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Abstract

We investigate the problem of automatically labelling

faces of characters in TV or movie material with their

names, using only weak supervision from automatically-

aligned subtitle and script text. Our previous work (Ever-

ingham et al. [8]) demonstrated promising results on the

task, but the coverage of the method (proportion of video

labelled) and generalization was limited by a restriction to

frontal faces and nearest neighbour classification.

In this paper we build on that method, extending the cov-

erage greatly by the detection and recognition of characters

in profile views. In addition, we make the following contri-

butions: (i) seamless tracking, integration and recognition

of profile and frontal detections, and (ii) a character specific

multiple kernel classifier which is able to learn the features

best able to discriminate between the characters.

We report results on seven episodes of the TV series

“Buffy the Vampire Slayer”, demonstrating significantly in-

creased coverage and performance with respect to previous

methods on this material.

1. Introduction

We are interested here in the automatic labelling of peo-

ple in TV or film material with their identity. This is a

tremendously challenging problem due to the huge varia-

tion in imaged appearance of each character and the weak-

ness and ambiguity of available annotation. The ‘faces in

the wild’ project [4] set the scene for this problem by using

weak annotation from news web pages to label the faces in

images on the page. The equivalent challenge in video was

taken up in Everingham et al. [8], where we showed that

by using the weak supervisory information available from

transcripts (temporally aligned with subtitles) tracked faces

could be labelled. Common to both projects is that they are

limited to frontal faces, and that the classifiers are not learnt

discriminatively.

Our objectives in this paper are two-fold: (i) to improve

coverage (the number of characters that can be identified

and the number of frames over which they are tracked),

and (ii) to improve accuracy (correctly identify the charac-

ters). To address these objectives our first step is to incorpo-

rate profile views with comparable success to frontal views

(detection, tracking, facial features, speaker detection) and

with seamless integration of profile and frontal tracks, i.e.

promoting profiles to first class status.

Profiles have been detected and tracked in uncontrolled

video (TV, movies) at the level of difficulty considered

here [14, 16], but these papers have not dealt with the prob-

lem of recognizing faces in profile. In fact, moving from the

restricted case of frontal detection to also include profiles in

the same track potentially makes the problem much harder

as combining descriptors for frontal and profile views into

the same recognition framework is not straightforward. Our

second step addresses this problem by defining a kernel for

each descriptor, and learning a discriminative classifier us-

ing a linear combination of these kernels.

The strengths of this approach are (i) an integrated treat-

ment of multiple detectors enables learning across view-

points e.g. (weakly) labelled profile views contribute to

learning frontal appearance via tracking. For instance, if

there is supervisory information available for a profile view

and this profile is connected to a frontal view (e.g. the char-

acter turns their face) then the supervision can be trans-

ferred to the frontal view, harvesting additional labelled

faces; (ii) the multiple kernel combination enables us to

seamlessly combine diverse descriptors dependent on view-

point; and (iii) this approach is naturally extensible to other

descriptors which are computed on a per-instance basis and

have missing values, e.g. pose-specific descriptors or de-

scriptors which are affected by occlusion.

There has been considerable work on discriminative

classification of faces. In the case of images from web pages

(at the level of difficulty of faces in the wild) recent work

has shown the benefit of the discriminative approach both

for identity [15], and in the Facetracer project [13] for other

attributes such as age, ethnic origin, and gender. Indeed,

others [2, 9, 12] that have improved on the classification per-



formance of our previous work [8] have used discriminative

classification, though none have considered profile views.

The new element we bring here is using a linear combina-

tion of kernels for the classification, and in particular using

Multiple Kernel Learning (MKL) [3, 19] to determine the

combination of features used. This has the advantage that

an optimal combination of features is learnt – others have

considered multiple features, e.g. [13], but only by a greedy

learning algorithm. Here we discriminatively learn a char-

acter specific combination of kernels. This means that the

features (e.g. eye, a spatial region of the hair, etc) that best

discriminate one character from another can be learnt.

1.1. Background – overview of Everingham et al. [8]

In our previous work [8] we automatically label cast

members in video using only the video stream and textual

information in the form of sub-titles and aligned transcripts.

The method consists of three stages: (i) visual processing

to obtain face tracks for individual people in the video;

(ii) speaker detection to determine if a name proposed by

the aligned transcript should be used to label a face track;

and (iii) classification, where the unlabelled face tracks are

labelled by a classifier trained on the labelled tracks. We

briefly summarize these three stages which form the start-

ing point for this paper.

Face tracks and their descriptors. Frontal faces are de-

tected in every frame of the video and tracked throughout a

shot, such that each track is of a single character. The aim of

the subsequent algorithm is to label (associate names with)

each track. Each face in the track is represented by a feature

vector, computed from the image regions around 13 facial

features (based on the eyes, nose and mouth). A track is

represented by this set of feature vectors.

Speaker identification and exemplars. A transcript is

aligned with the subtitles using dynamic time warping, so

that speaker names appearing in the transcript are associated

with a time interval of the video. This is weak supervision

because the person speaking may not be visible or detected,

and there may be other faces in the scene. To strengthen the

supervision, names are only associated with tracks where

the face is detected as speaking. Nevertheless, this is still

noisy supervision. Speaker detection is based only on vi-

sual information. The outcome of this stage is that some of

the tracks are labelled (these are referred to as exemplars).

Note that our aims differ from related work which has made

more extensive use of script text [6] in that we aim to build

models which allow labelling of faces with no associated

text, rather than selecting from candidate names obtained

from a full transcript.

Classification of unlabelled tracks. The exemplar tracks

are used to label the remaining tracks using their visual de-

scriptors. This is formulated as a nearest neighbour clas-

sifier, with tracks being labelled by their nearest exemplar

based on the min-min distance between their sets of feature

vectors.

2. Face detection, tracking and alignment

In this section we describe our method of generating

tracks containing both frontal and profile faces, which is

our first improvement over [8].

2.1. Face detection

Two independent face detectors are used: one for ap-

proximately frontal faces, and one for approximately “3/4

view” to full left profile; right profiles are detected by

running on a mirrored input image. Detectors for each

view were implemented using a multi-scale sliding-window

classifier. Histogram of Oriented Gradients (HOG) fea-

ture extraction is used and a linear support vector machine

(SVM) [7]. Training data came from web images and is

disjoint to all test data used here. Details are given in [11].

Merging frontal and profile detections. As is common

with sliding-window detectors the face detector outputs

multiple responses at nearby locations and scales, and faces

between frontal and profile views are sometimes detected by

both detectors. Two stage processing is applied to remove

multiple detections and merge ambiguous frontal/profile de-

tections. First, conventional non-maximum suppression

is applied to the individual detectors. Second we merge

frontal/profile detections which are of the same face using

agglomerative clustering based on the overlap of the detec-

tions.

Face detector coverage. Example face detections can be

seen in Figure 1 and throughout. For a 40 minute video we

obtain around 65,000 raw detections after non-maximum

suppression. The merging process reduces this set to around

45,000 detections without discarding valid faces. Of these

around 42,500 are true positives, with approximately 30%

being profile views, indicating the importance of moving

beyond frontal face detection. At this high detection rate

the false positive (non-face) rate is quite high: around 6%

in total, with the non-frontal detector accounting for around

80% of the false positives. The majority of these can be

removed by tracking (Section 2.2) and removing intermit-

tent detections (short tracks), and by measuring confidence

in facial feature localization (Section 2.3). We return to the

issue of coverage in Section 6, where we assess coverage in

terms of what proportion of all appearances of a character

are detected.

2.2. Connecting faces by tracking

Faces detected in different frames of the same shot are

connected by tracking. This means that the subsequent

recognition effort is correctly targetted on a character (with

temporal longevity), rather than on individual detections.

For recognition, the principal advantage of grouping faces
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(a) Face detections and a sample of point tracks over 519 frames

(b) Extracted faces

Figure 1. Example results of face tracking by point feature tracking. (a) shows a subset of frames for a track of 519 frames (20 seconds) in

length. The characters walk through a scene such that the background is continuously changing (compare first frame to last). For each face

detection a subset of point tracks connecting the face to the previous detection shown are drawn in yellow. (b) shows the extracted faces.

Note that the tracker seamlessly connects frontal and profile face detections.

into tracks based on temporal continuity is that we gain

additional examples of the facial appearance ‘for free’.

Matching tracks rather than individual faces is more effec-

tive since, for example, only the closest pair of faces span-

ning a pair of tracks needs to be matched – this is exploited

in the ‘min-min’ kernels discussed in Section 5.

In our case, where we address detection and recognition

of both frontal and profile views, tracking has an additional

importance: by successfully tracking between frontal and

profile views we can link frontal/profile appearances which

could never be matched directly. The key here is that the

temporal coherence provides the link between the images.

As discussed in Section 3, this is essential in mining ex-

ample images of characters by automatic speaker detection:

by recognizing instances of frontal speaking and tracking to

profile we extract profile exemplars, and vice-versa.

We thus require our tracker to be robust enough to track

between frontal and profile views but not to ‘drift’ onto

non-face regions. Some promising results starting with

frontal-only detections have been shown in [16] using color-

histogram matching. We found that such an approach works

poorly for video such as Buffy where lighting is challeng-

ing, with scenes often set at night and fast motion – the suc-

cess in previous work [16] may be due to the sitcom genre

investigated (‘Friends’), where scenes are well-lit and con-

tain little camera or subject motion.

The method we propose here is an extension of [8] and

combines point tracking with clustering to obtain very ro-

bust tracks. The Kanade-Lucas-Tomasi feature tracker [18]

is applied to find evidence for connections between faces

detected by the face detector. In [8] the feature tracker was

applied independently of the face detector. However, this

can result in few features on faces which are either small

or in images with strong texture in the background (given a

finite budget of features per frame). To avoid this problem,

here we seed the feature tracker with features on every face

detection, tracking between detections, thus ensuring that

each face is covered by a dense set of tracks. The tracker is

run from the first to last frame of each shot, and symmetri-

cally from the last to first frame. In this way, we ensure that

features which are strong in faces appearing later in the shot

also contribute connections between faces.

Given a set of feature point tracks the support for con-

necting a pair of faces is measured by the number of fea-

tures which are in common to both faces i.e. those which

intersect the bounding boxes of both faces, and normalized

by the number of feature tracks which pass through either

but not both faces (i.e. an overlap score). Face pairs for

which this ratio exceeds 0.5 are considered candidates for

connection. Agglomerative clustering is applied as in the



Figure 2. Facial feature localization in profile views. Note the ac-

curate feature localization despite variations in pose between ‘3/4’

view to full profile and challenging lighting.

intra-frame merging method (Section 2.1) but with no pose

bias. With no tuning of parameters the method gives ex-

tremely robust results, connecting e.g. 45,000 face detec-

tions into around 2,000 tracks with zero incorrect merges.

Figure 1 shows an example of tracked faces over a long shot

with significant camera and subject motion and variation in

pose of the face between frontal and profile. By delegat-

ing the face tracking problem to point tracking the method

deals effortlessly with variation in face pose from frontal

to full profile and copes with missing detections. Since the

tracking task is formulated as one of connecting detections,

the method exhibits none of the drift or failure to terminate

tracks associated with conventional online tracking, and has

no critical parameters to be specified manually.

2.3. Facial feature localization

The output of the face detector exhibits some noise over

location and scale, particularly for views which are between

frontal and profile. Facial feature (eye, mouth, etc.) local-

ization is therefore useful as a means to better align pairs

of faces, and subsequently extract descriptors based on the

facial features after a viewpoint normalization. We extend

our approach [8] to profile views. The method combines a

discriminative model of feature appearance in the form of

boosted classifiers using Haar-like features [20] with a gen-

erative model of feature locations. The location model uses

a mixture of Gaussians, where each mixture component has

a tree-structured covariance such that efficient inference for

the MAP locations can be performed using the generalized

distance transform [10].

Training images for the profile feature detector were ob-

tained from a movie disjoint to all test data here and hand-

annotated with the position of five features: the corners of

the eye, the tip of the nose, the junction between nose and

face, and the corner of the mouth. We also marked points

on the ear where visible, but found that because the ear is

often occluded by hair this feature, while not causing fail-

ure in the model, could not be reliably localized. Figure 2
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(a) Mouth motion

(b) Localized features and mouth region

(c) Face track joining frontal and profile faces

Figure 3. Speaker identification for profile faces. (a) Inter-frame

differences for 11 frames of a face track. The horizontal line in-

dicates the ‘speaking’ threshold. (b) Above: Extracted face detec-

tions with facial feature points overlaid for frames 3–9. Below:

Corresponding extracted mouth regions. (c) Original face track

from frontal to profile views. A label is proposed for the automat-

ically identified profile speaker detection. Note the character does

not speak while in a frontal pose.

shows some results of automatic feature localization in pro-

file views. The method gives quite accurate localization

over the range of pose (‘3/4’ to profile) detected by the pro-

file face detector. We found that the use of features such

as the tip of the nose which are close to the boundary of

the face (such that the feature window covers both face and

background) did not cause significant problems, and as can

be seen the method can cope with quite extreme lighting,

low resolution images (small faces), and moderate motion

blur.

3. Speaker detection

As noted in Section 1.1, speaker detection is the key to

extracting useful supervisory information from aligned sub-

titles and scripts [8] – while the knowledge from text that a

character is speaking gives a very weak cue that they are ac-

tually visible, an on-screen character speaking gives a very

strong cue to their identity. Indeed, from the text alone it

cannot be known if the character speaking is even visible

in the shot (they may be off-camera), or if there are other

non-speaking characters visible.

Since one of our principal aims is to improve coverage,

we tackle the task of detecting when a character is speaking

in profile as well as frontal views. We found that the sim-



ple method proposed in [8] could be generalized to profile

views effectively. Figure 3 outlines the method. The new

model for feature localization in profile views enables a re-

gion around the mouth to be extracted. For profile views in

particular we limit the size of this region such that it does

not contain too much background outside the face (Fig-

ure 3b). Given a detection in one frame a local search is car-

ried out in the previous frame for the corresponding mouth

region, and the image distance to the closest matching re-

gion measured (Figure 3a). Applying a simple threshold to

this distance gives a reliable, if sparse, detection of speech.

Faces detected as speaking in a given frame can then be

assigned a name by transfer from subtitles co-occurring in

time.

In addition to improving coverage by automatically ob-

taining some training labels for profile faces, detecting

speaking in profile also improves the amount of training

data available for frontal faces. Figure 3c shows an exam-

ple. In this sequence (a subset of frames are shown) the

character only speaks while in profile. By correctly detect-

ing this, then exploiting the face tracks, labels can automat-

ically be assigned to the connected frontal faces.

4. Representing face appearance

The goal is to obtain a descriptor of the face robust to

variations in pose, lighting and facial expressions, and also

suitable for the multiple kernel framework (Section 5).

Detected facial features are used to estimate a similar-

ity transformation between the image and a rectified frame

compensating mainly for the noise in the output scale of the

face detector and in-plane rotation of the face. A HOG de-

scriptor [7] is then extracted from the normalized frame, as

illustrated in Figure 4. The HOG descriptor measures his-

tograms of image gradient orientation at a coarse grid of

spatial locations, and is thus robust to misalignment errors

and illumination variation. Here we extract a HOG descrip-

tor consisting of a 9 × 9 grid of overlapping blocks, where

each block contains 4 cells, with a 6 bin orientation his-

togram within each cell, resulting in a 81 × 4 × 6 = 1, 944
dimensional descriptor. Note that for extracting descriptors

(and recognition as outlined in Section 5), frontal and pro-

file faces are treated separately.

We also compare performance of the HOG descriptor to

the baseline patch-based descriptor of [8] available at [1].

A pixel-wise descriptor of the local appearance around a fa-

cial feature is extracted by taking the vector of pixels in the

patch and normalizing (so that the intensity has zero mean

and unit variance) to obtain local photometric invariance.

The descriptor for the face is then formed by concatenating

descriptors extracted around the 13 frontal facial feature lo-

cations, e.g. the corners and centers of the eyes, nose and

mouth.

(a) (b) (c)

Figure 4. Representing facial appearance using HOG descriptors:

profile face (top) and frontal face (bottom). The HOG descriptor

has 81 overlapping blocks on a 9× 9 grid. Each block contains 4

cells, with adjacent blocks overlapping by two cells (a, top). The

descriptor is extracted from a slightly larger region then the actual

face detection to capture the outline of the face and appearance of

the hair. (a) the original image; (b) the dominant orientation within

each block; (c) orientation histograms within each block.

5. Classification by multiple kernels

Our aim is to learn a SVM classifier [17] to discriminate

the tracks of one person from the tracks of others. Rather

than using a single pre-specified kernel, the kernel is a linear

combination of given base kernels [3, 19], with each base

kernel corresponding to a different feature. For two tracks,

i and j the composite kernel has the form

K(i, j) =
∑

f

bfKf (i, j) (1)

where Kf (i, j) is the kernel corresponding to feature f be-

tween tracks i and j. The intuition is that this combination

behaves as an “or” of the base kernels, so that any features

that match well will contribute strongly. The linear combi-

nation has similarities to the type of classifer learnt in boost-

ing, but here the individual classifiers need not be weak, and

the learning (see below) is not greedy.

The features used may be any of those defined in Sec-

tion 4. Given that each face track is represented by sets of

facial descriptors F f = {Ff
m} for different features f , a

base kernel between two face tracks, i and j is then defined

as

Kf (i, j) = exp(−γfd(F f
i , F f

j )2), (2)

where γf is a parameter of the kernel and d(., .) is the min-

min distance between sets of descriptors F f
i and F f

j , given

by

d(F f
i , F f

j ) = min
Fk∈F

f

i

min
Fl∈F

f

j

||Fk − Fl||. (3)

Note that kernels formed using the min-min distance given

by (3) are not necessarily positive definite. However, we



found that in practice this does not cause problems during

learning.

We form one base kernel for each of the 81 blocks of

the HOG descriptor, resulting in a total of 162 base kernels,

treating frontal and profile faces separately. We investigate

first the canonical kernel combination, denoted SUM in the

following experiments, where weights are set uniformly for

all base kernels, i.e. bf = 1/Nf , where Nf is the number

of base kernels. Although here the same set of weights are

used for each person, the canonical kernel combination to-

gether with the exponential form of the kernel, given in (2),

robustly combines information from different blocks of the

HOG descriptor – a large distance between two faces at a

particular block of the HOG descriptor, e.g. due to occlu-

sion, will only give a very limited contribution to the kernel

sum.

Following the method of [5], a different set of weights

{bf} can also be learnt for each person. Such weights can

emphasize more discriminative features for a person or ig-

nore features that are not discriminative by setting bf to

zero. We learn the weights {bf} for each person using the

cost function and optimization method for Multiple Kernel

Learning (MKL) given in [19].

Finally, we also investigate using the entire HOG de-

scriptor as a single feature for comparing faces, resulting in

two base kernels – one for profile and one for frontal faces

– which are then combined using uniform weights. This

method is referred to as CAT.

Note that in all the above methods the kernel combina-

tion also provides a natural way to aggregate information

from profile and frontal views as a single face track may

contain both frontal and profile face detections. In all cases,

one SVM classifier is learnt for each character using a 1-vs-

all scheme. Each test track is then labelled according to the

classifier with the maximum score.

6. Experimental results

The proposed methods were tested on seven episodes

from season 5 of “Buffy the Vampire Slayer”: episodes 1–6

and 13. Table 1 shows statistics of the number and type of

faces detected and tracked for these episodes.

How much coverage? Almost all face recognition papers

which consider TV and film material only report results on

the faces actually detected – not on the actual appearances

of the characters (whether they are detected or not). One

of our main aims in this work is to increase the coverage

of the method i.e. how much of the video is labelled. Here

we quantify how successful we are in capturing all appear-

ances. For episode 2 we have labelled every 10th frame

with ground truth as to which of the 11 principal characters

are present, and where present we have specified their pose.

Each character present is labelled as one of: frontal, profile,

or ‘other’. The label ‘other’ is assigned where the character

faces away from the camera, the face covers only a few pix-

els or e.g. only a shoulder or piece of clothing is visible i.e.

all cases insufficient to identify the character without addi-

tional contextual information. For this episode 42% of the

appearances are frontal, 21% profile, and 37% ‘other’.

The coverage is significantly improved by adding pro-

files: using the tracks from our previous method [8] (which

does include some 3/4 views that count towards profiles)

54.5% of all possible frontal and profile faces are recovered;

with the integrated frontal and profile tracking introduced

here, this increases to 78.7%. Note that if we consider all

appearances of a character including the ‘other’ class, the

potential recall is just under 50% – this suggests that future

work on increasing coverage must go beyond the use of face

detection as a first step.

Labelling performance: As shown in Table 1, the

speaker detection labels between 123 and 215 face tracks

depending on the episode. Of these between 80% and 90%

are correct. The face tracks labelled by speaker detection

form the training data for each episode. From the rest of the

tracks we consider those with more than 10 face detections

for labelling. Note that as training data is obtained auto-

matically using speaker detection, no manual annotation of

any data was performed other than to evaluate the method

(ground truth label for each face track).

In all experiments, the SVM misclassification penalty

parameter C is set to 10. For each base kernel, the inverse

kernel width parameter γf is set to d̄f/5, where d̄f is the

average distance between all face tracks within an episode

for feature f . The relative weight for the L1 regularizer on

kernel weights bf in the multiple kernel learning cost func-

tion [19] is set to 10−6 in all experiments. The parameters

were coarsely tuned on episode 2 and left unchanged for the

remaining episodes.

Performance is measured using precision and recall. The

term “recall” is used here to mean the proportion of tracks

which are assigned a name at a given confidence level of

the classifier, and precision is the proportion of correctly la-

belled test tracks. Results across all seven episodes are sum-

marized in Table 2 by the average precision (AP), which

corresponds to the area under the precision recall curve.

Precision-recall curves for three episodes are shown in Fig-

ure 5. The kernel sum with equal weights (SUM) gives al-

most the same performance as the learnt kernel combination

(MKL). Hence, in this case the benefit of learning a sparse

kernel combination is mainly computational as at test time

fewer features need to be extracted and compared. How-

ever, kernel combination (either MKL or SUM) is in most

cases beneficial compared to using a single kernel for the

entire feature vector (CAT). This might be attributed to the

robust feature combination performed by kernel combina-

tion methods as discussed in Section 5. To assess the effect

of noise in automatically obtained training labels the mul-



Episode

1 2 3 4 5 6 13

(a) frames 62,620 62,157 64,100 63,700 64,083 64,107 64,075

(b) face detections (frontal) 28,170 28,055 19,421 24,510 25,884 30,202 26,794

(c) face detections (profile) 8,315 14,327 13,931 12,996 8,103 11,685 8,449

(d) face detections (all) 36,485 42,382 33,352 37,506 33,987 41,887 35,243

(e) face tracks 1,506 2,088 2,140 1,985 1,532 2,020 1,548

(f) training tracks w/ spk. det. 202 198 200 182 162 123 215

(g) test tracks (longer than 10) 390 558 620 470 442 679 462

(h) main characters 14 17 13 14 14 19 14

Table 1. Statistics for episodes 1–6 and 13: (a) number of frames, (b)-(d) number of detected faces (excluding false positive detections), (e)

number of face tracks, (f) number of labelled face tracks obtained with automatic speaker detection, (g) number of test tracks (with more

than 10 face detections) considered for labelling, (h) number of principal characters automatically extracted from the script.

Episode

Method 1 2 3 4 5 6 13

(a) MKL 0.90 0.83 0.70 0.86 0.85 0.70 0.80

(b) SUM 0.89 0.83 0.68 0.82 0.85 0.69 0.78

(c) CAT 0.83 0.76 0.62 0.82 0.81 0.66 0.81

(d) MKLgt 0.94 0.91 0.96 0.91 0.84 0.86 0.94

(f) Baseline 0.74 0.60 0.46 0.60 0.62 0.53 0.65

Table 2. Average precision for different classification methods on

episodes 1–6 and 13. Methods (a-c), and (f) are trained using noisy

labels obtained automatically from text. For method (d) the noisy

labels were manually corrected.

tiple kernel classifier is also trained using noiseless manu-

ally corrected labels (method MKLgt). For some episodes

the SVM classifier is able to deal with some amount of

noise in the training data [9]. However, for others (e.g.

episodes 3 and 6) there is a significant difference in perfor-

mance between using ground truth labels for the exemplars

and using those obtained automatically. This difference is

partly due to characters that have a small number of tracks

in some episodes – errors in the exemplar labels for such

cases cannot be overcome by the SVM because there is in-

sufficient training data. The problem of limited training data

can be addressed by combining training exemplars from all

episodes (not shown in table 2), improving AP from 0.70

to 0.82 and from 0.70 to 0.79 for episodes 3 and 6, respec-

tively.

All proposed methods significantly improve perfor-

mance compared to the baseline method, which trains a

standard single kernel SVM classifier using patch descrip-

tors [8] extracted only from frontal faces (see Section 4 for

details). Of particular note is that the recall is significantly

improved, by 20–30% over the baseline method (Figure 5).

This is due to the fact that the proposed methods can la-

bel face tracks containing only profile faces, whereas the

baseline method cannot. Examples of correctly detected

and named characters obtained using the MKL method are

shown in Figure 6.

7. Conclusions and future work

We have demonstrated that learning person specific clas-

sifiers by kernel combination can improve the accuracy

of automatic naming of characters in TV video. In addi-

tion, we have shown that seamless integration of frontal

and profile face detections throughout the face recognition

pipeline can increase the proportion of video frames la-

belled, and appearances of characters in significantly non-

frontal poses can be successfully detected and recognized.

In future work, we plan to investigate incorporating other

(non-facial) cues, such as hair and clothing, in the multiple

kernel learning framework.
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