
Who Do You Call? Problem Resolution

through Social Compute Units

Bikram Sengupta1, Anshu Jain1, Kamal Bhattacharya1,
Hong-Linh Truong2, and Schahram Dustdar2

1 IBM Research - India
{bsengupt,anshu.jain,kambhatt}@in.ibm.com

2 Distributed Systems Group, Vienna University of Technology, Austria
{truong,dustdar}@infosys.tuwien.ac.at

Abstract. Service process orchestration using workflow technologies
have led to significant improvements in generating predicable outcomes
by automating tedious manual tasks but suffer from challenges related
to the flexibility required in work especially when humans are involved.
Recently emerging trends in enterprises to explore social computing con-
cepts have realized value in more agile work process orchestrations but
tend to be less predictable with respect to outcomes. In this paper we
use IT services management, specifically, incident management for large
scale systems, to investigate the interplay of workflow systems and social
computing. We apply a recently introduced concept of Social Compute
Units, and flexible teams sourced based on various parameters such as
skills, availability, incident urgency, etc. in the context of resolution of
incidents in an IT service provider organization. Results from simulation-
based experiments indicate that the combination of SCUs and workflow
based processes can lead to significant improvement in key service deliv-
ery outcomes, with average resolution time per incident and number of
SLO violations being at times as low as 52.7% and 27.3% respectively of
the corresponding values for pure workflow based incident management.

1 Introduction

Business process management (BPM) and workflow systems have had tremen-
dous success in the past two decades with respect to both mindshare and de-
ployment. We can safely consider service-oriented architecture (SOA) to be a
business-as-usual design practice. On the other hand, we are observing enter-
prises embracing social computing as an alternative for executing more un-
structured yet team-based collaborative, outcome-based strategies. Gartner [1]
predicts that by 2015, we will observe a deeper penetration of social computing
for the business as enterprises struggle to deal with the rigidity of business pro-
cess techniques. Current workflows are suitable for automation of menial tasks
but inflexible when it comes to supporting business users who must deal with
complex decision making. However, a significant conceptual gap clearly exists
between workflows on the one hand, and social computing as it is known today.

C. Liu et al. (Eds.): ICSOC 2012, LNCS 7636, pp. 48–62, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Who Do You Call? Problem Resolution through Social Compute Units 49

The goal of this paper is to introduce a framework that establishes the inter-
actions of business processes and workflows with a concept called Social Com-
pute Units (SCU) [8], recently introduced by some of the authors. A SCU is
an abstraction of a team consisting of human resources that bring together the
appropriate expertise to solve a given problem. The SCU abstraction treats the
SCU as a programmable entity. The resources that make up a SCU are socially
connected. The term socially implies connectedness of an individual beyond his
or her organizational scope. The reason for connectedness could be prior ad-hoc
collaborations but also collaboration within a given scope of responsibility where
the scope is distributed across organizational verticals.

The context in which we propose the use of SCUs in this paper is the IT
Service Management (ITSM) domain. More specifically, we are interested in
the Incident Management process within ITSM. IT service vendors maintain
large, complex IT infrastructure on behalf of their clients, and set up skill-based
teams with the responsibility of maintaining different infrastructure components,
such as applications, servers, databases and so on. When an interruption or
degradation in service in some part of the IT infrastructure is detected, service
requests are raised in the form of tickets that describe the incident. However,
due to inherent dependencies between different system components, identifying
the root cause of the problem is a complex, and often time-consuming, activity.
The traditional approach to incident management is to have a human dispatcher
intercept the ticket and review the incident description. Using his/her knowledge
of the system and dependencies, the dispatcher then determines the most likely
component that may be faulty and forwards the ticket to the relevant team,
where it is assigned to a practitioner for investigation. The practitioner may
determine the presence of a fault in the component and the incident may be
resolved by taking corrective action to remove the fault. However, often the
practitioner may discover that the fault does not lie in the component s/he is
managing, and sends the ticket back to the dispatcher, who then needs to decide
on the next team the ticket should be sent to, and this process continues till the
right team receives the ticket and resolves the incident.

Such a process-driven approach may be reasonable when the problem descrip-
tion is detailed and clear. In reality, we find the end user reporting the incident
to state the symptom at best. It is the human dispatcher’s responsibility to
guess the root-cause and identify the right person for the resolution job. This
may be appropriate for simple and low severity incidents, but is risky in more
complex situations. In those cases the overall resolution time may exceed the con-
tractually agreed upon response time as manifested in Service Level Objectives
(SLO). The consequences can be degradation of client satisfaction and/or mon-
etary penalties. Our proposal is to demonstrate the benefits of bringing together
appropriate resolution units, conceptualized as a SCUs, that possess the right
skills composition to deal with the eventualities of the given context, as defined
by the system where the incident occurs. The members of a SCU may be drawn
from components where there is a higher likelihood of a fault, and component
dependency information may be used to on/off-board members as investigation

50 B. Sengupta et al.

proceeds. Such an agile way of managing incident resolution should help facili-
tate parallel investigations and thereby quicker resolution. However, SCUs may
also incur a higher cost (since multiple practitioners are investigating a problem
at once), hence its use has to be judiciously interleaved with the more standard
workflow-driven sequential investigation of incidents, so that the right trade-off
between quicker resolution and higher cost may be achieved.
The main contributions of the paper are as follows:

1. The development of a technical framework for SCU sourcing, invocation and
evolution in the context of IT incident management spanning multiple teams
and organizational verticals.

2. A simulation based approach to study the efficiencies that may be gained
through SCUs over standard process management approaches, and the trade-
offs involved.

The rest of the paper is organized as follows. In Section 2 we present a motivating
example and introduce the concept of SCUs. In Section 3 we introduce the formal
system model for the use of SCUs in incident management, and describe the life-
cycle of a SCU from its invocation, evolution to dissolution. Section 4 presents
a simulation based method to demonstrate the benefits that may be achieved
through a combination of SCUs and workflow based approaches. After discussing
related work in Section 5, we conclude with a discussion on future work and
extensions of our framework in Section 6.

2 Motivating Example

Consider an IT service provider that manages applications on behalf of a client.
Each application is a complex eco-system of its own, consisting of actual appli-
cation code, the hosting middleware and operating system, servers, storage com-
ponents, network and firewall configurations etc. An incident in any application
may have its root-cause in any of its sub-systems. Resolving the incident for the
application may henceforth require multiple skills, from programming skills to
networking skills. IT service providers that manage hundreds or thousands of
applications cannot scale by assigning individual teams to manage individual
applications. Instead, it is more cost-efficient to form organizational units that
are formed around skills and manage specific, similar system components.

Figure 1 shows an example of a component dependency graph for an appli-
cation and its management context. The connectors between nodes indicate the
nature of relationship or dependency between the components. For example, the
straight line between Application and Application Server denotes a tight cou-
pling as in a component being hosted on another (thus the dependency type is
isHostedOn). Each dotted line, e.g. between Web Server and Application Server
denotes a loose coupling between components as in one component being con-
nected to the other through a web-service call or an HTTP request (isConnect-
edTo being the dependency type).

Who Do You Call? Problem Resolution through Social Compute Units 51

Each layer of an application is managed by an organizational entity as denoted
on the left side. The Application component is managed by the Application Man-
agement team, which has the right set of coding skills and application knowledge
to debug issues or extend functionality. The middleware layer (web server, ap-
plication server and DBMS) is managed by the Application Hosting team that
knows how to manage application servers and databases. In principle each man-
agement entity can be modeled as another node in the dependency graph but for
simplicity we have depicted management entities as dotted line boxes around the
components they are responsible for. For example, the dotted line box around
the DBMS component could also be represented by a DBMS node connected to
a Database Management node through a connector stereotyped as isManagedBy.

Fig. 1. Dependencies between application components and their management context

Let us now consider incident management - an important area in ITSM [3] -
for the above example. An incident is an event which is not part of the standard
operation of a service and causes, or may cause, an interruption to or a reduction
in, the quality of that service. The goal of incident management is to restore the
service functionality as quickly as required. The service restoration time is tied
to the Service Level Objective (SLO) the client and provider have agreed upon
and usually depends on the severity of the incident. An incident may be caused
by a known problem for which there exists an action plan, or, may also require
problem resolution as the root-cause is not known. Let us now examine incident
resolution through two scenarios, with a focus on who is resolving an issue.

1. An incident states an issue with capacity exceeded on the server hosting the
Application Server. The action plan (1.1 in Figure 1) is to delete all unnec-
essary temporary files using a pre-defined sequence of steps. The resource
required is a member of the Operating System team and has Windows skills.

2. An incident indicates an issue with slow performance of the database man-
agement system (DBMS). The root cause needs to be identified. The IT Help
Desk responsible for dispatching the ticket will route the ticket to the Ap-
plication Hosting team and a resource will be assigned to look for standard
causes, such as full log files (2.1 in Figure 1). The assigned resource deter-
mines that the cause is capacity exceeded on the server and hence passes

52 B. Sengupta et al.

the incident on to the Server support to free up capacity (2.2 in Figure 1).
The Server support team member executes some pre-defined steps to free up
space, however notices that this is not solving the issue as the problem lies
in the growth of the tables. This requires the ticket to be passed on to the
storage team (2.3 in Figure 1). The storage team allocates space and takes
necessary steps to resolve the issue and close the incident.

In the first scenario, the incident description has sufficient clarity for a dispatcher
to quickly identify the relevant component and required skills. The ticket can be
dispatched to the Windows Operating System team, where an available practi-
tioner will execute a standard set of actions to resolve the issue. Thus such a
ticket is amenable to a well-defined, repeatable incident management process.
On the other hand, the second case involves a ticket where the symptom reported
can be due to one of several possible causes. Using the standard sequential ap-
proach to incident management, we can try to proceed one component at a time,
ruling out the presence of a fault in one component, before passing on the ticket
to the next likely component. However, by the time the actual problem is dis-
covered and fixed, significant time may have elapsed and a SLO may also have
been breached. It may be noted that the time spent is not only due to the inves-
tigations that have to be carried out by each team, but also due to the delays
that occur when a ticket has to be transferred across organizational boundaries,
and the time that is wasted when a ticket is pending in a queue, waiting for a
practitioner to become available and accept the ticket.

We posit that tickets such as in the second case above, need a different ap-
proach to incident management. Instead of being investigated by one practitioner
from one component team at a time, they may need simultaneous attention from
multiple practitioners and teams. In this paper we will apply the concept of a
Social Compute Unit (SCU) [8] to address the second scenario above. A SCU is
a “loosely coupled, virtual and nimble” team of socially-connected experts with
skills in domains relevant to the problem at hand. Socially connected in common
terms is widely understood outside of the work context. We define connectedness
with respect to a social fabric. We believe that in general a human resource is a
connected entity represented as a point (or node) in the social fabric. The social
fabric consists of a continuum of network expressions such as an organizational
network or a collaboration network. The former is typically well defined with
specific roles and responsibilities assigned to nodes in the network. The latter is
an expression of an individual’s ability to transcend organizational boundaries
to act as a source or sink of information.

A SCU team member may not be a dedicated resource, but someone who can
invest a certain amount of time towards solving a problem, when the require-
ment comes up. A SCU is created on request (e.g. from the problem domain’s
business owner), has a certain amount of computing power derived from the
skills and availability of its members and from their collaboration, uses its com-
puting power towards addressing the problem which triggered its creation, and
is dissolved upon problem resolution. These characteristics make the SCU an

Who Do You Call? Problem Resolution through Social Compute Units 53

attractive approach for incident resolution management in an IT service organi-
zation. For more details on the SCU concept, the interested reader is referred to
[8]. In the rest of the paper, we will describe in detail how SCUs may be used
within an IT service management environment for facilitating collaborative in-
cident resolution spanning multiple teams/organizations.

3 Incident Management Using SCUs: A Technical
Framework

We first describe our system model, and then outline the basic principles that
guide a SCU through its life-cycle. There may be different ways of realizing the
abstract framework presented in this section and a concrete instantiation will be
described and evaluated in the following section.

3.1 System Model

We assume a component dependency model represented as a graph G = (V,E),
where V is a set of nodes, each representing a component of the overall IT
infrastructure being managed, and E is a set of directed edges representing de-
pendency relationships between the nodes. Each edge may be represented by a
triple < Ci, Cj , DTk >, where Ci, Cj ∈ V and represent system components,
and DTk ∈ DT is the dependency relationship that exists between Ci (source)
and Cj (target), drawn from a set DT of possible relationships relevant to the
domain. A component Ci ∈ V has a set of possible features CF

i through which
it provides services to the end-user. A ticket Ti is raised when an interruption
or degradation in IT performance is detected, and may be initially represented
as < TSi, Di, Pi >, where TSi is the time-stamp when the ticket was raised, Di

is a textual description of the problem, Pi is a priority level indicating the criti-
cality of the problem that may be drawn from an ordered sequence of numbers
{1, 2, ...p}, with 1 representing the highest priority and p the lowest. Based on
its priority Pi, a ticket will also have a Service Level Objective SLO(Pi) which is
the window of time Wi within which the incident needs to be resolved, thereby
setting a deadline TSi+Wi that the ITSM team has to strive to meet. Each ticket
is also implicitly associated with a fault profile FP = {(Ci, fj)|Ci ∈ V, f ∈ CF

i },
which is a set of features in a set of system components that have developed a
fault, and need to be investigated and fixed. In the majority of cases, we may
expect a ticket to be associated with a single malfunctioning feature in one com-
ponent. Of course, the fault profile is not known when a ticket arrives, but needs
to be discovered in course of the incident management process.

When a ticket is raised, it is the dispatcher’s responsibility to review the prob-
lem description, and try to identify the likely component(s) that are not func-
tioning correctly, so that the ticket may be dispatched to the relevant team(s).
The dispatcher is aided in this task by the component dependency graph, and
in general, s/he may be expected to devise a dispatch strategy that contains an
ordered sequence of components {Ci1 , Ci2 , ..., Ci|V |}, which we call the Likelihood

54 B. Sengupta et al.

Sequence (LS(t)) for a ticket t, going from the most to the least likely component
that may be the cause for this incident. LS(t) represents the order in which the
ticket should be dispatched to the different components for investigation, till the
root cause is identified and fixed. Note that we assume a fully ordered sequence
only for simplicity; the likelihood of some of the elements may be deemed to be
equal, in which case any of them may be picked as the next component to be
investigated. LS(t) would depend on the ticket description, which may contain
some indicators of the potential source of the problem, while the component
dependency graph would make certain related components candidates for in-
vestigation as well, based on the nature of the relationship they have with the
sources. The Likelihood Sequence is a key construct in our incident management
framework. It not only drives the dispatch strategy for the business-as-usual
(BAU) way of routing tickets one team at a time, but is also the sequence our
SCU-based approach would refer to, to help decide on the composition and dy-
namic reconfiguration of the SCU during an incident resolution activity. The
Likelihood Sequence may be expected to evolve as investigation proceeds and
better understanding is achieved regarding the nature of the problem.

ITSM services will be provided by a set of practitioners (human resources)
R. Each Ri ∈ R has a skill profile SP (Ri) = {(Cp, fq, lr)|Cp ∈ V, fq ∈ CF

p , lr ∈
L}, where L is an ordered sequence of skill levels {1, 2, ..., l}, with 1 being the
lowest (most basic) and l being the highest skill level for any skill. A skill is
the ability to investigate and correct a particular feature in a given component.
Most practitioners will possess a set of skills, with varying skill levels, and the
skills of a practitioner will usually be centered around different features in a
single IT component, although there may be a few experienced practitioners with
skills that span multiple components. Given this, each component is immediately
associated with a team - a group of practitioners who have skills in one or more of
the component features and may be called upon to investigate an incident that
may have potentially been caused by the component. For a component Ci, this
is given by Team(Ci) = {Ri|Ri ∈ R, ∃l ∈ L, ∃f ∈ CF

i .(Ci, f, l) ∈ SP (Ri)}. For
each combination (f, l) of a feature f and skill level l, we have an effort tuple
< Einv(f, l), Eres(f, l) >, which indicates representative (e.g. average) effort
needed by a practitioner with skill level l in feature f to investigate if the feature
is working correctly (Einv(f, l)), and to restore the feature to working condition
(Eres(f, l)) in case a fault is detected.

A Social Compute Unit SCU(Tp, t) for a ticket Tp at a point in time t, may
be represented by < C(t),R(t),S(t) >, where C(t) ⊆ V is the set of components
currently being investigated (i.e. at time t), R(t) ⊆ R is the set of practitioners
that are part of the SCU at time t, and S(t) is an abstraction of the current
state of the investigation, encompassing all components/features that have been
verified to be functioning correctly till this point, all the faulty features that
have been restored, and the all features that are currently under investigation
or restoration. Thus a SCU is a dynamic entity whose composition (in terms of
components and practitioners) as well as state (in terms of features investigated
or restored), will continually evolve with time.

Who Do You Call? Problem Resolution through Social Compute Units 55

The management of an incident - from its creation to closure - will incur a
cost, primarily due to effort spent by practitioners on various investigation tasks.
We assume that when a practitioner joins an investigation effort, s/he will need
to spend a certain amount of effort Einit to familiarize with the problem and
the current investigation state. Subsequently, s/he will expend effort on feature
investigation and restoration, commensurate with her skill levels. If s/he is part
of a SCU, she will be expected to spend Ecollab effort to collaborate with the
larger team through the sharing of findings. This effort may be proportional
to the duration of her stay in the SCU, as well as the size of the SCU during
that period (in terms of the number of practitioners and components/features
involved). If we wish to monetize the effort spent, we may assume a function
UnitSalary(Ri) : SP (Ri)− > R (where R is the set of Real numbers), that
returns the cost of unit effort spent by the practitioner, based on his/her skill
profile. We also assume there is a certain amount of effort needed to set up and
dissolve a SCU, given by SCUsetup and SCUdisolve respectively. Also, in the
process-driven sequential way of incident management, there will be a certain
delay Dtransfer imposed each time a ticket is transferred from one team to the
next. Finally, delays may be introduced due to unavailability of practitioners.

Fig. 2. Incident Management Using SCUs

3.2 SCU Based Incident Management

Figure 2 depicts the overall incident management process that we propose. It is
important to note that our SCU approach complements, rather than replaces,
sequential process-driven incident management, represented in Figure 2 as the
Business As Usual (BAU) flow. We do not expect a SCU to be required for ev-
ery ticket, rather we base this decision upon the specific context of a ticket at
a given point in time. When an incident arrives, the problem description should

56 B. Sengupta et al.

be reviewed, and the relative likelihood of different components being the source
of the problem, has to be evaluated. This may be done by a human agent (e.g. a
dispatcher) who uses a combination of ticket description and knowledge of com-
ponent dependencies to identify potential faulty components. Supervised learn-
ing techniques such as Support Vector Machine (SVM) [15] may also be used to
suggest for new tickets the likelihood (represented by a probability distribution)
of each component being the source of the problem [2]. A combination involving
a human dispatcher being assisted by an automated agent is also possible. It
may be noted that such a likelihood evaluation is anyway done (even if implic-
itly) as part of a standard incident management process, since the dispatcher
has to decide each time s/he receives a ticket, which component team needs to
be contacted next to investigate the problem. Also, it is not necessary for the
entire likelihood sequence to be generated as soon as an incident arrives. Instead,
this may also be done incrementally, by considering at any point in time which
are the most likely components that may be the cause for the incident (taking
into account components that have already been investigated), and involve only
those teams in the next phase of investigation.

Fig. 3. Investigation Within A Component

Once this initial analysis has been done, we need to decide whether or not to
invoke a SCU. In case the ticket deadline is sufficiently far away and/or there
is a very strong likelihood of one particular component being the source of the
problem, then the system may decide to follow the BAU mode, in which the
ticket is dispatched to the most likely faulty component, where a practitioner
will have to investigate it (this is explained in more detail later in the context of
Figure 3). However, there will still be a need to monitor the situation so that
in case the deadline is approaching without the root cause been detected, then
a decision may be taken to set up a SCU to accelerate the investigation.

In case the BAU mode is not deemed appropriate in view of an impending
deadline or lack of clarity in the problem description, a SCU may be invoked.
Here, a few of the more likely faulty components are identified, and a set of
practitioners who have the necessary skills in these components are on-boarded
to the SCU. The decision on how many such components to consider, how many

Who Do You Call? Problem Resolution through Social Compute Units 57

practitioners to on-board, what their skill levels should be etc. may be taken
based on availability and the urgency of the situation. For example, if there is
a crisis situation with the deadline of a high priority ticket being near at hand,
then highly skilled practitioners from most/all of the component teams may have
to be involved. In less urgent cases, one practitioner per component, for a small
number of components at a time (say, 2-3) may be sufficient. Once on-boarded,
the practitioners representing a component would try to determine if the incident
has been caused by a fault in one of its features, using the process depicted
in Figure 3. Here, a practitioner would proceed through the feature list of a
component in the order of their relative likelihood of having a fault (as inferred
by him/her based on the ticket description and understanding of features), and
for each feature, investigate if it is correctly functioning, and if not, apply a fix
to restore the feature. If the fix resolves the incident as well, then any ongoing
investigation will be stopped across all components. Suitable findings from the
investigation process will be harvested for later reference, and the SCU will
be dissolved (Figure 2). Otherwise, the practitioner may move on to the next
feature. If the current practitioner(s) representing a component do not have all
the skills needed to cover the complete feature set, then on completion of their
investigation, they may be replaced by other suitable practitioners. Note that
this basic approach towards investigating a component remains the same whether
a BAU or SCU mode is used. In case multiple practitioners are investigating the
same component together in a SCU, they may partition the feature list amongst
themselves to ensure there is no redundancy of effort. Also, within a SCU, a
practitioner will be expected to collaborate with others e.g. through the sharing
of findings, as shown in Figure 2.

As investigation proceeds, it is necessary to periodically monitor the situation
and take appropriate action (Figure 2). For example, if the incident deadline
is approaching, then there would be a need to re-configure the SCU by on-
boarding more practitioners to cover other components. In case a high priority
ticket arrives that needs the attention of a practitioner who is currently part
of another (relatively less urgent) ticket’s SCU, then the practitioner may have
to leave the SCU and be replaced by another suitably skilled colleague who
is available. Again, if all the features of a component have been verified to be
functioning correctly, then the component may be removed from the SCU and
the corresponding practitioners off-boarded. New SCU members may then be
added from the next likely set of component(s). Finally, in the unusual case
when all components have been investigated without the defect being identified,
the SCU may be re-constituted and re-run, with higher skilled practitioners if
needed.

4 Experiments

To experimentally evaluate our proposed SCU-based approach for incident man-
agement, we have designed an event driven simulator that mimics the flow of
tickets through an IT service delivery environment. We first describe the exper-
imental set-up, and then present the results.

58 B. Sengupta et al.

4.1 Experimental Set-Up

The simulation framework is built on java and has 4 major components: Events
Generator that generates standard events related to incidence creation and man-
agement; Ticket Lifecycle Simulator, which manages various timers and notifi-
cations related to a ticket; Delivery Model, which includes the basic models of
all the system entities (tickets, components, features, resources etc.) and rela-
tionships, and whose generated runtime is directly used within the simulation
framework; and SCU Runtime Manager, designed as a library for implementing
a SCU model in a service delivery environment.

For our experiments, we have considered an IT system with 30 components,
with each component having between 0 to 5 dependencies generated as a random
graph. For generating ticket data, we used a power law probability distribution
of tickets across components, which is suitable for generating Pareto-like long
tailed distributions. Based on our experience from working with large ITSM or-
ganizations, we have set this closer to a 70:30 distribution, which means that
only 30% of the components cause 70% of the tickets. Overall, we generated 1154
tickets to cover a 1 week period of study, and maintained a resource pool of 200
practitioners to ensure a reasonable service rate. The ticket arrival rate is mod-
eled as a stochastic process using a Poisson distribution initialized by average
hourly arrival rates of tickets as we have seen in several actual service delivery
environments. We assumed 4 different priority levels for tickets, with SLOs of 4
hours (highest priority), 8 hours, 24 hours and 48 hours (lowest priority) respec-
tively. The relative distribution of the priority levels, were 2% (highest priority),
8%, 20% and 70% (lowest probability). All these values were selected based on
our review of multiple ticket sets and SLOs. We assumed each practitioner to
have skills in all the features of one component (which is often the case since
practitioners in such environments are usually specialists in a particular techni-
cal domain). The staffing levels of each component were determined based on
their relative workload (in terms of number of tickets received, the number of
features, and the effort needed to investigate and fix each feature). Each ticket
was assigned a fault profile of a single feature in one component. The likelihood
sequence of each ticket was generated carefully by assuming the faulty compo-
nent to be amongst the most likely ones in a high percentage of cases, but we
also generated tickets with unclear root causes, where the faulty component oc-
curred later in the sequence (with a probability that decreased progressively as
the likelihood decreased). Moreover, we adjusted each sequence to ensure that
the position of a likely component correlated well with that of some of its neigh-
bours in the dependency graph, so that these neighbours were likely candidates
as well.

We studied two modes of incident management - a fully process driven BAU
mode, and a heterogeneous mode of BAU and SCUs. In the former, a ticket is
investigated by one practitioner from one component at a time, and whenever a
ticket has to cross organization boundaries, we assumed a delay of 30 minutes
to account for the process-related overheads. This is actually a conservative
estimate, since in real life service environments we have found tickets to be stuck

Who Do You Call? Problem Resolution through Social Compute Units 59

for hours or days together in transfer between the components, and this was a key
motivation for the SCU. In the heterogeneous mode, SCUs were automatically
assembled for every highest priority ticket. For the rest of the tickets (including
those initially dispatched in BAU mode), the decision to compose a SCU was
based on the urgency of the situation at a given point in time. We used 4 levels
of urgency, based on distance from the SLO deadline, and gradually increased
the span of a SCU to cover more components (while having a single practitioner
per SCU component) as the ticket moved from one urgency level to the next
higher one.

4.2 Results and Discussion

The table in Figure 4 presents the results obtained from our simulation-based
experiments. The column BAU stands for the mode where only process-driven
sequential investigation was carried out for each ticket, while the rest of the
columns involve situations where the BAU mode was complemented by SCUs.
We experimented with different variations of this latter mode. We started with
a conservative policy of initializing each SCU with a single component (Start1),
but still investing in the SCU set-up cost (e.g. for getting the collaboration
platform ready) in anticipation of the need to onboard more practitioners. In
the other variations, we initialized each SCU with 2, 3 and 5 components. Once
set up, a SCU was, of course, allowed to expand in size by onboarding more
components, as the ticket progressed towards its deadline.

Fig. 4. Experimental Results

We compare the performance of BAU and SCU modes along two main dimen-
sions: effort and time to resolve. In terms of effort spent, the BAU mode is, in
general, more efficient than the SCU mode. This is because in the former, only a
single practitioner is being assigned at a time to conduct an investigation (on the
most likely component at that point), while in the latter, multiple practitioners
are assigned, and the aggregate effort invested is likely to be higher. Thus both
the metrics Average Number of Resources Per Ticket and Average Person Hours
Effort Per Ticket (aggregated across all resources who worked on a ticket) shows

60 B. Sengupta et al.

an increase as we go from BAU to SCU mode, and across the different variants
of SCU modes. The only exception to this is when we start a SCU with a single
component, in which case the Average Person Hours Effort Per Ticket decreases
by about 5% relative to the BAU mode. This is an interesting case, and one
probable reason for this may be that the Start1 mode, being at the boundary
between full BAU and SCU modes, is able to effectively leverage the advantages
of both, combining the power of quicker resolution with the low initial effort to
bring down the total effort per ticket.

While the overall effort spent in SCU mode is, in general, higher, the col-
laborative investigation power of a SCU also significantly reduces the time to
resolution, as seen from the values of the metrics Average Time To Resolve,
Average Time Investigating and Max Time to Resolve. In all of these, the per-
formance of the BAU mode lags far behind that of the SCU modes. From the
business impact perspective, the most compelling case for the SCU comes from
the dramatically improved SLO performance that results from its faster reso-
lution of tickets, with Number of SLO Violations ranging between only 27.3%
to 46.7% of the corresponding number for BAU. With the stringent penalties
that IT vendors have to pay for poor SLA performance, the financial implica-
tions of this are far reaching. It may also be noted that while the SCU approach
may consume more aggregate effort from practitioners, this does not necessarily
translate to higher costs for the vendor. This is because, vendors typically main-
tain a dedicated team to provide production support to customer systems, and
the effort available from these practitioners, if not utilized, may go waste and
result in under-utilization, even though the vendor would still have to bear the
same costs in terms of employee salary.

While a SCU has the flexibility to scale up as needed, we find that the average
SCU size at any point in time (or its “strength”) ranges from 2.2 to 4.03. While
this may also partly be due to resource unavailability that prevents it from
growing very large (since there will be many other tickets that keep practitioners
engaged), the size is small enough for easy governance. Finally, we see that by
virtue of being in a SCU, a practitioner is able to increase his/her sphere of
interaction substantially, and the average number of colleagues they collaborate
with during this brief period of study ranges from 12 to as high as 55. There are
several long-term benefits an organization can derive from this that we intend
to study in detail going forward, as mentioned in Section 6.

5 Related Work

We believe the novelty of our work is in the usage of SCU teams in problem res-
olution of otherwise sequential services processes. For example, the authors of
[5] developed SYMIAN, a simulation framework for optimizing incident manage-
ment via a queueing model based approach, which identifies bottlenecks in the
sequential execution of ticket resolution. SYMIAN is based on the current imple-
mentation of incident management in the IT service provider organizations. Our
approach is different from [5] as it takes into account optimization of resolution

Who Do You Call? Problem Resolution through Social Compute Units 61

time through parallelization of work effort in the context of otherwise sequential
execution of work.

A number of researchers have looked at the problem of mapping tickets to
teams based on the problem description. For example, [14] develops a Markov
model by mining ticket resolution sequences of historical tickets that were trans-
ferred from one team to another before being resolved. In [10] supervised learning
techniques are used to determine the likelihood that a service request corresponds
to a specific problem symptom; prior performances of teams are then analyzed
to identify groups that have the necessary skills to resolve these problems. In
[12] an auction-based pull model for ticket allocation is proposed, along with
incentive mechanisms for practitioners to be truthful about expected resolution
time when bidding for tickets. Unlike our approach, however, none of these works
consider dynamic team formation to facilitate faster resolution of tickets through
collaborative problem solving. The use of component dependency graphs in the
incident management process has also been explored [11,9]. However, these have
mainly been used to correlate problems and to search possible solutions rather
than to automatically establish a suitable team for solving problems.

Human-based tasks, e.g., in BPEL4People [4], can be used to specify hu-
man capabilities or certain management tasks, e.g., by utilizing human-specific
patterns [13]. However, this model relies on specific, pre-defined management
processes which are not suitable for complex problem resolution, as we have dis-
cussed in this paper. Crowdsourcing [6,7] has been employed for solving complex
problems, but while it also offers parallel computation power, our approach is
distinct in its use of social collaboration to harness complementary skills within
an organization and drive towards a common goal.

6 Conclusions and Future Work

This paper is a starting point into a broader mission to investigate the interplay
of service-oriented and social computing concepts. So far we have introduced the
fundamental concept of Social Compute Units and in this paper demonstrated
the cost-benefit aspects of SCU’s for a typical enterprise process. Whereas we be-
lieve the initial results from our simulations based on real-world experiences from
the service delivery business of a large IT Service provider are very promising,
future work will address the following:

1. Our current model assumes the SCU to be an organizationally implemented
work model, i.e. skill and availability of resources will drive SCU forma-
tion. Social computing has a richer set of mechanisms, such as incentive and
rewards, that are not yet part of our framework

2. The culture of collaboration that an SCU will nurture should have several
long-term benefits in terms of knowledge management and enhancement in
skill profiles. We will incorporate these in our framework going forward.

3. An important next step is to realize this approach in a real service delivery
environment.

62 B. Sengupta et al.

References

1. http://www.gartner.com/it/page.jsp?id=1470115

2. IBM SPSS, http://spss.co.in/
3. IT infrastructure library. ITIL service support, version 2.3. Office of Government

Commerce (June 2000)
4. WS-BPEL Extension for People (BPEL4People) Specification Version 1.1 (Novem-

ber 2009), http://docs.oasis-open.org/
bpel4people/bpel4people-1.1-spec-cd-06.pdf

5. Bartolini, C., Stefanelli, C., Tortonesi, M.: SYMIAN: A Simulation Tool for the
Optimization of the IT Incident Management Process. In: De Turck, F., Kellerer,
W., Kormentzas, G. (eds.) DSOM 2008. LNCS, vol. 5273, pp. 83–94. Springer,
Heidelberg (2008)

6. Brew, A., Greene, D., Cunningham, P.: Using crowdsourcing and active learning to
track sentiment in online media. In: Proceeding of the 2010 Conference on ECAI
2010: 19th European Conference on Artificial Intelligence, pp. 145–150. IOS Press,
Amsterdam (2010)

7. Doan, A., Ramakrishnan, R., Halevy, A.Y.: Crowdsourcing systems on the world-
wide web. Commun. ACM 54(4), 86–96 (2011)

8. Dustdar, S., Bhattacharya, K.: The social compute unit. IEEE Internet Comput-
ing 15(3), 64–69 (2011)

9. Gupta, R., Prasad, K.H., Mohania, M.: Automating ITSM incident management
process. In: International Conference on Autonomic Computing (2008)

10. Khan, A., Jamjoom, H., Sun, J.: AIM-HI: a framework for request routing in large-
scale IT global service delivery. IBM Journal of Research and Development 53(6)
(2009)

11. Marcu, P., Grabarnik, G., Luan, L., Rosu, D., Shwartz, L., Ward, C.: Towards an
optimized model of incident ticket correlation. In: Integrated Network Management
(IM), pp. 569–576. IEEE Press, Piscataway (2009)

12. Deshpande, P.M., Garg, D., Suri, N.R.: Auction based model for ticket allocation
in IT service delivery industry. In: IEEE SCC (2008)

13. Russell, N., van der Aalst, W.M.P.: Work Distribution and Resource Management
in BPEL4People: Capabilities and Opportunities. In: Bellahsène, Z., Léonard, M.
(eds.) CAiSE 2008. LNCS, vol. 5074, pp. 94–108. Springer, Heidelberg (2008)

14. Shao, Q., Chen, Y., Tao, S., et al.: Efficient ticket routing by resolution sequence
mining. In: 14th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (2008)

15. van Gestel, T., Suykens, J.A.K., Baesens, B., et al.: Benchmarking least squares
support vector machine classifiers. Machine Learning 54(1), 5–32 (2004)

http://www.gartner.com/it/page.jsp?id=1470115
http://spss.co.in/
http://docs.oasis-open.org/bpel4people/bpel4people-1.1-spec-cd-06.pdf
http://docs.oasis-open.org/bpel4people/bpel4people-1.1-spec-cd-06.pdf

	Who Do You Call? Problem Resolution
through Social Compute Units
	Introduction
	Motivating Example
	Incident Management Using SCUs: A Technical Framework
	System Model
	SCU Based Incident Management

	Experiments
	Experimental Set-Up
	Results and Discussion

	Related Work
	Conclusions and Future Work
	References

