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Abstract—Recently, blockchain technology has become a topic
in the spotlight but also a hotbed of various cybercrimes. Among
them, phishing scams on blockchain have been found to make a
notable amount of money, thus emerging as a serious threat to
the trading security of the blockchain ecosystem. In order to cre-
ate a favorable environment for investment, an effective method
for detecting phishing scams is urgently needed in the blockchain
ecosystem. To this end, this article proposes an approach to detect
phishing scams on Ethereum by mining its transaction records.
Specifically, we first crawl the labeled phishing addresses from
two authorized websites and reconstruct the transaction network
according to the collected transaction records. Then, by taking
the transaction amount and timestamp into consideration, we
propose a novel network embedding algorithm called trans2vec
to extract the features of the addresses for subsequent phish-
ing identification. Finally, we adopt the one-class support vector
machine (SVM) to classify the nodes into normal and phish-
ing ones. Experimental results demonstrate that the phishing
detection method works effectively on Ethereum, and indicate
the efficacy of frans2vec over existing state-of-the-art algorithms
on feature extraction for transaction networks. This work is the
first investigation on phishing detection on Ethereum via network
embedding and provides insights into how features of large-scale
transaction networks can be embedded.

Index Terms—Blockchain, Ethereum, network embedding,
phishing detection.

I. INTRODUCTION

LOCKCHAIN is an open and distributed ledger that
B can record transactions between two parties efficiently,
verifiably, and permanently [1]. Recently, blockchain has
become a topic in the spotlight and the generalized blockchain
technology is expected to bring profound changes in the
fields of finance, science and technology, culture, and poli-
tics [2]. One of the most important and famous applications
of blockchain in economics is a digital asset (or cryptocur-
rency). The bitcoin project is the first successful large-scale
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application of blockchain and the first practical implementa-
tion of cryptocurrency.

Ethereum is currently the largest blockchain platform that
supports smart contracts and the corresponding cryptocurrency
ether is the second-largest cyptocurrency [3]. However, along
with its high-speed development, Ethereum has also become a
hotbed of various cybercrimes [4]. Initial coin offering (ICO)
is a financing method for the blockchain industry, which refers
to financing through the issuance of tokens. However, till
now, more than 10% of ICOs released on Ethereum have
been reported to be suffer from a variety of scams, includ-
ing phishing, Ponzi schemes, etc. [5]. According to a report
of Chainalysis, a provider of investigation and risk manage-
ment software for virtual currencies, there were 30287 victims
losing $225 million in the first half of 2017 [6], indicating that
financial security has become a critical issue in the blockchain
ecosystem.

Besides, among various security issues of blockchain digi-
tal cryptocurrency, the number of phishing scams accounts for
more than 50% of all cybercrimes in Ethereum since 2017 and
this kind of scam has become as a main threat to trading secu-
rity of Ethereum [7]. A typical phishing scam on Ethereum
happened when Bee Token, a blockchain-based home-sharing
service, planned to launch its ICO on January 31, 2018. Before
the official release of the ICO, phishers sent fake emails to
would-be investigators of the ICO and promised them an extra
bonus for all the contributions within the next 6 h and a double
value of the token within the next two months. This phishing
scam eventually swindled nearly $1 million in just 25 h. In
order to create a favorable environment for investment on the
blockchain ecosystem, an effective method for detection and
prevention of phishing scams is urgently needed.

In the past decades, with the rise of online business, phish-
ing scams emerges as a main threat to trading security. By
disguising as a trustworthy entity, phishers attempt to obtain
the users’ sensitive information, such as usernames, passwords,
and credit card details. The issue of phishing detection has
been widely and extensively discussed and a number of anti-
phishing methods have been proposed. However, compared
with traditional scenarios, phishing scams on Ethereum behave
very differently in several aspects.

First, as cryptocurrencies instead of cash become the tar-
get of phishing scams, the phishers on Ethereum need to
cash the ill-gotten cryptocurrencies through exchanges for fiat
money. Second, all the transaction records of public blockchain
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systems such as Ethereum are publicly accessible, providing
us a complete data source for mining the transaction manner
of different Ethereum users, which may be useful for phish-
ing detection. Third, as most traditional phishing frauds rely
on phishing emails and websites to obtain the users’ sensitive
information, existing methods of phishing detection usually
focus on how to detect the emails or websites containing
phishing fraud information [8]. However, phishing methods
on Ethereum are usually much more diverse than that of tradi-
tional phishing scams and phishing information can be spread
in a variety of forms.

Therefore, existing detection methods for traditional phish-
ing frauds cannot be directly applied to solve the phishing
detection problem on blockchain platforms like Ethereum.
Though important and urgent, the problem of anti-phishing
on blockchain ecosystem has never been discussed in cur-
rent work.

As openness and transparency are the major features of the
blockchain technology, extracting information from the trans-
action records is an intuitive way to detect phishing scams on
the Ethereum platform [9]-[11]. The Ethereum transaction his-
tory can be modeled as a directed transaction network, where
a node is a unique address (We use “address” and “account”
interchangeably in this article.) and an edge refers to the exis-
tence of at least one transfer of ether between two addresses.
Yet when utilizing the transaction records of Ethereum for
fraud identification, we may face the following three problems
that hinders the performance of fraud identification.

Extreme data imbalance is one of the biggest obstacles for
phishing detection on Ethereum. According to a report on
etherscan.io, a famous block explore and analytics platform for
Ethereum, the total number of addresses and the total num-
ber of transactions of Ethereum are more than 500 million
and 3.8 billion, respectively. In contrast, the total number of
labeled phishing addresses posted on etherscan.io is only 2041.
Therefore, finding phishing addresses in such a huge network
is tantamount to finding a needle in a haystack.

Network heterogeneity of the Ethereum transaction network
refers to the fact that many transactions are related to some
public or popular addresses, such as wallet, exchanges, and
famous ICOs while the majority of addresses including both
normal and phishing addresses may have a relatively small
number of transactions. In such a heterogeneous network, it
may be more difficult to classify the phishing and nonphishing
addresses with topological information only.

Feature Extraction: The identification of phishing addresses
on Ethereum is essentially a classification problem in machine
learning, whose performance is closely related to the choice
of data representation and extracted features. Only when
we extract the characteristics which can accurately distin-
guish phishing and nonphishing addresses, can we effectively
implement the detection scheme for phishing scams.

Intuitively, the problem of phishing detection on Ethereum
can be modeled as a binary classification problem and solved
by using supervised learning approaches. However, the afore-
mentioned problems of extreme data imbalance and network
heterogeneity may influence the performance of supervised
classification methods in a large scale. Therefore, here, we
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employ an unsupervised anomaly detection approach, namely,
one-class support vector machine (SVM), to solve the phish-
ing detection task on Ethereum by turning it into a single
classification task.

On the other hand, the performance of machine learning
methods is heavily dependent on the choice of data rep-
resentation (or features). Network embedding is a learning
paradigm which embeds nodes, links, or entire (sub) graphs
into a low-dimensional. Compared with the traditional feature
engineering method, network embedding is a more efficient
and automatic way to extract features from large-scale net-
worked data, thus being a promising candidate for the issue
of phishing detection on Ethereum discussed in this work.
Different from general networks, each link in the Ethereum
transaction network has specific transaction information, such
as transaction amount and timestamp.

In summary, considering the above-mentioned three chal-
lenges, we propose a comprehensive identification model for
the detection of phishing scams on Ethereum. First, com-
bining the transaction data obtained through an Ethereum
client and the labeled phishing addresses from two authori-
tative websites, we build a large-scale Ethereum transaction
network where the nodes are classified into labeled phishing
and unlabeled addresses, and the edges present the transac-
tion between the addresses. Second, to extract features from
the large-scale Ethereum transaction network more accurately
and efficiently, we design a novel network embedding algo-
rithm called trans2vec with biases of transaction amount and
timestamp. Finally, to deal with the problems of extreme data
imbalance and network heterogeneity, we adopt the one-class
SVM to classify the phishing and nonphishing addresses.

The main contributions of this article are summarized as
follows.

1) Problem: To the best of our knowledge, this work
is the first investigation on phishing identification on
Ethereum via network embedding. The proposed identi-
fication model can be utilized by uniform platforms of
Ethereum to detect suspicious phishing addresses and
remind users when they attempt to transfer money to
these suspicious addresses.

2) Algorithm: We propose a novel network embedding
model specifically for transaction networks by incorpo-
rating the transaction amount values and timestamps of
transaction links. It is worth mentioning that although
the model in this work is proposed for the scenario of
phishing identification on Ethereum, it can be applied to
behavior recognition scenarios of other similar transac-
tion networks.

3) Evaluation: Extensive experiments on an Ethereum
transaction network validate the effectiveness of the
proposed algorithm in the identification of phishing
nodes. Additionally, experimental results demonstrate
that the proposed trans2vec significantly outperforms the
state-of-the-art network embedding methods.

The remainder of this article is organized as follows.
Section II presents recent work about frauds on Blockchain,
phishing scams, and anomaly detection based on network
embedding. In Section III, we provide an overview of the
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Ethereum data and then give the problem definition of phish-
ing identification on Ethereum. Then, we present the technical
details of the proposed embedding algorithm trans2vec and the
overall detection framework in Section IV. In Section V, we
evaluate the phishing detection performance of the proposed
method on Ethereum and assess the parameter sensitivity and
scalability of trans2vec. Finally, we draw conclusions and
discuss future work in Section VI.

II. BACKGROUND AND RELATED WORK
A. Frauds on Blockchain

Blockchain was invented by Satoshi Nakamoto in 2008 to
serve as the public transaction ledger of the cryptocurrency
bitcoin. The design of bitcoin has inspired various other appli-
cations, and the blockchain technology which has the features
of openness and decentralization has been widely used by
cryptocurrencies.

Ethereum is an open-source blockchain-based platform fea-
turing smart contract functionality. The concept of Ethereum
was first proposed in late 2013, and the formal development
of the Ethereum software project began in early 2014.

However, with the rapid development of blockchain tech-
nology and applications of smart contracts, there have been a
growing number of frauds in the name of digital currency trad-
ing and technological innovation [12]. Vasek and Moore [13]
performed the first empirical study of financial scams on
bitcoin and defined four categories of scams: 1) Ponzi
schemes; 2) mining scams; 3) scam wallets; and 4) fraudulent
exchanges. On the platform of Ethereum, a number of studies
have probed into the vulnerability of smart contracts and the
security of ICOs [14]-[18]. For example, Atzei et al. [14] ana-
lyzed the security of Ethereum smart contracts by discussing
the major attacks and threats.

In addition to research on smart contracts and ICO appli-
cations, a series of studies focusing on scam detection in the
Ethereum platform has been conducted. Bartolett er al. [19]
reported the first comprehensive investigation of the Ethereum
Ponzi scheme. Later, Chen et al. [20] put forward a method
to identify hidden smart Ponzi schemes through data mining
and machine learning approaches.

B. Phishing Scams

Phishing refers to a form of online threat defined as the art
of impersonating a website of an honest firm aiming to acquire
users’ private information, such as usernames, passwords, and
social security numbers [21]. Typically, a traditional phishing
attack begins by sending an email that seems to be from an
authentic organization to victims.

To counter the threat from phishing scams, a number of
anti-phishing solutions have been proposed by both indus-
try and academia. For example, Abdelhamid et al. [21]
investigated phishing detection using a multilabel classifier,
Medvet et al. [22] presented a novel technique to visually
compare a suspected phishing page with a legitimate one,
and Zouina and Outtaj [23] presented a detection system for
phishing websites using SVM.

In summary, as traditional phishing frauds usually rely
on phishing emails and websites to obtain users’ sensitive

information, most existing detection methods of phishing
scams are based on text detection of email and Web content.

Compared with traditional scenarios, phishing scams on
Ethereum can be conducted in more diverse ways. This kind
of phishing frauds can not only obtain the users sensitive
information and money via phishing websites but also swindle
money directly by spreading phishing addresses to victims via
emails, websites, and online chats. Take the well-known phish-
ing scam on Bee Token ICO [24] as an example, the phishers
sent a fake email to would-be buyers before the startup runs
its token sale and induced the investors to transfer money to a
particular address. Without any phishing website, this phishing
scam eventually gathered about $1 million from the investors
in only 25 h.

Therefore, traditional phishing detection methods based on
websites cannot be directly applied to solve the phishing
detection problem on Ethereum, because only a small part of
phishing scams are implemented through phishing websites.

However, thanks to the openness and transparency of
blockchain, victims of phishing scams can usually find out
where their fraudulent funds went and report the suspi-
cious phishing addresses. Besides, all transaction records on
Ethereum are publicly accessible, thus making it possible to
identify phishing addresses via mining the transaction behavior
between addresses.

To this end, considering the unique characteristics of the
Ethereum environment, we model the transaction records
between addresses as a directed transaction network and pro-
pose a network embedding framework of phishing detection by
extracting information from the Ethereum transaction records.

Fig. 1 compares the phishing process and phishing detection
framework between traditional scenarios and Ethereum. We
can see that the Ethereum phishing detection is different from
the conventional way in terms of detection objects, adopted
data sources, as well as detection methods. First, unlike tra-
ditional detection methods aiming to figure out the phishing
websites, our detection object here is to detect the Ethereum
addresses of the phishers. Therefore, compared with tradi-
tional methods, the phishing detection framework discussed in
this article has a distinct detection granularity. Second, tradi-
tional detection models are mainly based on content and URL
information of the websites [23], [25], [26], while the detec-
tion framework here utilizes the transaction records between
Etherum addresses to distinguish the phishing and nonphishing
addresses. Third, in terms of detection methods, most existing
detection methods of phishing scams extract features of web-
sites, such as URLs, hyperlinks, sensitive words hinting at the
possibility of phishing, and other content-based features based
on text detection of email and Web content, while here we
model the Ethereum transaction history as a directed transac-
tion network and propose a network embedding method which
can automatically learn the features of addresses to distinguish
phishing and nonphishing addresses.

C. Anomaly Detection Based on Network Embedding

With the explosive growth of big data, network-based
anomaly detection algorithms have attracted increasing atten-
tion from both academia and industry. Network-based anomaly
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detection methods can be applied to both static and dynamic
graphs with tags or attributes, applicable to many areas, such
as financial networks, security, healthcare, and so on [27].

Anomaly detection based on network embedding is an
emerging technique in recent years. Some of these anomaly
detection techniques propose their own embedding meth-
ods based on the characteristics of the network [27], [28],
while some others adopt existing embedding methods. Existing
network embedding methods can be categorized into four main
classes: 1) factorization methods [29], [30]; 2) random walk
techniques [31], [32]; 3) deep learning [33], [34]; and 4) other
miscellaneous strategies [35]. After optimizing the embedding
space, the results of the learned node embeddings can be
utilized as extracted feature inputs for downstream machine
learning tasks.

III. DATA DESCRIPTION AND PROBLEM DEFINITION

This study aims to detect the phishing addresses on
Ethereum based on large-scale transaction records. In this sec-
tion, we first provide an overview of the transaction data and
then introduce the problem of fault identification on Ethereum.

A. Data Description

Transaction Records: In order to obtain the Ethereum trans-
action network, we adopt the same method used in [36]
to collect transaction records from the launch of Ethereum
through an Ethereum client. According to the Ethereum Yellow
Paper [37], each Ethereum client contains all transaction his-
tory. In this way, we can obtain a transaction record dataset we
need, and then build a transaction network where each node
represents an address and each edge indicates the ether trans-
action between a pair of addresses. It should be noted that
in this transaction network, each edge between two nodes is
assigned with the total transferred amount and the timestamp
of the last transaction between them.

Labeled Phishing Addresses: The issue of phishing
identification on Ethereum can be modeled as a binary
classification problem, which is a typical supervised learn-
ing task. Therefore, we need enough labeled data to train
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Comparison of the phishing process and phishing detection framework between (a) traditional scenarios and (b) Ethereum.

the classification model and further verify the effective-
ness of our method. In this work, we collect the labeled
data about phishing scams from two authoritative websites
which report various illegal behaviors on Ethereum. One
is EtherScamDB (https://etherscamdb.info/scams), which col-
lects information about online scams to guide Ethereum
investors away from possible frauds. The other one is
Etherscan (https://etherscan.io/), which serves as an Ethereum
block explorer. The reports about various scams on these two
websites show not only the content of scams but also the
addresses suspected of involvement in frauds. From the various
scams reported on these two websites, we extracted addresses
which are related to phishing scams. To ensure the accuracy
of the labeled data, we crawl all the reports about phishing
scams before March 10, 2019, and only the addresses reported
by both websites are labeled as phishing addresses.

After obtaining all the transaction records, we obtain
more than 500 million addresses and 3.8 billion transaction
records. However, only 1259 addresses are labeled as phish-
ing addresses. Therefore, the extreme data imbalance is one
of the biggest obstacles for phishing detection on Ethereum.
Besides, all addresses on Ethereum can be categorized into
several types. As shown in Fig. 2, the red points are labeled
as phishing addresses, the blue points are known exchanges,
the yellow points are smart contract addresses, and other points
are common unknown addresses. The different types of nodes
described above tend to behave distinctly in terms of trans-
action characteristics. For example, some public or popular
addresses such as the blue and yellow points may involve in
a large number of transactions, while a majority of phishing
and common addresses may have a relatively small num-
ber of transactions. Therefore, the heterogeneity nature of the
Ethereum network may make it more difficult to classify the
phishing and nonphishing nodes.

Due to the aforementioned issues of extreme data imbal-
ance and network heterogeneity, it is difficult to obtain decent
performance by modeling this detection problem into a super-
vised binary classification problem. Therefore, here, we adopt
an unsupervised anomaly detection approach called one-class
SVM by turning this problem into a single classification
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task [38]. In this way, the behavior of phishing nodes can
be distinguishable from the others in a suitable feature space,
and the task of detecting the phishing nodes is a “outlier detec-
tion” or “one-class classification,” which aim to find a decision
surface around the targets. The nodes that lie inside this deci-
sion surface are classified as targets (i.e., the phishing nodes),
whereas nodes that lie outside are classified as outliers (i.e.,
other nodes).

B. Problem Definition

Through the above operations on the Ethereum data, we
obtain a transaction network. Let G = (V, E), where V rep-
resent the set of nodes, and E is the set of edges. Gy =
(V,E, X,Y) is a partially labeled network, with edge attributes
X € RIEIXS where S is the size of the feature space for each
edge, and ¥ € RIVIXIYI where Y is the set of labels. In the
Ethereum transaction network, each edge contains two criti-
cal attributes, namely, transaction amount and timestamp. For
the scenario of phishing address identification, )’ contains two
labels, i.e., +1 for phishing node and —1 for normal samples.

The principal aim of this work is to detect phishing scams
on an extremely large-scale Ethereum network. Because of the
large-scale of the network and the imbalance of data labels, we
propose a biased network embedding algorithm, which incor-
porates the transaction amount and timestamp of each edge
to better capture the information from the Ethereum transac-
tion network. The goal of the network embedding algorithm
is to learn the embeddings of all nodes Xg € R‘V‘Xd, where d
is the number of dimensions for feature representation. These
obtained node embeddings can be used as feature inputs for
the downstream classification task.

Fig. 3 gives a simple illustration of the embedding procedure
on the Ethereum transaction network.

IV. MODEL FRAMEWORK

In this section, we first introduce the proposed network
embedding method for transaction networks called trans2vec,
including the feature learning process of network embedding

and the proposed neighborhood sampling strategy for
Ethereum, and then describe the overall framework of phishing
detection.

A. Feature Learning Process

In recent years, random walk-based network embedding has
been proposed and widely used to automate the process of
feature extraction.

This kind of network embedding aims to learn a mapping
function from nodes to node embeddings (f : V —> RMXd),
maximizing the likelihood of co-occurrence of neighbor nodes
in a d-dimensional feature space. The embedding process
consists of two main parts: the first part is a random walk
generator, which is used to capture the structural relationships
between nodes; and the second part is the Skip-gram architec-
ture, which is used to learn the node embedding via solving
a maximum-likelihood optimization problem. By conducting
truncated random walks, a large-scale network is transformed
into a set of node sequences sampled from it. For each source
node u € V, each node sequence sampled from the network
by a particular sampling strategy S is defined as Ns(u) € V.

Skip-gram is a widely adopted architecture for data repre-
sentation learning which was originally proposed for natural
language processing [39]. The objective of Skip-gram is max-
imizing the co-occurrence probability among the words that
appear within a window. Inspired by the Skip-gram architec-
ture, network researchers proposed to present a network as a
“document.”

Following previous studies on network embeddings, here we
employ the Skip-gram architecture to optimize the following
objective function, which maximizes the log probability of the
occurrence of nodes from the neighborhood Ng(i) for a node
u conditioned on its node embedding, i.e.,

max Y log Pr(Ns (u) | f()). (1
f
ueV
In this work, we adopt the stochastic gradient descent
approach to optimize f by solving (1).

B. trans2vec for Transaction Networks

As mentioned above, the Skip-gram architecture adopted in
random walk-based network embedding methods was origi-
nally inspired by the word2vec in natural language process-
ing [40]. As words in natural language are linearly listed,
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it is reasonable to use sliding windows to define neighbors
of words. However, nodes in the network are not linearly
connected, and thus we need to use a method to define the
neighborhood of a node.

For the Ethereum transaction network, considering the
amount value and timestamp of each transaction, we propose
three targeted biased random walk strategies for neighbor sam-
pling, which can extract the indispensable information of the
transaction network more comprehensively.

1) Random Walks: Given a source node u, we perform the
random walk to obtain node sequences with a fixed length /.
Let ¢; denote the ith node in the sequence, starting with co = u.
The probability of choosing a particular node x as c; is

T if (u,x) € E

Plei=x]cimi=u)= {OZ ’ otherwise

2)

where m,, is the unnormalized transition probability from
nodes u to x, and Z is the normalizing constant.

2) Search Strategies: In a random walk-based network
embedding algorithm, it is pivotal to choose proper prefer-
ences in the walking process. For example, node2vec defines
two parameters to interpolate between depth-first search and
breadth-first search [32]. This highly adaptable algorithm takes
into account both local and global information. In this work,
we focus on a type of transaction network which contains
some unique information. For financial transaction networks
like the Ethereum, each edge has a particular amount and
timestamp, which is very critical but cannot be captured by
general random walk-based network embedding methods. In
order to learn the features of a transaction network more com-
prehensively, we design biased random walk strategies based
on transaction amount and timestamp.

The process of sampling neighborhoods of a node can be
viewed as a local search. For the purpose of a fair comparison,
we set the size of the neighborhood set as k and then search
a number of sets for each node. For the Ethereum transac-
tion network discussed in this work, we consider two kinds of
biased sampling methods.

Amount-Based Biased Sampling: Intuitively, a larger amount
of value of the transaction implies a stronger or closer rela-
tionship between the two involved nodes. We denote V,, as
the set of nodes directly connected to node u and use a linear
function to incorporate the amount information to the sam-
pling probability. Under the amount-based biased sampling,
starting from node u, the transition probability from node u to
a neighbor node x € V,, is given as

PA,, = M (3)
> vev, Al ¥)
where A(u, x) denotes the total amount value of the transac-
tion(s) between nodes u and x.

Time-Based Biased Sampling: In addition, each edge has a
unique timestamp. Here, we assume that the later the trans-
action is, the greater the impact on the current relationship of
the nodes. First, we map the realistic timestamps of the edges
to discrete time steps. Let T : E —> 7Z be a function that
sorts the transaction edges in ascending order of timestamps.
Similarly, under the time-based biased sampling, starting from
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Fig. 4. Tllustration of an Ethereum transaction network.

node u, the transition probability from node u to a neighbor
node x € V,, is

T (u, x)
ZX/EVL, T(u, -x/)

where T'(u, x) denotes the timestamp of the latest transaction
between nodes u and x.

Fig. 4 plots a simplified illustration of the random walk
procedure in a transaction network. Starting from node u, the
node x4 will be most likely to be chosen as the next node
when the amount-based sampling is adopted. While under the
time-based biased sampling, node x; should have the largest
probability to be sampled.

Search Bias Parameter «: In order to take both time and
amount into account, we use a parameter ¢(0 < o < 1) to
balance their effects. The unnormalized transition probability
from nodes u to x can be given as

PTy = (4)

Tu(@) = PAY - PT1 %, (5)

Here, the parameter « allows the sampling procedure to
adjust its bias between time and amount. As shown in Fig. 4,
the edge (u, x1) has a larger value of time step but a smaller
value of amount when compared with the edge (u, x4). The
strategy will be more likely to sample node x; when « is very
small and tends to sample node x4 otherwise. In this way, the
search bias can be balanced between time and amount weights.

3) trans2vec Algorithm: The proposed random walk-based
network embedding method is named trans2vec as its principal
task is to embed the transaction information into node repre-
sentation vectors. The pseudocode for the proposed trans2vec
is listed Algorithm 1. We conduct the process of trans2vec
random walk to sample the large-scale transaction network.
Specifically, we perform r random walks with walk length /
from each source node. At every step of the walk, we design a
biased sampling strategy, in which a search bias parameter o
allows us to smoothly transfer between the two biases based
on transaction amount and time. It should be noted that as the
transition probabilities m,, can be precomputed, the random
walk procedure of the frans2vec can be conducted efficiently in
O(1) time using alias sampling. In addition, similar to previous
work [32], we first use a preprocessing procedure to calculate
the transition probabilities, then conduct the trans2vec random
walks, and finally, optimize the mapping function f of the node
embeddings by utilizing stochastic gradient descent.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on September 07,2020 at 07:07:15 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WU et al.: WHO ARE THE PHISHERS? PHISHING SCAM DETECTION ON ETHEREUM VIA NETWORK EMBEDDING 7

Algorithm 1 trans2vec Algorithm
Require: (The transaction network G = (V, E, X) where X
contains the transaction amount and timestamp information
of all edges, embedding dimension d, walks per node r,
walk length [, context/neighborhood size k, search bias
parameter o)
m=PreprocessTransitionProbability(G,o)
G =(V,E X, m)
Initialize walks to Empty
for iter =1 to r do
for each node u € V do
walk=trans2vecwalk(G’, u, I)
Append walk to walks
end for
end for
f = StochasticGradientDescent( k, d, walks)
return f

trans2vecwalk (Graph G = (V, E, ), Starting node
u, Length [, search bias «)
Initialize walk to [u]
for walk_iter =1 to [ do
curr = walk[-1]
V_curr = GetNeighbors(curr, G/, )
s = AliasSample(V oy, )
Append s to walk
end for
return walk

Building a transaction network Tran2vec Detection
A transaction network Network Classifier
with phishing/other Embedding
addresses
Oneclass
SVM
Skip-gram
model
Phishing Transaction
labels records +
e Phishing
time ;
based bias detection
Ethersan.i EtherScam || Ethereum
ersanio | pg Client Jandorn walk

Fig. 5. Framework of phishing detection on Ethererum.

C. Phishing Detection Framework

After utilizing the proposed trans2vec algorithm to obtain
node embeddings, we use them as feature inputs for the task
of phishing scam detection on Ethereum. Fig. 5 presents the
overall framework of the phishing detection method which
contains three main steps.

First, combining the collected transaction records through
an Ethereum client and the labeled phishing addresses from
two authoritative websites, we build a large-scale Ethereum
transaction network where the nodes are classified into phish-
ing and other addresses, and the edges present the transaction
between each pair of addresses. Second, to extract features
from the Ethereum transaction network more accurately and

TABLE I
NETWORK PROPERTIES OF THE 50 EXTRACTED SUBNETWORKS

Network Properties ‘ Node Number  Edge Number  Average Degree

Average 60442.3 236221.6 6.62
Maximum 97221 310244 7.26
Minimum 49862 162766 6.12

efficiently, we design a novel network embedding algorithm
trans2vec with biases of transaction amount and timestamp.
Finally, we adopt the one-class SVM to classify the phishing
and other addresses.

V. EXPERIMENTS

In this section, we present the experimental results of the
proposed phishing detection framework. First, we describe the
experimental dataset. Then, we explain the setup of the exper-
iments in detail. Finally, we perform the phishing detection
task on Ethereum transaction data to demonstrate the effec-
tiveness, parameter sensitivity, and scalability of the proposed
algorithm and give an analysis of experimental results.

A. Datasets

As discussed in Section III-A, here we adopt the one-class
SVM method to classify phishing and nonphishing nodes. As
1259 addresses are labeled as phishing nodes which are the
targets of the detection approach, we randomly select 1259
unlabeled nodes as the outliers.

With these labeled and unlabeled nodes being the central
nodes, we extract their first-order neighbors and the con-
nected edges between all of them to form a subnetwork. In
our experiments, we repeat the random selection procedure of
unlabeled nodes for 50 times and thus obtain 50 subnetworks.
As shown in Table I, these subnetworks contains more than
60000 nodes and 200000 links on average. Then, each sub-
network is embedded via the proposed trans2vec method to
obtain the feature vectors of the central nodes for the down-
stream classification task. In the final classification task, we set
80% of the total data as training data and the rest as test data.

B. Baseline Methods

Referring to Fig. 5, we propose a biased random walk-based
network embedding method to obtain the node feature vector.
In the experiment, our proposed method is compared with two
popular network embedding approaches based on the random
walk, i.e., DeepWalk and node2vec.

1) DeepWalk [31]: This is the pioneering work to learn
node representations via simulating unbiased random
walks. It proposes to sample the network via ran-
dom walks on the network and defines the neighbor-
hood/context of a node by its co-occurred nodes on the
walks. After the process of node sampling, it learns node
embeddings by predicting each node’s neighborhood.

2) node2vec [32]: Following DeepWalk, node2vec defines
a more flexible notion of a node’s neighborhood and
exploits a biased random walk to encode both local and
global network structure.
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Considering the properties of a transaction network, the
proposed trans2vec strategy samples the network based on
both two kinds of transaction features, including the transac-
tion amount and timestamp. In order to observe the effect of
each feature more clearly, we also consider a biased sampling
method based on only time or amount in the experiments.

To implement these network embedding methods, we need
to set the following parameters: embedding size d, walks per
node r, walk length [/, and context size k. In our experiment,
the parameter settings are d = 64, r = 20, [ = 5, and k = 10.
For node2vec, we set p = 0.25 and g = 0.75 according to the
guidance given in [32]. For the proposed trans2vec, we vary
the search bias parameter « from O to 1, and set @ = 0.5 as the
default value to balance the effects of amount and time biases.

However, all the aforementioned network embedding meth-
ods learn and encode the topological structural information
of the Ethereum transaction network automatically. Therefore,
in order to verify the importance of the network structural
information as well as the time and amount information of
the transactions, we consider three nonembedding methods
to extract local features of the addresses for phishing detec-
tion, namely, time features only method, amount features only
method, as well as time plus amount features method. In detail,
the time features only method extracts the maximum time
interval, the minimum time interval, total transaction time,
and trading frequency of each address; the amount features
only method extracts the maximum transaction amount, the
minimum transaction amount, total transaction amount, and
average transaction amount of each address; and the time plus
amount features method consider the above eight statistics as
extracted features.

C. Performance Evaluation Metrics

To evaluate the performance of different methods in terms
of phishing detection, we consider three evaluation metrics,
namely, precision, recall, and F-score. We repeat experiments
on each subnetwork for 100 times and report the average
results.

The three metrics are defined as follows:

.. true positive
Precision =

true positive + false positive
true positive

Recall = — -
true positive + false negative

Precision x Recall
F-score = 2 x

Precision + Recall

D. Classification Performance

We first compare the results of the nonembedding methods
which have not consider the structural information, and the
experimental results given in Table II indicate that all these
methods cannot achieve the satisfying performance of phish-
ing detection. Moreover, we can observe that considering the
combination of the two kinds of features leads to better classi-
fication performance than using only time or amount feature.
This result indicates that without structural information, only
time or/and amount features of the addresses are not sufficient
to achieve decent classification performance.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

TABLE 11
PERFORMANCE COMPARISONS OF NONEMBEDDING ALGORITHMS WHICH
CONSIDER ONLY TIME FEATURES, AMOUNT FEATURES, AND BOTH. THE
BEST RESULTS ARE MARKED IN BOLD

Method \ Precision  Recall ~ F-score

Time Features Only 0.351 0.302 0.326

Amount Features Only 0.396 0.321 0.358

Time + Amount Features 0.509 0.478 0.494
TABLE III

PERFORMANCE COMPARISONS OF DIFFERENT EMBEDDING ALGORITHMS
WHEN THE EMBEDDING DIMENSION d IS SET AS 64. THE BEST RESULTS
ARE MARKED IN BOLD

Method \ Precision  Recall ~ F-score
Deepwalk 0.799 0.762 0.780
Node2vec 0.870 0.822 0.845
Time-based Bias 0.864 0.822 0.842
Amount-based Bias 0.883 0.855 0.868
trans2vec 0.927 0.893 0.908
Given embedding size d = 64, the experimental results

of the embedding methods which encode network structural
information are compared in Table III. The results given in
Table III demonstrate that the proposed trans2vec method
outperforms the other embedding methods in terms of all
evaluation metrics. Moreover, we can observe that both the
amount-based and time-based samplings perform better than
the unbiased DeepWalk, and a comparison between these
two biases indicates that the amount factor tends to have
a more important influence on the embedding results for
the Ethereum transaction network, and thus achieve better
performance than the time-based bias. Therefore, Table III
indicates that extracting only structural information cannot
ensure good performance. After incorporating the time and
amount features of the transactions with structural information,
the proposed embedding method performs best.

Combining the results in Tables II and III, we can conclude
that the structural information of the transaction networks,
as well as the transaction time and amount are indispensable
features for the phishing detection task.

As shown in Fig. 6, we gradually increase the embedding
dimension of the node vectors from 4 to 64. Obviously, the
larger the node vector dimensions, the better the classifica-
tion performance. This is because larger node vector dimen-
sions are likely to retain richer network structure and node
information. We observe that when the embedding dimension
d is set as 4, the performance of frans2vec in terms of recall
and F-score is relatively worse than that of the amount-based
biased method, implying that the trans2vec method can embed
richer information and thus requires a larger value of d for data
representation. When we select a larger value of the embed-
ding dimension (d > 8 in Fig. 6), trans2vec performs best in
terms of precision, recall, and F-measure.

Besides, the selected classifier of the detection framework
is also a factor affecting the detection performance. Therefore,
here we consider several widely considered classifiers as
baselines, namely, logistic regression, naive Bayes, and isola-
tion forest. Using the node representation vectors of trans2vec
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Fig. 7. Results of (a)-(e) parameters analysis and (f) scalability.

TABLE IV
PERFORMANCE COMPARISONS OF DIFFERENT CLASSIFIERS WHEN THE
FEATURES ARE EXTRACTED USING THE PROPOSED TRAN2VEC WITH
d = 64. THE BEST RESULTS ARE MARKED IN BOLD

Method \ Precision  Recall ~ F-score
Logistic regression 0.762 0.738 0.75

Naive bayes 0.771 0.702 0.736
Isolation forest 0.821 0.849 0.835
One-class SVM 0.927 0.893 0.908

with dimension d = 64 as input features, the detection results
of different classifiers are compared in Table IV. We can
observe that the performance of the one-class SVM is obvi-
ously better than other classifiers as it is more suitable for the
problem of anomaly detection here, and thus we select it as
the classifier in our phishing detection framework.

E. Parameter Sensitivity

For the proposed trans2vec, there exists a number of
parameters which may influence the embedding results. In

Fig. 7(a)—(e), we evaluate the effects of a series of parame-
ters on the performance of trans2vec on the phishing detection
task on the Ethereum transaction network. When a particular
parameter is under evaluating, all other parameters are set as
default values. In this part, we only consider F-measure for
performance comparison.

We first explore the effect of « on F-measure by varying o
from 0.1 to 0.9. As shown in Fig. 7(a), the peak value appears
when « is around 0.5. This result indicates that the combi-
nation of these two biases can achieve better classification
performance. When « is set as 0, the algorithm becomes time-
based bias sampling. While when « is set to 1, the algorithm
becomes pure amount-based bias sampling.

We also examine the influence of the embedding dimen-
sion d and the node’s neighborhood parameters, including the
number of walks r, walk length /, and neighborhood size k. As
shown in Fig. 7(b), with an increase of the embedding dimen-
sion d, the algorithm can achieve better detection performance.
Besides, we observe from Fig. 7(c) that an increase of the
context size k from 6 to 10 can improve F-measure obviously
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but the performance seems to saturate when k reaches 10.
Similarly, referring to Fig. 7(d), increasing the length of walk
[ from 2 to 6 can boost the performance. However, when [ con-
tinues to increase, the algorithm will always walk to the same
node, thus reducing the quality of node representations and the
overall performance. Fig. 7(e) indicates that a larger number
of walks per node also improve the performance, which is not
surprising because it indicates a larger number of sampling
times to learn network representations.

FE. Scalability

To evaluate the scalability of frans2vec, we conduct this
algorithm with default parameter values for Erdos—Renyi (ER)
random graphs with node sizes increasing from 102 to 10°. For
each network size, we do 100 independent trials and compute
the average running time. As the ER random graphs are gen-
erated using a theoretical complex network model, the edges
cannot contain the transaction amount or timestamp which is
required by the trans2vec to calculate the transition probabil-
ity. To this end, we set the transaction amount and timestamp
of each edge in the random graphs as 1 to facilitate a similar
calculation.

The results of running time (in log scale) are shown in
Fig. 7(f). We observe that trans2vec scales linearly with the
number of nodes, which is acceptable in practice. Therefore,
we can conclude that trans2vec is a scalable method which is
suitable for applications on large-scale networks.

VI. CONCLUSION AND FUTURE WORK

In this article, we conducted the first systematic study of
phishing scams detection on Ethereum via network embed-
ding. Specifically, a three-step framework was proposed to
identify phishing nodes using their features extracted from
Ethereum transaction history with network embedding algo-
rithms. To extract features from the Ethereum transaction
network more accurately and efficiently, we designed a novel
network embedding algorithm trans2vec with biases of trans-
action amount and timestamp. Experiments on real-world
Ethereum transaction records demonstrated the effectiveness
of our proposed detection framework and the superiority of
trans2vec over baseline methods in terms of feature extraction
for Ethereum-like transaction networks.

Though urgent and important, the problem of phishing scam
detection on Ethereum is still unexplored till now. As a pre-
liminary work in this area, we hope this work can attract
extensive attention and efforts in this field. Several important
research issues can be explored along this topic. First, with
more comprehensive domain knowledge and a more detailed
data analysis, a more systematic and generalized network
embedding algorithm can be proposed for Ethereum and other
large-scale transaction networks. Second, as this article focuses
on the problem of phishing detection, effects of the proposed
network embedding on other realistic downstream tasks remain
to be verified. Third, detection and prevention methods for
other illegal behaviors on Ethereum, such as gambling, money
laundry, Ponzi schemes, etc., can be proposed by utilizing the
openness nature of the blockchain technology.
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