ¢.

9.7. Proposition 9.5 above (see also Section 2) implies that we can extend /5 ¢ |1 (= pu, P)
for generic (Z, £). Then 9.3 shows that, for generic (&, &),

— — 1/2
9.7.1) Homp, (I(Z; PweP). £ '6""* @ yu) = C - lz.l1(2: pw,p) -

Let Ty, = Twy.we= : [ (we &) — I(&) be the standard intertwining operator for wy €
W, o € A (see Section 1). Consider generic (&, &) € Z.. We know from 9.3 that the equi-
variant linear forms 7, 1z ¢|1(w,2: Pw, P) = (5.60Tw,) 1 (w,5: Pw, P) a0 L, 5 £ | 1 (wy & Pw, P)
in Homp, (I (we &; Pw P), 55’1/2 ® Yy ) are proportional. Note that [y, 5 ¢ |1 (w, Z: Pw, P) 18
rational in the parameters thanks to 9.5.

The following result gives the explicit form of proportional constants which is crucial
for our discussion on the rationality of /5 ¢ (Assumption 2.9) and the explicit formula of
Whittaker-Shintani functions.
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PROPOSITION 9.8. Let wy € W be the simple reflection associated with « € A. Then
for generic (£, &) € Z, the constant a(wy, E, &) defined by

(9.8.1) Ty 1z &l 1we5: Pwep) = a(Wa, B, 8w, 2.6 1wy 5: P, P)

is given as follows:

1-¢g7'E ol
a(wy, 8,§) = ————*
1 - &7 &in
(@=¢ —¢i+1,1 <i <r),
a(wa, 5. 6) = - —q '&EL)U ¢ P S0 - s 5]
oy =~ - 1~ _ 1~ —
(- &' 51— g 127 5N — 712 5 +1)
(=6 —¢cit1,r+1<i<r+0'-1),
oy, 5.8 = —q "D —q Vgm0 — g e ETY
oy = - _ —1 —~ _ —
(=& —q 2% 51 — g2 5))
(ot = &p4p in the odd case) ,
. 5.6 — (=g B850 —q 2 B2 0 - g7 g5,
oy =~ -

(- ul/ ISI/_I)(l - 1/251/71:4[’—1)(1 -9 l/zgl/—ldl’)
(o = ep_1 + ey in the even case) .

PROOF. For o € A, let us define the elements ¥, ¥, € I(Z) by putting

Y1 =Yg := R(chpy, w )Pz = Pz(R(chpy, wp)chp)

m,r Wt

and

Yy, = Yu,,2 = R(chpg, wB)Puw,.5 =Pz (R(chpg, w,p)chBuw,B).

(Note that ¢; = Pg(chp) and @, = Pgz(chpy,p).) In particular, ¥ € I(Z; Pw;P)
because the support of R(chpg w,p)chp is B(gm,wg)’1 B’ C Pwy P (see the proof of 8.2).
From Sections 4 and 8, we have

&3]

lze(W1,5) =lg£(Ps(R(chpyg, w,p)chp))

= / Y(xgil)dxdg
BxB'g,, ,weB

vol(B) Y(g~Ndyg
B'g,, ,w¢B

m,r W

= ol(B g BB [ Vit 007 9)dgdy

BxB
= vol(B'g,, ,w¢B)vol(B)) "' 2(¢1, R(g,y.,we)P1)
= vol(B'g,, ,w¢B)vol(B) .
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Similarly,

.6 (W, 2) = vOI(B g0, we B)vol(B) ™! / Y (g (g we)~g))dgdy’
BwyBx B’

= vol(B'g,, ,weB)Vol(B) x 2(¢1, R(g,,.,we)Puy,) -
On the other hand, we have
Ty Pl = (€a(E7) = DP1z +q ' Py, 2
from [C2, 3.4]. Hence we get
Tw,Pw,e = (€8 — D 5 +q Wy, 5.
Therefore we finally have
Ty lzs(W1w,z)
=g (Tw,Y1,u0,5)
= (B = Dize(W1.2) + ¢ ze(Wu,.2)
= vol(B'g,, ,w¢B)vol(B)
x{(ca(E87") — DR(¢1, R(gy ,we)®1) + q 'R, R(gm we)Pu,)}
= vol(B'g,, ,w¢B)vol(B)
x{(ca(E™) = 1=¢") +q7'2(¢1, R(g,, we) (@1 + Puy))}
for generic (Z, &) € Z.. This shows that
a(Wy, B.8) = (@) =1 =71 +¢7'2(¢1. R(g,,we)(P1 + Puy,))

for any @ € A. Now substituting the values of £2(¢1, R(g,, ,we)(P1 + Py, )) calculated
in Section 8, we get the explicit form of a(wy, &, £) from case-by-case consideration. This
completes the proof of the proposition. (I

‘We have verified that all the assumptions in Section 2 are satisfied (9.1, 9.2, 9.5 and 9.8).
Thus we obtain the following theorem from 2.10.

THEOREM 9.9. The equivariant linear form 5 ¢ is rational in (Z, ). In particular,
for generic (£, §), Iz ¢ is defined and satisfies

Homp, (1(2),£8"* @ yy) =C-lz¢ .

COROLLARY 9.10. Up to a constant factor, there uniquely exists an H-invariant bi-
linear form 2z ¢ : 1(§,yy) x 1(8) — C for generic (2,&). This 25 ¢ is rational in
(8, 8).

PROOF. Recall that H-invariant bilinear forms 2 : I (¢, yy) x I(Z) — C and Py-
equivariant linear forms / € Homp, (I (&), £5§’ 12 & Yy) are in one-to-one correspondence
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(see Section 4). Hence the existence and the uniqueness follow from 9.9. On the other hand,
the rationality of /z ¢ implies that of £2z ¢. Actually, we have for f € C°(G), fo € C°(G'),

Q5.:(Pe(fo), Ps(f)) = f R @Y (g dg'dg

G’ x
=lz:(Pf"),
where f* € C*°(G) is defined as
e = [ sy’ 0

REMARK 9.11. By the rationality of £2z ¢, the formulas on the values of I, and Jg
calculated in Section 8 hold for generic (=, &).

10. An explicit formula.
10.1. In this section, we shall give an explicit formula for the Whittaker-Shintani func-
tion Sz ¢ given by

Szt(9) = 2z (Pk e, R(g)Pk.5)

= / Y5.: (kg 'k)dk'dk
K'xK

introduced in Section 4. Recall that the integral above defines a rational function in (Z, £) by
“analytic continuation” (see Section 9).

10.2. Let & € X and & € X'. We shall identify = and & with (&Z1,..., &) € (!
and (§1,...,&) € (CX)I/ respectively, as before.

Fora € X (resp. B € X'), we let e, (E) (resp. e:3 (&)) be the numerator of the c-function
ca(E) (resp. €4(€)); namely eq(5) = 1 — g 'E(ay) and () =1 - q_lg(a;s). We set
e(5) = [[yes+€a(E) and €/(§) = ]_[/362/+ ejs (). We also let d,(Z) be the denominator
of ¢g (&) so that dy (&) = 1 — E(ay). Weset d(5) = [[,c5+ do(&). Similarly we define
dj, (&) and d'(©).

10.3. We let
bz &) =[] A—qg "¢ Epmna—q ' PeE),
1<i<l
1<j=l
where
o 1, ifj<r+4i,
=)<, i s
Let us put

e(5)e'(§)

{(E.8) = b(E.£)
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LEMMA 10.4. (1) Foranyoa € A,

{(weE, &) Ru,z.6(P1, R(gy ,we)(P1 + Puy,))
(B8 Qazr(d1, R(gy,w) (@1 + Pu,))

(2) Forany B e A/,

(=, U)ﬁg) _ QE,wﬁé((ﬁl “l‘(bwﬁy R(gm,rwe)¢1)
((B.§)  Qze@1+ duy. R(g,,wo)P1)

(10.4.1)

(10.4.2)

PROOF. We can verify these equalities from case-by-case considerations. For example,
ifoa =& —&4it1 (1 <i <1’ —1),itis easily seen that the left hand side of (10.4.1) is
equal to

(=g 27 B (1 — g7 P58 DA — g7 B Bt

=g 127 8 i) —q V258 D — g7 85 )
On the other hand, the results of Section 8 (8.9 and 8.15) show that the right hand side of
(10.4.1) is identical to the above. We can check the other cases in similar ways. [l

THEOREM 10.5. For generic (2, &), the value Sz £(g)/{(E,8) (g € G)is W x W'-
invariant as a function of (2, &).

PROOF. We first recall that, by the uniqueness argument in Section 7, any H -invariant
bilinear form on 1 (§, ¥y) x I(Z) is a scalar multiple of 2z ¢ for generic (&, £). Since a
bilinear form on I (§, ¥yy) x I (&) given by

(Tw/,’;‘ x T ,E)*QwE,w’&' = *QwE,w’E o (Ty & X Tw z)
is also H-invariant, there exists a scalar factor b, (&, &) such that
(Tw g X Tw.2)* 2wz we = Cw(E)C,, (E)byw (E,§)2z¢
for generic (&, &). Consider the case where w = w,, (@ € A) and w’ = 1. Since

Twa (1 + ®wa) = ¢ (&) (D1 + ¢wa) s

we have
ca(E)bwa,l (&, S)QEE(QSI , R(gm,rwé)(¢1 + qua))
= (TwaE X 1)*~Qwa3,§(¢l’ R(gm,rwe)(@l + gDwa))
= ca(E)-Qu)aE,f(¢l s R(gm,rwé)(qjl + ¢wa))
and hence

by, 1(E, &) = $2w, 2.5 (D1, R(gm,rwf)(gpl + Dy, )
N ‘QE’S((PL R(gm,rw@)(gpl + (Pwa))
s
T wED
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Therefore we have

Swe2,6(9)/S(Wa 8, €) = Ru,5.6(@k, R(9)PK)/¢(we B, )
= ¢u(8) 7' Quy 2.6 @k, Tu, (R(9)PK))/E(Wo B, £)
= bu,.1(8.6)2z.:(¢x', R(9)PK) /S (Wa T, £)
= Qz.¢(px, R(9)PK) /(5. £)
= Sz.:(9)/5(8.8).

This implies that the function of & given by Sz ¢(g)/¢(&, &) is invariant under W. The
W'-invariance follows exactly in the same manner. O

10.6. We are now in a position to give an explicit formula of Whittaker-Shintani func-
tion Sz ¢ in a form analogous to the case of zonal spherical functions or Whittaker functions
([Mac], [CS], [K1]).

Recall 6.1. It suffices to know the value Sz ¢ (g) with g = t/(k’)gm,,wgt()»)’l for M €
AZ,, X € A, since —w(A)) = A and

m>

W) gmywet O =1 ) gt (—weGDwe  (h € A,

m»

’ +
rEAL).
Let us put

(&)@ _ bE.§
¢(8,6)  d@E&dE)

Then we can give the following theorem by using an argument similar to that in [CS].

cws(E,§) =

THEOREM 10.7. For)' € Al and ) € A},

Sz (') gy, wet G)™/E(E.§) = ¢! 0T Dvol(B)vol(B')
x Y ewswE, wE)(wE) 8 () (w'e) T8 0.
weW
weWw’
PROOF. We fix generic parameters (&, £). We first note that
107.1) Szt ) g wet (W) ™1) = vol(B't'(A') "' B'yvol(Bt (1) "' B)
o x L(chpryy-18) R(chpy -1 5) Sz (9, we)

for A e A:;, and A € A;;. To show this, it is sufficient to prove that
B’ (V)B' g, weBt(V) B C U)Kt (V) g wet () 'K .
By the Iwahori factorization B = N ;,To)N(o) and B" = N, T, N' 3

B'{'(0)B'g,, ,weBt (1) B C K't' O)N (19, ,we Nt (W) 'K
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(Note that t(k)N(o)t()»)’l C N(o) and t’()/)N(’O)t’()J)’1 - N(’O).) Then we see exactly as in
Proposition 8.3 (see also Lemma 8.2) that

Nla)gm,rw@N(_l) - gm,rwa(_l)N(l)
C gmrweNG ToNay C U0NGT0)9mrweT o) Nay -

This implies (10.7.1).
By 1.10, we have a basis {g,, (w € W)} for 1(2)8 satisfying

(10.7.2) R(chg,y-15)90 = vol(Bt () B)Y(wE) '8 2t (M) g, (L€ AD):
(10.7.3) 91 =4¢1:
(10.7.4) ok =q""" ) Cw(@)g,

weW

with €,(8) = [[ea(&) (@ > 0,wa > 0). We also have a basis {g/, (w' € W)} for
1(&)8 = I(¢, yy)® with the similar properties

(10.7.5) ok =q""0 > T @),

w'eWw’
and so on. Put
S =Sz ) g, wet W)~H/C(E,8).
Then we have, by substituting (10.7.4) and (10.7.5) in 10.1,

ewe+ew) PE.E)

S =
7 e(5)¢©)
x Y @@, EwE) 82 w'e) T A () 2z (0 R, w00
weW
w'ew’

from (10.7.1), (10.7.3) (and its counterpart for {g’ , (w" € W')}). We know that
2z.:(97, R(gn,we)g1) = vol(B)vol(B')

from 8.3. Thus the coefficient forw =1, w’ = 1in S is

/ b(Z, ,
q‘“'”f)“(%>vol(B)vol(B’)7((H) ,‘2) = ¢ WO yol(B)vol (B )ews (8, &).
e(Z)e

Hence the W x W’-invariance of S and the linear independence of characters show that
S = ¢! @O WDyol(B)vol(B)
= _— —14/1/2
x > ewsw& wE)(wE)'8A ) (w'e) ' 1))

weW ]
w'eWw’

The value Sg.£(1)/¢(E,8) = Sz.:(gm,)/C(E ) = Sz.6(gm,we)/5(E,§) is given
by the following theorem.
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THEOREM 10.8. The value of Sz.¢ at 1, Sz (1), is given as
Sze(1)/2(8, &) = " MO @D yol(B)vol(B') x Qp

where Q,, is the constant given by
I'—1
1—qg7" ]_[(1 —q7 ifm =20,
1
Qm’ = '

l/
1_[(1 —q7% it m' =20 +1.
i=1

We shall prove this theorem in the next section and assume this for the moment.
Now we define the Whittaker-Shintani function Fz ¢ by normalizing Sz ¢:

Fze(9) = Sg.6(9)/Se.6(gm,rwe) .

Since we already know that Sg ¢ /¢(&, §) is rational in (&, &), the explicit formula 10.7 of
Sz.e/¢ (&, &) shows that the value Fz ¢(g) is regular in (&, §) with Fg (1) = 1.

Thus we finally have the following theorem from 10.7, 10.8 and the multiplicity one
result in Section 7.

THEOREM 10.9. For any (E,&) € X x X/, dim¢ WS(Z,&) = 1. The basis of
WS(E,§), Fge € WS(&,&) with F5 ¢ (1) = 1, is given by the formula

Fze(t' (W) g, wet W)™

1
(109.1) =5 2 cwswE, w'E) ()™ ))(w'e) e 1))
m’ weW
w'ew’

for (L, )y € A x AT

11. The value at the identity: Proof of 10.8. We shall calculate the sum
b(wE&, w'§)

Arm = Ar(8.6) = 3 G

for regular (Z, &) € X x X’'. (Recall that m = 2r +m’ + 1.) We have
Sz.6(1) = Sz.6(g ., we) = £(F,8)g T Ov0l(B)VOI(B') X Ay
from 10.7. Therefore we can rewrite Theorem 10.8 as follows:
THEOREM 11.1. The sum A, ,, is a constant, and is equal to Q,, given in 10.8.
In what follows, we shall calculate
b(wE~, weh
dw&-hd'(wg=)

T . ~—1 -1
Ar,m’ =Aaw(ET,E) = E
weW
w'eWw’
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instead of A, ,,, and show that AI,,,, is equal to the above constant.

11.2. From now on, we shall consider the odd case m = 2r +2I' + 1, m' = 2I’. We
can handle the even case in a similar way.

We shall regard Z; (1 <i <r+1')and&; (1 < j <!') as indeterminates. Hence Aim,

is in the Laurent polynomial ring C[Z l.il , §jﬂ] by Weyl’s character formula. We put

b, (B.&:=bE" &
= [] a-q¢"a5h ] a-q4"%'5)

I<i<l’ 1<i<l’
1<j<r+i rti<j<r+l’
S iy . |
x [I a-q'2'Eh,
1<i<l/
1<j<r+l’
= . =1 el N =l g2
d&) :=dEH = ]_[ a-glepa-g's"h ]_[ (1-587%
I<i<j<r+l' 1<i<r+l’
and
de :=dE = [] a-glenpa-gleh.
I<i<j<l’
11.3. Set
p=pm=0+,r+0I—1,....,2,1) e Ay =2t
and

p=p =0 =1,1'=2,...,1,00€ Ay =Z".
Then p (resp. p’) is the half-sum of positive roots in C,4, (resp. D,;). We put
gp — grtl gr+l’-1 52 g
S S IV bt
and

! =102 2
gp =$1 $2 "'gl/_zgl/—L

As in the case of Weyl’s character formula, we have

Al =DETDE™ Y senw)sgnwww' (EPEFD] | (5.§)),

r,m
weW
w'eW’
where
- — — - ~—1 =1 - —~—1
D@ =DuE =[] @E-spa-g'eh [] @E-&5"
I<i<j<r+l 1<i<r+l’
and

D =D, = [] &-&g)a-g'e".

I<i<j<l’
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We say that A € A, = Z"*"" or the monomial 5* = Ef‘l e E::_Jl’,ﬂ (resp. u € A,y =
Z! orgr = 51’“ . 'él’f’/) is regular if the stabilizer of A in W = W (C, /) (resp. the stabilizer
of win W = W(Dy)) is trivial. We also call the monomial Z*£* regular if both Z* and
&M are regular. Let us set B,y = E"éplb:’m/(E, &). Then, by expanding B, as B,y =

> cuuErEHR, we have
AL, =DETDEH™ Y an Y. senwsgn)ww (B .

Ergl regular weW(C, )
w/EW(Dl/)

11.4. REDUCTION TO THE CASE r = 0. Now we look at the expansion of B, , in
the above more closely to study regular terms in it. We write down B, , as

Bw= [] @-a" T[] &-q"5)

1<i<l 1<i<l
I<j=<r+i r+i<j<r+l’
r
_ 121 -1 ol i+l
X H (I—q 77§ & )H“j :
1<i<l’ Jj=1
1<j<r+l’

If a monomial Z*&# in the expansion of B, v is regular, then we must have
{I)LU(I)I > [Ao@)) > > Ao+ > 0,
ezl > kel > -+ > |lpuzanl = 0
for some permutations o € S, and T € Sy. In particular, we have
|XU(,')| >r+0U/4+1-1,
eyl =1 —j.
However we can see easily that the exponent A; of the power of &; in B, ;7 must satisfy

(11.4.1) {

' +r—i+l<ry<r+l'—i+1 ifi=<r,

—U'<x<l if r<i.
This shows that
(11.4.2) doy=r=l"+r>ry=t=U+r—1>->kp=rA=1,
and that
(11.4.3) Aol =1"—i (A<i<l).
In particular, we have A = y(p) for some y € W(C/). Here we regard W (Cy) as the subgroup
of W = W(C, ) which acts trivially on the first r entries. Note that

l_[ (& — g %) = Eé/ + (lower terms in &)

1<i<l’
and

]_[ a- q*lﬂgi—lsj—l) =1+ El._l - (a polynomial in Ej_l)

1<i<l
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for 1 < j < r. Therefore we have

Al =DEDE ™ Y sen(w)sgnwyww'(B],,) .
weW
w'eWw’

where

Br,= [l @E-a" [ G-qa'%E)

1<i<l' 1<i<l’
r+l<j<r+i r+i<j<r+l’
r
—1/2—1 =~—1 l_[ =+
X — RO = .
[T a-a""=h j
l<i<l’ Jj=1
rl<j<r+l’

But then the equalities
sgn(y) = Dyrporg1 (B)™ Y sgn(w)w (Y Prrar+n))
weW (C,,y)

=Dy 1(E)" Y sgn(w)w(EP+)
weW(Cy)

(11.4.4)

fory € W(Cyp) C W(C,4r) imply the following lemma.

LEMMA 11.5. The sum AI v IS constant in E and is independent of r. In particular,

T gf
Ar,m’ - A(),m/'
11.6. THE CASEr = 0. Now we shall study
A= Ag,,n/ =Dy +1(E)7' D), () Z sgn(w)sgn(w’)yww'(By ') »

weW (Cy)
w'eW (Dy)

where

Bo,m’ = l_[ (E} _q—1/2§-i) l_[ (Sl _ q—l/ZEj)
l<i<l’ 1<i<l’
(11.6.1) I<j<i i<j<l

% 1—[ a _q—l/zéiflEjfl).

I=<i,j<l

Recall that the inequalities |A;| < !’ and |uj| <!’ hold if the monomial & *g1 appears in the
expansion of By .

Suppose that a monomial Z*£* with p; = I’ for some i = i( appears in the expansion
of By . Note that

[ &i-a") [] & —q7"?&) =c- &) + (lower terms in &,)

1<j<ip ig<j=l’
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for some non-zero constant ¢, and

l_[ (I— 471/25,-315';1) =1 —l—é,-gl - (a polynomial in él.gl),

l<j=l

Therefore, for any j, only the product
[]@Ei-a"% [ &-q"5)

Jj<k<l' 1<k<j
k#ig k#io

contributes to the power E]A’ in &*&*. This implies that 0 < A j < I’ for any j, and hence
E*&M is not regular. Similarly, we can see that £*&* appearing in By, is not regular if
w; = —I’ for some i.

Thus we see that |;] < I’ for any i if the monomial Z*£# that appears in B is
regular. This and (11.4.1) show that u = u(p’) for some u € W(Dy). Therefore, as in 11.5,

we have:

LEMMA 11.7. The sum Ag ' is a constant.

11.8. THE EVALUATION OF THE CONSTANT. To evaluate the constant A = A(T) '

we specialize (&, &) to (E:’, é), where E:‘k = ql/_k*‘l/2 and §,~ = ql/_i (1 <i,k <!’). Namely,
as Y b, (W&, wE)
wewie,) 4T w8 wE)
w'eW (Dy)

Note that d(w&)d’ (w'€) # 0 for any w € W(Cy), w’ € W(Dy).
Now, to every w € W(Cy), w' € W(Dy), we shall assign permutations o, T € Sy and
&, 8;- = +1 with ][] 8;- = 1 in the following way:

=43

- _ :,81/ le &1 ;/
wWe = o) ua(l/)) ) w ‘i: - (‘i:-[(l)v ceey ér(l/)) .

LEMMA 11.9. Ifthe product bg m,(w.’_si, wE) £0, thenw = w' = 1.

PROOF. To show the lemma, we first rewrite bg ' (w.’_si ,w é) as
by, wE wd =[] =g [T a-¢? [T a-g"@,
I<j<i<l’ I<i<j<l’ 1<i,j<l

where we put

ali, j) =5 — ¢

> ﬂ-ﬁp+%)+d@—r®%

1

ﬂ—ﬁn+1)—dw—rmh
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and
.. 1 , ) 1 L .
vi.)=—z—¢&\l—o()+5|-&l—@).
If bg,m/(Wé, w'€) # 0, we must have

ali, A0 <j<i=<l), BG,N#00<i<j<l), yG,HN#00 =i, j=<l).
Define iy, ... ,iy and ji ..., jy by

i) =0'—s+1 (1<s<l)
and

o(j=0U-1t+1 (1=<r=<l)

sothat!’ — t(is) =s — l and!’ — o(j;) = t — 1. Then we can deduce Lemma 11.9 easily
from the following lemma, since the conditions (11.10.1) and (11.10.2) given below occur
only when w = w’ = 1. Actually, we have 81/»1 = 1 from [ &; = 1. (Note that w’ € W(Dy).)

LEMMA 11.10. Ifthe product bg m,(w.’_si, w'E) # 0, then the following hold:

(11.10.1) W= jp>i2=j2>->iy=jr,
(11.10.2) g, =-=¢,=¢;=-=¢gj, =1.
The proof of this lemma is as follows. Since y (i1, j1) = —1/2 — ¢;(1/2) # 0, we

have ¢;, = 1. Then B(i1, j1) = —1/2 + ¢;,(1/2) = 0 implies that j; < i;. Next consider

y(i2, j1) = —1/2 —1/2 — ¢} . The assumption y (i2, ji1) # O shows that &; = 1, which in

turn implies that i < ji, since a(i2, j1) = —1/2 — ¢, (1/2) + 8,/.2 = 0. In this way, we have
hzj1>0=jp>->iy=jy

and

[ — o = s = e e = . =
=" =6, =¢&=-=¢ =1

by induction. Details are left to the readers. 0

As for the value of A = Ag = Al ,, Lemma 11.9 and the direct calculation show that

r,m

b, &) , el .
= = (¢ DH[]d-¢7.
df(&)a’ ) 1]

Therefore we have proved Theorem 11.1, and hence Theorem 10.8, and have completed the
proof of Theorem 10.9. O
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