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Abstract—We present a novel attack on relayed instant mes-
saging (IM) traffic that allows an attacker to infer who’s talking
to whom with high accuracy. This attack only requires collection
of packet header traces between users and IM servers for a
short time period, where each packet in the trace goes from
a user to an IM server or vice-versa. The specific goal of the
attack is to accurately identify a candidate set of top-k users
with whom a given user possibly talked to, while using only the
information available in packet header traces (packet payloads
cannot be used because they are mostly encrypted). Towards this
end, we propose a wavelet-based scheme, called COmmunication
Link De-anonymization (COLD), and evaluate its effectiveness
using a real-world Yahoo! Messenger data set. The results of our
experiments show that COLD achieves a hit rate of more than
90% for a candidate set size of 10. For slightly larger candidate
set size of 20, COLD achieves almost 100% hit rate. In contrast, a
baseline method using time series correlation could only achieve
less than 5% hit rate for similar candidate set sizes.

I. INTRODUCTION

The proliferation of online social networks has attracted the

interest of computer scientists to mine the available social

network data for developing behavior profiles of people.

These profiles are often used for targeted marketing [7], [20],

[21], web personalization [16], and even price discrimination

on e-commerce portals [11], [15]. Recently, there has been

increased interest in more fine-grained profiling by leveraging

information about people’s friendship networks. It has been

shown that information from people’s friendship networks can

be used to infer their preferences and religious beliefs, and

political affiliations [2], [6], [12], [22].

There has been a lot of research on de-anonymizing peo-

ple’s friendship networks in online social networks such as

Facebook, MySpace, Twitter [4], [8]. Surprisingly, little prior

work has focused on de-anonymizing people’s friendship link

in instant messaging (IM) networks. IM services – such as

Yahoo! Messenger, Skype, IRC, and ICQ – are popular tools

to privately communicate with friends and family over the

Internet. IM networks are different than other online social

networks in various respects. For example, in contrast to
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online social networks, communication among users in IM

networks is synchronous in nature and messages between two

communicating users are routed through relay servers of the

IM service provider.

The goal of this paper is to identify the set of most

likely IM users that a given user is communicating with

during a fixed time period. Note that packet payloads in IM

traffic are encrypted; therefore, payload information cannot

be used for the identification. Therefore, to infer who a user

is talking to, we will rely only on the information in packet

header traces. Packet header traces contain information such

as timestamp, source IP address, destination IP address, source

port, destination port, and protocol type, and payload size

of each packet. It is noteworthy that each packet in the IM

traffic has as its source and destination IP addresses of a user

computer and an IM relay server (or vice versa). At no point

do two users exchange packets directly with each other, i.e.,
there are no packets in which the two communicating users’

IP addresses appear in the same packet. For this attack, we

assume that IM service acts neutral, i.e., it neither facilitates

the attacker nor actively participates in providing anonymity to

the users using non-standard functionality. Our specific goal is

to accurately identify a candidate set of top-k users with whom

a given user possibly talked to using only the information

available in packet header traces.

A natural approach to tackle this problem would be to

match header information of packets entering and leaving IM

relay servers. However, simply matching header information

of packets entering and leaving IM servers is not feasible due

the following reasons. First, a user may be talking to multiple

users simultaneously. Second, IM relay servers typically serve

thousands of users at a time. Third, the handling of duplicate

packets that are the result of packet losses followed by re-

transmissions. Forth, the handling of out-of-order packets.

Finally, the handling of variable transmission delays, which

are introduced by the IM relay servers.

In this paper, we propose a wavelet-based scheme, called

COmmunication Link De-anonymization (COLD), to accu-

rately infer who’s talking to whom using only the information

available in packet header traces. Wavelet transform is a

standard method for simultaneous time-frequency analysis and978-1-4799-1270-4/13/$31.00 c© 2013 IEEE



helps to correlate the temporal information in one-way (i.e.
user-to-server or server-to-user) traffic logs across multiple

time scales [10]. Wavelet analysis allows decomposition of

traffic time series between a user and an IM relay server

into several levels. All levels are associated with a coefficient

value and contain different levels of frequency information

starting from low to high. The original traffic time series can be

reconstructed by combining all levels after weighing them with

their respective coefficients. COLD leverages the multi-scale

examination of traffic time series provided by wavelet analysis

to overcome the aforementioned technical challenges. Given

two candidate time series between an IM relay server and

two users, COLD computes correlation between the vectors of

wavelet coefficients for both time series to determine whether

these users talked to each other.

We evaluate the effectiveness of COLD on a Yahoo!

Messenger data set comprising of traffic collected over 10,

20, 30, 40, 50 and 60 minute periods. We also compare

COLD’s performance to a baseline time series correlation

(TSC) scheme, which represents the state of the art. The

effectiveness is quantified in terms of hit rate for a fix-sized

candidate set. The results of our experiments show that COLD

achieves a hit rate of more than 90% for a candidate set size of

10. For slightly larger candidate set size of 20, COLD achieves

almost 100% hit rate. In contrast, a baseline method using time

series correlation could only achieve less than 5% hit rate for

similar candidate set sizes.

We summarize the major contributions of this paper as

follows.

1) We define an attack for breaching communication pri-

vacy in encrypted IM networks using only the informa-

tion available in packet header traces.

2) We propose COLD to to infer who’s talking to whom

using wavelet based multi-scale analysis.

3) We conducted experiments using a real-world Yahoo!

Messenger data set to evaluate the effectiveness of our

proposed approach.

Paper Organization: The rest of this paper is organized as

follows. Section II summarizes the related work. A detailed

description of attack scenarios is provided in Section III.

Section IV provides details of the proposed attack. In Section

V, we present the evaluation results on a real-world Yahoo!

Messenger data set. Possible evasion techniques and their

countermeasures are discussed in Section VI. Finally, Section

VII concludes the paper.

II. RELATED WORK

In this section, we provide details of the research work

related to our study. To the best of our knowledge, no

prior work has reported a successful attack to breach users’

communication privacy in encrypted IM networks using only

the information available in packet header traces. However,

there is some relevant work in the area of mix network de-

anonymization. We discuss it and other related studies below.

A. Mix Network De-anonymization

In the area of mix network, several studies have used

correlation techniques for de-anonymization. However, most of

these studies are limited to computing temporal correlation be-

tween traffic of two user-network links to find user-user links.

Furthermore, de-anonymization of mix networks is fundamen-

tally different from our problem in the following two aspects.

First, mix network de-anonymization techniques require traffic

logs from multiple points inside a mix network. In contrast,

this study treats IM relay servers as a black box. Second,

the size of user populations in mix network de-anonymization

studies is only of the order of tens or hundreds. However, in

real-life IM networks, thousands of users can simultaneously

communicate with other users; therefore, presenting a more

challenging problem. In [17], Troncoso and Danezis build

a Markov Chain Monte Carlo inference engine to calculate

probabilities of who is talking to whom in a mix network

using network traces. However, they log network traces from

multiple points in a mix network and the maximum network

size studied in their paper is limited to 10. In [23], Zhu et
al. compute mutual information between aggregate inflow and

outflow traffic statistics to decide if two users are talking

to each other in a mix network. Similar to this study, they

also log traffic from the edges of a mix network. However,

their proposed approach requires traffic logs for longer time

durations. In this paper, we compare the results of COLD and

the method proposed by Zhu et al. [23].

B. Social Network De-anonymization

There is also some related work in the field of social

network de-anonymization. Narayanan and Shamitkov devel-

oped an algorithm to utilize sparsity in high-dimensional

data sets for de-anonymization [13]. Later they developed a

user re-identification algorithm that operated on anonymized

social network data sets [14]. Other related studies use group

membership information to identify users in a social network

[19], [22]. IM networks also fall under the broader category

of online social networks; however, our problem and the

nature of the data available to us is different from those

tackled in the aforementioned papers. These studies focus

on user identification using mainly topological information;

whereas, we focus on link identification using dynamic user

communication traffic.

III. PROBLEM DESCRIPTION AND ATTACK

SCENARIOS

In this section, we first provide a summary of architec-

tural details of IM services. We then provide the details of

information available from traffic traces logged near IM relay

servers. Finally, we describe two scenarios in which traffic can

be logged for link de-anonymization.

A. IM Service Architecture

We first describe the architecture of a typical IM service.

Consider the scenario depicted in Figure 1 where two users

v1 and v2 are communicating with each other via an IM
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Fig. 1. Transforming logged traffic traces to user traffic signals.

service. When v1 sends a message to v2, the source IP address

in packets containing this message correspond to v1 and the

destination IP address correspond to the IM relay server. These

packets are received by the IM relay server after a random

delay. After receiving a packet from v1, the IM server first

looks up the IP address of v2. It then creates new packets with

its IP address as source and IP address of v2 as destination.

These packets containing message from v1 are then relayed

by the IM relay server to v2 and have the same contents. This

process incurs an additional delay after which the new packet

reaches v2.

The network traffic logged near the IM relay server only

contains header information because the packet payload con-

tents are not useful due to encryption. The statistics recorded

by the well-known traffic logging tools like Cisco’s NetFlow

include IP addresses, port numbers, protocol, packet size, and

timestamp information [3]. As mentioned before, IP addresses

are used to identify individual users of the IM service. IM

traffic is filtered from rest of the traffic using a combination

of protocol and port number information. We are left with only

aggregated packet sizes and timestamp information for each

flow. A logged entry for a flow is an aggregation of packets

which may be sent to or received from the IM server. Due to

aggregation, information about the direction of flow is lost for

individual packets. Therefore, we make a realistic assumption

that the direction information is not available in the logged

traffic. An example of a similar publicly available data set is

the Yahoo! Network Flows Data [1].

Referring to Figure 1, each flow in the data set comprises

of information about incoming and outgoing packets between

an IM relay server and a user. Furthermore, individual users

can be distinguished based on IP addresses in the IM traffic. In

Figure 1, traffic exchanged between v1 and the IM relay server

is represented by blue arrows and traffic exchanged between

v2 and the IM relay server is represented by red arrows. The

timestamps and packet sizes are both discrete and in units of

milliseconds. The packet sizes are typically recorded in bytes.

The resulting signal for each flow is discrete in both time and

amplitude as shown in Figure 1. These sparse time domain

traces of network traffic are referred to as traffic signals from

now-onwards. It is interesting to simultaneously analyze traffic

signals for both users v1 and v2. Note that every entry in v1’s
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(a) Collecting all incoming and outgoing traffic from IM
relay server

1

2

(b) Collecting all incoming and outgoing traffic near
border gateway routers of an organizational network

Fig. 2. Two attack scenarios

traffic signal has a time-shifted (time delayed or advanced)

matching entry of equal magnitude in v2’s traffic signal. These

matches between each pair of entries are marked by broken

lines joining traffic signals in Figure 1. Matching entries across

both traffic signals may not have the same order due to random

end-to-end delays. For example, 3rd message flow entry in v2’s

trace appears as 4th entry in v1’s trace in Figure 1.

B. Attack Scenarios

We now consider two different scenarios in which traffic

information necessary for the proposed attack can be obtained.

1) Scenario #1: Near IM relay servers: The first scenario

assumes the capability to monitor incoming and outgoing

traffic of an IM relay server or server farm. Figure 2(a) shows

four users v1, v2, v3 and v4 connected to an IM relay server.

The shaded circular region around the IM relay server marks

the boundary across which network traffic is logged. For the

scenario depicted in Figure 2(a), v1 is communicating with

v2 and v3 is communicating with v4. Traffic signals for all

users that are obtained after pre-processing their traffic flow

logs. For each flow represented in a user’s traffic signal, a

corresponding flow entry can be observed in the traffic flow

log. The IM relay servers also introduces a random delay

between the time a message arrives at the IM relay server

and the time it is relayed to the other user. Therefore, there

will be a mismatch in the timestamps of the occurrences of a

message in communicating users’ traffic signals.



2) Scenario #2: Border gateway: The second scenario

assumes that all IM users communicating with each other

are located in the same network. Many organizations, such

as universities, connect to external networks and the Internet

through one or more gateway routers. The incoming and

outgoing traffic has to pass through a small number of gateway

routers. In this scenario, it is possible to collect flow logs near

the gateway routers of an organizational network. Figure 2(b)

depicts the above-mentioned scenario. Here, v1 and v2 are in

the same network and are communicating with each other via

an IM relay server. All incoming and outgoing traffic of the

network passes through the border gateway router near which

it can be logged. The region near border gateway router is

represented by the shaded region in Figure 2(b). The traffic

signals obtained from pre-processing the flow logs have the

same characteristics as described for the first scenario.

IV. COLD: COMMUNICATION LINK

DE-ANONYMIZATION

In this section, we present the details of our proposed

method (COLD) to detect communication links between users

in IM networks. We first introduce the overall architecture of

COLD. We then provide details of each of its modules. Finally,

we provide an easy-to-follow toy example of COLD on a small

set of three IM users.

A. Architecture

Figure 3 shows the overall architecture of COLD. As

mentioned in Section III, the logged traffic traces are separated

for all users based on IP address information. These user-wise

separated traffic traces are further pre-processed and converted

to traffic signals. The traffic signals for all users are stored

in a database. Note that traffic signals of users may span

different time durations. To overcome this problem, we use

zero-padding so that the lengths of traffic signals are consistent

for all users. After this pre-processing, wavelet transform is

separately applied to all users’ traffic signals [10]. We then

construct feature vectors for all users using the computed

wavelet coefficients. Now, to compare two given users, we

compute the correlation coefficient between their constructed

feature vectors. Finally, the values of the correlation coefficient

are sorted to generate the candidate set. The details of all

modules of COLD are separately discussed below.

B. Details

1) Discrete Wavelet Transform: After pre-processing the

traffic traces, we compute the discrete wavelet transform

(DWT) of each user’s traffic signal. This step is performed

in the wavelet decomposition module shown in Figure 3.

The wavelet transform enables us to conduct a simultaneous

time-frequency analysis. A traffic signal is decomposed into

multiple time series, each containing information at different

scales that range from coarse to fine. A time series at a coarse

scale represents the low frequency or low pass information

regarding the original time series. Likewise, a time series

at a fine scale represents the high frequency or high pass

information regarding the original time series. This allows us

to compare traffic patterns of users at multiple time scales.

We have to select an appropriate wavelet function for

our given problem. Since we are processing traffic signals

of a large number of users, we want to select an efficient

wavelet type. For our study, we have chosen the Haar wavelet

function for wavelet decomposition [9]. We have chosen the

Haar wavelet function because it is simple and is computa-

tionally and memory-wise efficient. Furthermore, the wavelet

transform can be applied for varying decomposition levels to

capture varying levels of detail. Choosing the optimal number

of decomposition levels is important because this may lead

to suppressing relevant and critical information that might be

contained in one or more levels of the wavelet decomposition.

Below, we discuss the method to select the optimal number

of decomposition levels.

2) Choosing the Optimal Number of Decomposition Levels:
Let D ∈ Z

+ denote the optimal number of decomposition

levels. Different methods have been proposed in the literature

to select the optimal number of decomposition levels. In

this paper, we have used Coifman and Wickerhauser’s well-

known Shannon entropy-based method to select the optimal

number of decomposition levels [5]. We applied this method

to traffic signals of all users and then selected the optimal

decomposition level at the 95th percentile. Now that we have

selected the optimal number of decomposition levels, we can

apply the wavelet transform on user traffic signals.

3) Coefficient Feature Vector: Once we have obtained the

wavelet coefficients after applying the wavelet transform to a

user’s traffic signal, we need to convert them to a standard

feature vector so that we can compare users’ signals. Let

FX denote the feature vector of a user X . The coefficients

that contain high frequency information are more numerous

and such coefficients are assigned lower weights. Similarly,

the coefficients that contain low frequency information are

fewer and are assigned higher weights. The time signal cor-

responding to level 1 of the wavelet decomposition represents

the coarsest features containing low frequency information,

and level D refers to the highest level describing the most

detailed features containing high frequency information. The

level D feature coefficients are assigned weight 1, the level

D − 1 coefficients are assigned weight 2, etc., and the level

1 coefficients are assigned weight 2D−1. In general, the level

d features are assigned a weight of 2D−d−1. To produce the

standard feature vector in which each coefficient is given the

appropriate weight, we replace each coefficient by a vector of

its copies of length equal to its weight, i.e. a wavelet coefficient

of decomposition level d is replaced by a vector containing

2D−d−1 copies. This is equivalent to using the undecimated

wavelet transform of users’ traffic signals. By following this

procedure, the total length of the feature vectors of all traffic

signals becomes consistent.

4) Correlation: After applying the wavelet transform and

post-processing coefficients to a user X’s traffic signal, we

obtain a feature vector denoted FX . To compare the feature

vectors FX and FY for two users X and Y , we have to
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Fig. 3. COLD architecture

compute their correlation. The sample correlation coefficient

rX,Y of two discrete signals FX and FY , both of length L,

is defined as,

rX,Y =

∑L
i=1(FX(i)−FX)(FY (i)−FY )

(L− 1)sXsY
.

(1)

Here, FX(i) is the ith element of the feature vector FX ,

FX is the sample mean of its elements, and sX is the

sample standard deviation of its elements. The values of

the correlation coefficient lie in the closed interval [−1, 1].
The correlation coefficient values close to zero indicate no

correlation; whereas, the values close to 1 and −1 respectively

highlight strong correlation and anti-correlation. For this study,

we only consider the magnitude of the correlation coefficient

and discard its sign. After computing the correlation coefficient

for all pairs of users, we get the upper triangular correlation

matrix R0. ri,j is written into the ith row and the jth column

of the correlation matrix R0. Conceptually, this correlation

matrix is similar to the adjacency matrix of a weighted graph.

We add to R0 its transpose to obtain R

5) Candidate Set Generation: After obtaining the corre-

lation matrix R whose elements are in the range of [0, 1]
we need to generate, for each node, a sorted list of nodes in

decreasing order of probability of communicating. This is done

by sorting the node indices in descending order of correlation

coefficients in every column of R. The resulting matrix will

have the same size as R and is labeled I ↓. Suppose that

the S most likely users that are communicating with user i is

required. Then the user IDs contained in the top S rows of the

i-th column of I ↓ is the sorted list of users i is most likely

communicating with.

C. Example

We now provide a easy-to-follow toy example of COLD

on three users (A, B, and C) in an IM network. Users A and

B are communicating with each other while user C is not

communicating with either user A or user B. Figure 4 shows

the traffic signals for all three users. The traffic signals of users

A and B are visibly similar to each other and significantly

different from the traffic signal of user C. However, if we

directly compute the correlation coefficients of users’ time

signals we get rA,B = −0.0046, rB,C = −0.0053, and

rA,C = −0.0053. Equivalently, the correlation matrix is:

R =

⎛
⎝ 1 0.0046 0.0053

0.0046 1 0.0053
0.0053 0.0053 1

⎞
⎠

This indicates that directly correlating users’ traffic signal

time series is not accurate.
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Fig. 4. Time signals of three example users.

Let us now obtain the feature vectors for all users using

the wavelet transform. Figure 5 shows the coefficient feature

vectors for users A, B, and C. Note that the feature vectors

at lower indices contain coarse grain or low frequency infor-

mation. We observe significant similarity between the lower

indices of the feature vectors of users A and B. Now when we

compute the correlation coefficients of users’ feature vectors

we get rA,B = 0.7042, rB,C = 0.0743, and rA,C = 0.0742.

Equivalently, the correlation matrix is:

R =

⎛
⎝ 1 0.7042 0.0742

0.7042 1 0.0743
0.0742 0.0743 1

⎞
⎠

This clearly indicates the superiority of COLD (with the

wavelet-based feature vectors) attack method compared to the

direct correlation of users’ traffic signals.

V. EXPERIMENTAL RESULTS

In this section, we first describe the data set used for

evaluating COLD, then define evaluation metrics, and finally

present evaluation results.
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Fig. 5. Wavelet feature vectors of three example users.

TABLE I
DATA SET STATISTICS

Time Duration Users Messages Sessions
8-8:10a 10 mins 3,420 15,370 1,968
8-8:20a 20 mins 5,405 33,192 3,265
8-8:30a 30 mins 7,438 53,649 4,661
8-8:40a 40 mins 9,513 75,810 6,179
8-8:50a 50 mins 11,684 99,721 7,669

8-9a 60 mins 13,953 126,694 9,264

A. Data Set

We collected a data set from Yahoo! Messenger IM network

to validate our proposed approach. To keep the volume of

logged data manageable, the users of Yahoo! Messenger were

filtered by geographic location and restricted to the New York

City area. This data set consists of traffic logs of Yahoo!

Messenger user activity over a period of 60 minutes from the

greater New York area, between 8 a.m. to 9 a.m. Using this

data set, we create six data sets that are the subsets of the

entire data. These consist of data over the only the first 10,

20, 30, 40, 50 and 60 minutes, i.e. from 8 − 8 : 10 a.m.,

8 − 8 : 20 a.m., 8 − 8 : 30 a.m., 8 − 8 : 40 a.m., 8 − 8 : 50
a.m. and 8 − 9 a.m. To gauge the effect of the duration over

which a data set is collected we evaluated our proposed COLD

scheme on all six data sets. Table I lists, along with the time

of day and duration, the number of logged users, number of

messages exchanged between them, and the number of instant

messaging sessions included in each data set.

The collected data is divided into two parts: input data

and ground truth data, to systematically evaluate our proposed

approach. Both data sets were collected with the assistance of

Yahoo! and are described in the following text.

1) Input Data: The input data consists of user-to-server
traffic traces that were collected similar to the scenario de-

scribed in Figure 2(a). Figure 6 plots the volume of traffic

logged in these traffic traces. The figure on top plots number

of bytes per second against time. Similarly, the plot in the

bottom figure plots the traffic volume in packets per second

for the same period of time.
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Fig. 6. Time series plot of traffic volume, in bytes and number of packets,
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2) Ground Truth Data: The verification data contains a

record of the actual user-to-user connections resulting from

conversations between users. Therefore, the verification data

contains the ground truth for given problem. Our proposed

COLD scheme attempts to recreate the link structures be-

tween users contained in the verification data by only using

information in the input data. Figure 7 is a plot of the degree

distribution of users observed in the verification data collected

over 10 and 60 minute time periods. The distribution is

approximately linear on log-log scale over the range of degrees

from 1 to 9 for the 10 minute data, and from 1 to 11 for the

60 minute data.

B. Evaluation Metrics

Let V denote the set of Yahoo! Messenger users

v1, v2, . . . , vN . Furthermore, let E denote the set of actual

communication links u1, u2, . . . , uM of size M between N
users captured in the verification data. Then G(V,E) is the

graph of users (or vertices) connected by the communication

links (or edges) between them. Recall that the goal of the

attack is to detect communication links Û that estimates the

actual set of communication links in the verification data

U . The graph Ĝ(V, Û) is the outcome of the scheme that

constitutes the attack. In the rest of this section, we compare



our proposed COLD scheme with the baseline time series

correlation (denoted by TSC here onwards). A graph that is

obtained using COLD will be denoted by ĜC(V, ÛC). A graph

obtained using TSC is denoted by ĜT (V, ÛT ).
Consider the subset of vertices with degree δ in a graph

Ĝ
(
V, Û

)
obtained using either schemes. Now consider a

candidate set Ci of size S ≥ δ for every vertex vi of degree

δ. The candidate set Ci of a vertex vi contains S vertices

most likely to be vi’s neighbors, as determined by the COLD

or TSC. We also define a neighborhood function denoted by

ΓG(). ΓG(vi) returns the set of vertices in the graph G that

are connected to vertex vi. Furthermore, we define the node

hit rate of a vertex vi as the fraction of vertices in ΓG(vi) that

are also elements of candidate set Ci of size S. The node hit

rate of vertex vi is denoted hi(S) an is defined formally as

follows.

hi(S) =
|ΓG(vi) ∩ Ci(S)|

|ΓG(vi)| (2)

The node hit rate can take values in the range of the closed

interval [0, 1]. We also define the hit rate H
̂G(S, δ) for degree

δ vertices of a graph Ĝ
(
V, Û

)
as the average of their node

hit rates hi(S) when candidate set sizes are S.

H
̂G(S, δ) =

∑N
i=1,δi=δ hi(S)

nd
(3)

Here nd is the number of vertices in Ĝ of degree δ. Just

like the node hit rate, the hit rate can take values in the range

of the closed interval [0, 1].

C. Results

We compute the hit rates achieved using COLD on the 10,

20, 30, 40, 50 and 60 minute data sets and compare them with

the hit rates achieved by TSC. We further separate vertices

by the number of packets they exchange over the duration of

the data set, i.e. hit rates are computed separately for vertices

exchanging 1 − 60, 61 − 70, 71 − 80, 81 − 90, 91 − 100,

101 − 110, and 111 − 120 packets. As we observed in the

degree distributions of nodes in figure 7, data sets for all six

durations are dominated by nodes of degree 1. Therefore, in

our evaluation we focus primarily on degree 1 vertices. Figures

8(a), 8(b), 8(c), 8(d), 8(e), and 8(f) plot the hit rates of degree

1 vertices as a function of set size S for COLD on 10, 20,

30, 40, 50, and 60 minute data sets, respectively. Within each

figure, hit rates are segregated according to the number of

packets users send and receive over the duration the data was

collected. As these six figures consistently show, the hit rate

reaches between 0.9 and 1.0 for users exchanging 71 or more

packets over the duration of the data sets. In case of the 20,

30, 40, 50, and 60 minute data sets in Figures 8(b), 8(c), 8(d),

8(e), and 8(f), this set of users is further extended to those

exchanging 61 or more packets. In the 10 minute data set in

figure 8(a) users with 61-70 packets in their trace have a high

hit rate of more than 0.80. However, the candidate set size S
has to be increased all the way to 40 for the hit rate to reach

close to 1.0. For users exchanging between 1-60 packets the

hit rate starts out between 0.20 and 0.40. As the candidate set

size is increased from 1 upward, the hit rate rises at a very

similar rate in all six data sets.

We compare the accuracy of our proposed approach to that

of the time series correlation (TSC) method. Similarly, figures

9(a), 9(b), 9(c), 9(d), 9(e) and 9(f) plot the hit rates of degree

1 vertices as a function of set size S for TSC on 10, 20,

30, 40, 50 and 60 minute data sets, respectively. The baseline

TSC method, which represents the state of the art, fails to

deliver sufficient performance to be useful for any conceivable

application, across all six data sets. With one slight exception,

TSC fails to achieve a hit rate of even 0.20 even for candidate

set size of as large as 100. The only exception is the group of

users exchanging between 71-80 packets in the 10 minute data

set. However, even for this subset of users, TSC provides a hit

rate of less than 0.30 at a set size greater than 70, i.e. at best,

for users messaging with only one other person, in a set of

70 candidates TSC will include the actual instant messaging

partner with a probability of only 0.30.

D. Discussions

These results provide us with several insights into the

working of COLD. We separately discuss these insights in

the following text.

First, there appears to be a very clear threshold value

for the number of recorded packets beyond which the de-

anonymization attack using COLD yields high hit rates. From

the plots in figure 8 we observe that the hit rate for users

containing more than 60 packets in their traffic traces is

significantly higher, above 90%, even at very small candidate

set sizes. On the other hand, the hit rate of users containing

60 packets or less in their traffic trace is significantly lower.

This threshold value holds across all six data sets of different

durations. More packet entries in traffic traces provide more

points to match two communicating users’ traces with each

other. The greater number of data points also reduces the

probability of a false match. Therefore, it is easier to identify

communicating users that message each other more frequently.

Second, the hit rate of users, classified by the traffic they

generate, is largely independent of the time duration over

which the traces were collected. Rather, it is the actual

number of message packets exchanged during that period that

determines the hit rate. Hit rates for users exchanging the

same number of packets over different periods of time are

very similar. Therefore, we can state that we can identify two

communicating users using COLD with great certainty as soon

as they exchange more than 60 message packets.

Third, while we have already stated that the time period

over which traffic traces are collected have only a weak effect

on the hit rate. However, looking at the hit rate functions of

users with 61−70, 71−80 and 81−90 packets in their traffic

trace across different data sets, we observe that the hit rate

function rises close to 1.0 at a faster rate in data sets collected

over longer durations.
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Fig. 8. Hit rates of COLD for vertices of degree 1 in the (a) 10 minute data set, (b) 20 minute data set, (c) 30 minute data set, (d) 40 minute data set, (e)
50 minute data set, and (f) 60 minute data set.

Fourth, judging by the time durations of the data sets

(between 10-60 minutes), we conclude that the amount of data

necessary to achieve a high hit rate by COLD can be collected

in a relatively short period of time. Therefore, COLD does

not require an extensive data collection effort to achieve high

accuracy.

Finally, we observe that when TSC is applied to all data sets,

the hit rate remains almost 0 for vertices of all traffic levels.

This leads us to the conclusion that TSC is effectively unable

to detect any communication links among users. We attribute

this failure to the random phase delay of packet entries in

traffic traces of two communicating users. These delays are

a result of the bidirectional flow of traffic and jitter in the

end-to-end delay.

VI. EVASION AND COUNTERMEASURES

This section presents some possible techniques that an

adversary may utilize to evade the de-anonymization attack

by COLD. We also discuss countermeasures to such evasion

techniques below.

1) Evasion by using proxy or NAT. An adversary may ac-

cess instant messaging network behind a proxy or a NAT

to bypass the detection by the COLD attack algorithm.

However, in this scenario, COLD will still detect the

external IP address, which appears in the traffic traces
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Fig. 9. Hit rates of TSC for vertices of degree 1 in the (a) 10 minute data set, (b) 20 minute data set, (c) 30 minute data set, (d) 40 minute data set, (e) 50
minute data set, and (f) 60 minute data set.

collected outside the proxy or NAT. Once the external IP

address is detected, our proposed approach will require

additional traces collected inside the proxy or NAT to

specifically pin-point the end-host.

2) Evasion by IP spoofing. An adversary may try to spoof

source IP address to evade COLD. However, IP spoofing

will not be successful because every end-user has to

setup a connection with the IM relay server, which is

not possible with spoofed IP address.

3) Evasion by fragmentation/aggregation. An adversary

may try to break-down a large message into multiple

smaller messages. However, fragmentation at the end-

host into smaller packets will not adversely affect COLD

because our approach relies on correlating the traffic

traces that are collected entering and leaving the IM ser-

vice. The smaller packets created due to fragmentation

will appear the same in both sets of traffic traces. In

fact, the increased number of packets would improve

COLD’s accuracy. On the other hand, an adversary may

try to aggregate as many messages as possible into a

single message to minimize the data available. However,

the maximum packet size is limited by the IM service

provider and maximum transmission unit (MTU) of the

network.



4) Evasion by changing packet sizes. If an adversary tries

to deliberately change packet sizes, e.g. by inserting

garbage, they will appear the same in the two sets of

traffic traces correlated by COLD. Therefore, changing

packets sizes will not affect COLD.

5) Evasion by random delays. Adversaries may also add

random small or long delays between their communica-

tions. The time delays introduced by end-host will not

affect COLD because these delays appear the same in

the two sets of traffic traces. In another scenario, random

delays may be introduced by the IM network due to

network congestion or other processing delays. These

delays will affect COLD because they will be different

across the two correlated traffic traces. However, COLD

is robust to such delays as well because it utilizes

binning techniques, which reduces their effect.

6) Evasion by injecting noise packets. Injecting random

noise packets is unlikely to affect the accuracy of COLD

as long as the noise packets follow the protocol utilized

by the IM network. Packets that do not follow the

protocol utilized by the IM network will be discarded by

the IM network after sanity checks and will not appear in

the second traffic trace collecting traffic exiting the IM

network. To mitigate the effect of such noise packets,

similar sanity checks can be deployed to check if the

logged packets follow the protocol utilized by the IM

network under study.

7) Evasion by encryption. Encryption is only applicable

to the packet payloads and packet headers remain un-

affected. The use of encryption cannot evade COLD

because our proposed approach only utilizes fields in

the packet header.

VII. CONCLUSIONS

In this paper, we present a novel attack to breach the privacy

of IM communication services that allows an attacker to infer

who’s talking to whom with high accuracy. We proposed

a wavelet-based scheme, called COLD, that allows us to

examine and compare the time series of one-way (user-server)

traffic logs at multiple scales. We evaluated the COLD attack

algorithm using a real-world Yahoo! Messenger data set, which

was specifically collected for this study. Our experimental

results showed that COLD clearly outperforms the baseline

time series correlation scheme.

Our proposed approach can also be applied to the related

problems such as mix network de-anonymization. In the mix

network de-anonymization problem, a set of mix servers can

be treated as the black box and the traffic logs at the edges

of the mix network can be correlated using COLD to detect

communication links among end-users [18], [24].
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