Eur. Phys. J. C (2011) 71:1742
DOI 10.1140/epjc/s10052-011-1742-y

THE EUROPEAN

PHYSICAL JOURNAL C

Special Article - Tools for Experiment and Theory

WHIZARD—simulating multi-particle processes at LHC and ILC

Wolfgang Kilian'?, Thorsten Ohl>", Jiirgen Reuter>*>¢
lDepanment Physik, University of Siegen, 57068 Siegen, Germany

Hnstitut fiir Theoretische Physik und Astrophysik, University of Wiirzburg, 97074 Wiirzburg, Germany

3 Theory Group, DESY Hamburg, 22603 Hamburg, Germany

4School of Physics, University of Edinburgh, Edinburgh EH9 3JZ, Scotland, UK

5Physikalisches Institut, University of Freiburg, 79104 Freiburg, Germany

Received: 11 January 2011 / Revised: 21 July 2011 / Published online: 21 September 2011
© The Author(s) 2011. This article is published with open access at Springerlink.com

Abstract We describe the universal Monte-Carlo (parton-
level) event generator WHIZARD (http://whizard.event-
generator.org), version 2. The program automatically com-
putes complete tree-level matrix elements, integrates them
over phase space, evaluates distributions of observables, and
generates unweighted partonic event samples. These are
showered and hadronized by calling external codes, either
automatically from within the program or via standard in-
terfaces. There is no conceptual limit on the process com-
plexity; using current hardware, the program has success-
fully been applied to hard scattering processes with up to
eight particles in the final state. Matrix elements are com-
puted as helicity amplitudes, so spin and color correlations
are retained. For event generation, processes can be con-
catenated with full spin correlation, so factorized approx-
imations to cascade decays are possible when complete
matrix elements are not desired. The Standard Model, the
MSSM, and many alternative models such as Little Higgs,
anomalous couplings, or effects of extra dimensions or non-
commutative SM extensions have been implemented. Us-
ing standard interfaces to parton shower and hadronization
programs, WHIZARD covers physics at hadron, lepton, and
photon colliders.

Contents

1 The need for multi-particle event generators
2 Physics simulation with WHIZARD
2.1 Purposeandscope
22 Workflow oo L.
2.3 Program structure

2 "2\l \V]

2 e-mail: kilian @hep.physik.uni-siegen.de
b e-mail: ohl@physik.uni-wuerzburg.de

¢ e-mail: juergen.reuter @desy.de

2.4 History and new features

Checks and applications
3.1 Standardmodel
3.2 Supersymmetry.
33 LittleHiggs
3.4 Strongly interacting weak bosons
35 Exotica

O’Mega: optimized matrix element generator

4.1 Requirements.
42 Complexity
4.3 Relations to other algorithms

4.4 Architecture

5.2 Optional (third-party) libraries

5.3 Further components of the package
Algorithms
6.1 QCDandcolor
6.2 Phase space and performance
6.3 Multi-channel adaptive sampling: VAMP . . .

6.4 Interactions and evaluators

6.5 Eventgeneration

6.6 Decays

6.7 Interfaces

User interface
7.1 Installation and prerequisites

7.2 SINDARIN.
7.3 Implementation of the language
7.4 Physicsmodels
7.5 Processes
7.6 Beamsandpartons
7.7 Parameters, cuts, and other input
7.8 Using and analyzing results

Extensions and extensibility

8.2 Improving or replacing matrix elements

The WHIZARD architecture
5.1 Corelibraries

8.1 Buildingmodels

\O C0 00 00 OO0 OO0] WL L

—
(e}

—
(=)

—_
—

[
—

—
w

_
~

—_
~

—_
~

—_
~

—_ =
[o) @)

—_
o]

—_
o]

—_
o]

—_
]

—_
]

—_
]

[\
(e

\®}
(e}

\S]
—_

\S]
—_

N
\S]

N
\S]

N
\S]

[\
\S]

[\
W

@ Springer

http://whizard.event-generator.org
http://whizard.event-generator.org
mailto:kilian@hep.physik.uni-siegen.de
mailto:ohl@physik.uni-wuerzburg.de
mailto:juergen.reuter@desy.de

Page 2 of 29

Eur. Phys. J. C (2011) 71:1742

8.3 Higherorders 23
9 Conclusions and outlook 24
Acknowledgements 24
Open ACCeSS . .« v v v v v e e 25
Appendix A: Conventions 25
A.l1 On-shell wavefunctions 25
A.2 Propagators 26
A3 Vertices 27
Appendix B: Sample matrix elementcode 27
References 28

1 The need for multi-particle event generators

At the LHC and the future ILC experiments, we hope to
uncover the mechanism of electroweak symmetry breaking
and to find signals of physics beyond the Standard Model
(SM). Many of the key elementary processes that have to be
investigated for this purpose—such as weak-boson fusion
and scattering, tfH production, supersymmetric cascades,
exotica—are much more complex than the SM processes
that were accessible at previous colliders. Simultaneously,
the requirements for theoretical predictions of ILC processes
will significantly surpass the LEP precision, while LHC data
can only be meaningfully analyzed if a plethora of SM and
possibly non-SM background and radiation effects are theo-
retically under control.

Monte-Carlo tools such as PYTHIA [1, 2] or HERWIG
[3, 4] are able to predict signal rates for SM as well as
various new-physics processes. These programs contain
hard-coded libraries of leading-order on-shell matrix ele-
ments for simple elementary scattering, decay, and radia-
tion processes. However, the requirements of precision and
background reduction will only be satisfied if Monte-Carlo
simulation programs can correctly handle off-shell ampli-
tudes, multi-particle elementary processes, dominant radia-
tive corrections, and matrix-element/parton-shower match-
ing. While previously the main difficulty in Monte-Carlo
simulation was the proper description of showering and non-
perturbative QCD, more recent codes also address the tech-
nical problems of partonic multi-particle simulation without
on-shell factorization approximations. The variety and com-
plexity of proposed new-physics models makes it impracti-
cal to code every single process in a common library. There
is obvious need for automated and flexible tools for multi-
particle event generation, capable of simulating all kinds of
physics in and beyond the SM.

This field has been pioneered by the CompHEP [5, 6]
and GRACE [7, 8] collaborations, for processes of still lim-
ited complexity. The MadGraph [9] amplitude generator
for the HELAS [10] library provided the first automatic
tool for computing multi-particle amplitudes. In the last
decade, the rapid increase in computing power together with

@ Springer

the development of multi-channel integration techniques
[11, 12, 14, 15] has made multi-particle phase space acces-
sible to Monte-Carlo simulation. Furthermore, new ideas
[17-19] have opened the path for a consistent inclusion of
higher-order QCD effects in the simulation.

Consequently, several new approaches to the problem
of realistic and universal physics simulation at the LHC
and ILC have been implemented [14, 15, 20-24]. In this
paper, we describe the current status of the WHIZARD
[21, 22] package, which provides a particular approach to
the challenges of multi-parton matrix-element construction
and event generation in multi-particle partonic phase-space.
Its main components are the O’'Mega [25-28] matrix el-
ement generator, the VAMP [12] adaptive multi-channel
multi-dimensional integration library, and its own mod-
ule for constructing suitable phase-space parameterizations.
These parts, which use original algorithms and implementa-
tions, are the focus of the present paper.

For physics event simulation, WHIZARD offers several
possibilities. It implements the standard Les Houches in-
terface, so shower and hadronization codes can be exter-
nally attached. Alternatively, WHIZARD can perform show-
ering and hadronization by internally calling PYTHIA with
proper matching, so in this mode it behaves as a complete
tree-level event generator for collider physics. A third path,
which is not yet in production status and will be the sub-
ject of a separate publication [13], involves an independent
parton-shower module that is to be combined with (external)
hadronization.

2 Physics simulation with WHIZARD
2.1 Purpose and scope

WHIZARD is a program to compute cross sections and dis-
tributions of observables, and to generate simulated event
samples, for hard scattering and decay processes of parti-
cles at high-energy colliders. The theoretical framework is
set by leading-order perturbation theory, i.e., tree-level par-
tonic matrix elements. These are calculated in a fully auto-
matic way. Refinements such as higher orders in perturba-
tion theory, form factors, or other non-perturbative effects in
the hard-scattering process can be added manually.

The physics described by WHIZARD is given by the Stan-
dard Model of strong and electroweak interactions, and by
well-known extensions of it, such as the minimal super-
symmetric Standard Model (MSSM), Little Higgs models,
anomalous couplings, and more.

The program covers physics at all experiments in ele-
mentary particle physics, including, for instance, LEP, Teva-
tron, the LHC, and the ILC. LHC physics is described by
the convolution of parton distribution functions with hard-
scattering processes. QCD effects that cannot be described

Eur. Phys. J. C (2011) 71:1742

Page 3 of 29

by fixed-order perturbation theory are accounted for via
standard interfaces to external programs. WHIZARD is par-
ticularly adapted to ILC physics due to the detailed de-
scription of beam properties (energy spread, crossing angle,
beamstrahlung, ISR, polarization).1

In contrast to programs such as PYTHIA [1, 2] or HER-
WIG [3, 4], WHIZARD does not contain a fixed library of
physics processes, and it is not limited to a small number of
particles at the hard scattering level. Instead, for any process
that is possible at tree level in the selected physics model,
the matrix element is computed as needed and translated into
computer code, using the O’ Mega program. The O’ Mega
algorithm is designed to compute helicity amplitudes in the
most efficient way, by eliminating the redundancies in the
calculation that would show up in a naive Feynman-graph
expansion.

The phase space setup is implemented in a form suit-
able for efficient multi-parton integration and event gener-
ations, and the further requirements for a complete event
generator in a collider environment can also be handled in a
fully automatic way, partly by calling external codes. From
the user’s perspective, WHIZARD thus has a similar purpose
and scope as CompHEP [5, 6], MadEvent [9, 14, 15], and
Sherpa [24], which also aim at the simulation of multi-
particle processes, the latter including its own modules for
non-perturbative QCD effects. All mentioned codes use in-
dependent and different algorithms and implementations,
and have different ranges of applicability and degrees of op-
timization.

2.2 Workflow

After the installation of the program as described in Sect. 7.1,
WHIZARD is steered by a script that the user provides, writ-
ten in SINDARIN, a domain-specific script language specif-
ically designed for this task. The script can be provided on
the command line, as a file, or distributed among several
files. Alternatively, it can be typed and executed in interac-
tive mode.

The language lets the user specify the physics model,
scattering and decay processes, physics parameters, and run
parameters, in a simple assignment syntax. Tasks such as in-
tegration and simulation are executed as commands in STN-
DARIN. The language furthermore implements histograms
and plots (via an interface to IATgX and METAPOST), and
it supports user-defined variables, conditional execution of
commands as well as parameter scans and more complex
workflow patterns.

In a straightforward run, the user script will select a
physics model, specify various processes within that model,

IThe ILC-specific features of WHIZARD 1 have not yet been com-
pletely re-enabled in WHIZARD 2.

declare the structure of colliding beams, set physics param-
eters, define cuts, and integrate the processes. Once the in-
tegral (the cross section or partial width for scatterings and
decays, respectively) is known, the program is able to gen-
erate simulated events for a process, which can be analyzed
and histogrammed, or simply written to file for processing
by external programs.

The first choice selects one of the physics models that
are supported by WHIZARD, an overview of which can be
found in Sect. 7.4. For supersymmetric models in particular,
an interface to the SUSY Les Houches Accord (SLHA I+II)
[29-31] simplifies parameter input. After a specific physics
model has been selected, the user can specify a list of par-
tonic processes for which the matrix elements are generated.
WHIZARD automatically calls the matrix-element generator
O0'Mega with appropriate parameters for generating code,
compiles the generated files, and links them dynamically, so
they are immediately available to integration and simulation.
Optionally, physics processes can be restricted to specific in-
termediate states, or a class of processes can be combined by
summing over equivalent initial-state or final state particles
in the process definition.

In general, WHIZARD itself detects the complexity of the
processes under consideration and estimates the number of
necessary random number calls that are needed for a stable
integration. WHIZARD 2 does not enforce any cuts for reg-
ulating the infrared and collinear singularities. Instead, the
SINDARIN language allows for specifying rather generic
cut, trigger, and veto conditions that can be calculated from
an extensible set of partonic observables. These conditions
can be formulated both in a process-specific or process-
independent way, along the lines of an actual (partonic) pro-
cess analysis.

For analysis purposes, event generation can be switched
on. There are two options: weighted and unweighted events.
The effort for unweighting the Monte-Carlo events grows
with the number of external particles, but is well under con-
trol. Weighted distributions need much less generation time,
and result in smoother distributions, but their fluctuations do
not correspond to real data with the same number of events.
In addition, using weighted distributions in detector simu-
lations can exercise the detector in regions of phase space
that are thinly populated by real data, while scarcely prob-
ing regions of phase space where most of the real events
will lie. The data output is available in several different
event formats, ranging from a very long and comprehen-
sive debugging format to machine-optimized binary format.
Generated events are mandatory for analysis, i.e. for pro-
ducing histograms. Histograms can easily be generated with
WHIZARD’s own graphics package, using the same type of
expressions as used for specifying cuts, energy scale, or
standardized data files can be written out.

@ Springer

Page 4 of 29

Eur. Phys. J. C (2011) 71:1742

Fig. 1 The overall structure of
WHgI 2ARD beams |in), |out), cuts parameters: physics model:
LHAPDEF etc. €, AQCD; MW, - - - L, Feynman rules
Fortran
compiler & dynlink
unweighted events hadronization
o (s, cuts) histograms standard format files & detector

2.3 Program structure

The overall architecture of WHIZARD is sketched in Fig. 1.
The structure of largely independent software components
is both good programming practice and reflects the de-
velopment history. WHIZARD [21, 22], O’ Mega [25-28]
and VAMP [12] were developed independently and com-
municate only via well defined interfaces. While O’ Mega
and VAMP were designed to solve only one problem, op-
timized matrix element generation (see Sect. 4 for details)
and adaptive multi-channel importance sampling [12] re-
spectively, the WHIZARD component plays a dual role,
both as phase space generator and as the central bro-
ker for the communication among all the other compo-
nents.

This component structure makes it possible to implement
each component in a programming language most suited to
its purpose.? (In this context, Fortran refers to the current
standard Fortran 2003. Currently, this standard is not yet
universally adopted by compiler vendors; for this reason, the
current WHIZARD implementation uses a specific subset of
the Fortran 2003 standard that is supported by various
widely available Fortran compilers.)

— WHIZARD organizes data both from a physics perspec-
tive (implementing, e.g., quantum correlations, and phase
space kinematics) and for the user interface (imple-
menting, e.g., lexer, parser, and compiler for the STN-
DARIN language), and it manages the interfaces to exter-
nal programs and to the operating system. The simulta-
neous requirements of handling complex data structures
and efficiently evaluating numerical expressions are well

2The choices made reflect the personal opinions of the authors on a
subject that is often the realm of highly emotional arguments.

@ Springer

met by modern programming languages such as For-
tran and C++. For the WHIZARD 2 implementation,
Fortran was chosen, so the program takes advantage
of efficient numerics, high-level memory management,
native array support, and modular programming with
data encapsulation. String handling is done by the stan-
dard iso_varying_string module. The operating-
interface is cared for by dynamic procedure pointers and
portable C interoperability. Furthermore, the Fortran
implementation allows for directly interfacing the VAMP
integration library.

WHIZARD 2 is written in an object-oriented program-
ming style, to ensure scalability and extensibility.> Non-
trivial data objects are allocated and deallocated dynam-
ically, and global state variables are confined to few and
well-defined locations.

— O’Mega as the generator for matrix-element code has no
numerical objectives, but is very similar to a modern retar-
getable optimizing compiler instead: it takes a model de-
scription, a description of a target programming language
and set of external particles and generates a sequence
of instructions that compute the corresponding scatter-
ing amplitude as a function of external momenta, spins,
and other quantum numbers. For this purpose, (impure)
functional programming languages with a strong type sys-
tem provide one of the most convenient environments,
and O’ Caml [32] was selected for this task. As a target
programming language, only Fortran is currently fully

3 As this is written, free Fortran compilers do not yet implement the
Fortran 2003 standard completely, so WHIZARD 2.0 had to refrain
from using certain new syntax features. A future revision will exploit
these features, aiming at a considerable simplification of the program
text without altering the structure.

Eur. Phys. J. C (2011) 71:1742

Page 5 of 29

supported. Implementing descriptions of other target pro-
gramming languages is straightforward, however.

— The matrix-element code as generated by O’ Mega is the
time-critical part of the program. It exclusively consists of
linear operations applied to static objects (four-momenta,
spinors, matrices) which are built from arrays of com-
plex numbers. This problem is well suited for Fortran,
therefore, O’ Mega produces code in this language. The
interface between WHIZARD and its matrix element code
is kept strictly and portably C-interoperable, however,
so matrix-element code written in C, C++, or other lan-
guages with C binding, can easily be substituted.

— VAMP—the oldest part of the package—is a purely nu-
merical library and has therefore also been implemented
in Fortran.

— Third-party libraries accessed by WHIZARD are written
in various dialects, ranging from FORTRAN77 (CIRCE)
to C++ (HepMC). With the C++ parts accessed via C
interface code, the Fortran language standard allows
WHIZARD to interface all of them natively without plat-
form dependencies.

While these components are represented as separate libraries
in the technical sense, at the user level WHIZARD acts as a
monolithic program that handles all communication inter-
nally.

2.4 History and new features

Work on WHIZARD began in 1998; its original purpose was
the computation of cross sections and distributions for elec-
troweak processes at a future linear collider [69-71]. In par-
ticular, 2 — 6 fermion processes such as vector-boson scat-
tering could not be treated by the automatic tools avail-
able at that time. The acronym WHIZARD reflects this: W,
Hlggs, Z, And Respective Decays. Since then, the scope
of WHIZARD has been extended to cover QCD and hadron
collider physics, the complete SM, and many of its exten-
sions.

Initially, WHIZARD used MadGraph [9] and CompHEP
[5, 6] as (exchangeable) matrix-element generators. Subse-
quently, these have been replaced as default by the O’ Mega
optimizing matrix element generator which avoids the facto-
rial growth of matrix-element complexity with the number
of external particles. Furthermore, WHIZARD includes the
VAMP [12] library for adaptive multi-channel integration. In
its current state, the WHIZARD project has been merged with
the VAMP and O’ Mega projects.

For version 2 of the program WHIZARD, the program
core has been completely revised with the aim of providing a
more conveniently extensible platform that handles physics
processes at hadron colliders in particular. Amplitudes and
derived quantities are internally represented by a generic in-
teraction structure that describes a correlated quantum state

of a set of particles, which is used throughout the program.
The WHIZARD package as a whole, which used to consist
of several parts connected by Makefiles and scripts, has be-
come a monolithic program which uses dynamic libraries
for extending itself by compiled matrix-element code at run-
time.

On the physics side, the most important addition is sup-
port for matrix-element factorization. While WHIZARD 1
was able to compute complete matrix elements for multi-
particle final states, WHIZARD 2 adds the possibility to fac-
torize processes, e.g., into on-shell production and decay,
and thus to handle situations where complete matrix ele-
ments are either computationally infeasible or undesired for
other reasons. The subprocess factors are integrated sepa-
rately and convoluted in the simulation step, retaining color
correlations (in leading-order 1/N,), and spin correlations
at the quantum level. Both exclusive and inclusive particle
production can be modeled, as long as described by leading-
order perturbation theory.

WHIZARD 2 also simplifies summation over equivalent
particles such as quarks and gluons in the initial state at
the LHC. Parton structure functions are taken from the
LHAPDF library, which is fully supported. (For conve-
nience, frequently-used structure functions are also avail-
able for direct access, without installing LHAPDF.) The en-
ergy scale can be computed event by event using arbitrary
kinematic variables. Running o is available. Events can be
reweighted, read and written in various recent standard for-
mats (HepMC, LHEF).

Another important change is the introduction of a script-
ing language called SINDARIN that unifies the tasks of
specifying input parameters, declaring cuts, observables and
reweighting factors, and steering a workflow that includes
integration, simulation and analysis, possibly with condi-
tionals and loops.

3 Checks and applications

3.1 Standard model

WHIZARD supports the complete Standard Model of elec-
troweak and strong interactions, and reliably computes par-
tonic cross sections for processes with 4, 6, or more par-
ticles in the final state, as they are typical for electroweak
high-energy processes such as weak-boson, Higgs, and top-
quark production and decay. The correctness of the numer-
ical results, while assured in principle by the validity of the
underlying algorithm, nevertheless should be and has been
checked, both by internal tests and in the context of pub-
lished physics studies.

@ Springer

Page 6 of 29

Eur. Phys. J. C (2011) 71:1742

3.1.1 Previous studies

For instance, in recent work on W pair production [33, 34],
WHIZARD was used for numerically computing complete
tree-level four-fermion cross sections, in agreement with an-
alytic calculations. An exhaustive list of eTe™ six-fermion
cross sections in the SM has been carefully cross-checked
between WHIZARD and LUSIFER [35]. All calculated cross
sections were found to agree, taking into account differences
in the treatment of unstable particles that are well under-
stood. Six- and eight-fermion final states in top-quark pro-
cesses have been studied in Ref. [36].

The determination of the Higgs potential will be one of
the tasks for the next generation of colliders. In a compre-
hensive study of Higgs pair production at the LHC and the
ILC [37, 38], the analytic results for SM Higgs pair produc-
tion were numerically cross-checked with WHIZARD, and it
could be established that triple Higgs production in the SM
will remain below observability at either collider.

At SLAC, alarge database of SM multi-fermion events in
STDHEP format has been generated using WHIZARD [39],
intended for further experimental and phenomenological
ILC studies. A recent analysis of possible supersymmetry
measurements at the ILC [40] made use of this database
to demonstrate that SM backgrounds, calculated with com-
plete tree-level matrix elements, are indeed significantly
larger than predicted with the approximations of, e.g.,
PYTHIA.

In the following, we add to this list a collection of results
that apply specifically to LHC physics. All results have been
obtained using the latest revision of WHIZARD 2.

3.1.2 W +jets

The class of processes W + jets at the LHC is interesting by
itself, providing a measurement of partonic luminosity and
of W-boson properties, and it constitutes an important back-
ground for a plethora of new-physics processes. Here, the W
actually stands for its decay products £ + v, where £ may ei-
ther be an electron or a muon. In Table 1, we list results for
n=2,3,4,5 jets. We choose the e v, decay of the W~ for
concreteness, and set all fermion masses to zero. The nota-
tion is: g = gluon, ¢ = quark (d, u, s, ¢), g = antiquark, and
J =jet (gluon, quark, or antiquark).

We specify the following generic cuts for regulating in-
frared and collinear singularities (where j denotes a light
quark or gluon jet):

pr(j) > 20 GeV (1)
—25<n(j)<25)
AR(j,j)>0.7 3)

@ Springer

Table 1 Results for W + jets processes at the LHC. j =
g,d,u,s,c,d,u,s,c. All processes are computed with the complete
Standard Model in all intermediate states, CKM matrix set to unity

Subprocess Calls (adapt.) Calls (integ.) o [fb] Ao [%]
gg —> Wqq 5SM 5M 24,091 0.05

g8 —> Wqqg 5M 5M 9,142 0.07

g8 —> Wqqgg 75M 5M 2,363 0.3

g8 —> Wqqggg 20M 5M 524 1.2
Jjj—> Wj 5M 5M 936,230 0.03
Jjji—> Wjj 5M 5M 287,180 0.05
jj— Wjjj 7.5M 5M 79,540 0.08
jji—> Wjjjj 10M 5M 20,900 0.3

as well as the following experimental resolution cuts:

pr @) > 20 GeV 4)
—25<nl) <25 (5)
AR(j,t) > 04 (6)

All processes which involve more than one quark-antiquark
pair, initial and final state combined, contain additional pho-
tons, W or Z bosons in intermediate states. The non-QCD
contributions cannot be neglected: while photon exchange
is usually negligible compared to gluon exchange, W and
Z bosons can become resonant and effectively lower the or-
der of the process. On the other hand, processes with only
one quark-antiquark pair are pure QCD processes with the
insertion of one external W boson.

We use the following nonvanishing SM input parameters:

Gr=1.16639 x 107 GeV 2
mz =91.1882 GeV

my = 80.419 GeV

a; =0.1178

Iz =2.443 GeV

Ty =2.049 GeV

The value of «; is kept fixed (it would be possible to vary
it according to some scheme of scale determination). The
CKM matrix is set to unity.

The pp collider energy is fixed as /s = 14 TeV. We
choose the CTEQGL set for the proton structure functions.
The sum over partons is done in the process definition, not
by adding individual subprocesses explicitly.

The numbers in the tables have been obtained with CKM
matrix set to unity. Investing some more CPU time, CKM
mixing effects can be incorporated simply by switching the
model.

Eur. Phys. J. C (2011) 71:1742

Page 7 of 29

The cross-section results are obtained averaging the in-
tegration calls only; the preceding adaptation calls are for
preparing the VAMP integration grids. The quoted error is
the estimate for one standard deviation for the average. No
showering and no matching are applied here.

3.1.3 Top pairs

In this section we summarize results for processes that in-
clude top pair production (and Higgs) as intermediate states.
The lepton masses are set zero. We use

Gr =1.16639 x 107> GeV 2
my =91.1882 GeV
mwy = 80.419 GeV

mp =4.2 GeV
m; = 174.0 GeV
my = 120.0 GeV
g, =0.1178

Iz =2.443 GeV
Iy = 2.049 GeV
I =1.523 GeV

I'y =0.0036 GeV

and the cuts (1)—(6), which are applied in the same way to b
jets as for light quark jets. In the processes with more than
six final-state particles, we chose to break down the sum
over flavors into subprocesses: this eliminates a trivial re-
dundancy that originates from the sum over lepton flavors in
particular, which is not (yet) eliminated by WHIZARD.

Our results are summarized in Table 2.

3.2 Supersymmetry

Despite its conceptual beauty and simplicity, the mini-
mal supersymmetric extension of the SM, the MSSM,

Table 2 Results for rf-related processes at the LHC. j =
g,d,u,s,c, d,i,5,cand L =e, w, 7. All processes are computed with
the complete Standard Model in all intermediate states, CKM matrix
set to unity

Subprocess Calls (adapt.) Calls (integ.) o [fb] Ao [%]
jj— Y vvbb 10M 5M 27,845 0.04
jj— €T vvbbj 10M 5M 22,780 0.1
jj— €T vvbbjj 10M 5M 10,500 0.6
jj— €T vvbbbh 10M 5M 737 09

is a very complicated model with a large particle con-
tent and several thousand different vertices. Especially a
vast number of mixing matrices and possible complex
phases complicates any simple relations demanded by
the symmetries of the MSSM. A comprehensive collec-
tion of all the Feynman rules of the MSSM and their
derivation can be found in [41, 42] and have been imple-
mented in WHIZARD and O’Mega. The Feynman rules
containing Majorana vertices are implemented according to
[43, 44].

In [45], comprehensive tests have been performed to
verify that the implementation of the MSSM is correct.
This has been done with the help of gauge and super-
symmetry invariance checks (Ward and Slavnov-Taylor
identities as described in [46, 47]). To test all couplings
that can be of any relevance for future experiments in
particle physics phenomenology, a check of more than
500 different processes is necessary. This extensive list
of processes has been tested in [45] by direct compari-
son with two other public multi-particle event generators,
Sherpa [24] and MadGraph [9, 14, 15], showing accor-
dance of all three programs within the statistical Monte-
Carlo errors. This extensive comparison which serves as a
standard reference for testing supersymmetric processes can
be found at http://whizard.event-generator.org. As a sec-
ond test, this implementation has been successfully com-
pared with the MSSM derived via the FeynRules pack-
age [16].

With WHIZARD it was for the first time possible to per-
form simulations for SUSY processes with six final state
particles using full matrix elements. For the ILC, the im-
portance of off-shell effects was shown for the production
of e.g. sbottom pairs in [45]. When using cuts to enhance
the signal on top of the background, interferences of dif-
ferent production amplitudes (especially heavy Higgses and
neutralinos) with identical exclusive final states lead to de-
viations from the narrow-width approximation by an order
of magnitude. Similarly, sbottom production at the LHC
with subsequent decay to a b jet and the LSP has been
studied in [45]. There, also the contamination of the tag-
ging decay jets by initial state radiation has been exam-
ined, amounting to the quite complicated process pp —
)Z? f(?bl;bl; with more than 30,000 Feynman diagrams, sev-
eral thousand phase space channels and 22 color flows. It
was shown there, that off-shell effects are important for LHC
as well, and secondly, that there is a severe combinatorial
background from ISR jets.

Projects that are currently in progress deal with the ra-
diative production of neutralinos at the ILC [48], the mea-
surement of SUSY CP phases at the LHC [49], the deter-
mination of chargino and neutralino properties at the ILC
[50-52] as well as a complete cartography of the edge struc-
tures and spin measurements within the decay chains at the

@ Springer

http://whizard.event-generator.org

Page 8 of 29

Eur. Phys. J. C (2011) 71:1742

LHC [53, 54]. Further projects deal with the implementation
of extended GUT- or string-inspired supersymmetric models
within WHIZARD to study their phenomenology [57, 58].
WHIZARD was the first generator for arbitrary multi-
leg processes to contain an implementation of the next-to-
minimal supersymmetric SM, the NMSSM [55, 56]. This
implementation has been tested in the MSSM limit as well
as by a comparison with an FeynRules implementation.

3.3 Little Higgs

WHIZARD was the first multi-particle event generator in
which Little Higgs models have been implemented. The Lit-
tlest Higgs and Simplest Little Higgs models are contained
in the model library, including variants of these models like
e.g. different embeddings of the fermionic content. Several
studies for LHC and ILC as well as the photon collider
have been performed with WHIZARD [59-62], focusing es-
pecially on the lightest available states in these models, the
so-called pseudoaxions, 71, pseudoscalar states which are
electroweak singlets. The studies are concerned with pro-
duction in gluon fusion at the LHC and detection via rare
diphoton decays analogous to the light Higgs, to tfn asso-
ciated production at the ILC, and investigations important
for the model discrimination at the LHC and ILC using spe-
cial types of couplings. Ongoing projects deal with general
search strategies at LHC, with focus on the heavy gauge
bosons and the heavy fermionic partners of the quarks in
these models. A brief overview of applications of WHIZARD
in the context of Little Higgs models can also be found in
[63-68].

3.4 Strongly interacting weak bosons

If no new particles exist in the energy range of LHC and
ILC, and even the Higgs boson is absent, some scattering
amplitudes of electroweak vector bosons rise with energy
and saturate unitarity bounds in the TeV range. This behav-
ior should be detectable, both by the effects of new strong in-
teractions, possibly resonances, at the LHC, and by anoma-
lous couplings at lower energies at both colliders.

Improving on earlier studies [69, 70] where due to com-
putational restrictions, final-state W and Z bosons had to be
taken on-shell, using WHIZARD it became possible to ana-
lyze distributions using complete tree-level matrix elements,
vector-boson decays and all non-resonant background in-
cluded. This allowed for detailed estimates of the ILC sen-
sitivity to those couplings, taking into account all relevant
observables including angular correlations, without the re-
strictions of on-shell approximations [71-73]. Also using
WHIZARD for the simulation, an ongoing ATLAS study will
clarify this issue for the LHC [74, 75].

@ Springer

3.5 Exotica

WHIZARD has also been used to study top quark physics in
higgsless models of electroweak symmetry breaking [76].

Even the phenomenology of very exotic models can be
studied with WHIZARD, e.g. noncommutative extensions
of the SM [77-80]. Noncommutative field theories can ei-
ther be formulated as nonlocal field theories involving non-
polynomial vertices or as effective field theories with poly-
nomial vertex factors. In the first case, it is straightforward
to add the corresponding vertex functions to omegalib,
while in the latter case, care must be taken to consistently
count the order of effective vertices.

For a study of exotic models that do not draw enough
public attention to merit a complete supported implemen-
tation in O’ Mega, the easily readable output of O’ Mega,
allows an alternative approach. After generating the SM
amplitude with O’Mega in order to obtain a template
with all the required interfaces in place, the correspond-
ing Fortran module can be edited with a text editor, re-
placing the SM vertices by the corresponding vertices in
the model and adding diagrams, if required. The neces-
sary Fortran functions implementing exotic vertex fac-
tors can be added to the module, without having to mod-
ify omegalib, as discussed in Sect. 8.2 below. More de-
tails about how to add models in general as well as the in-
terface to the FeynRules package [16] can be found in
Sect. 8.1.

4 0’Mega: optimized matrix element generator

0'Mega [25-28] is the component of WHIZARD that con-
structs an optimized algebraic expression for a given scatter-
ing amplitude (or a set of scattering amplitudes) in a given
model. While it can also be used by itself as a command line
tool (e.g. for producing programs that plot differential cross
sections), it is called by WHIZARD automatically with the
correct arguments when a new process is added to an event
generator.

4.1 Requirements

For complicated processes, such as searches for new physics
at the LHC and a future ILC, the efficient perturbative com-
putation of scattering matrix elements has to rely on numer-
ical methods for helicity amplitudes, at least partially.

The time-honored trace techniques found in textbooks
can reasonably only be used up to 2 — 4 processes and be-
comes inefficient for more particles in the final state. There-
fore, in addition to allowing for polarized initial and final
states, the computation of helicity amplitudes is the method

Eur. Phys. J. C (2011) 71:1742 Page 9 of 29
Table 3 The number of ¢> Feynman diagrams F (n) and independent external particles
poles P(n)
n P(n) F(n) W(x; p1, p2,---s Pm)
4 3 3 :<P1»P27---vpn|¢(x)|Pn+17--~7pm)~ (7)
5 10 15 . . .-
6 25 105 In the case of gauge bosons, they satisfy Ward identities,
7 56 045 that ensure that gauge cancellations take place inside these
building blocks [25-27].
8 119 10395
10 501 2027025)
12 2035 654720075 42 Complexity
14 8177 316234143225
16 32751 213458046676875 The irreducible complexity of a given tree level scatter-

of choice for complex processes. While there are very effi-
cient methods for the analytical calculation of helicity am-
plitudes for massless particles, their extension to massive
particles can become cumbersome, while, in contrast, a di-
rect numerical evaluation results in the most efficient expres-
sions to be used in cross section calculations and event gen-
eration.

It must be stressed that efficiency in the numerical eval-
uation of scattering amplitudes is not just a matter of poten-
tial wasteful use of computing resources. Instead, since the
number of required CPU cycles varies over many orders of
magnitude (cf. Table 3), it can be the deciding factor whether
simulations are possible at all.

In addition, all realistic quantum field theoretical mod-
els of particle physics employ the gauge principle at some
point and are therefore subject to large numerical cancel-
lations among terms in perturbative expressions for scat-
tering amplitudes. Any implementation that fails to group
terms efficiently will suffer from large numerical uncer-
tainties due to numerically incomplete gauge cancella-
tions.

0’Mega implements an algorithm that collects all com-
mon subexpressions in the sum over Feynman diagrams
contributing to a given scattering amplitude at tree level.
Note that the common subexpression elimination (CSE) al-
gorithm in a general purpose compiler will not be able
to find all common subexpressions already in a moder-
ately sized scattering amplitude, due to the size of the
corresponding numerical expressions. It remains an open
question, whether amplitudes calculated with twistor-space
methods [81] could improve on the O’ Mega algorithm (for
a comparison that seems quite discouraging for twistor am-
plitudes, cf. [82]). While the former produce compact ana-
lytical expressions, substantial numerical complexity is hid-
den in the effective vertices. Furthermore, the extension to
massive particles is not straightforward [83].

The building blocks used in O’ Mega amplitudes corre-
spond to expectation values of fields in states of on-shell

ing amplitude is bounded from below by the number of its
poles in kinematical invariants. In the absence of conserved
charges, this number can be estimated by the number of in-
dependent internal momenta that can be built from the exter-
nal momenta. Taking into account momentum conservation,
it is easy to see that there are

n_

2 n—1
Pn) = —n=2""—-n-1 8)

independent internal momenta in a n-particle scattering am-
plitude. This number should be contrasted with the num-
ber of Feynman diagrams. For realistic models of particle
physics, no closed expressions can be derived, but in a one-
flavor ¢3-theory, there are exactly

F)=Cn—5"=Q2n—5)-n—=7)-...-3-1)

tree level Feynman diagrams contributing to a n-particle
scattering amplitude.

Obviously, F (n) grows much faster with n than P (n) (cf.
Table 3) and already for a 2 — 6 process, we find that the
number of poles is two orders of magnitude smaller than the
number of Feynman diagrams.

For realistic models with higher order vertices and selec-
tion rules at the vertices, empirical evidence suggests

P*(n) o 10™/? (10

while the factorial growth of the number of Feynman dia-
grams remains unchecked, of course.

While P(n) is a priori a lower bound on the complex-
ity, it turns out that this bound can approached in numeri-
cal [20, 23] and symbolic [25-28] implementations. Indeed,
the number of independent momenta in an amplitude is a
better measure for the complexity of the amplitude than the
number of Feynman diagrams, since there can be substan-
tial cancellations among the latter. Therefore it is possible to
express the scattering amplitude much more compactly than
by a sum over Feynman diagrams.

@ Springer

Page 10 of 29

Eur. Phys. J. C (2011) 71:1742

4.3 Relations to other algorithms

Some of the ideas that O’ Mega is based on can be traced
back to HELAS [10]. HELAS builds Feynman amplitudes
by recursively forming off-shell ‘wave functions’ (7) from
joining external lines with other external lines or off-shell
‘wave functions’ (7).

The program MadGraph [9] automatically generates
Feynman diagrams and writes a Fortran program cor-
responding to their sum. The amplitudes are calculated by
calls to HELAS. MadGraph uses one straightforward op-
timization: no statement is written more than once. Since
each statement corresponds to a collection of trees, this op-
timization is effective for a moderate number (say, four) of
particles in the final state. Since the amplitudes are given as
a sum of Feynman diagrams, this optimization does not re-
move the factorial growth of the computational complexity
with the number of external particles.

The symbolic algorithm of O’ Mega which is analogous
in structure to the numerical algorithms of ALPHA [20]
and HELAC [23], ensures, by design, that for any given
helicity amplitude no independent subexpression is evalu-
ated twice. It thus allows for the optimal asymptotic be-
havior. In practice, further optimizations are a matter of the
concrete implementation, programming language, and com-
piler.

4.4 Architecture

O’Mega does not follow the purely numerical approach of
[20, 23], but constructs a symbolic representation of an op-
timally factored scattering amplitude instead, that is later
translated to a programming language (Fortran) for com-
pilation into machine code by a corresponding compiler. The
symbolic approach brings three advantages:

1. In principle, the compilation to machine code allows a
faster execution speed than the numerical programs that
have to loop over large arrays. In practice this allows a
two- to four-fold increase in execution speed, depending
on the process and the model under consideration.

2. The intermediate Fortran code is human-readable (cf.
Appendix B) and can easily be edited in order to experi-
ment with the implementation of very exotic models, ra-
diative corrections or form factors (cf. Sect. 8.2).

3. More than one programming language for the numerical
evaluation can be supported.

For our applications, the second advantage is particularly
important.

Since it is an exclusively symbolic program, O ' Mega has
been implemented in the impure functional programming
language O’ Caml [32]. O’Mega makes extensive use of
the advanced module system of O’ Caml and is structured

@ Springer

in small modules implementing abstract data types with well
defined interfaces and strong type-checking.

The crucial feature of O’ Mega is that it internally rep-
resents the scattering matrix element not as a tree of alge-
braic expressions, but as a Directed Acyclical Graph (DAG),
where each subexpression appears only once, instead. In
principle, it would be possible to construct first the tree cor-
responding to the sum of Feynman diagrams and to trans-
form it subsequently to the equivalent minimal DAG by
an algorithm known as Common Subexpression Elimina-
tion (CSE) in optimizing compilers. However, the size of the
expressions resulting from the combinatorial growth with
the number of external particles makes this all but impos-
sible for practical purposes.

The basic algorithm of O’ Mega proceeds as follows:

1. In a first step, functions from the Topology module
construct the DAG corresponding to the sum over all
Feynman diagrams in unflavored ¢"-theory, where n is
the maximal degree of the vertices in the model un-
der consideration. The abstract DAG data type is im-
plemented by the DAG functor applied to a module de-
scribing the maximum degree of the vertices in the
Feynman rules of the model. It should be stressed that
the algorithms in O’Mega place no limit on n and
are therefore applicable to arbitrary effective theories
and can support skeleton expansions of radiative correc-
tions.

2. In a second step, all possible flavorings of the DAG are
derived from the Feynman rules of the model encoded
in a module implementing the Model signature. The al-
gorithm ensures the symmetry and antisymmetry of the
scattering amplitude for identical bosons and fermions.
In the case of Majorana fermions, the standard algorithm
for Feynman diagrams [43, 44] has been implemented
for DAGs as well [46]. Together with the numerical ex-
pression for each vertex and external state, this flavored
DAG is the minimal faithful representation of the scatter-
ing amplitude.

During this step, it is possible to select subampli-
tudes, e.g. by demanding that only contributions con-
taining a certain set of poles are included. While this
restriction to cascade decays can break gauge invari-
ance because it doesn’t select gauge invariant sub-
sets [84-86], it is nevertheless a useful feature for
testing the accuracy of commonly used approxima-
tions.

3. Finally, a module implementing the Target signature
is used to convert the internal representation of the DAG
(or of a set of DAGs) into code in a high level program-
ming language (currently only Fortran is fully sup-
ported), that will be compiled and linked with the rest of
WHIZARD.

Eur. Phys. J. C (2011) 71:1742

Page 11 of 29

This modular structure is supported by a library of purely
functional abstract data types that implement, among others,
combinatorial algorithms (Combinatorics), efficient op-
erations on tensor products (Products) and the projective
algebra of internal momenta subject to overall momentum
conservation (Momentum).

The implementation of models as an abstract data type
allows O’ Mega to apply functors to a model and derive re-
lated models. In fact, such a functor (Colorize) is used
internally to add color in the color-flow basis (cf. Sect. 6.1)
to models from the SUc(N) representations [28]. As an-
other example, it is also possible to automatically derive the
R:-gauge version of a spontaneously broken gauge theory
from the Feynman rules in unitarity gauge [87]. Parsers for
external model description files can also be implemented as
a special case of Model.

While it is in principle possible to treat color as any
other quantum number and to generate the amplitudes for
each possible color flow independently (a fact that was
used in version 1 of WHIZARD), it is much more efficient
and convenient to add color internally with the Colorize
functor and to generate the amplitudes for all color flows
at once [28]. While this approach uses exactly the same
algorithm as before, the added infrastructure for multiple
amplitudes allows for additional eliminations of common
subexpressions amongst amplitudes with different colors
and flavors in the external states. This new approach re-
sulted in an orders-of-magnitude speedup in the generation
of colored matrix elements from version 1 to version 2 of
WHIZARD.

5 The WHIZARD architecture

To promote a matrix-element generator such as O’ Mega to
a complete automated physics simulation program, it has
to be supplemented by a variety of program elements. We
have implemented all necessary parts in the program pack-
age WHIZARD. (This program name also stands for the event
generator as a whole, including the matrix-element generat-
ing part.)

First of all, WHIZARD provides code that accounts for
suitable phase-space parameterizations (phase-space chan-
nels), that selects among the multitude of possible chan-
nels, that integrates phase space with generic cuts in order to
compute inclusive quantities, and that samples phase space
in order to generate a sequence of exclusive (in particular,
unweighted) scattering events. Since the computing cost of
phase-space sampling, if done naively, can easily exceed the
computing cost of optimized matrix-element computation
by orders of magnitude, the algorithms must be able to keep
this cost down at a manageable level.

Furthermore, WHIZARD implements (or contains inter-
faces to) the physics models, to beam dynamics such as

parton structure, initial-state radiation, beamstrahlung, beam
polarization etc., to final-state showering and hadronization,
and to external event-file processing, detector simulation,
and analysis.

The top-level routines that combine these parts to a work-
ing event generator, depending on a user-provided script that
contains all necessary input, are also part of WHIZARD. Fi-
nally, WHIZARD contains a lightweight analysis module that
can plot distributions of various physical observables with-
out the need for external programs.

5.1 Core libraries

Viewed from the user perspective, WHIZARD behaves as a
monolithic program. In technical terms, it consists of a core
library, which in turn is broken down to modules (in the
Fortran sense), several additional libraries (some of them
third-party) which are linked at program startup, and one
or more process-code libraries that are typically generated
and dynamically linked at runtime. The library structure is
reflected in the directory structure of the WHI ZARD installa-
tion; each subpackage is located in a separate subdirectory
of the src subdirectory.

The WHIZARD program is configured and built using
autotools; in particular, the build process of the pro-
gram itself is managed by 1ibtool. Therefore, both stat-
ically and dynamically linked versions of the libraries and
the executable can be built, controlled by the options to
configure that the administrator specifies during instal-
lation. In addition, the SINDARIN language supports, at
runtime, the building of a statically linked executable that
includes specific process code and can be launched sepa-
rately.

In the following, we describe the individual libraries that
constitute WHIZARD. The Fortran part is organized into
modules. They roughly resemble C++ class implementa-
tions: typically, they define a public data type together with
the methods that operate on it. Among the methods are ini-
tializers and finalizers that are used to dynamically create
and destroy objects of the data type. Most data types are
opaque, so access to their internals is confined to the re-
spective module. Some modules contain several data types
that access each other’s internals, and some contain parame-
ter definitions, static data, or additional functions or subrou-
tines that are not classified as methods. Note that Fortran,
unlike C++, has no header files but enforces a module de-
pendency hierarchy, which is automatically cared for by the
Makefile setup.

5.1.1 libaux

The auxiliary library libaux contains basic modules
which are required by more than one library. They include

@ Springer

Page 12 of 29

Eur. Phys. J. C (2011) 71:1742

kinds (real and integer kinds, matching Fortran and C
definitions), iso_varying_string, the 1imits mod-
ule that exhibits all fixed parameters accessed by the core
library, modules that interface the operating system and im-
plement the paths and parameters set by configure, the
diagnostics module that centralizes error handling, and
basic physics modules which define constant and data types
and functions for three- and four-vectors and Lorentz trans-
formations, used throughout the program.

5.1.2 libwhizard core

The modules that make up the core library 1ibwhizard_
core are loosely organized as module groups:

— Auxiliary modules: OS interface, CPU timing, hashing,
sorting, and permutations, string formatting, and the MD5
algorithm. The latter is used for checking whether certain
data have to be recreated or can be reused.

— Text-handling modules: An internal-file implementation
based on ISO varying strings, a generic lexer, syntax ta-
ble handling, and a generic parser. Using these modules,
WHIZARD is able to take a syntax description and trans-
late textual input into an internal parse-tree representa-
tion.

— Tools for physics analysis: Histograms and such, the data
types for particle aliases and subevents, the implementa-
tion of variable lists, and the STINDARIN expression han-
dler. The latter implements methods to compile a parse
tree into an evaluation tree and to evaluate this compiled
version.

— The module that manages physics models: parameters,
particle data, and vertices as used for phase-space con-
struction.

— Quantum number definition and implementation: Helic-
ity, color, and flavor.

— Correlated quantum numbers: State (density) matrices, in-
teractions, and evaluators for matrix elements.

— Particle data types and objects, including event formats.

— Beam definition.

— Beam spectra and structure functions. This includes
beamstrahlung (CIRCE interface), ISR, EPA, and the
LHAPDF interface for parton structure functions.

— Phase space: Mappings of kinematics to the unit hyper-
cube, the phase-space tree structure, phase-space forests
that implement a multi-channel structure, and the cas-
cades module that constructs phase-space channels for
a given process.

— Process code interface: a module that handles process
libraries, the hard_interaction module that inter-
faces the matrix element, and the processes module
that combines the hard interaction with its environment
and interfaces the VAMP integration algorithm. Further-
more, there is a decays module that implements decay

@ Springer

chains, and the events module that collects processes
and decays and provides event I/O.

— The slha_interface module provides the reader for
SUSY parameter input files that follow the SUSY Les
Houches Accord format.

— A set of modules that implement the high-level methods
for runtime data, compilation, integration, and simulation.

— The commands module compiles and executes the com-
mand part of the SINDARIN language.

— The whizard module implements the global initial-
izer and finalizer and various methods for accessing
WHIZARD.

— The main program realizes WHIZARD as a stand-alone
program, including the interpreter for command-line op-
tions.

5.1.3 libvamp

The VAMP integration library is self-contained, while it
smoothly integrates into the WHIZARD setup. It contains
no reference to the specific physics of a Monte-Carlo gen-
erator for scattering processes (for instance, it has no no-
tion of four-vectors), but rather implements a multi-channel
version of the well-known VEGAS algorithm that can be
used for integrating arbitrary functions of real variables
over the multi-dimensional hypercube. In addition to the
Monte-Carlo integration mode, it also provides an event-
generation mode with simple rejection to generate un-
weighted events.

VAMP is a stand-alone package with its own config-
ure and make process. In the context of WHIZARD, these
tasks are accounted for by the main configure and
make, and the library is automatically built and linked into
WHIZARD.

5.1.4 libomega and 1ibmodels

Similar to VAMP, the O'Mega package is self-contained.
In the WHIZARD context, the O’ Mega build process is au-
tomatically triggered by the main configure and make
process.

The matrix-element generator O’ Mega is not linked to
the WHIZARD executable. Instead, it exists as a stand-alone
program in the library area of the WHIZARD installation
(more precisely, there is a separate program for each model
supported by O’ Mega), and WHIZARD calls this program
via the operating system when it is needed. WHIZARD also
arranges for the resulting code being compiled, organized
into process libraries with their interface code, and dynami-
cally linked at runtime.

To enable dynamic linking in a portable way, the matrix-
element interface is strictly C interoperable. This has the
side effect that, by manual intervention, matrix element code

Eur. Phys. J. C (2011) 71:1742

Page 13 of 29

written in C or some other C-compatible language can re-
place the automatically generated code, as long as the inter-
face is implemented completely.

For the matrix-element code to be executable, WHIZARD
must also link the O’Mega runtime library 1ibomega.
This library, which is written in For t ran, contains the data
type definitions used in the matrix element code: vectors,
spinors, matrices.

The current O’ Mega version requires an additional li-
brary 1ibmodels which deals with the plethora of model-
specific parameters that occur in the various BSM scenarios.
The corresponding source code is located in src/models.

5.1.5 libcircel and 1ibcirce2

The CIRCEI] library implements convenient parameteri-
zations that describe beamstrahlung, i.e., the macroscopic
emission of photons from colliding e*¢~ beams. Obviously,
it is useful only for this specific collider setup, and the pa-
rameterizations have been obtained for a finite set of collider
parameters only. Therefore, one of these parameter sets (col-
lider type and energy) must be specified as-is when CIRCE1
is to be used.

CIRCE] and CIRCE?2 are both written in FORTRAN77
which is completely compatible with the current Fortran
standard, thus they are directly interfaced by WHIZARD. The
CIRCE2 library is actually an implementation which de-
scribes ey and yy collisions.

5.2 Optional (third-party) libraries

Not all tasks necessary for event generation are handled na-
tively by WHIZARD and its components VAMP and O’ Mega.
For some tasks, WHIZARD merely acts as a broker for li-
braries that exist independently and may or may not be
present in the installation.

5.2.1 LHAPDF

WHIZARD provides its own set of standard parton distri-
bution functions. If other parton distribution functions are
needed, they can be accessed via the LHAPDF library. In that
case, the LHAPDF library must be installed on the system, it
is not part of the WHIZARD installation. The src/lhapdf
subdirectory merely provides a non-functional replacement
library that is linked when LHAPDF is not available.

All structure functions known to LHAPDF (and in-
stalled as data files) are available to WHIZARD. Further-
more, WHIZARD can access the « function of the LHAPDF
package, so an exact match between the structure function
and the hard process is possible. Note that WHIZARD is a
leading-order program, therefore the NLO structure func-
tions provided by LHAPDF have limited applicability.

5.2.2 STDHEP

WHIZARD supports the STDHEP binary event-file format
for output, if the STDHEP library is linked. Analogous to
LHAPDF, this must be installed separately on the system.
The src/stdhep subdirectory contains a non-functional
replacement if the library is not available.

5.2.3 HepMC

HepMC is a C++ class library intended for storing, re-
trieving, manipulating, and analyzing high-energy physics
events. WHIZARD makes use of this library for reading and
writing event files in a machine-independent ASCII format.
To make this possible, it contains a portable C++ wrap-
per for HepMC, since the class library itself does not pro-
vide a portable interface at the operating-system level. The
wrapper library accesses the C++ objects via pointers and
matches each method by a corresponding extern "C"
function.

WHIZARD accesses the HepMC (wrapper) by correspond-
ing type (c_ptr) objects and methods on the Fortran
side, so it employs an object-oriented portable Fortran
API for all functionality that it needs. In particular, the
ASCII event files are not read or written directly, but only
by creating HepMC event objects and calling the appropriate
I/0O methods.

HepMC is an external library, and its features are acces-
sible only if HepMC is properly installed on the system. If
not, a non-functional dummy library is substituted.

We have chosen HepMC as a default machine-independent
format since it allows to store essentially all information that
is present in WHIZARD events, once quantum-number corre-
lations are eliminated. In particular, HepMC supports color,
and it provides containers for event weights. There is a lim-
itation, however: currently, the dedicated HepMC support
for polarization is insufficient for generic particles, there-
fore polarization is not fully supported by this event for-
mat. (In principle, it would be possible to abuse the HepMC
weight containers for storing polarization information and
correlated quantum numbers, but this is cumbersome and
non-standard.)

As an alternative, the LHEF (Les Houches Event Format)
is supported, currently for output only. This ASCII format
is a standard for communicating with parton-shower pro-
grams, otherwise it has more limitations than HepMC.

For internal use, WHIZARD writes and reads event data
in a binary format, using unformatted Fortran I/O. This
format contains the complete event information in a compact
form, but it is portable only between machines with similar
architecture and, presumably, the same Fortran compiler.

@ Springer

Page 14 of 29

Eur. Phys. J. C (2011) 71:1742

5.3 Further components of the package
5.3.1 gamelan

For graphical visualization, WHIZARD employs the META-
POST program which is part of the TgX family. The pro-
gram takes a graph description and translates it into native
PostScript code. Being integrated in the TgX system, it
has the full power of TgX (and I&TEX) at hand for typesetting
labels and other textual parts of a graph.

A shortcoming of METAPOST is the lack of native sup-
port for floating-point numbers. As a workaround, the orig-
inal METAPOST system contains the graph .mp package
that emulates floating-point numbers for data plotting. The
macro package gamelan builds upon and greatly expands
graph.mp, aimed at flexible and convenient visualization
of two-dimensional data, as it is abundant in high-energy
physics.

The complete game lan system resides in a subdirectory
src/gamelan. In the context of WHIZARD, the program
is called upon request to transform histogram and other tab-
ulated data from files into PostScript plots. Only a few
features of gamelan are actually accessible by the user in-
terface in SINDARIN code, just sufficient to provide default
parameters and drawing modes. However, it is always pos-
sible to modify and improve the generated plots by manu-
ally editing the automatically generated files. These are ac-
tually IATEX files (extension . tex) with embedded game-
lan code.

5.3.2 FeynMF

The FeynMF package is similar, but not identical, to game -
lan. It implements Feynman-graph drawing and also gen-
erates PostScript files. The package is independent
of WHIZARD and included for convenience. WHIZARD
uses it to visualize the tree structure of phase-space chan-
nels.

6 Algorithms
6.1 QCD and color

While, in principle, the helicity state of a particle can be
experimentally resolved, the color state of a parton is unob-
servable. Nevertheless, models for showering and hadroniz-
ing colored partons require that the program keeps track
of color connections among final-state and, in the case
of hadronic collisions, initial-state particles. This implies
that much of the efficient color-algebra calculation methods
commonly used for the analytical calculation of QCD am-
plitudes are not transferable to exclusive event generation,

@ Springer

since the color connection information needed for parton-
shower models is lost.

This fact is well known, and color connections are sup-
ported by Monte-Carlo generators such as PYTHIA and
HERWIG. Since these programs, in most cases, construct
amplitudes by combining 2 — 2 scattering processes with
decay and showering cascades, keeping track of color is es-
sentially straightforward. The problem becomes much more
involved if many partons take part in the initial scattering, as
it is the case for typical WHIZARD applications.

A possible implementation of color, realized in Mad-
Graph, makes color connections explicit: The amplitude is
distributed among the possible color diagrams, which can
be either squared including interferences (for the matrix el-
ement squared), or dropping interferences (for the parton
shower model).

A purely numerical approach could also treat color as a
random variable which is sampled for each event separately,
or summed over explicitly. However, the individual colors
of partons (e.g., “red”, “green”, “blue”) are not directly re-
lated to the color connections used in parton shower and
hadronization models, therefore this approach is not use-
ful without modification. Sampling color connections as a
whole would be possible; summing over them for each event
leads back to the MadGraph algorithm.

The WHIZARD and O’Mega treatment of color takes a
different road. It relies on the observation that the SU (3) al-
gebra of QCD is formally equivalent to a U (3) = SU (3) x
U (1) algebra with a U (1) factor subtracted [88]. In terms
of Feynman graphs, in unitarity gauge, each SU(3) gluon is
replaced by a U(3) gluon and a U (1)’ ghost-gluon (gluon
propagator with negative residue). The U (1)’ gluon does
not couple to three- and four-gluon vertices, so we have
to include ghost diagrams just for gluon exchange between
quarks. Ghost gluons are also kept as external particles,
again with a minus sign, where they cancel the contribu-
tions of external U (1) gluons. (Note that these ghosts are not
to be confused with the Fadeev—Popov ghosts in a generic
gauge.)

This idea leads to a very simple algorithm with the advan-
tage that the color algebra becomes trivial, i.e., all color fac-
tors are powers of 3. Color connections are derived by sim-
ply dropping the ghost diagrams. Nevertheless, the squared
matrix element computed by adding gluon and ghost dia-
grams exactly coincides with the matrix element computed
in the SU (3) theory.

6.2 Phase space and performance

For computing inclusive observables like a total cross sec-
tion, the exclusive matrix element (squared) returned by,
e.g., 0’Mega, has to be integrated over all final-state
momenta. If the initial beams have nontrivial structure,

Eur. Phys. J. C (2011) 71:1742

Page 15 of 29

there are also integrations over the initial-parton distribu-
tions.

The integration dimension for typical problems (e.g.,
2 — 6 scattering) exceeds 10, sometimes 20. Only Monte-
Carlo techniques are able to reliably compute such high-
dimensional integrals. This has the advantage that the algo-
rithm can be used not just for integration, but also for sim-
ulation: a physical sequence of scattering or decay events
also follows a probabilistic law. It has the disadvantage that
the integration error scales with c/\/ﬁ , where ¢ is a con-
stant, and N the number of events. Since N is practically
limited even for the fastest computers (a factor 10 improve-
ment requires a factor 100 in CPU time), all efforts go into
minimizing c.

For a uniform generation of physical events, in theory one
should take a mapping of phase space that, via its Jacobian,
transforms the kinematic dependence of the actual matrix el-
ement with its sharp peaks and edges into a constant defined
on a hypercube. Such a mapping would also make integra-
tion trivial. Needless to say, it is known only for very special
cases.

One such case is a scattering process defined by a single
Feynman diagram of s-channel type, i.e., the initial partons
fuse into a virtual particle which then subsequently decays.
Here, phase space can be factorized along the matrix ele-
ment structure in angles and invariant-mass variables, such
that up to polynomial angular dependence, each integration
depends on only one variable. For this case, we need map-
ping functions that transform a power law (massless propa-
gator) or a Lorentzian (massive propagator) into a constant.
Mapping polynomials is not that important; the angular de-
pendence is usually not analyzed in detail and taken care of
by rejection methods. The other two mappings provide the
basis for constructing phase space channels in many algo-
rithms, including the one of WHIZARD.

This simple construction fails in the case of f-channel
graphs, where massless or massive particles are exchanged
between the two initial particles. The overall energy con-
straint does not correspond to a line in the Feynman graph.
However, the dependence of the exchanged propagator on
the cosine of the scattering angle is still a simple function.
Therefore, for finding a suitable parameterization, we flip
the 7-channel graph into a corresponding s-channel graph,
where the z-axis of integration is aligned to one of the ini-
tial partons, so this polar angle becomes an integration vari-
able.

Multiple exchange is treated by repeated application of
this procedure. Flipping graphs is not unique, but for any
choice it reduces t-channel graphs to s-channel graphs
which typically also exist in the complete matrix element.

The main difficulty of phase-space sampling lies in the
simultaneous presence of many, sometimes thousands, of
such graphs in the complete matrix element. Neglecting

interferences, one can attempt a multi-channel integration
where each parameterization is associated with a weight
which is iteratively adapted until it corresponds to the ac-
tual weight of a squared graph in the integral. Since there
are as many phase space channels as there are Feynman
graphs, without further optimization the computing cost
of phase space scales with the number of graphs, how-
ever.

Since the O’Mega algorithm results in a computing
cost scaling better than the number of graphs, computing
WHIZARD phase space should also scale better, if possible.
To our knowledge, for phase-space integration there is no
analog of the O’ Mega algorithm that accounts for interfer-
ence. Hence, WHIZARD uses heuristics to keep just the most
important phase space channels and to drop those that would
not improve the accuracy of integration. To this end, it con-
structs Feynman graphs for the process, keeping track of the
number of resonances or massless branchings, and dropping
terms that fail to meet certain criteria. The remaining num-
ber of phase space channels (which might come out between
a few and several thousand) is then used as the basis for
the VAMP algorithm which further improves the mappings
(see below). After each VAMP iteration, the contributions
of all channels are analyzed, and unimportant channels are
dropped.

While this is not a completely deterministic procedure,
with slight improvements and tunings it has turned out to
be stable and to cover all practical applications. By con-
struction, it performs well for “signal-like” processes where
multiply-resonant Feynman graphs give the dominant con-
tribution to the matrix element, and subdominant graphs
are suppressed. In contrast to the PYTHIA approach which
considers only the resonant graphs in the matrix element,
WHIZARD does include all Feynman graphs in the matrix el-
ements and returns the complete result. Only the method of
integration takes advantage of the fact that dominant graphs
dominate phase space.

“Background-like” processes like multiple QCD parton
production without resonances, at first glance, appear to be
not covered so well since the number of dominant graphs
is not restricted and becomes large very quickly. This case
has not been tested to the extreme with WHIZARD, al-
though for 2 — 6 QCD processes it still gives stable re-
sults. However, fixed-order perturbation theory is not viable
for a large number of partons (unless cuts are very strict,
such that the cross section itself becomes unobservable), and
parton-shower methods are suited better. With the caveat
that proper matching of matrix element and parton shower
is not yet implemented for the CKKW(-L) algorithm (while
MLM matching exists as a separate module), we can con-
clude that the WHIZARD phase-space algorithm covers all
cases where the fixed-order matrix element approximation
is valid.

@ Springer

Page 16 of 29

Eur. Phys. J. C (2011) 71:1742

For a Monte-Carlo cross section result, the decisive per-
formance criterion is the value of ¢ in Ao /o = c/+/N. Af-
ter adaptation, in typical applications such as electroweak
2 — 6 processes, a WHIZARD run typically returns a num-
ber of order 1, so with 10° events a relative error in the per-
mil range can be expected. In simple cases the accuracy can
become much better, while the performance will be worse if
phase space is not that well behaved, such as in pure QCD
processes.

Another important criterion for a Monte-Carlo algorithm
is its ability to identify the maximum weight of all events,
and the fraction of this maximum that an average event
gives. This determines the reweighting efficiency for gen-
erating unweighted event samples, and if many events are
required, the overall computing cost drastically depends on
this efficiency.

WHIZARD keeps track of the reweighting efficiency. With
WHIZARD’s selection of phase space channels and VAMP’s
adaptive sampling, in applications with multiple partons and
t-channel graphs it typically ends up in the per-mil- to per-
cent range, while in favorable cases (multiply resonant, i.e.,
signal-like), efficiencies of order 10% are common. Given
the fact that for a meaningful cross section result, the num-
ber of events in the integration step is often a factor 100
higher than the number of unweighted events needed in the
subsequent simulation, with efficiencies in this range the
computing cost of adaptation, integration, and event genera-
tion averages out.

6.3 Multi-channel adaptive sampling: VAMP

For multi-dimensional integration, WHIZARD makes use
of the VAMP integration package [12]. The VAMP algo-
rithm is an extension of the VEGAS algorithm [89]. The
VEGAS algorithm introduces a multi-dimensional rectan-
gular grid in the integration region. For each iteration, a
given number of events (e.g., 10°) is distributed among
the cells, either on a completely random basis (importance
sampling) or evenly distributed among the grid cells, but
randomly within each cell (stratified sampling). For strati-
fied sampling, usually the number of cells of the original
grid (e.g., 2019) is too large for filling each of them with
events, so an auxiliary super-grid with less cells is super-
imposed for this purpose (pseudo-stratification), and within
each super-cell, the events randomly end up in the original
cells.

After each integration pass, the sum of integrand values,
properly normalized, yields an estimator for the integral, and
the binning of each dimension is adapted to the shape of the
integrand. For importance sampling, the adaptation criterion
is the integral within each bin, while for stratified sampling,
the bins are adapted to the variance within each bin. In prac-
tice, for high-dimensional Feynman integrals both impor-

@ Springer

tance sampling and stratified sampling give results of similar
quality.

The VAMP algorithm [12] combines this method with
the technique of multi-channel sampling [11]. All se-
lected phase-space parameterizations, properly mapped to
the unit hypercube, are sampled at once, each one with
its own VEGAS grid. The estimator of the integral is
given by the weighted sum of the individual estimators,
where the weights o; are initially equal (with Y o; =
1), but are also adapted after each iteration, according
to the channel-specific variance computed for this itera-
tion.

The VEGAS algorithm has the effect that peaks in the in-
tegrand, during the adaptation process, become flattened out
because after adaptation more events are sampled in the peak
region than elsewhere. This works only for peaks that are
aligned to the coordinate axes. Using VAMP, one tries to ar-
range the parameterizations (channels) such that each peak
is aligned to axes in at least one channel. Since the integrand
in any channel is corrected by the Jacobian of the trans-
formation to the other channels (see Ref. [12] for details),
in effect peaks are removed from all channels where they
are not aligned, and flattened out in those channels where
they are. As a result, after adaptation, within each channel
the effective integrand is well-behaved, and both the inte-
gration error and the reweighting efficiency are significantly
improved.

This adaptation proceeds on a statistical basis, and for
reasonable numbers of events and iterations it is a priori not
guaranteed that an optimum is reached. In particular, fluc-
tuations become overwhelming when the number of chan-
nels, i.e., degrees of freedom, becomes too large. However,
with the selection of phase-space parameterizations done
by WHIZARD, the algorithm has proved sufficiently robust,
such that it is universally applicable to the physics processes
that WHIZARD has to cover.

6.4 Interactions and evaluators

The possible states of a quantum system can be described by
a generic density matrix, which is differential in all quan-
tum numbers of the objects it involves. In a specific ba-
sis, the density matrix normally incorporates both diagonal
and non-diagonal elements. The latter are usually referred
to as quantum correlations or entanglement. If a system is
composed of multiple elementary objects, its density ma-
trix may or may not factorize into a product of individual
density matrices. If it is diagonal but non-factorizable, the
state is classically correlated. If it factorizes, it is uncorre-
lated.

6.4.1 State matrices

Physical events, described as particles after interacting with
a detector, are uncorrelated by definition. However, at in-

Eur. Phys. J. C (2011) 71:1742

Page 17 of 29

termediate stages of a high-energy physics calculation, cor-
related states have to be described. This is reflected by the
internal representation in the WHIZARD code.

The representation makes use of the fact that, if a state
is generated by a Monte-Carlo integration algorithm it has
a well-defined momentum for all of its particles. In other
words, the kinematical variables can be treated as classical
and uncorrelated.

The quantum numbers for which correlations have to be
implemented are flavor, color, and helicity. A quantum state
is therefore represented in WHIZARD by astate_matrix
object, which is a list of allowed quantum-number combina-
tions for a system of n particles together with their associ-
ated amplitudes, complex numbers. (The internal represen-
tation is actually a tree.) The same representation, with an
adequate interpretation of the entries, is used for describing
squared amplitudes or interference terms.

Flavor correlations can be treated as classical for the pur-
poses of Monte-Carlo simulation. Thus, a state matrix has
one flavor entry per particle (which may be undefined fla-
vor).

As explained above (Sect. 6.1), WHIZARD treats color in
the color-flow basis. Therefore, a particle does not have a
definite color state, but it is part of zero or more color lines.
The color quantum numbers of a particle are the color line
indices in which it participates. An amplitude is always di-
agonal in color, if defined this way. If we support only col-
orless particles (which include U (1) ghost gluons), quarks,
antiquarks, and gluons, there are at most two color indices
per particle. Once an amplitude is squared, color is either
summed over, including interferences, or projected onto def-
inite color. Therefore, squared amplitudes can use the same
representation as amplitudes.

For helicity, we have to select a specific basis. The choice
made for O’ Mega and WHIZARD calculations is detailed in
Appendix A. O’ Mega and WHIZARD deal with helicity am-
plitudes, therefore an amplitude is diagonal (but correlated)
in helicity. In squared amplitudes—spin density matrices—
quantum entanglement must be supported, so each particle
has two helicity entries (bra and ket).

6.4.2 Interactions

An interaction object is an extension of the state-matrix ob-
ject. In addition to the state matrix for n particles, it contains
a list of n corresponding momenta. As stated above, the lat-
ter are well-defined, so the amplitude array is still associated
to the intrinsic quantum numbers.

The interaction data type separates its particles
into incoming, virtual, and outgoing particles, and it estab-
lishes a parent-child relation between them. Furthermore,
for each particle, it may contain a reference to a correspond-
ing “source” particle in another interaction, implemented as
a Fortran pointer.

Hence, the interaction data type enables the pro-
gram to represent a physical event or process, broken down
into proper subprocesses, in a completely generic way, in-
cluding full quantum correlations. In practice, a typical
event consists of the beam interaction which has the collid-
ing particles outgoing, interactions representing structure-
function applications including radiation, the hard interac-
tion, decays of the final state particles, and possibly more.
These are represented as interaction objects with ap-
propriate pointers linking them together.

When events are ready for writing them to file, simulat-
ing actual events in an experiment, entanglement and cor-
relations must be resolved. WHIZARD provides methods for
factorizing the correlated state into one-particle states in dif-
ferent modes: averaging-out helicity, projecting onto definite
helicity for each particle, or keeping a one-particle spin den-
sity matrix for each particle. (The latter method is currently
unsupported by the standard event output formats, but avail-
able internally.)

6.4.3 Evaluators

When a physical event is constructed, the amplitude entries
in the component interactions must be squared and multi-
plied in a particular way. For instance, for the squared matrix
element proper—the sampling function for the Monte-Carlo
integration—the hard interaction must be squared, convo-
luted with beam structure functions, and summed or aver-
aged over intrinsic quantum numbers.

This procedure is guided by the quantum number assign-
ments and relations between the various interactions. Since
the quantum numbers are static, identical for all events of a
specific type, but kinematics and the numeric amplitude en-
tries vary from event to event, it is advantageous to do the
bookkeeping only once.

The evaluator data type is an extension of the in-
teraction type. In addition to the quantum numbers and
momenta representing an interaction, it holds a multipli-
cation table together with suitable pointers to one (squar-
ing) or two (multiplication/convolution) source interactions.
When an event is evaluated, the individual interactions are
first filled by momenta and amplitude values, then the corre-
sponding evaluators are activated by processing their multi-
plication tables. The result is a final evaluator that holds the
complete event as an interaction together with the entries of
the final density matrix, suitably averaged or summed over
quantum numbers.

A WHIZARD process implements three distinct objects
as final evaluators: one for the squared amplitude summed
over everything, used for integration, and two additional
evaluators used for simulation: one differential in helicities
(as far as necessary), summed over color including inter-
ferences, suitable for applying decays, and one differential
in helicities and colors, suitable for tracking color informa-
tion.

@ Springer

Page 18 of 29

Eur. Phys. J. C (2011) 71:1742

6.5 Event generation

With WHIZARD, simulated events can be generated after
several adaptive iterations have resulted in reasonably sta-
ble VAMP integration grids, and a number of final itera-
tions have yielded a reliable estimate for the total cross sec-
tion. The VAMP grids are then fixed, and an arbitrary num-
ber of further events is generated. For each event, a first
random number selects one of the possible channels, tak-
ing its relative weight into account, and within this chan-
nel a point is selected by importance sampling, taking the
adapted binning into account. The event is kept or rejected
according to the ratio of the integrand at this point com-
pared with the channel-specific maximum weight. This re-
sults in a sequence of events that simulate an actual experi-
ment.

Alternatively, for plotting distributions with greater accu-
racy, the weighted events can be recorded as-is.

Since the estimate for the maximum weight can only
be determined by statistical sampling, the reweighting—
like any other statistical method—cannot exclude that the
integrand value for a particular event exceeds this maxi-
mum estimate. This could be taken into account by again
reweighting the whole sample according to the new maxi-
mum estimate. However, since WHIZARD is set up to put
out unweighted events directly, we have chosen to merely
record these excess events and to compute, at the end, the
value of the error introduced by this excess. It turns out
that in practice, this error is sufficiently below the over-
all integration error and can be ignored—if desired, it is
possible to plot distributions of excess events and check
for critical regions where the adaptation process could have
failed.

6.6 Decays

WHIZARD 2 supports (cascade) particle decays in all sim-
ulated event samples. To enable this, both the production
process and the required decay processes have to be de-
clared, compiled, and integrated over phase space, so VAMP
grids are available for event generation. Any massive par-
ticle species can be declared as unstable, specifying its al-
lowed decay channels. During simulation, WHIZARD will
scan over those particles and generate decay events for them
iteratively, until a set of stable particles is reached.

Technically, this involves cloning the process objects for
the decay processes and concatenating their evaluators event
by event. If more than one decay channel is possible, the ac-
tual decay chain is selected on the basis of random-number
generator calls, distributed proportional to the respective
partial decay widths.

The use of evaluator objects for cascade decays en-
sures that all color and spin correlations are kept. The pro-
gram always computes color-summed and color-projected

@ Springer

matrix elements separately. The color-summed matrix ele-
ment, which is exact (at tree level), determines the decay
angle distribution of the final state particles. Internal helici-
ties are summed over only after convoluting the matrix ele-
ments, and final helicities can be kept if desired. The color-
projected matrix element is then used to determine the color
flow in the 1/N, approximation, based on the relative prob-
abilities of all flows allowed for the particular decay chain
with the selected kinematics.

In the integration step, and in the simulation of stable-
particle events, initial and final state are completely specified
(up to a possible summation over equivalent massless parti-
cles), so this mode generates exclusive final states. When
decays are enabled, all final states accessible by the decay
chain can be produced; this corresponds to a more inclusive
treatment of particle production. If the final state is identi-
cal, the comparison of the exclusive calculation with com-
plete matrix elements and the factorized decay-chain calcu-
lation reveals the effects of off-shell intermediate states and
irreducible background diagrams. Note that complete ma-
trix elements and on-shell factorization both respect gauge
invariance, while restricting an exclusive matrix element to
specific (off-shell) intermediate states or Feynman graphs,
also supported by WHIZARD, may lead to gauge-dependent
results.

For illustrating the effects of spin correlations, the un-
stable declaration allows, for each unstable particle sep-
arately, to request either full spin correlations in its decay,
classical correlations only (diagonal density matrix), or no
correlations, i.e., isotropic decay.

6.7 Interfaces

So far, we have described WHIZARD as an event generator
that is able, for fixed collider energy, to compute the partonic
cross section for a scattering process, or a partial width for a
decay process, and to generate simulated partonic events for
this process. Actually, while the adaptation and integration
proceeds separately for each process selected by the user, in
the event generation step an arbitrary number of processes
can be mixed.

For a complete physics simulation, this is not sufficient.
First of all, in realistic colliders the partonic c.m. energy
is not fixed. At hadron colliders, this energy is distributed
according to parton distribution functions (PDFs). At lep-
ton colliders, it is distributed according to the beam energy
spectrum, affected mostly by beamstrahlung. Furthermore,
initial-state radiation (ISR) reduces the available partonic
energy. To account for this, WHIZARD is able to include the
partonic energy spectrum in the integration. Each spectrum
or radiation effect introduces an extra energy variable and
thus increases the integration dimension by one. Since sev-
eral effects may have to be convoluted (e.g., beamstrahlung

Eur. Phys. J. C (2011) 71:1742

Page 19 of 29

+ ISR), the number of extra integrations may be larger than
two.

For computing these effects, WHIZARD makes use of ex-
ternal programs and libraries. While electromagnetic ISR
is accounted for internally, for beamstrahlung and photon-
collider spectra there are two options: the CIRCE1/CIRCE2
[90, 91] packages are now also contained in the WHIZARD
bundle. To account for generic eTe™ energy spectra,
WHIZARD can read events from GuineaPig [92] output.
PDFs are taken from the standard LHAPDF [93, 94] library.

Parton-shower, i.e., QCD radiation is not yet accounted
for internally by WHIZARD. However, WHIZARD respects
the Les Houches Accord [95] and therefore can interface to
parton-shower Monte-Carlo programs. To this end, events
should be written to file in LHEF format. The events can
then be treated by shower generators such as PYTHIA.
This allows not just for showering partons (assuming that
double-counting is excluded, i.e., the hard WHIZARD pro-
cess does not include parton radiation), but also for inter-
facing hadronization, underlying events, etc. On the other
hand, the infrastructure for an own parton shower generator
is already included.

7 User interface
7.1 Installation and prerequisites

The WHIZARD package is available as a . tar.gz file* via
the HepForge page::

http://www.hepforge.org/downloads/whizard

This includes several auxiliary packages (O’Mega ma-
trix element generator, VAMP integration, CIRCE beam-
strahlung, etc.). Two compilers are needed: (i) a For-
tran 2003 compiler, alternatively a Fortran 95 com-
piler with support for selected Fortran 2003 features for
WHIZARD; (ii) the 0’ Caml compiler® [32] for 0’ Mega.

For hadron-collider applications, the LHAPDF parton-
distribution function library should be available on the sys-
tem when WHIZARD is configured. The same holds for
HepMC or STDHEP (event-file formats), if these features are
needed.

WHIZARD and its subpackages are set up following
autotools conventions. The package is configured by
configure and built and installed by make commands.

4The package is designed for UNIX systems, LINUX and MacOS in
particular. Other operating systems may also be supported in the future.

SConsult the WHIZARD website or contact the authors for the current
support status of Fortran compilers.

60’ Cam1 is part of most standard LINUX distributions; otherwise it
is available free of charge from http://caml.inria.fr/ocaml/.

The default installation path is /usr/local, but dif-
ferent installation locations can be selected by the usual
configure options. The installation process results in a
single executable whizard which is located, by default,
in /usr/local/bin. Auxiliary files will be installed
in /usr/local/lib/whizard and /usr/local/
share/whizard. Alternatively, non-default installation
paths can be selected by standard configure options such
as --prefix.

7.2 SINDARIN

The WHIZARD executable program takes its input from a
script, which can either be executed interactively, or read
from a file.” The script is written in a domain-specific lan-
guage called SINDARIN.® All input needed for the Monte-
Carlo run—choice of model, processes, beams, parameters,
cuts, etc.—is specified within a SINDARIN script.

SINDARIN is a complete programming language, de-
signed to suit the needs of Monte-Carlo integration and sim-
ulation. On the top level, a SINDARIN script consists of
commands that steer the execution of the Monte-Carlo. Ex-
amples are: integrate, simulate. The commands take
arguments, for instance

integrate (prc_tt)

where prc_tt is an identifier for the (partonic) process to
integrate, and possibly optional arguments:

integrate (prc_tt) { iterations = 5:10000 }

Some commands take the form of assignments, in particular
the command that defines a process and declares its identi-
fier

process prc_tt = g, g =>t, tbar

or a beam declaration command
beams = p, p =>lhapdf

which, in the example, also declares that LHAPDF parton
distribution functions are to be used.

SINDARIN supports variables, both predefined variables
(such as particle masses) and user-defined variables. Vari-
ables are typed. The available types are logical, integer,
real, complex, string, particle alias (e.g., ¢ = u:d) and
subevent. Variables, constants, operators and functions op-
erating on them build expressions. There are the usual arith-
metic and string expressions. Furthermore, STINDARIN sup-
ports expressions that involve particle aliases and subevents.

7A C-compatible API that allows for treating WHI ZARD as an external
library is planned for a future revision.

8Scripting INtegration, Data Analysis, Results display, and INterfaces.

@ Springer

http://www.hepforge.org/downloads/whizard
http://caml.inria.fr/ocaml/

Page 20 of 29

Eur. Phys. J. C (2011) 71:1742

They can describe observables, trigger and cut conditions of
a rather generic kind, to be applied to integration and simu-
lation.

The language contains constructs that enable data visual-
ization. Commands and expressions can be evaluated based
on conditions, and further script files can be included. There
is also a loop construct that allows for scanning over param-
eters.

The SINDARIN language, and thus the WHIZARD user
interface, is described in detail in the WHIZARD manual,
http://projects.hepforge.org/whizard/manual.pdf.

7.3 Implementation of the language

The conception of a programming language as a replace-
ment for fixed-format input files requires the implementa-
tion of lexer, parser, and compiler (or interpreter) for this
language.

These implementations are done in a generic way, so ar-
bitrary syntax structures can be handled, and the SINDARIN
syntax is just a special case. Actually, WHIZARD processes a
few additional, albeit much simpler, syntax structures (e.g.,
the model-file syntax, the SLHA syntax) using the same
lexer and parser implementation.

The lexer analyzes an input stream, which may come
from an external or internal file or string, and separates it
into tokens. It has a basic notion of data types, so it dis-
tinguishes numerical values from string identifiers, and it
identifies keywords from a given syntax table. Furthermore,
it can handle comments, matching delimiters and matching
quotes. The lexer definition assigns characters to appropriate
character classes.

Syntax tables are coded in form of a table of strings that
are not necessary hard-wired. The table entries are equiva-
lent to a formal syntax description which declares each syn-
tax element as atomic, alternative, or sequence, with some
specific variants that describe frequent cases. Sequence and
alternative elements are defined in terms of other syntax el-
ements. Each syntax table is checked at runtime for com-
pleteness and consistency.

The parser is implemented as a simple top-down parser.
The input, as a sequence of tokens, is matched element by el-
ement against the syntax table. If a syntax element matches,
the token is inserted into a growing parse tree. If not, it is
put back into the token stream.

The SINDARIN compiler is split into two parts. Expres-
sions (of any type) are compiled into an evaluation tree. In
this step, constant expressions are evaluated immediately.
To have a compiled version is useful for cut expressions in
particular, since they are evaluated once for each event dur-
ing integration and simulation. The other part of the com-
piler handles commands and assignments. The correspond-
ing parse-tree elements are transformed into objects that col-

@ Springer

lect the relevant data; command execution then amounts to
calling an “execute” method on the object.

7.4 Physics models

The physics model to be used for process definitions is de-
clared in the SINDARIN script, for instance: model =
MSSM. It is possible to use several models concurrently for
distinct processes in a single script.

The support for specific models in WHIZARD relies on
the implementation of the corresponding models in O ' Mega
and WHIZARD. In both packages, the infrastructure supports
the incorporation of particles with spin 0, % (Dirac/Majorana
fermions), 1, % and 2. Since the structure of O’ Mega allows
for the incorporation of arbitrary higher-dimensional opera-
tors all possible physics models based on quantum field the-
ories containing particles with spins up to two can be im-
plemented; even more general setups are possible like mod-
els based on noncommutative generalizations of space-time
(see below).

Specific physics models are defined with the help of
their particle content (and the corresponding quantum num-
bers), the fundamental interactions (vertices) and—most im-
portantly and error-prone—the set of coupling constants
and parameters together with the relations among them.
Within 0’'Mega, some basic toy models like QED and
QCD as well as the SM and its derivatives (like non-
unitary gauges, extensions with anomalous couplings with
and without K matrix unitarization, non-trivial CKM ma-
trix) are implemented in modellib_SM.ml, the super-
symmetric models like the MSSM and possible exten-
sions (NMSSM, PSSSM etc.) in modellib_MSSM.ml,
modellib NMSSM.ml, and modellib PSSSM.ml,
while non-SUSY BSM extensions (like Little Higgs mod-
els, Z' models and extra dimensional models) are imple-
mented in modellib_BSM.ml. In this module there is
also a model Template which has exactly the same con-
tent as the SM, but can be augmented by the user to incor-
porate new particles and interactions in his or her favorite
model. More details about how this works can be found in
Sect. 8.1.

In WHIZARD for each model MODEL there is a file
MODEL .md1l which contains the particles with their quan-
tum numbers (electric charge, color etc.) as well as a defini-
tion of the basic parameters that can be accessed via the in-
put file. This file also contains a list of all the vertices of the
model, which is important for the generation of phase space
of processes in that specific model. For each model MODEL,
there is also a file parameters .MODEL. £90 which con-
tains all the couplings of the corresponding model as func-
tions of the basic input parameters. An overview over the
publicly supported models as well as those currently in their
testing phase are shown in Table 4.

http://projects.hepforge.org/whizard/manual.pdf

Eur. Phys. J. C (2011) 71:1742

Page 21 of 29

Table 4 List of models that are

currently supported by Model type With CKM matrix Trivial CKM

WHIZARD: the SM and its

relatives, simple subsets of the QED with e, u, 7,y - QED

SM, the MSSM, other models .

i i CD with d, u,s,c,b,t, - CD

beyond the SM as well as a QCD wi 5.¢ § Q

template which can be Standard Model SM_CKM SM

augmented by the user to SM with anomalous couplings SM_ac_CKM SM_ac

include additional new particles .

and interactions SM with charge —4/3 top - SM_top
SM with anomalous top coupl. — SM_top_anom
SM with K matrix SM_km_CKM SM__km
SM with triangle Higgs coupl. - SM_triangle_higgs
SUSY Yang-Mills - SYM
MSSM MSSM_CKM MSSM
MSSM with gravitinos - MSSM_Grav
NMSSM NMSSM_CKM NMSSM
PSSSM - PSSSM
Littlest Higgs - Littlest

Littlest Higgs with ungauged U (1)

Littlest Higgs with T parity

Simplest Little Higgs (anomaly-free)

Simplest Little Higgs (universal)
SM with spin-2 graviton
SM with gravitino and photino

SM with generic Z’
Universal Extra Dimensions

3-site model

3-site model without heavy fermions

Augmentable SM template

- Littlest_Eta
- Littlest_Tpar
- Simplest

- Simplest_univ
- Xdim

_ GravTest

- Zprime

- UED

- Threeshl

- Threeshl_nohf

— Template

7.5 Processes

For a given physics model, WHIZARD can compute Cross
sections or partial decay widths for all processes that are
physically allowed. The user-specified list of processes can
be arbitrary, as long as the computer is capable of dealing
with it.? For each process, the O ' Mega matrix-element gen-
erator generates a tree-level matrix element, so without man-
ual intervention, the result corresponds to fixed leading or-
der in perturbation theory.

To define a process, the user may completely specify in-
coming and outgoing particles, choosing from the elemen-
tary particles contained in the selected model. For conve-
nience, it is possible to define particle aliases and to sum

Typical bottlenecks are: complexity of the matrix element (CPU
time), complexity of phase space (memory), number of contributing
subprocesses (both).

over massless particles in the incoming or outgoing state,
e.g., combine all neutrino generations or all light quarks. In
this case, all contributing matrix elements will be added at
each selected phase-space point, and the code generated by
0'Mega is able to take advantage of cross-flavor common
subexpression elimination. For the generated events, a par-
ticle combination will be selected event by event according
to the relative weight of the corresponding squared matrix
element.

The user can restrict intermediate states to select or ex-
clude classes of Feynman graphs.

7.6 Beams and partons

Once the processes have been declared, all processes in the
input file are available for calculating cross sections (with
arbitrary cuts) and simulating events.

The user selects a list of processes among the available
ones and specifies the type and energy of the colliding beams

@ Springer

Page 22 of 29

Eur. Phys. J. C (2011) 71:1742

(or the type of decaying particle). Each beam can be given
a structure or polarization. For instance, in hadron colli-
sions, the beam structure is given by the PDF set, speci-
fied by the usual LHAPDF parameters. Lepton collisions are
affected by beamstrahlung and electromagnetic initial-state
radiation. Photon collisions proceed via CIRCE?2 spectra or
via photons radiated from leptons in the effective-photon ap-
proximation. In all cases, all free parameters can be set and
modified in the input file.

Apart from these physical beam setups, it is possible
to compute fixed-energy cross sections, partial widths, and
event samples for any types of colliding or decaying parti-
cles.

In lepton and photon collisions, polarization is of impor-
tance. For each beam, the user can specify the longitudinal
polarization or, alternatively, transversal polarization. Fur-
thermore, it is possible to specify a complete spin-density
matrix for the incoming beams. Since helicity amplitudes
are used throughout the program, the polarization of final-
state particles can also be extracted.

7.7 Parameters, cuts, and other input

WHIZARD follows the philosophy that no numerical param-
eters are hard-coded, everything can be specified by the user
in the input script. However, wherever applicable, reason-
able default values exist. With the caveat that some param-
eter relations are fixed by the model definition (to ensure
gauge invariance), all free physics parameters such as parti-
cle masses, widths, and couplings can be modified in the in-
put file. This also implies that the phase-space setup, which
depends on particle masses, is generated afresh for each
WHIZARD run.

For supersymmetric models, there is the SLHA standard
[29-31] which specifies how to transfer physics parame-
ters between programs. There is a specific SINDARIN com-
mand that reads in a SLHA file.

Cuts on phase space are of particular importance. Many
cross sections are infinite if no cuts are applied. To avoid
confusion, WHIZARD by default does not apply any cuts,
so ensuring a finite cross section is entirely left to the user.
However, it is rather simple to define generic cuts that ren-
der all integrations finite (e.g., cutting on pr, rapidity, and
separation of all visible particles). For specifying user cuts,
a wide range of observables such as energy, pr, pr, angles,
rapidity, etc. is available. Cuts are defined by applying ob-
servables or expressions involving observables to events or
subevents selected by user-defined criteria.

All parameters (in fact, all commands) can also be set on
the command line. This facilitates the use of WHIZARD in
shell scripts.

@ Springer

7.8 Using and analyzing results

The WHIZARD user interface has been designed with vari-
ous applications in mind, ranging from theoretical studies to
experimental simulation.

A theoretical study typically implies the calculation of
some cross section and the display of characteristic distri-
butions of observables. To this end, the user would set up
the processes and parameters, run the program to compute
cross section integrals, and generate a sufficiently large sam-
ple of weighted events. In this case, one would not use the
rejection algorithm to unweight events, so no information is
lost. It is possible to write the event sample to file and to
do analyses by some external program, but WHIZARD also
contains its own analysis module. With this module, the user
specifies lists of observables to histogram (on top of, and
analogous to specifying cuts). During event generation, the
program will fill those histograms and output data tables. To
plot such data, WHIZARD employs the gamelan package.
This program generates encapsulated PostScript code
that can conveniently be included in I&IEX documents.

For a simulation study, the user needs a sequence of un-
weighted, fully hadronized events. The WHIZARD run in-
cludes the necessary steps of adaptation and integration and
proceeds to the generation of unweighted events; the event
sample may be specified either by the number of events
or by an integrated luminosity. Hadronization is accom-
plished by linking PYTHIA or some other hadronization
package to WHIZARD, preferably by reading an event file
that WHIZARD has written in the LHEF standard. WHIZARD
supports several event file formats, including the STDHEP
binary format. These event samples are ready to be further
processed by detector simulation and analysis.

It is often necessary to re-run a program several times in
order to change or refine event numbers, analysis parame-
ters, etc. Since adaptation, integration, and event generation
all can take considerable time, WHIZARD provides means
for reusing unfinished or previous integration results, grids,
and events, so the program needs not start from the begin-
ning. The integrity of data is checked by MD5 sums. Fur-
thermore, WHIZARD is able to rescan or reprocess event files
produced by other programs, if they are available in HepMC
format. This is useful for computing, e.g., exact matrix ele-
ments for reweighting Monte-Carlo samples.

8 Extensions and extensibility
8.1 Building models
If a model can be formulated for the FeynRules [16]

package, it can be made automatically available to WHIZARD.
A specific interface is available for both versions, WHIZARD1

Eur. Phys. J. C (2011) 71:1742

Page 23 of 29

and WHIZARD?2. For WHIZARD? the interface is very conve-
nient, as there is a plugin mechanism which directly incor-
porates the models into the main program, such that models
generated via FeynRules can be used in the same way
as those hard-coded in the program core. For more details
about the interface as well as physics examples confer the
specific publication [96].

If the FeynRules capabilities are not sufficient, adding
a new model to WHIZARD is nevertheless straightfor-
ward. To manually add a new model, one has to edit both
WHIZARD’s model file and the O’ Mega driver simultane-
ously. In the file modellib_Template.ml in the src
directory of O’'Mega there is a Template module which
is just a copy of the SM implementation within O’ Mega.
From this template one can read off the syntax structure
and add new particles and interactions according to one’s
favorite new physics model. This exhausts the changes that
have to be made on the O’ Mega side.

The next step is to add all new particles with their quan-
tum numbers in the file Template.mdl in the subdirec-
tory share/models of WHIZARD. In the bottom part of
that file all new interaction vertices have to be added in the
way of the SM vertices already written down there. This is
important in order that WHIZARD can find the phase space
channels including the new particles added by the user.
The hardest and most error-prone work to do is to add the
functional relations among the coupling constants and pa-
rameters beyond the SM within the corresponding parame-
ter file parameters.TEMPLATE. £90 in the directory,
src/models. Again, the examples from the SM might
serve as a guideline here for the way how to incorporate all
the new couplings in this file. The model Template can be
accessed in WHIZARD with the tag Template in the same
way as the other models defined in Sect. 7.4. It can even
be used when the user has not added any new particles or
interactions; in that case it is just a mirror of the SM.

8.2 Improving or replacing matrix elements

The matrix-element source code generated by O’ Mega is
very easy to read and consequently also to modify. In Ap-
pendix B, we show the complete eTe™ — T~ scatter-
ing amplitude in the SM. Notice that, for convenience, the
crossed amplitude with all particles outgoing is calculated
internally. For this reason the incoming momenta are re-
versed.

In the code, mass is an array of particle masses, indexed
by the PDF Monte-Carlo particle codes, that is defined in the
module omega_parameters. glep, gnclep(1l) and
gnclep (2) are the lepton charge and vector and axial vec-
tor neutral current coupling constants, respectively. wd_t1
is a function that returns a non-zero width for time-like mo-
menta. The functions pr_ feynman and pr_unitarity

implement the propagators and the functions v_£ff and
va_ff implement vector couplings and mixed vector/axial
couplings of the fermions given as arguments.

It is now straightforward to replace any of these functions
by another function that computes a non-standard propaga-
tor or coupling or to add another particle exchange, like a Z’.
Of course, it is more efficient for a comprehensive analysis
of a Z’-model to produce a new model file, but non-standard
vertices are a useful hook for adding radiative corrections
(see Sect. 8.3). When preparing modified vertex factors for
fermions, it is most convenient to use the elementary vertex
factors for the y-matrix structures, as they are already opti-
mized and guaranteed to be consistent with the conventions
used in the other functions from omegalib.

Note that the final line, which probably takes on a form
like

oks_11b1112bl2 = - oks_11bl112bl2

takes care of all the factors of i coming from vertices and
propagators in the Feynman rules. Any modification of the
amplitude must respect this convention, in order not to spoil
potential interference terms.

The normal workflow would let WHIZARD recompile and
relink matrix-element source code only if the process dec-
laration had changed. With a --recompile flag set (or
the SINDARIN parameter ?recompile_library), the
modified file will be treated by the program as if it was
the originally generated code. Clearly, to prevent accidental
overwriting a modified file, it should be additionally saved
in a place different from the current working directory.

8.3 Higher orders

To match the experimental precision of hadron and lepton
collider environments, theoretical predictions have to in-
clude higher order radiative corrections, originating from
virtual and real diagrams.

The precise meaning of “higher order” or ‘“next-to-
leading order” (NLO) very much depends on the context.
In lepton-collider physics, the most important part is usu-
ally QED radiation, since this effect results in infrared and
collinear divergences. They can partly be analytically treated
and resummed. WHIZARD accounts for higher-order radia-
tion via the well-known ISR structure function which can be
activated when appropriate.

A refinement of the NLO treatment typically involves a
complete one-loop calculation in the SM, or one of its (per-
turbatively tractable) extensions. For instance, in [97, 98]
precompiled NLO matrix elements for the production of
two SUSY particles (charginos) at the ILC have been used
and linked to WHIZARD 1 in the form of an external ma-
trix element, convoluted with a user-defined structure func-
tion. Since this calculation was performed via the auto-
matic FeynArts—FormCalc—LoopTools toolchain

@ Springer

Page 24 of 29

Eur. Phys. J. C (2011) 71:1742

[99-101], the result showed that WHI ZARD can be extended
to a NLO event generator for lepton-collider processes, in-
cluding complete electroweak and supersymmetric correc-
tions. However, there is no automatic implementation yet.

For hadron colliders such as the LHC, the numerically
dominant higher-order corrections typically are pure QCD
corrections, originating from radiation and loops involving
gluons and massless quarks. Multiple QCD radiation from
both initial and final-state partons involves disparate en-
ergy scales and has to be matched to both the hard process
and to non-perturbative models of hadronization and mul-
tiple interactions. The current WHIZARD version does not
yet address QCD beyond tree level. For the parton shower,
it provides an independent algorithm and implementation
that will be described in a separate publication [13]; alterna-
tively, the user can use the well-established PYTHIA [1, 2]
code for generating QCD radiation, either externally or au-
tomatically from within the program. Leading-order parton-
shower matching is available in form of the MLM algo-
rithm [102]. Implementations of dipole subtraction, inter-
leaved parton-shower and parton-shower matching, and fur-
ther QCD effects are under development and will be merged
into the WHIZARD framework. Thus, the necessary ingredi-
ents for consistently simulating QCD beyond leading order
are projected as intrinsic parts of the program in a future
release.

9 Conclusions and outlook

Data taking at the LHC has begun and almost the whole
standard model has already been rediscovered at the time
of writing. At the same time, the physics and detector stud-
ies for the planned ILC are being refined with increasing
requirements on the accuracy of theoretical predictions. In
both cases Monte-Carlo simulation tools must respond to
the challenge to provide a flexibility and theoretical accu-
racy that will enable us to uncover the true nature of physics
in the TeV energy range.

Event generators with complete multi-particle matrix el-
ements at the hard-interaction level are not designed to
completely replace well-established tools that simulate few-
particle production and subsequent decays. Nevertheless,
they already have proven indispensable for refining the ac-
curacy of predictions, simulating complex elementary pro-
cesses, and providing reliable background estimates where
data alone are insufficient for unambiguous signal extrac-
tion.

Version 1 of WHIZARD had been designed for ILC stud-
ies with no colors in the initial state and a moderate num-
ber of colored jets. As a result, color was not built in from
the beginning and the implementation was not optimal. This
has changed dramatically with the redesigned Version 2 of

@ Springer

WHIZARD, where QCD in the color flow representation has
been built in from the ground up. This new version propels
WHIZARD into the LHC era.

Simultaneously, the streamlined architecture of Version 2
of WHIZARD provides for a much simpler installation and
usage of the program. The executable can be installed in a
central location and is controlled by a single input file de-
scribing the analysis in a flexible language, close to physics.
This also allows for easy snapshots of the installation for
later verifications.

To show the applicability of WHIZARD for high-multi-
plicity hard interactions in LHC processes we calculated
cross sections for multi-parton processes of the Drell-Yan
type pp — (W — £v) + nj with the number of jets equal to
n=1,2,3,4,5, as well as multi-parton processes associated
to top/Higgs production and background pp — £€vvbb+nj
with n =0, 1, 2. These calculations have been performed in
the complete Standard Model: jets include gluons together
with four light quark flavors, and the matrix elements incor-
porate all interactions that involve photon and weak boson
exchange, adding to and interfering with the QCD part. We
observe that WHIZARD is able to simulate, e.g., W + 4 jet
processes in a straightforward way; computing W + 5 jets
is also possible with slightly more effort. Computing time
and memory usage rise roughly by about a factor of 10 for
each additional jet that is added. All processes considered in
this paper are tractable with standard current workstations,
given up to a few GB of memory, up to several days of adap-
tation/integration time, and up to a few more days of CPU
time for subsequently generating an unweighted event sam-
ple that corresponds to 1 fb~! of LHC luminosity.

The new version of WHIZARD provides a stable frame-
work for further developments: an improved matching of
hard matrix elements with parton showers, as well as other
aspects of soft and collinear QCD, and the fully auto-
mated incorporation of higher orders of perturbation theory.
The latter is particularly challenging and while WHIZARD
has already been used successfully in NLO calculations
[103, 104], many new techniques will have to be developed
before the automated construction of NLO event generators
will have reached the same level of maturity as in the LO
case today. In summary, WHIZARD covers complex hard
scattering processes in the standard model and most of its
known extensions at all past, current and future high-energy
colliders efficiently. The program is ready for use as a uni-
versal and flexible tool for experimental data analysis, data
interpretation, and future phenomenological studies.

Acknowledgements Special thanks go to the very recent WHIZARD
contributors, F. Bach, H.W. Boschmann, F. Braam, S. Schmidt,
D. Wiesler, and especially C. Speckner. Furthermore, we would
like to thank A. Alboteanu, T. Barklow, M. Beyer, T. Binoth(7),
E. Boos, R. Chierici, K. Desch, S. Dittmaier, T. Feldmann, T. Fritzsche,
N. Greiner, K. Hagiwara, T. Hahn, W. Hollik, M. Kobel, F. Krauss,
P. Manakos, T. Mannel, M. Mertens, N. Meyer, K. Monig, M. Moretti,

Eur. Phys. J. C (2011) 71:1742

Page 25 of 29

D. Ondreka, M. Peskin, T. Plehn, D. Rainwater, H. Reuter, T. Robens,
M. Ronan(7), S. Rosati, A. Rosca, J. Schumacher, M. Schumacher,
S. Schumann, C. Schwinn, T. Stelzer, S. Willenbrock, and P. Zerwas
for valuable discussions, comments and help during this project. WK
and JR acknowledge the friendly atmosphere within and support by
the particle physics groups at the University of Karlsruhe and DESY,
Hamburg, and the Aspen Center for Physics, where a lot of this work
has been initiated. JR wants especially to thank the particle physics
group at Carleton University, Ottawa, where part of this work has
been completed, for their warm hospitality and lots of interesting dis-
cussions. WK expresses his particular gratitude for the warm hospi-
tality and support of the particle physics group at the University of
Urbana/Champaign. We would like to extend particular gratitude to
C. Schwinn for his work on Rg-gauge functors and tests of gauge
parameter independence in O’Mega amplitudes, and also for many
helpful and enlightening discussions in an early stage of O’ Mega.

This work has been supported in part by the Helmholtz-Gemein-
schaft under Grant No. VH-NG-005, the Helmholtz alliance “Physics
at the TeraScale”, the Bundesministerium fiir Bildung und For-
schung, Germany, (05 HT9RDA, 05 HA6VFB, 05 H4WWA/2, 05
HO9PSE), the Ministerium fiir Wissenschaft und Kultur of the state
Baden-Wiirttemberg, and the Deutsche Forschungsgemeinschaft (sin-
gle projects MA 676/6-1 and RE 2850/1-1 as well as by the Graduier-
tenkolleg GK 1102 “Physics at Hadron Colliders™).

Open Access This article is distributed under the terms of the Cre-
ative Commons Attribution Noncommercial License which permits
any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

Appendix A: Conventions

In this appendix, we collect some of the conventions used in
WHIZARD for the calculation of helicity amplitudes and po-
larized off-shell wave functions. The matrix elements gen-
erated by O’ Mega call functions from omegalib that im-
plement the following conventions. It is therefore straight-
forward to replace these conventions by another set, should
the need ever arise in specialized applications.

A.1 On-shell wavefunctions
A.1.1 Dirac and Majorana fermions
We use the two-component Weyl spinors

~ 1 1P +P3)
X+(p) = ———— (.
V2IpI(pl+ p3) \P1+1p2

(A.la)
- 1 -p1+ iPz)
X-P) = == (-
V20pIpI+ p3) \ IPIFps
to construct the four-component Dirac or Majorana spinors:

us(p) = <\/ poFIpl- X:I:(ﬁ))
VpoxIpl- x+(p)

vi(p) = <:F\/P0 +1pl- x;(ﬁ))
+vpoF 1Pl x5 (P)

(A2)

For the implementation of purely Dirac fermions, there
are also expressions for the conjugated spinors, which are
not used in the mixed Dirac/Majorana implementation.
There the conjugated spinors are constructed with the help
of the charge-conjugation matrix.

A.1.2 Polarization vectors

We use the following conventions for spin-1 particles:

ellk) = — (0: kek. kyke, —k; — k3) (A.32)
|kl /k2 + k2
1
el (k) = ——=(0; —ky, ky, 0) (A.3b)
U fevr
ko -
€ (k) = —= (kK2 ko: ke ky, k) (A3c)
mk|
and
1 .
ei k) = Tz(ef(k) + 165' (k)) (A.4a)
€y (k) = €X' (k) (A.4b)
i.e.
1
I
) = ———e
V2. /K2 + k2
y
k.k kyk k2 4 k2
x (0; = —iky, 2= ik, —%) (A.52)
k| |k|
1
k)= ———
V2, /K2 + K2
k.k kyk k2 + k2
X (o; =T tiky, 2 — ik, —%) (A.5b)
k| k| k|
k N
et (k) = — (K2 / ko v, hy, k) (A.50)

mk|

These conventions are similar to those used in HELAS
[10], which are

1 L P
el (k) = 72(:%{ (k) — i€y (k)

€y (k) = €} (k)

(A.6a)

(A.6b)

with the same definitions as above.

Note that these conventions do not fit the definitions of
the spinor wavefunctions defined in the last paragraph. In
fact, they correspond to a different quantization axis for
angular momentum. So, when constructing spin-3/2 wave-
functions out of those for spin 1/2 and spin 1, a different
convention for the polarization vectors is used.

@ Springer

Page 26 of 29

Eur. Phys. J. C (2011) 71:1742

A.1.3 Polarization vectorspinors
The wavefunctions for (massive) gravitinos are constructed

out of the wavefunctions of (massive) vectorbosons and
(massive) Majorana fermions:

Vi3m0 = € (k) - uk, +)

1 2
Yl) = \Eem) culk, =) + \@eg‘ac) culk, +)

(A.7a)

(A.7b)
Vi, (k)—\/?e"(k) ~u(k —)+\ﬁe“(k)~u(k +)
(w;=1/2)Y 7Y 370) 3=)
(A.7c)
Veayny 0 = €L (0) - uk, -) (A7d)

and in the same manner for l[/(l:);s) with u replaced by v
and with the conjugated polarization vectors. These grav-
itino wavefunctions obey the Dirac equation, they are trans-
verse and they fulfill the irreducibility condition

Vu‘/’(uu/u;s) =0. (A.8)

As mentioned above, one needs to use the same quanti-
zation axis for spin 1/2 and spin 1 in order to construct the
correct spin-3/2 states. The polarization vectors

+igp

efﬁ(k) = %(0; cosf cos¢p —ising,
cosf sin¢ +icos¢, —sinf) (A.92)
e~io
e k) = 7 (0; cosO cos¢p +ising,
cosfsing —icos¢, —sind) (A.9b)

1, -
) (k) = %(|k|; k¥ sin6 cos ¢, k¥ sin6 sin, k° cos 6
(A.9c)

are used exclusively for this purpose.
A.1.4 Polarization tensors

Spin-2 polarization tensors are symmetric, transversal and
traceless

€LV (k) =€l (k) (A.10a)
kel (k) = kye” (k) =0 (A.10b)
el (k)=0 (A.10¢)
withm =-2,-1,0,1, 2.

Gﬁ;(k) = Ei (k)ely (k) (A.11a)

@ Springer

% 1 i v

" (k) = ﬁ(ef_(k)eo (k) + €l (k)e” (k) (A.11b)
v 1 2 v v

el (k) = Tg(ei(k)e_(k) + e (k)€ (k) — 2€l (k)ey (0)

(A.11c)

% 1 v vV

10 = = (LR ®) + € (e 1) (A.11d)

" (k) = " (ke (k) (A.11e)

Here the polarization vectors from Sect. A.1.2 are used.
A.2 Propagators

Note that the sign of the momentum for fermionic lines is
always negative because all momenta are treated as outgo-
ing and the particle charge flow is therefore opposite to the
momentum.

— Spin 0:
i 0} (A.12)
p2—m2+iml '
— Spin 1/2:
i(— p+m) - i(p+m)
o B R [52 - . B R [52 - (A.13)
pc—m*+iml’ pc—m*+iml’

The right one is only used for the pure Dirac implementa-
tion.
— Spin 1 (massive, unitarity gauge):

i PuDv \ v
- - A.14
p2—m2+imF(v + 3)e (p) (A.14)
— Spin I (massless, Feynman gauge):
—i
P
— Spin 1 (massive, R: gauge):
i pup
—2<—gw+(1 3 "2”)e”<p> (A.16)
p 4
— Spin 3/2:
(= p+m)(=nu + 289 + 3 — 2 (B +m) (o — %)}W
p?—m?+imll
(A.17)
— Spin 2:
i P1Y:Po ,
! (p.m) (A.18a)

p2—m2+iml "

Eur. Phys. J. C (2011) 71:1742

Page 27 of 29

Table 5 Mnemonically abbreviated names of Fortran functions implementing fermionic vector and axial currents on the left, scalar and

pseudoscalar currents on the right

Vgvy" — gaytys)v va_£E£(gv.ga. ¥, V)

vyt v_£f(gv, ¥, ¥)
gavysy a_ff(ga, ¥, ¥)
LYyl —ys)y v1_£f£(gr, ¥,)

vr_£E(gr, ¥, ¥)

f_vaf(gy,ga, V. %)

SRYYH(L+y5)¥

V(gv — gays)¥

gv ¥y f_vi(gv. V. ¥)
gays Y f_af(ga,V.¥)
gLVl —ys)y f_vlf(gr,V,¥)

gr Y (1 +ys)¥ £ vri(gr,V,¥)

¥ Y(gv —gays) f_fva(gv,ga. ¥, V)

vy Y £_fvigy, ¥, V)
gavys ¥ £_falga, ¥, V)
gLV Y —ys) £_£vl(gL, ¥, V)

grY V(1 +ys) f_fvr(gr, ¥, V)

V(gs+gpys)¥
gsv Y

grY sy
gLy (l—ys)y
grV (L +y5)¥

d(gs+grys)y
gspy

grdysy

gLd(l —ys)¥
grRO(1+ys5)¥

V(gs +gpys)
gsvé

gPYdys
gLVl —ys)
grYG (1 +y5)

sp_ff(gs, gp. ¥, ¥)
s_ff(gs, ¥,)
p_f£(gp. ¥, %)
s1_ff(gr, v, V)
sr_ff(gr, ¥, ¥)

f_spf(gs.gr.¢.V¥)
f_sf(gs, ¢, ¥)
f_pf(gp. d, V)

£ s1f(gL.¢,v)
f_srf(gr,¢.v¥)

f_fsp(gs. gp. V. $)
£ fs(gs. V. ¢)
£_fp(gpr. V. ¢)
f_fsl(gr.v.¢)
£_fsr(gr. v, 9)

with

P (p, m)

1 ptp? p'p°
=& ——F)¢ ——53
2 m m

1 o,V e
__<guv__1’ P)(gw__” P) (A.18b)
3 m m

A.3 Vertices

For fermionic vertices we use the following chiral represen-
tation used in HELAS [10]:

o (0 1 i (0 o
=\ o) VT 6 o)

(A.192)
. -1 0

subroutine calculate_amplitudes (amp, k, mask)

is e

e O
c=(5 %)

(A.19b)

The conventions for the fermionic vertices are shown in

Table 5.

+

complex (kind=default), dimension(:,:,:), intent(out) :: amp
real (kind=default), dimension(0:3,*), intent(in) :: k
logical, dimension(:), intent(in) :: mask

integer, dimension(n_prt) :: s

integer :: h

pl = - k(:,1) ! incoming

p2 = - k(:,2) ! incoming

p3 = k(:,3) ! outgoing

pd = k(:,4) ! outgoing

pl2 = pl + p2

amp = 0

Appendix B: Sample matrix element code

Here, we present an example for the process-specific For-
tran code generated by O’ Mega, which is compiled and
linked by the main WHIZARD executable. The process

e~ — pTu~ in the SM. In this example, the code
is equivalent to the sum of Feynman diagrams, as there
are no common subexpressions. The decomposition into
numbered subroutines is effective in speeding up compi-
lation, which becomes relevant for large process codes.

Page 28 of 29

Eur. Phys. J. C (2011) 71:1742

do h = 1, n_hel
if (mask(h)) then
s = table_spin_states(:,h)

owf_1l1lb 1 = vbar (mass(11l), - pl, s(1))
owf_11_2 = u (mass(ll), - p2, s(2))
owf_12_3 = v (mass(13), p3, s(3))
owf_12b_4 = ubar (mass(13), p4, s(4))

call compute_fusions_0001 ()
call compute_brakets_0001 ()
amp(l,h,1l) = oks_11bl1112bl2
end if
end do

end subroutine calculate_amplitudes
subroutine compute_fusions_0001 ()

owf_a_12 =
owf_z_12 =

pr_feynman (pl2,

+ v_ff(glep,owf_1lb_1,owf_11_2))
pr_unitarity(pl2,mass(23),wd_tl(pl2,width(23)), &

+ va_ff(gnclep(l),gnclep(2),owf_11lb_1,owf_11_2))
end subroutine compute_fusions_0001
subroutine compute_brakets_0001 ()

oks_11b1112bl2 = 0
oks_11bl1l12bl2 =

oks_11b1112bl2 + owf_z_12*(

&

+ va_ff(gnclep(l),gnclep(2),owf_12b_4,owf_12_3))

oks_11bl112bl2 =

+ v_ff(glep,owf_12b_4,owf_12_3))
oks_11b1112bl2 = - oks_11bl112bl2 !
! unit symmetry factor

end subroutine compute_brakets_0001

oks_11b1112bl2 + owf_a_ 12*(

2 vertices,

&

1 propagators

References

10.
11.
12.
13.
14.
15.
16.
17.
18.

19.

H.U. Bengtsson, T. Sjostrand, Comput. Phys. Commun. 46, 43
(1987)

T. Sjostrand, L. Lonnblad, S. Mrenna, P. Skands, arXiv:hep-ph/
0308153

G. Marchesini, B.R. Webber, G. Abbiendi, I.G. Knowles, M.H.
Seymour, L. Stanco, Comput. Phys. Commun. 67, 465 (1992)
G. Corcella et al., arXiv:hep-ph/0210213

A. Pukhov et al., arXiv:hep-ph/9908288

E. Boos et al. (CompHEP Collaboration), Nucl. Instrum. Meth-
ods A 534, 250 (2004). arXiv:hep-ph/0403113

T. Ishikawa, T. Kaneko, K. Kato, S. Kawabata, Y. Shimizu,
H. Tanaka (MINAMI-TATEYA group Collaboration), KEK-
92-19

J. Fujimoto et al., Comput. Phys. Commun. 153, 106 (2003).
arXiv:hep-ph/0208036

T. Stelzer, F. Long, Comput. Phys. Commun. 81, 357 (1994)

H. Murayama, 1. Watanabe, K. Hagiwara, KEK-91-11

R. Kleiss, R. Pittau, Comput. Phys. Commun. 83, 141 (1994)

T. Ohl, Comput. Phys. Commun. 120, 13 (1999). arXiv:hep-ph/
98006432

W. Kilian, J. Reuter, S. Schmidt, in preparation

F. Maltoni, T. Stelzer, J. High Energy Phys. 0302, 027 (2003)

J. Alwall et al., J. High Energy Phys. 0709, 028 (2007).
arXiv:0706.2334 [hep-ph]

N.D. Christensen, C. Duhr, Comput. Phys. Commun. 180, 1614
(2009). arXiv:0806.4194 [hep-ph]

S. Frixione, B.R. Webber, J. High Energy Phys. 0206, 029
(2002). arXiv:hep-ph/0204244

S. Frixione, P. Nason, B.R. Webber, J. High Energy Phys. 0308,
007 (2003). arXiv:hep-ph/0305252

S. Catani, F. Krauss, R. Kuhn, B.R. Webber, J. High Energy Phys.
0111, 063 (2001)

@ Springer

20.
21.
22.
23.
24.
25.
26.
217.
28.
29.
30.
31.
32.
33.

34.
35.

36.
37.

38.

39.

F. Caravaglios, M. Moretti, Z. Phys. C 74, 291 (1997). arXiv:
hep-ph/9604316

W. Kilian, LC-TOOL-2001-039

W. Kilian, Prepared for 31st International Conference on High
Energy Physics (ICHEP 2002), Amsterdam, The Netherlands,
24-31 Jul 2002

A. Kanaki, C.G. Papadopoulos, Comput. Phys. Commun. 132,
306 (2000). arXiv:hep-ph/0002082

T. Gleisberg, S. Hoche, F. Krauss, A. Schalicke, S. Schumann,
J.C. Winter, J. High Energy Phys. 0402, 056 (2004)

T. Ohl, arXiv:hep-ph/0011287

T. Ohl, arXiv:hep-ph/0011243

M. Moretti, T. Ohl, J. Reuter, arXiv:hep-ph/0102195

W. Kilian, T. Ohl, J. Reuter, O ' Mega: An Optimizing Matrix El-
ement Generator. II: Color Flow Amplitudes, in preparation

P. Skands et al.,, J. High Energy Phys. 0407, 036 (2004).
arXiv:hep-ph/0311123

J.A. Aguilar-Saavedra et al., Eur. Phys. J. C 46, 43 (2006).
arXiv:hep-ph/0511344

B. Allanach et al., Comput. Phys. Commun. 180, 8 (2009). arXiv:
0801.0045 [hep-ph]

X. Leroy, The Objective Caml system, documentation and user’s
guide, Technical Report, INRIA, 1997

M. Beneke, P. Falgari, C. Schwinn, A. Signer, G. Zanderighi,
arXiv:0707.0773 [hep-ph]

C. Schwinn, arXiv:0708.0730 [hep-ph]

S. Dittmaier, M. Roth, Nucl. Phys. B 642, 307 (2002). arXiv:hep-
ph/0206070

C. Schwinn, arXiv:hep-ph/0412028

A. Djouadi, W. Kilian, M. Muhlleitner, P.M. Zerwas, Eur. Phys.
J. C 10, 27 (1999). arXiv:hep-ph/9903229

A. Djouadi, W. Kilian, M. Muhlleitner, PM. Zerwas, Eur. Phys.
J. C 10, 45 (1999). arXiv:hep-ph/9904287

T. Barklow, Talk at the American Linear Collider Physics Group
Workshop, SLAC, 7-10 Jan. 2004

http://arxiv.org/abs/arXiv:hep-ph/0308153
http://arxiv.org/abs/arXiv:hep-ph/0308153
http://arxiv.org/abs/arXiv:hep-ph/0210213
http://arxiv.org/abs/arXiv:hep-ph/9908288
http://arxiv.org/abs/arXiv:hep-ph/0403113
http://arxiv.org/abs/arXiv:hep-ph/0208036
http://arxiv.org/abs/arXiv:hep-ph/9806432
http://arxiv.org/abs/arXiv:hep-ph/9806432
http://arxiv.org/abs/arXiv:0706.2334
http://arxiv.org/abs/arXiv:0806.4194
http://arxiv.org/abs/arXiv:hep-ph/0204244
http://arxiv.org/abs/arXiv:hep-ph/0305252
http://arxiv.org/abs/arXiv:hep-ph/9604316
http://arxiv.org/abs/arXiv:hep-ph/9604316
http://arxiv.org/abs/arXiv:hep-ph/0002082
http://arxiv.org/abs/arXiv:hep-ph/0011287
http://arxiv.org/abs/arXiv:hep-ph/0011243
http://arxiv.org/abs/arXiv:hep-ph/0102195
http://arxiv.org/abs/arXiv:hep-ph/0311123
http://arxiv.org/abs/arXiv:hep-ph/0511344
http://arxiv.org/abs/arXiv:0801.0045
http://arxiv.org/abs/arXiv:0801.0045
http://arxiv.org/abs/arXiv:0707.0773
http://arxiv.org/abs/arXiv:0708.0730
http://arxiv.org/abs/arXiv:hep-ph/0206070
http://arxiv.org/abs/arXiv:hep-ph/0206070
http://arxiv.org/abs/arXiv:hep-ph/0412028
http://arxiv.org/abs/arXiv:hep-ph/9903229
http://arxiv.org/abs/arXiv:hep-ph/9904287

. Phys. J. C (2011) 71:1742

Page 29 of 29

40

41.
4.
43.
44.
45.
46.
47.

48.
49.

50.

51

52.

53.

54.
55.

56.
57.

58.

59.

60.

61.

62.

63.
64.
65.
66.
67.

68.
69.

70.

71.
72.

. J. Hewett, Talk at the International Linear Collider Workshop
(DESY, May 30-June 3, 2007)

J. Reuter, unpublished

M. Kuroda, KEK-CP-080. arXiv:hep-ph/9902340

A. Denner, H. Eck, O. Hahn, J. Kiiblbeck, Nucl. Phys. B 387,
467 (1992)

A. Denner, H. Eck, O. Hahn, J. Kiiblbeck, Phys. Lett. B 291, 278
(1992)

K. Hagiwara et al., Phys. Rev. D 73, 055005 (2006). arXiv:hep-
ph/0512260

J. Reuter, PhD thesis, TU Darmstadt 2002. arXiv:hep-th/
0212154

T. Ohl, J. Reuter, Eur. Phys. J. C 30, 525 (2003). arXiv:hep-th/
0212224

C. Bartels, J. List, arXiv:1007.2748 [hep-ex]

F.F. Deppisch, O. Kittel, J. High Energy Phys. 1006, 067 (2010).
arXiv:1003.5186 [hep-ph]

J. Kalinowski, W. Kilian, J. Reuter, T. Robens, K. Rolbiecki,
Acta Phys. Pol. B 39, 1705 (2008). arXiv:0803.4161 [hep-ph]

J. Kalinowski, W. Kilian, J. Reuter, T. Robens, K. Rolbiecki, J.
High Energy Phys. 0810, 090 (2008). arXiv:0809.3997 [hep-ph]
J. Kalinowski, W. Kilian, J. Reuter, T. Robens, K. Rolbiecki,
arXiv:0901.4700 [hep-ph]

J. Reuter, D. Wiesler, Phys. Rev. D 84, 015012 (2011). arXiv:
1010.4215 [hep-ph]

J. Reuter, D. Wiesler, in preparation

J. Reuter, F. Braam, AIP Conf. Proc. 1200, 470 (2010). arXiv:
0909.3059 [hep-ph]

B. Fuks, J. Reuter, F. Braam, in preparation

W. Kilian, J. Reuter, Phys. Lett. B 642, 81 (2006). arXiv:
hep-ph/0606277

F. Braam, J. Reuter, D. Wiesler, AIP Conf. Proc. 1200, 458
(2010). arXiv:0909.3081 [hep-ph]

W. Kilian, J. Reuter, Phys. Rev. D 70, 015004 (2004). arXiv:
hep-ph/0311095

W. Kilian, D. Rainwater, J. Reuter, Phys. Rev. D 71, 015008
(2005). arXiv:hep-ph/0411213

W. Kilian, D. Rainwater, J. Reuter, in The Proceedings of 2005
International Linear Collider Workshop (LCWS 2005), Stanford,
CA, 18-22 Mar 2005 (2005), pp. 0109. arXiv:hep-ph/0507081
W. Kilian, D. Rainwater, J. Reuter, Phys. Rev. D 74, 095003
(2006). arXiv:hep-ph/0609119

S. Heinemeyer et al., arXiv:hep-ph/0511332

J. Reuter et al., arXiv:hep-ph/0512012

B.C. Allanach et al., arXiv:hep-ph/0602198

S. Kraml et al., arXiv:hep-ph/0608079

J.R. Andersen et al. (SM and NLO Multileg Working Group),
arXiv:1003.1241 [hep-ph]

J.M. Butterworth et al., arXiv:1003.1643 [hep-ph]

E. Boos, H.J. He, W. Kilian, A. Pukhov, C.P. Yuan, PM. Zerwas,
Phys. Rev. D 57, 1553 (1998). arXiv:hep-ph/9708310

E. Boos, H.J. He, W. Kilian, A. Pukhov, C.P. Yuan, PM. Zerwas,
Phys. Rev. D 61, 077901 (2000). arXiv:hep-ph/9908409

R. Chierici, S. Rosati, M. Kobel, LC-PHSM-2001-038

W. Kilian, J. Reuter, in The Proceedings of 2005 International
Linear Collider Workshop (LCWS 2005), Stanford, CA, 18-22
Mar 2005 (2005), p. 0311. arXiv:hep-ph/0507099

73.

74.

75.
76.

71.

78.
79.

80.

81.

82.

83.

84.

85.
86.

87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.
100.
101.

102.
103.

104.

M. Beyer, W. Kilian, P. Krstonosic, K. Monig, J. Reuter,
E. Schmidt, H. Schréder, Eur. Phys. J. C 48, 353 (2006). arXiv:
hep-ph/0604048

A. Alboteanu, W. Kilian, J. Reuter, J. High Energy Phys. 0811,
010 (2008). arXiv:0806.4145 [hep-ph]

W. Kilian, M. Kobel, J. Reuter, J. Schumacher, in preparation
C. Schwinn, Phys. Rev. D 71, 113005 (2005). arXiv:hep-ph/
0504240

T. Ohl, J. Reuter, Phys. Rev. D 70, 076007 (2004). arXiv:hep-ph/
0406098

T. Ohl, J. Reuter, arXiv:hep-ph/0407337

A. Alboteanu, T. Ohl, R. Riickl, PoS HEP2005, 322 (2006).
arXiv:hep-ph/0511188

A. Alboteanu, T. Ohl, R. Riickl, Phys. Rev. D 74, 096004 (2006).
arXiv:hep-ph/0608155

F. Cachazo, P. Svrcek, E. Witten, J. High Energy Phys. 0409, 006
(2004). arXiv:hep-th/0403047

M. Dinsdale, M. Ternick, S. Weinzierl, J. High Energy Phys.
0603, 056 (2006). arXiv:hep-ph/0602204

C. Schwinn, S. Weinzierl, J. High Energy Phys. 0603, 030
(2006). arXiv:hep-th/0602012

E. Boos, T. Ohl, Phys. Rev. Lett. 83, 480 (1999). arXiv:hep-ph/
9903357

E. Boos, T. Ohl, arXiv:hep-ph/9909487

T. Ohl, C. Schwinn, Eur. Phys. J. C 30, 567 (2003). arXiv:hep-ph/
0305334

C. Schwinn, PhD thesis, TU Darmstadt/Univ. of Wiirzburg 2003.
arXiv:hep-ph/0307057

F. Maltoni, K. Paul, T. Stelzer, S. Willenbrock, Phys. Rev. D 67,
014026 (2003). arXiv:hep-ph/0209271

G.P. Lepage, CLNS-80/447

T. Ohl, Comput. Phys. Commun. 101, 269 (1997)

T. Ohl, arXiv:hep-ph/9607454

D. Schulte, CERN-PS-99-014-LP, CERN-PS-99-14-LP, CLIC-
NOTE-387, CERN-CLIC-NOTE-387 (1999)

M.R. Whalley, D. Bourilkov, R.C. Group, arXiv:hep-ph/
0508110

D. Bourilkov, arXiv:hep-ph/0305126

E. Boos et al., arXiv:hep-ph/0109068

N.D. Christensen, C. Duhr, B. Fuks, J. Reuter, C. Speckner,
arXiv:1010.3251 [hep-ph]

W. Kilian, J. Reuter, T. Robens, Eur. Phys. J. C 48, 389 (2006).
arXiv:hep-ph/0607127

W. Kilian, J. Reuter, T. Robens, AIP Conf. Proc. 903, 177 (2007).
arXiv:hep-ph/0610425

T. Hahn, Comput. Phys. Commun. 140, 418 (2001). arXiv:
hep-ph/0012260

T. Hahn, C. Schappacher, Comput. Phys. Commun. 143, 54
(2002). arXiv:hep-ph/0105349

T. Hahn, M. Perez-Victoria, Comput. Phys. Commun. 118, 153
(1999). arXiv:hep-ph/9807565
http://mlm.web.cern.ch/mlm/talks/kek-alpgen.pdf

T. Binoth, N. Greiner, A. Guffanti et al., Phys. Lett. B 685, 293—
296 (2010). arXiv:0910.4379 [hep-ph]

N. Greiner, A. Guffanti, T. Reiter, J. Reuter, Phys. Rev. Lett. 107,
102002 (2011). arXiv:1105.3624 [hep-ph]

@ Springer

http://arxiv.org/abs/arXiv:hep-ph/9902340
http://arxiv.org/abs/arXiv:hep-ph/0512260
http://arxiv.org/abs/arXiv:hep-ph/0512260
http://arxiv.org/abs/arXiv:hep-th/0212154
http://arxiv.org/abs/arXiv:hep-th/0212154
http://arxiv.org/abs/arXiv:hep-th/0212224
http://arxiv.org/abs/arXiv:hep-th/0212224
http://arxiv.org/abs/arXiv:1007.2748
http://arxiv.org/abs/arXiv:1003.5186
http://arxiv.org/abs/arXiv:0803.4161
http://arxiv.org/abs/arXiv:0809.3997
http://arxiv.org/abs/arXiv:0901.4700
http://arxiv.org/abs/arXiv:1010.4215
http://arxiv.org/abs/arXiv:1010.4215
http://arxiv.org/abs/arXiv:0909.3059
http://arxiv.org/abs/arXiv:0909.3059
http://arxiv.org/abs/arXiv:hep-ph/0606277
http://arxiv.org/abs/arXiv:hep-ph/0606277
http://arxiv.org/abs/arXiv:0909.3081
http://arxiv.org/abs/arXiv:hep-ph/0311095
http://arxiv.org/abs/arXiv:hep-ph/0311095
http://arxiv.org/abs/arXiv:hep-ph/0411213
http://arxiv.org/abs/arXiv:hep-ph/0507081
http://arxiv.org/abs/arXiv:hep-ph/0609119
http://arxiv.org/abs/arXiv:hep-ph/0511332
http://arxiv.org/abs/arXiv:hep-ph/0512012
http://arxiv.org/abs/arXiv:hep-ph/0602198
http://arxiv.org/abs/arXiv:hep-ph/0608079
http://arxiv.org/abs/arXiv:1003.1241
http://arxiv.org/abs/arXiv:1003.1643
http://arxiv.org/abs/arXiv:hep-ph/9708310
http://arxiv.org/abs/arXiv:hep-ph/9908409
http://arxiv.org/abs/arXiv:hep-ph/0507099
http://arxiv.org/abs/arXiv:hep-ph/0604048
http://arxiv.org/abs/arXiv:hep-ph/0604048
http://arxiv.org/abs/arXiv:0806.4145
http://arxiv.org/abs/arXiv:hep-ph/0504240
http://arxiv.org/abs/arXiv:hep-ph/0504240
http://arxiv.org/abs/arXiv:hep-ph/0406098
http://arxiv.org/abs/arXiv:hep-ph/0406098
http://arxiv.org/abs/arXiv:hep-ph/0407337
http://arxiv.org/abs/arXiv:hep-ph/0511188
http://arxiv.org/abs/arXiv:hep-ph/0608155
http://arxiv.org/abs/arXiv:hep-th/0403047
http://arxiv.org/abs/arXiv:hep-ph/0602204
http://arxiv.org/abs/arXiv:hep-th/0602012
http://arxiv.org/abs/arXiv:hep-ph/9903357
http://arxiv.org/abs/arXiv:hep-ph/9903357
http://arxiv.org/abs/arXiv:hep-ph/9909487
http://arxiv.org/abs/arXiv:hep-ph/0305334
http://arxiv.org/abs/arXiv:hep-ph/0305334
http://arxiv.org/abs/arXiv:hep-ph/0307057
http://arxiv.org/abs/arXiv:hep-ph/0209271
http://arxiv.org/abs/arXiv:hep-ph/9607454
http://arxiv.org/abs/arXiv:hep-ph/0508110
http://arxiv.org/abs/arXiv:hep-ph/0508110
http://arxiv.org/abs/arXiv:hep-ph/0305126
http://arxiv.org/abs/arXiv:hep-ph/0109068
http://arxiv.org/abs/arXiv:1010.3251
http://arxiv.org/abs/arXiv:hep-ph/0607127
http://arxiv.org/abs/arXiv:hep-ph/0610425
http://arxiv.org/abs/arXiv:hep-ph/0012260
http://arxiv.org/abs/arXiv:hep-ph/0012260
http://arxiv.org/abs/arXiv:hep-ph/0105349
http://arxiv.org/abs/arXiv:hep-ph/9807565
http://mlm.web.cern.ch/mlm/talks/kek-alpgen.pdf
http://arxiv.org/abs/arXiv:0910.4379
http://arxiv.org/abs/arXiv:1105.3624

	WHIZARD-simulating multi-particle processes at LHC and ILC
	The need for multi-particle event generators
	Physics simulation with WHIZARD
	Purpose and scope
	Workflow
	Program structure
	History and new features

	Checks and applications
	Standard model
	Previous studies
	W + jets
	Top pairs

	Supersymmetry
	Little Higgs
	Strongly interacting weak bosons
	Exotica

	O'Mega: optimized matrix element generator
	Requirements
	Complexity
	Relations to other algorithms
	Architecture

	The WHIZARD architecture
	Core libraries
	libaux
	libwhizard_core
	libvamp
	libomega and libmodels
	libcirce1 and libcirce2

	Optional (third-party) libraries
	LHAPDF
	STDHEP
	HepMC

	Further components of the package
	gamelan
	FeynMF

	Algorithms
	QCD and color
	Phase space and performance
	Multi-channel adaptive sampling: VAMP
	Interactions and evaluators
	State matrices
	Interactions
	Evaluators

	Event generation
	Decays
	Interfaces

	User interface
	Installation and prerequisites
	SINDARIN
	Implementation of the language
	Physics models
	Processes
	Beams and partons
	Parameters, cuts, and other input
	Using and analyzing results

	Extensions and extensibility
	Building models
	Improving or replacing matrix elements
	Higher orders

	Conclusions and outlook
	Acknowledgements
	Open Access
	Appendix A: Conventions
	On-shell wavefunctions
	Dirac and Majorana fermions
	Polarization vectors
	Polarization vectorspinors
	Polarization tensors

	Propagators
	Vertices

	Appendix B: Sample matrix element code
	References

