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Abstract

We propose a new methodology to test who the key player is in delinquent networks, i.e.

the delinquent who, once removed from the network, generates the highest possible reduction

in aggregate delinquency level. Using data on adolescent delinquents in the United States,

we then provide new results regarding the identification of peer effects and determine the key

player in each delinquent network. We show that, compared to a policy that removes the most

active delinquent from the network, a key player policy engenders a much higher delinquency

reduction.
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1 Introduction

There are 2.3 million people behind bars at any one time in the United States, and that number

continues to grow. It is the highest level of incarceration per capita in the world. Moreover, since the

crime explosion of the 1960s, the prison population in the United States has multiplied fivefold, to

one prisoner for every hundred adults – a rate unprecedented in American history and unmatched

anywhere in the world.1 However, in spite of a continuously falling crime rate, the prisoner head

count continues to rise, and poor people as well as minorities still bear the brunt of both crime and

punishment.

One possible way to reduce crime is to detect, apprehend, convict, and punish criminals. This

is what has been done in the United States and all of these actions cost money, currently about

$200 billion per year nationwide. For example, in California, even if this “brute force” policy has

partly worked (the rate of every major crime category is now less than half of what it was 20 years

ago), the cost of this policy has been tremendous. Consider, for example, that the cost of the justice

system is higher than the cost of education.2

In his recent book published in 2009, Mark Kleiman argues that simply locking up more people

for lengthier terms is no longer a workable crime-control strategy. But, says Kleiman, there has

been a revolution in controlling crime by means other than brute-force incarceration: substituting

swiftness and certainty of punishment for randomized severity, concentrating enforcement resources

rather than dispersing them, communicating specific threats of punishment to specific offenders, and

enforcing probation and parole conditions to make community corrections a genuine alternative to

incarceration. As Kleiman shows, “zero tolerance” is nonsense: there are always more offenses than

there is punishment capacity.

Is there an alternative to brute force? In this paper, we argue that concentrating efforts by

targeting “key players”, i.e. players who once removed generate the highest possible reduction in

aggregate activity level in a network. The “key players” policy can be more effective in reducing

delinquency and crime because of the snow-ball effects or “social multipliers” at work (see, in par-

ticular, Kleiman, 2009; Glaeser et al., 1996; Verdier and Zenou, 2004; Calvó-Armengol and Zenou,

2004).3 Furthermore, the impact of social networks may be particularly important for adolescents

because this developmental period overlaps with the initiation and continuation of many risky, un-

healthy, and delinquent behaviors and is a period of maximal response to peer pressure (Thornberry

et al., 2003; Warr, 2002).

It is indeed well-established that delinquency and crime are, to some extent, a group phenom-

enon, and that the sources of delinquency and crime are located in the intimate social networks of

individuals (see e.g. Sarnecki, 2001; Warr, 2002; Haynie, 2001; Patacchini and Zenou, 2012). Delin-

quents often have friends who have themselves committed several offences, and social ties among

delinquents are seen as a means whereby individuals exert an influence over one another to commit

1See Cook and Ludwig (2010) and the references therein.
2For example, the “Three Strikes” law passed in California in 1994 mandates extremely long prison terms (between

29 years and life) for anyone previously convicted in two serious or violent felonies (including residential burglary)

when convicted of a third felony, even for something as minor as petty theft.
3 See Goyal (2007), Jackson (2008), Ioannides (2012) and Jackson and Zenou (2014) for overviews on network

theory.
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crimes. In fact, not only friends, but also the structure of social networks, matters in explaining

an individual’s own delinquent behavior. This suggests that the underlying structural properties of

friendship networks must be taken into account to better understand the impact of peer influence

on delinquent behavior and to address adequate and novel delinquency-reducing policies.

The aim of this paper is to investigate the importance of the key player in delinquent networks

by proposing a new methodology that helps detect the key player in the real world. For that, we

extend the theoretical model of Ballester et al. (2006) to incorporate local-aggregate (i.e. strategic

complementarity) as well as local-average (i.e. taste for conformity) effects in the utility function

and identify the key player. We then bring this model to the data. In order to determine the key

player, we need to estimate the intensity of interactions between criminals in each network. Most

of the network models in the literature use the identification approach proposed by Bramoullé et

al. (2009), which assumes that the adjacency matrix (or sociomatrix) is row-normalized (the local-

average model). With a row-normalized adjacency matrix, a criminal’s effort level depends on the

average effort level of her criminal friends (Patacchini and Zenou, 2012). However, key-player policies

also make sense in the context of the local-aggregate model developed by Ballester et al. (2006) with

a non-row-normalized adjacency matrix, where it is the sum of friends’ efforts that affects own effort.

In this paper, we provide a new identification strategy for the local-aggregate model which is based

on the variation of the row sum of the adjacency matrix. We show that, in general, the identification

condition for the local-aggregate model is weaker than that for the local-average model developed

by Bramoullé et al. (2009).

Using the Add Health data of adolescents in the United States, using the general model with both

local-average and local-aggregate effects, we then determine who is the key player in each of our 103

networks. We find that the key player is not necessarily the most active delinquent in the network.

We also find that it is not straightforward to determine which delinquent should be removed from

a network only based on her position in the network. Compared to other students, the key players

are older and in higher grades, are less likely to be white, have lower math scores, have lower self

esteem, and are less likely to feel being part of school or being safe in school. They are also less

likely to feel that their parents care about them, and are less likely to come from families where

parents work as professionals.

We finally discuss the policy implications of our results. First, we show that targeting the most

active delinquent is less effective than the key-player policy. Second, our key-player policy can be

directly applied to reduce crime in the real world when criminal network data are available (we

provide a selective list of such data). In fact, some similar policies aiming at reducing crime have

already been implemented in the United States but without the analytical tools of the key-player

policy. Finally, we show that we can use our methodology to determine the key player in other types

of networks and activities, where network data are easier to obtain. This is particularly true for

financial networks, R&D networks, networks in developing countries and political networks.

The rest of the paper unfolds as follows. In the next section, we discuss the related literature and

explain our contribution. The theory is exposed in Section 3. Our data are described in Section 4.

In Section 5, the identification of the econometric network model is discussed while the estimation

and empirical results of the impact of peer effects on crime are provided. Section 6 characterizes
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the key players. In Section 7, we discuss the implications of the key-player policy. Finally, Section

8 concludes.

2 Related literatures

Our paper lies at the intersection of different literatures. We would like to expose them in order to

highlight our contribution.

Empirical studies of peer effects in crime There is a growing body of empirical literature

suggesting that peer effects are very strong in criminal decisions. Ludwig et al. (2001) and Kling

et al. (2005) study the relocation of families from high- to low-poverty neighborhoods using data

from the Moving to Opportunity (MTO) experiment. They find that this policy reduces juvenile

arrests for violent offences by 30 to 50 percent, relative to a control group. This also suggests very

strong social interactions in crime behaviors. Patacchini and Zenou (2012) find that peer effects in

crime are strong, especially for petty crimes. Bayer et al. (2009) consider the influence that juvenile

offenders serving time in the same correctional facility have on each other’s subsequent criminal

behavior. They also find strong evidence of learning effects in criminal activities since exposure to

peers with a history of committing a particular crime increases the probability that an individual

who has already committed the same type of crime recidivates that crime.

Our contribution here is to structurally estimate a network model and to propose a way to identify

the key player in criminal networks. This paper is the first to present an empirical implementation

of the key player policy, which is grounded on a precise behavioral foundation.

Econometrics of networks The literature on identification and estimation of social network

models has progressed significantly recently (see Blume et al., 2011 and Durlauf and Ioannides,

2010, for recent surveys). In his seminal work, Manski (1993) introduces a linear-in-means social

interaction model with endogenous effects, contextual effects, and correlated effects. Manski shows

that the linear-in-means specification suffers from the “reflection problem” and the different social

interaction effects cannot be separately identified.4 Bramoullé et al. (2009) generalize Manski’s

linear-in-means model to a general local-average social network model, whereas the endogenous

effect is represented by the average outcome of the peers. They provide some general conditions

for the identification of the local-average model (i.e. when the adjacency matrix is row-normalized)

using an indirect connection’s characteristics as an instrument for the endogenous effect.

Our contribution to this literature is to provide an identification condition for the local-aggregate

model (i.e. when the adjacency matrix is not row-normalized). We show that, in general, the

identification condition of the local-aggregate model is weaker than that of the local-average model.

The key-player problem The problem of identifying key players has a long tradition in the

sociological literature, which have proposed different measures of network centralities to define the

key players (see, in particular, Wasserman and Faust, 1994). Borgatti (2003, 2006) was among the

first researchers to analytically study the issue of key players by explicitly measuring the contribution

of a set of actors to the cohesion of a network. Borgatti measures the amount of reduction in

4Lee (2007a) considers a model with multiple networks where an agent is equally influenced by all the other agents

in the same network. Lee’s social interaction model is identifiable only if there is variation in network size in the

sample. The identification, however, can be weak if all of networks are large.
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cohesiveness of the network that would occur if some nodes were not present. In the economics

literature, Ballester et al. (2006, 2010) were the first to define the key-player problem in terms of

behavior of agents so that total activity is measured as the sum of efforts of all agents at a Nash

equilibrium.

This is the first paper that proposes a methodology to test the key-player policy. Our contribution

is thus mainly methodological. We also provide concrete recommendations on how to implement the

key player policy in the real world, primarily from criminal networks but also for financial, R&D,

development, political and tax-evasion networks.

3 Theoretical framework

3.1 Model and Nash equilibrium

Suppose  = {1     } is a finite set of agents, each corresponds to a node in a network  ≡  . We

keep track of social connections in network  through its adjacency matrix G = [ ], where  = 1

if nodes  and  ( 6= ) are connected and  = 0 otherwise.
5 We set  = 0. For network  with

adjacency matrix G, the -th power of G given by G keeps track of direct and indirect connections

in the network. More precisely, the ( )-th entry of G gives the number of paths of length  from

node  to node  in network . In particular, G0 = I. Note that, by definition, a path between  and

 needs not follow the shortest possible route between those nodes. For instance, if  =  = 1,

then the sequence  →  →  →  constitutes a path of length three from  to . Furthermore, let

G∗ = [∗ ], with ∗ = 
P

=1  ,
6 denote the row-normalized adjacency matrix. An example is

given in Figure 1 for a tree network with four agents.

1 2

3

4

G =

⎡⎢⎢⎢⎢⎣
0 1 0 0

1 0 1 1

0 1 0 1

0 1 1 0

⎤⎥⎥⎥⎥⎦ G∗ =

⎡⎢⎢⎢⎢⎣
0 1 0 0
1
3

0 1
3

1
3

0 1
2

0 1
2

0 1
2

1
2

0

⎤⎥⎥⎥⎥⎦
Figure 1: a tree network and corresponding adjacency matrices.

Agents in network  decide how much effort to exert in delinquent activities. We denote by 

the effort level of agent  and by y = (1  )
0 the population effort profile in network . Each

agent  selects an effort  ≥ 0, and obtains a payoff (y ) that depends on the effort profile y and

on the underlying network , in the following way:

(y ) = ( + 1
P

=1 )| {z }
benefits

− [   + 1
2
2 +

1
2
2( −

P
=1 

∗
)

2]| {z }
cost

(1)

with 1 ≥ 0 and 2 ≥ 0. This utility has a standard cost-benefit structure (as in Becker, 1968). The
5For the ease of the presentation, we focus on undirected unweighted networks so that G is a (0 1) symmetric

square matrix. All our theoretical results also hold for directed and/or weighted networks since the (a)symmetry of

the adjacency matrix G does not play any role in the proof of our theoretical results.
6For simplicity, we assume none of the agents in the network are isolated so that


=1  6= 0 for all .
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payoff increases in own effort  with the marginal benefit given by ∗ + 1
P

=1  . The term

∗ denotes the exogenous heterogeneity of agent ’s “productivity” in delinquent activities, and is

given by

 = x
0
β
∗
1 +

P
=1 

∗
x

0
β
∗
2 +  + ∗  (2)

where x = (1  )
0 is a  × 1 vector that captures the observable exogenous characteristics

of agent  (e.g. age, sex, race, parental education, etc.),
P

=1 
∗
x

0
 is the average exogenous

characteristics of agent ’s connections, with its coefficient vector β∗2 representing contextual effects

(Manski, 1993),  denotes the unobservable (to the researcher) exogenous network characteristics,

e.g., the prosperity level of the neighborhood of network  (i.e. more prosperous neighborhoods

may lead to higher proceeds from delinquent activities) and ∗ denotes the unobservable (to the

researcher) characteristics of agent .

Compared to the standard crime model (Becker, 1968), the new element in the benefit part of (1

is the term 1
P

=1  , which reflects the influence of the total effort of an agent’s connections

on her own “productivity”. Indeed, an agent may benefit directly from the effort of her connections

if they are co-offenders in some delinquent activity. An agent may also benefit indirectly through

the form of know-how sharing about delinquent behavior with her friends.7 We assume that the

more delinquent connections an agent has and the more these connections are involved in delinquent

activities, the higher is the marginal payoff of the agent’s own delinquent effort. Thus, we call 1

the social-multiplier coefficient.

The cost part of the utility has three components. The cost of being caught is captured by the

probability of being caught 0    1 times the fine  , which increases with the effort level ,

as the severity of the punishment increases with one’s involvement in delinquent activities. Also,

individuals have a direct cost of exerting effort given by 1
2
2 . Finally, different from Ballester et

al. (2006, 2010), the cost in (1) has an additional term 1
2
2( −

P
=1 

∗
)

2, which represents the

moral cost due to deviation from the social norm of the reference group (i.e., the average effort of

agent ’s connections). We call 2 the social-conformity coefficient.

At equilibrium, each agent maximizes her utility (1) and the best-response function of each agent

 is given by:

 = 1

P
=1

 + 2

P
=1

∗ +  (3)

where 1 = 1(1 + 2), 2 = 2(1 + 2), and

 = ( −  )(1 + 2) = x
0
β1 +

P
=1 

∗
x

0
β2 +  +  (4)

with β1 = β∗1(1+2), β2 = β∗2(1+2),  = (− )(1+2) and  = ∗ (1+2). As 1 ≥ 0 and
2 ≥ 0, we have 1 ≥ 0 and 0 ≤ 2  1. The coefficient 1 captures the local-aggregate endogenous

peer effect. As 1 ≥ 0, this coefficient reflects strategic complementarity in efforts. The coefficient
2 captures the local-average endogenous peer effect, which reflects the taste for conformity. Note

7Sutherland (1947) and Akers (1998) expressly argue that criminal behavior is learned from others in the same

way that all human behavior is learned. Indeed, young people may be influenced by their peers in all categories of

behavior - music, speech, dress, sports, and delinquency.
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that, 12 = 12. That is, the relative magnitude of 1 and 2 is the same as that of the

social-multiplier coefficient 1 and the social-conformity coefficient 2.

Let ̄ =
P

=1  denote the degree of node  in network . Let ̄max = max ̄ denote the

highest degree in network . It is easily shown that, if 1 ≥ 0, 2 ≥ 0 and ̄max1 + 2  1, the

network game with utility (1) has a unique Nash equilibrium in pure strategies given by:

y∗ = (I − 1G− 2G
∗)−1α (5)

where y∗ = (∗1   
∗
)
0 is the equilibrium effort vector, I is the (× ) identity matrix, and

α = (1 · · ·  )0.
Two special cases of this network game are of particular interest. The first case is when 2 = 0

in the utility (1). In this case, 2 = 0 and the best-response function becomes

 = 1

P
=1

 + 

with equilibrium effort vector given by

y∗ = (I − 1G)
−1α

As the equilibrium effort of an agent depends on the aggregate effort of her connections, we call this

case the local-aggregate network game. The other case is when 1 = 0 in the utility (1). In this case,

1 = 0 and the best-response function becomes

 = 2

P
=1

∗ + 

with equilibrium effort vector given by

y∗ = (I − 2G
∗)−1α

As the equilibrium effort of an agent depends on the average effort of her connections, we call this

case the local-average network game.

3.2 Finding the key player

A key player is the agent whose removal from the network leads to the largest reduction in the

aggregate effort level in a network. LetM( 1 2) = (I− 1G− 2G
∗)−1, with its ( )-th entry

denoted by ( 1 2). Let

b( 1 2α) =M( 1 2)α

with its -th entry denoted by ( 1 2α) =
P

=1( 1 2) . Let ( 1 2α) =P
=1 ( 1 2α) = ι0M( 1 2)α denote the aggregate effort level in network , where ι

is an  × 1 vector of ones. Let [−] denote the network with agent  removed. Let G[−] and
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α[−] denote the adjacency matrix and vector of covariates corresponding to the remaining agents in

network [−]. Then, the key player ∗ in network  is given by ∗ = argmax ( 1 2α), where

( 1 2α) = ( 1 2α)−([−] 1 2α
[−]) (6)

3.2.1 The key player in the local-aggregate network game

Ballester et al. (2006, 2010) and Ballester and Zenou (2014) have studied the key-player policy

for the local-aggregate network game with 2 = 0 in (1). Observe that, in this case, 2 = 0

and ( 1 0 ι) is known as the Katz-Bonacich centrality of node  (Ballester et al., 2006). Let

α[] denote the vector of covariates calculated based on the network consisting [−] and the isolated

. It follows from Ballester and Zenou (2014) that the key player can be determined by the generalized

intercentrality.

Proposition 1 For network , let the generalized intercentrality of node  be denoted by

( 1 0α) = ι0M( 1 0)(α−α[])| {z }
contextual variable change effect

+
( 1 0α

[])
P

=1( 1 0)

( 1 0)| {z }
network structure change effect

 (7)

Then, agent ∗ is the key player of the local-aggregate network game if and only if ∗ has the highest

generalized intercentrality in network .

The generalized intercentrality (7) highlights the fact that when an agent is removed from a

network, two effects are at work. The first one is the contextual variable change effect, which is due

to the change in α after the removal of an agent. The second effect is the network structure change

effect, which captures the change in G when an agent is removed. More generally, the generalized

intercentrality measure accounts both for one’s exposure to the rest of the group and for one’s

contribution to every other exposure.

3.2.2 The key player in network games with the local-average peer effect

To the best of our knowledge, nobody has studied the key-player policy for the local-average model.

To have some intuition, consider the local-average network game for the network in Figure 1. Suppose

that the agents are homogeneous ex ante with x = 1 and  =  = 0 for  = 1 2 3 4. We assume

β1 = β2 = 1 and thus by (4)

α =

⎡⎢⎢⎢⎢⎣
x1 + x2

x2 +
1
3
(x1 + x3 + x4)

x3 +
1
2
(x2 + x4)

x4 +
1
2
(x2 + x3)

⎤⎥⎥⎥⎥⎦ = 2ι4

For the local-average network game with 1 = 0, the equilibrium effort vector is given by b( 0 2α) =

M( 0 2)α = 2(I−2G
∗)−1ι4 = 2ι4(1− 2). Observe that, although the 4 agents have different

positions (e.g. different degrees) in the network, their equilibrium effort levels are identical. The

aggregate effort level is ( 1 2α) = 8ι4(1− 2).
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Suppose agent 1 is removed from the network. Then,

G[−1]∗ =

⎡⎢⎣ 0 1
2

1
2

1
2

0 1
2

1
2

1
2

0

⎤⎥⎦ and α[−1] =

⎡⎢⎣ x2 +
1
2
(x3 + x4)

x3 +
1
2
(x2 + x4)

x4 +
1
2
(x2 + x3)

⎤⎥⎦ = 2ι3
and the equilibrium effort vector is given by b([−1] 0 2α

[−1]) = M([−1] 0 2)α
[−1] = 2(I −

2G
[−1]∗)−1ι3 = 2ι3(1−2). Observe that the equilibrium effort of the remaining agents are not af-

fected by the removal of agent 1. Similarly, we can show that b([−3] 0 2α
[−3]) = b([−4] 0 2α

[−4]) =

2ι3(1−2). That is, the equilibrium effort of the remaining agents are not affected by the removal

of agent 3 or 4 either. Although agents 1, 3 and 4 have different positions in the network, removing

any one of them leads to the same amount of reduction in the aggregate effort level.

On the other hand, agent 2 has a very special position in the network, as the removal of agent 2

breaks the link between agent 1 and the other agents. Indeed, when agent 2 is removed, we have

G[−2]∗ =

⎡⎢⎣ 0 0 0

0 0 1

0 1 0

⎤⎥⎦ and α[−2] =

⎡⎢⎣ x1

x3 + x4

x4 + x3

⎤⎥⎦ =
⎡⎢⎣ 1

2

2

⎤⎥⎦
and b([−2] 0 2α

[−2]) =M([−2] 0 2)α
[−2] = (I−2G[−2]∗)−1α[−2] = [1 2(1−2) 2(1−2)]0.

As 0  2  1, the equilibrium effort of agent 1 is less than 2(1− 2). Hence, removal of agent 2

leads to the largest reduction in the aggregate effort level and agent 2 is the key player.

From the above example, we can see that, in general, when the agents are ex ante homogeneous,

which agent to remove from the network does not matter in terms of the aggregate effort level

reduction, unless the agent holds a very special position in the network such that removing this

agent generates isolated nodes in the network.

If the agents have different values of x, the key-player problem for the local-average network game

and the general network game with utility (1) does not have an analytical solution. The difficulty

comes from the fact that the row-normalized adjacency matrix of network [−] is, in general, not a

submatrix of the row-normalized adjacency matrix of network  (as one can see that G[−1]∗ is not a

submatrix of G∗ in the above example). Yet we can still determine the key player numerically using

its definition given by (6) if we can estimate the unknown parameters in the best-response function

(5). In the rest of paper, we present an empirical investigation of the key-player problem for the

general network game with both local-aggregate and local-average peers effects.

4 Data

Our analysis is made possible by the use of a unique database on friendship networks from the

National Longitudinal Survey of Adolescent Health (Add Health). The Add Health database has

been designed to study the impact of the social environment (i.e. friends, family, neighborhood

and school) on adolescents’ behavior in the United States by collecting data on students in grades

7-12 from a nationally representative sample of roughly 130 private and public schools in years

1994-95. Every student attending the sampled schools on the interview day is asked to complete a
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questionnaire (in-school survey) containing questions on respondents’ demographic and behavioral

characteristics, education, family background and friendships. This sample contains information on

roughly 90,000 students. A subset of adolescents selected from the rosters of the sampled schools,

about 20,000 individuals, is then asked to complete a longer questionnaire containing more sensitive

individual and household information (in-home survey and parental data). Our analysis only uses

the in-school survey data.

For the purposes of our analysis, the most interesting aspect of the Add Health data is the

information on friendships that is based upon actual friend nominations. Students were asked to

identify their best friends from a school roster (up to five males and five females).8 We assume

friendship to be reciprocal so that the adjacency matrix G = [ ] is symmetric with  = 1 if 

nominates  as a friend or  nominates  as a friend.

The dependent variable in our analysis is an index of participation in delinquent activities. In

the Add Health, the following question about delinquent activities is asked to each student in the

in-school survey: “In the past 12 months, how often did you: () smoke cigarettes; () drink beer,

wine, or liquor; () get drunk; () race on a bike, on a skateboard or roller blades, or in a boat or

car; () do something dangerous due to dare; () lie to your parents or guardians; () skip school

without an excuse?” The answers are coded using an ordinal scale from 0 (never), 1 (once or twice),

2 (once a month or less), 3 (2 or 3 days a month), 4 (once or twice a week), 5 (3-5 days a week),

and 6 (nearly everyday). The delinquency index  is given by the average frequency of the above

delinquent behaviors of student .9

After removing isolated students and pairs (i.e. network with only two students) as well as

students with missing information, the sample consists of 64,186 students distributed over 206 net-

works10, with network size ranging from 3 to 1,786. Because the strength of peer effect may vary

with network sizes (see Calvó-Armengol et al., 2009), we only consider networks with sizes under

the 50th percentile of the network size distribution.11

Our selected sample consists of 3,786 students distributed over 103 networks, with network

sizes ranging from 3 to 200. The median, mean and the standard deviation of network sizes are,

respectively, 4, 36.75 and 54.60. Furthermore, in our sample, the average number of friends of a

student is 5.27 with a standard deviation of 3.59. A summary of the data can be found in Table 1.

Table 1 also shows that the sample we use does not lose representativeness of the Add Health data.

[  1 ]

8The limit in the number of nominations is not binding (even by gender). Less than 1% of the students in our

sample show a list of ten best friends.
9 In some sense, this delinquency index measures more a risky behavior than a criminal behavior. In the sample

considered, only about 5% of the students claimed they never participated in the above activities in the past 12

months. In our empirical analysis, we consider everybody, even those who declare not having participated to any

delinquent activity.
10A network is defined as the largest set of students who are directly or indirectly connected through friend nomi-

nation. By definition, students from two different networks cannot be friends.
11 Indeed, if we use all the networks in the estimation, then we need to assume that the strength of peer effect is the

same in a network with 3 students and in a network with 1,786 students. This is a rather strong assumption. Hence,

we only consider networks with sizes under the 50th percentile of the network size distribution to avoid extremely big

networks. We show below that our sub-sample does not lose representativeness compared to the whole sample.
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5 Peer effects and network centrality

5.1 Econometric model

To determine the key player, we need to estimate the vector of parameters θ = (1 2β
0
1β

0
2)
0 in

the best-response function (3). Let ̄ be the total number of networks,  be the number of agents in

network , and  =
P̄

=1  be the total number of agents in the sample. The econometric model

corresponding to the best-response function (3) of agent  in network  can be written as

 = 1
P

=1  + 2
P

=1 
∗
 + x

0
β1 +

P
=1 

∗
x

0
β2 +  +  (8)

where  ∼ (0 2). Let G = [] and G
∗
 = [∗] denote, respectively, the adjacency

matrix and the row-normalized adjacency matrix for network . Let y = (1 · · ·  )0 denote
an  × 1 vector of observations on the dependent variable and X = (x1 · · · x)0 denote an
 ×  matrix of observations on  exogenous variables. In matrix form, model (8) can be written

as

y = 1Gy + 2G
∗
y +Xβ1 +G

∗
Xβ2 + ι + ²

For a sample with ̄ networks, stack up the data by defining y = (y01 · · · y0̄)0,X = (X0
1 · · · X0

̄
)0,

² = (²01 · · ·  ²0̄)0, G = diag{G}̄=1, G∗ = diag{G∗}̄=1, L = diag{ι}̄=1 and η = (1 · · ·  ̄)0,
where diag{A} denotes a “generalized” block diagonal matrix in which the diagonal blocks are
 ×  matrices A’s. For the entire sample, the model is

y = 1Gy+ 2G
∗y+Xβ1 +G

∗Xβ2 + Lη + ² (9)

In model (9), 1 represents the local-aggregate endogenous peer effect, where an agent’s effort

may depend on the aggregate effort level of her friends; 2 represents the local-average endogenous

peer effect, where an agent’s effort may depend on the average effort level of her friends; and β2

represents contextual effects, where an agent’s effort may depend on the exogenous characteristics of

her friends. The vector of network fixed effects given by η captures the correlated effect where agents

in the same network may behave similarly as they have similar unobserved individual characteristics

or they face a similar (institutional) environment. The network fixed effect serves as a remedy for

the selection bias that originates from the possible sorting of individuals with similar unobserved

characteristics into a network. Since the seminal work of Manski (1993), identification of social

network models in the presence of endogenous, contextual and correlated effects has attracted a lot

of attention in the literature (see Blume et al., 2011 for an excellent review).

The network fixed effect also captures the deterrence effect on delinquency, i.e., the term   in

the utility (1). Indeed, because networks are within schools in our data, the use of network fixed

effects also accounts for differences in the strictness of anti-delinquency regulations across schools.

Thus, instead of directly estimating deterrence effects (i.e. including in the model specification

observable measures of deterrence, such as local police expenditures or the arrest rate in the local

area), we focus our attention on the estimation of peer effects in delinquency, accounting for the

deterrence effect.
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In the econometric model, we allow network fixed effects η to depend onGG∗ andX by treating

η as a vector of unknown parameters (as in a fixed effect panel data model). When the number of

groups ̄ is large, we may have the incidental parameter problem. To avoid the incidental parameter

problem, we transform (9) using the deviation from group mean projector J = diag{J}̄=1, where
J = I − 1


ιι

0

. This transformation is analogous to the within transformation for the fixed

effect panel data model. As JL = 0, the transformed model is

Jy = 1JGy+ 2JG
∗y+ JXβ1 + JG

∗Xβ2 + J² (10)

5.2 Identification of peer effects

To understand the identification of the general network model (9), we first discuss the identification

of two special cases, namely, the local-average model with 1 = 0 and the local-aggregate model

with 2 = 0.

5.2.1 Identification of the local-average network model

Bramoullé et al. (2009) and Lee et al. (2010) have considered the identification of the local-average

network model given by

y = 2G
∗y+Xβ1 +G

∗Xβ2 + Lη + ² (11)

To estimate the transformed local-average model

Jy = 2JG
∗y + JXβ1 + JG

∗Xβ2 + J²

using IV-based estimators, the conditional mean of the right-hand-side (RHS) variables, [E(JG∗y|GX)

JXJG∗X], needs to have full column rank for large enough sample size.

When (I−2G
∗) is nonsingular, from the reduced-form equation of the local-average model, we

have

E(JG∗y|GX) = JG∗Xβ1 + (JG
∗2X+ 2JG

∗3X+ · · · )(2β1 + β2) (12)

If 2β1 + β2 = 0, then E(JG∗y|GX) = JG∗Xβ1. Thus, the model cannot be identified as

[E(JG∗y|GX)JXJG∗X] does not have full column rank. On the other hand, if 2β1 + β2 6= 0,
then JG∗2X can be used as IVs for the endogenous variable JG∗y. Observe that, in a social

network, if individuals   are friends and   are friends, it does not necessarily imply that   are

also friends. Thus, the intransitivity in social connections provides an exclusion restriction so that

the IV matrix JG∗2X can be linearly independent of the exogenous regressors [JXJG∗X].12 Based

on this important observation, Bramoullé et al. (2009) have argued that the local-average model is

identified if IG∗G∗2G∗3 are linearly independent.

12 In a linear-in-means model, individuals are affected by all members in their group and by no one outside the

group. Hence, the perfect collinearity of JG∗2X and [JXJG∗X] prevent the identification of the endogenous effect
from the contextual effect (i.e. the so-called reflection problem, Manski, 1993).
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5.2.2 Identification of the local-aggregate network model

If 2 = 0, then the general network model (9) reduces to the local-average network model given by

y = 1Gy+Xβ1 +G
∗Xβ2 + Lη + ² (13)

Similar to the local-average model, IV-based estimation of this model requires the conditional mean

of the RHS variables, [E(JGy|GX)JXJG∗X], to have full column rank for large enough sample

size.

When (I− 1G) is nonsingular, from the reduced-form equation of (13), we have

E(JGy|GX) = J(GX+1G
2X+· · · )β1+J(GG∗X+1G2G∗X+· · · )β2+J(GL+1G2L+· · · )η

(14)

So even if β1 = β2 = 0, E(JGy|GX) = J(GL+ 1G
2L+ · · · )η may still be linearly independent

of the exogenous regressors [JXJG∗X]. Observe that, the matrix (GL+1G
2L+ · · · ) collects the

Katz-Bonacich centrality for all individuals, with the non-zero entries of the leading order matrix

GL = diag{Gι}̄=1 being the number of friends of every student. Therefore, for the local-

aggregate model, in addition to the exogenous characteristics of (indirect) friends, the Katz-Bonacich

centrality can also be used as an IV to identify the endogenous peer effect.

Let Z = [GyXG∗X]. For identification of (13) through linear IV estimators, E(JZ|GX) needs

to have full column rank for large enough sample size. Suppose X is a random column vector,13

then the following proposition gives sufficient conditions for the rank condition. Henceforth, let 

(possibly with subscripts) denote a constant scalar that may take different values for different uses.

Proposition 2 Suppose X is a random column vector. When G has non-constant row sums for

some network , E(JZ|GX) has full column rank if: (i) I GG
∗
 GG

∗
 are linearly independent

and β1β2  are not all zeros; or (ii) GG
∗
 = 1I + 2G + 3G

∗
 and Λ1 given by (16) has full

rank.

When G has constant row sums such that ̄ = ̄ for all , E(JZ|GX) has full column rank

if: (iii) IGG∗GG∗G∗2GG∗2 are linearly independent and β1β2 are not both zeros; (iv)

IGG∗GG∗G∗2 are linearly independent, GG∗2 = 1I+ 2G+ 3G
∗+ 4GG

∗+ 5G
∗2, and Λ2

given by (17) has full rank; or (v) ̄ = ̄ for all , IG∗G∗2G∗3 are linearly independent, and

̄1β1 + β2 6= 0.

The proof of Proposition 2 is given in Appendix A. From Proposition 2, we can see that, for a

given network, sometimes identification of the local-aggregate model is easier to achieve than the

local-average model. Figure 2 gives some examples where identification is possible for the local-

aggregate model but fails for the local-average model. First, consider a sample where each network

is represented by graph (a) (a star-shaped network). The corresponding adjacency matrix G is

a block-diagonal matrix with diagonal blocks G representing graph (a). For the row-normalized

adjacency matrix G∗, it is easy to see that G∗3 = G∗. Therefore, it follows from Proposition 5 of

Bramoullé et al. (2009) that the local-average model (11) is not identified. On the other hand, as

13This assumption is also assumed in Bramoullé et al. (2009).
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G corresponding to the graph (a) has non-constant row sums and I GG
∗
 GG

∗
 are linearly

independent, it follows from our Proposition 2(i) that the local-aggregate model can be identified

for this network.

 

 (a) (b) (c) 

Figure 2: example networks for the identification of the local-aggregate model

Graphs (b) and (c) in Figure 2 provide another example where the local-average model cannot

be identified while the local-aggregate model can be. Consider a sample that consists of two types

of networks. The first ̄1 networks are represented by graph (b) (a regular or circle network). The

rest ̄2 networks are represented by graph (c) (a bi-partite network). Suppose ̄1  0, ̄2  0 and

̄1 + ̄2 = ̄. The corresponding adjacency matrix G is a block-diagonal matrix with the first ̄1

diagonal blocks G1 representing graph (b) and the rest ̄2 diagonal blocks G2 representing graph

(c). For the row-normalized adjacency matrix G∗, it is easy to see that G∗3 = G∗. Therefore,

it follows from Proposition 5 of Bramoullé et al. (2009) that the local-average model (11) is not

identified. On the other hand, as G1 and G2 have different row sums, IGG∗GG∗G∗2 are

linearly independent and GG∗2 =G. Therefore, the local-aggregate model can be identified by our

Proposition 2(iv).

5.2.3 Identification of the general network model

The identification of the general network model with both local-aggregate and local-average endoge-

nous peer effects has been discussed in Liu et al. (2014). Intuitively, the identification of two types

of endogenous peer effects relies on the row sum variation of G. If G has constant row sums such

that G = ̄G∗ for some constant ̄, then local-aggregate and local-average peer effects cannot be

separately identified. IfG does not have constant row sums so that local-aggregate and local-average

peer effects can be separately identified, then, similar to the local-aggregate model, exogenous char-

acteristics of indirect friends and the Katz-Bonacich centrality can be used as IVs to identify the

local-aggregate and local-average peer effects from contextual effects.

5.3 Estimation methods and results

For the estimation of the (within-transformed) general network model (10) with both local-aggregate

and local-average peer effects, we generalize the two-stage least squares (2SLS) and generalized

method of moments (GMM) estimators developed in Liu and Lee (2010). Specifically, we consider

the following estimators:

(a) “2SLS”: a 2SLS estimator with the IV matrix Q1 = J[XG
∗XGXG∗2X].

(b) “BC2SLS”: a bias-corrected 2SLS estimator with the IV matrix Q2 = [Q1JGL]. The

IVs JGL in Q2 correspond to the leading order term of the (within-transformed) Katz-Bonacich
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centrality. The additional IVs in Q2 improve asymptotic efficiency of the 2SLS estimator. Note

that, the matrix JGL has ̄ columns, where ̄ is the number of networks in the data. Therefore,

if there are many networks in the data, the 2SLS estimator with the IV matrix Q2 may have an

asymptotic bias, which is known as the many-instrument bias. The “BC2SLS” estimator corrects

the many-instrument bias by subtracting the estimated leading-order bias from the 2SLS estimator.

The 2SLS estimators are based on moment conditions that are linear in the estimation residuals.

Lee (2007b) has suggested to generalize the 2SLS method to a GMM framework with additional

quadratic moment conditions based on the covariance structure of the reduced form equation to

improve estimation efficiency. The added quadratic moment conditions are especially helpful when

the IVs are weak. We consider the following GMM estimators for the estimation of the empirical

model:

(c) “GMM”: an optimal GMM estimator using the IV matrix Q1 and additional quadratic

moment conditions.

(d) “BCGMM”: a bias-corrected optimal GMM estimator using the IV matrix Q2 and the same

quadratic moment conditions as in “GMM”. Similar to the corresponding 2SLS estimator with Q2,

the IVs JGL may introduce a many-instrument bias into the GMM estimator. The “BCGMM”

estimator corrects the many-instrument bias by subtracting the estimated leading-order bias from

the GMM estimator.

The details of the 2SLS and GMM methods, including the explicit form of the quadratic moment

conditions, are given in Appendix B.

Table 2 collects the estimation results of the general network model (10) where both the local-

average and the local-aggregate effects are incorporated. The first stage partial F-statistics (see

Stock et al., 2002 and Stock and Yogo, 2005) reveals that our instruments are not very informative.

Hence, the GMM estimates are more reliable. Both the 2SLS and GMM estimates of 1 2 are

positive and statistically significant, and satisfy the condition ̄max1 + 2  1, which is needed to

guarantee the existence of the Nash equilibrium of the network game presented in Section 3.1.

[  2 ]

As described in Section 4, the adjacency matrix G in the general network model (10) in based

on reciprocal nominations such that  = 1 if  nominates  as a friend or  nominates  as a friend.

As a robustness check of the possible misspecification of the adjacency matrix, we also consider an

adjacency matrix G based on actual nominations such that  = 1 if  nominates  as a friend.

The estimation results with G based on actual nominations are reported in Table 3. The estimation

results are similar to those in Table 2, suggesting the estimation is robust to possible misspecification

of the adjacency matrix.

[  3 ]

Table 4 reports the quasi-maximum-likelihood (QML) estimates of the local-average network

model (11) (see Lee et al. 2010 for the QML estimator) and the BCGMM estimates of the local-

aggregate model (13) with G based on reciprocal nominations. Each model is estimated separately.

Compared with the BCGMM estimates reported in Table 2, both the estimate of 1 in the local-
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aggregate model and the estimate of 2 in the local-average model are upwards biased. This shows

the importance of estimating the two models together.

[  4 ]

5.4 Tests for the exogeneity of the adjacency matrix

The validity of our identification strategy and the moment conditions employed by the 2SLS and the

GMM estimators rests on the (conditional) exogeneity of the adjacency matrix G. Here, we provide

two tests for the potential endogeneity of G.

The first test is based on the over-identifying restrictions (OIR) test (Lee, 1992). Since the IVs

used in the 2SLS are constructed based on G, if the OIR test cannot reject the null hypothesis that

the IVs are exogenous, then it provides evidence that G is uncorrelated with the error term, when

X, the contextual effects and η, the network fixed effects are controlled for. As reported at the

bottom of Tables 2 and 3, the -value of the OIR test is larger than conventional significance levels,

which provides evidence of the exogeneity of G.

The second test is inspired by the network formation model proposed by Goldsmith-Pinkham

and Imbens (2013). Assuming homophily, students with similar observed and/or unobserved char-

acteristics are more likely to be friends. Suppose students  and  (  ) in network  are friends,

i.e.,  = 1 if 
∗
  0, where

∗ = 0 + 1 |̂ − ̂|−1 +∆γ +  (15)

In (15), ̂ is the BCGMM estimation residual of the general network model (9), ∆ is a  × 1
vector with the -th entry of ∆ being 1 if the -th entries x and x are the same and being

0 otherwise,14  is the error term that is assumed i.i.d. for all ( ) such that   . Note that

∆ and |̂ − ̂|−1 capture how similar students  and  are in their observed and unobserved

characteristics.15 Under the null hypothesis thatG is exogenous, 1 should be zero, which means the

friendship formation does not depend on students’ unobserved characteristics that affect delinquency

activities.

The logit regression of model (15) is reported in Table 5. Students are more likely to be friends if

they are of the same gender and race, if they were born in the same country, if they are in the same

grade, if they have similar math scores, if they have similar family structure, and if their parents

have the same type of jobs. On the other hand, the estimated 1 is statistically insignificant, showing

evidence of the exogeneity of G.

[  5 ]

14Note that all entries of x in the empirical application are discrete variables (most are binary indicator variables).
15 In the spatial econometrics literature, the proximity given by the inversed distance between spatial units is often

used to construct the spatial weights matrix.
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6 Who is the key player?

With the BCGMM estimates of θ reported in Table 2, the key player can be determined for each

network according to (6).16 First, we find that the key player is not necessarily the most active

student in delinquent activities. Only in 19 networks out of the 103 networks in the sample, the key

player is the most active student in delinquent activities. Second, the key player is not necessarily

the student with the highest Katz-Bonacich centrality given by (I − 1G)
−1ι . In 63 networks

out of the 103 networks in the sample, the key player is the student with the highest Katz-Bonacich

centrality.

Once we identify the key player for each network, we can draw her “profile” by comparing the

characteristics of the key players with those of the other students in the network. Table 6 lists the

characteristics of the key player that is significantly different from those of the other students.

[  6 ]

Compared to other students, the key players are older and in higher grades, are less likely to be

white, have lower math scores, have lower self esteem, and are less likely to feel being part of school

or being safe in school. They are also less likely to feel that their parents care about them, and are

less likely to come from families where parents work as professionals. Also, key players are more

likely to have friends, who are older, non-white, born outside of the U.S., less intelligent (lower math

scores), and does not feel part of school or feel safe in school.

We also compare the aggregate-delinquency reductions by removing, respectively, the key player,

the most active delinquent, and a random delinquent. In the 103 networks of our sample, on average,

the aggregate-delinquency reductions by removing the key player, the most active delinquent, and a

random delinquent are, respectively, 3.34, 2.14, and 1.96.17 A paired two-sample  test suggests that

the aggregate-delinquency reduction by removing the key player is statistically significantly larger

than that by removing the most active delinquent or a random delinquent. The median network size

in our sample is 4. For a network with 4 students, the percentage reductions in aggregate delinquency

by removing the key player, the most active delinquent, and a random delinquent are, respectively,

70.19%, 53.13%, and 50.71%. Hence, targeting key players is more effective than targeting the most

active delinquent in reducing total delinquency.

7 Policy implications

Let us address the fundamental policy issues of the key player. First, we provide some evidence that

there exist data on criminal networks and discuss the extent to which our analysis can be used in

practice to address general policies against crime. Second, we show that the methodology developed

in this paper can be used to address policies in other activities such as financial networks, R&D

networks, social networks in developing economies and political networks.

16The key players remain largely unchanged when (6) is evaluated with other estimates reported in Table 2. For

example, with the GMM estimates of , only in one network out of the 103 networks in the sample, the identity of

the key player changes.
17Note that, on average, the delinquency index of a student in our sample is 1.03.
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7.1 How the key-player policy can be useful in fighting crime

7.1.1 Data about criminal networks

In order to apply the key-player policy one needs to collect detailed data on the social networks

linking individuals and on their criminal activity. Let us now give a (selective) list of available

network data:

(i) Juvenile delinquency in schools (survey data): There are data similar to the Add Health data

for students in schools. For example, Weerman (2011) uses data from the Netherlands Institute for

the Study of Crime and Law Enforcement (NSCR) “School Study”, a study that focused on social

networks and the role of peers in delinquency with two waves, conducted in the spring of 2002 and

2003. Students were provided with a numbered list of all students in the same grade in their school

and were asked to fill in the numbers of those fellow students they spend time with at school (“with

which of these students do you associate regularly?”), with a maximum of ten possible nominations.

Students’ delinquent behavior was measured using self-reports on a variety of offenses. The final

sample consisted of 1,156 students in ten schools that participated in both waves.

(ii) Adult crime (police data): the police has in fact quite a lot of information on criminal

networks. For example, Lindquist and Zenou (2014) were able to construct the network of all

criminals in Sweden for several years. The way a link is defined is as follows. Each time two (or

more) persons are suspected of a crime (co-offenders), the police in Sweden registers this information.

A link in a network is then created between individuals  and , i.e.  =  = 1, whenever

individuals  and  are suspected of a crime together.18 With this information at hand, we can

match each individual’s social security number with her characteristics (education, age, ethnicity,

gender, etc.). In that case, Lindquist and Zenou (2014) were able to determine the key criminals in

Sweden over a long period of time.19

This type of information can be obtained from the police in many other countries. Indeed, it is

important to identify criminal networks in data resources readily available to investigators, such as

police arrest data and court data. See, for example, Tayebi et al. (2011) who define a co-offending

network, that is a network of offenders who have committed crimes together. In the United States,

there are also similar data. For example, Coplink (Hauck et al., 2002) was one of the first large

scale research projects in crime data mining, and an excellent work in criminal network analysis.

It is remarkable in its practicality, being integrated with and used in the workflow of the Tucson

Police Department. Coplink has information about the perpetrators’ habits and close associations in

crime to capture the connections between people, places, events, and vehicles, based on past crimes.

Xu and Chen (2005) built on this when they created CrimeNet Explorer, a framework for criminal

network knowledge discovery incorporating hierarchical clustering, Social Network Analysis (SNA)

methods, and multidimensional scaling.

(iii) Gang networks: McGloin (2004, 2005) use data from the Newark portion of the North Jersey

Gang Task Force, a regional problem analysis project that sought to define the local gang landscape

18The authors also check if the two suspected criminals have been eventually prosecuted and condemned to a prison

sentence.
19The authors perform several exercises to test for measurement errors in links and show that even by adding new

links the estimations are not affected.
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in Northern New Jersey. These data came from the experiential knowledge of representatives of

various criminal justice agencies, including the Newark Police Department, Essex County Sheriff’s

Office, Essex County Department of Parole, and Juvenile Justice Commission of New Jersey. In

particular, groups of law enforcement officials from this variety of criminal justice agencies engaged

in collective semi-structured interviews – 32 over the course of one year – that solicited information

on the gang landscape. In particular, they provided information on known gang members, as well

as the quantity and type of their respective associates. The classification of the profession of gang

members in the questionnaire relied on New Jersey code, which defines a gang as three or more

people who are, in fact, associated, that is people who have a common group name; identifying sign,

tattoos, or other indices of association; and who have committed criminal offenses while engaged in

gang-related activity.20

7.1.2 How to implement a key-player policy

Once we have criminal network data, there are different ways of implementing a key-player policy.

Indeed, once we have identified a key player in a network, one cannot put him/her in prison if he/she

hasn’t committed any crime. However, different policies can be implemented to reduce crime using

a key-player approach.

(i) First, the police can offer to the key player(s) incentives to leave the gang or the criminal

network. For example, the police can offer them a job or a conditional transfer (by asking them

to move to another city) or monitor them more. These types of policies have been implemented

in Canada where some gang members of criminal networks were persuaded to abandon gang life in

return for needed employment training, educational training, and skills training (Tremblay et al.,

1996).

(ii) Second, the police can target key players in a meaningful way. A very similar type of policy

has actually been implemented in the US. Indeed, a recent innovation in policing that capitalizes on

the growing evidence of the effectiveness of police deterrence strategies is the “focused deterrence”

framework, which is often referred to as “pulling-levers policing” (Kennedy, 1998, 2008). This strat-

egy was pioneered in Boston (Boston Gun Project) with the intent of understanding the purported

nexus of rising youth violence and use of firearms. As part of its problem analysis, representatives

of various criminal justice agencies defined and characterized problematic local gangs (Braga et al.,

2001; Kennedy et al., 1996, 1997, 2001). This process included elaborating on the relationships

among the street gangs, which Kennedy et al. (1996, 1997, 2001) translated into sociograms illus-

trating connections within the gang landscape. This seemingly simple information was invaluable for

the problem analysis and construction of Operation Ceasefire. This latter policy combines a strong

law enforcement response with a “pulling levers” deterrence effort aimed at chronic gang offenders.

The key to the success is to use a “lever pulling” approach, which is a crime deterrence strategy

that attempts to prevent violent behavior by using a targeted individual or group’s vulnerability to

law enforcement as a means of gaining their compliance. Operation Ceasefire was first launched

in Boston and youth homicide fell by two-thirds after the Ceasefire strategy was put in place in

20See also Mastrobuoni and Patacchini (2012) who use a data set provided by the Federal Bureau of Narcotics on

criminal profiles of 800 US Mafia members active in the 1950s and 1960s and on their connections within the Cosa

Nostra network.

18



1996 (Kennedy, 1998). It was then implemented in Los Angeles in 2000: police beefed up patrols in

the area, attempting to locate gang members who had outstanding arrest warrants or had violated

probation or parole regulations. Gang members who had violated public housing rules, failed to pay

child support, or were similarly vulnerable were also subjected to stringent enforcement (Tita et al.,

2003).

(iii) Finally, a key-player policy can also help for related issues. For example, there is a lot of

debate in the US on how to allocate under-age adolescents who have committed an offence into

juvenile facilities (detention centers). We know that there is a lot of learning in crime in prisons

(Bayer et al., 2009). If we can rank these adolescents by their key-player centralities, then our model

predict that we should put together the delinquents with high key-player centralities while grouping

together young delinquents with low key-player centralities.

7.2 Using our methodology to find key players for other types of networks and activ-

ities

Our paper can also be seen as a methodological one. Our methodology can be applied to other

contexts where network data are much easier to obtain. Let us provide some examples.

Financial networks

There is an abundance of information available on financial networks where links are usually bank

loans. For example, Cohen-Cole et al. (2011) use transaction level data on interbank lending from

an electronic interbank market, the e-MID SPA (or e-MID), which was the reference marketplace

for liquidity trading in the Euro area from January 2002 to December 2009. Boss et al. (2004)

analyze the network of Austrian banks in the year 2008 where links in the network represent expo-

sures between Austrian-domiciled banks on a non-consolidated basis (i.e. no exposures to foreign

subsidiaries are included). In that case, the key player policy would be: Which bank should we bail

out in order to reduce systemic risk or maximize total activity? This is an extremely important

issue because the recent financial crisis has shown that the problem is not necessary “too big to fail”

but “too interconnected to fail”. Interestingly, using a sterling interbank network database from

January 2006 to September 2010, Denbee et al. (2014) use our methodology to determine the key

banks. They show that, during the years before and after the 2007-08 crisis, the key players vary

and are not necessarily the largest borrowers.

R&D networks

There is also a lot of information on R&D networks. For example, García-Canal et al. (2008) use

alliance data stemming from the Thomson SDC Platinum data base. Three types of alliances are

reported in the SDC database: (1) alliances that imply the transmission of an existing technology

from one partner to another or to the alliance; (2) alliances that imply the cross-transfer of existing

technologies between two or more partners or between these and the alliance, and (3) alliances that

include the undertaking of R&D activities.21

Using data on interfirm R&D collaborations stemming from the MERIT-CATI database, König

et al. (2014a) apply our methodology to determine the key firms in R&D networks. They show that

21Another dataset that has been used is the one on interfirm collaborations from the NBER Patent Data File (Hall

et al., 2001).
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the key firms vary over time, even though the ranking is relatively stable. They show that General

Motors, which was bailed out by president Obama in 2008, ranked first in 1990 and ninth in 2005.

According to König et al. (2014a), if General Motors had gone bankrupt in 1990 and exited the

market, the loss of total welfare for both firms and consumers would have been as high as 8.37%.

Networks in developing economies

There are many network data for developing countries (see e.g. Fafchamps and Lund, 2003, who

conducted a survey in four villages in the Cordillera mountains of northern Philippines between July

1994 and March 1995; Krishnan and Sciubba, 2009, who use the second round of the Ethiopian

Rural Household Survey, conducted in 1994). There is also a recent paper by Banerjee et al. (2013)

which study a problem related to the key-player issue. Their data come from a survey on 75 rural

villages in Karnataka, India, that the authors conducted to obtain information on network structure

and various demographics. They look at the diffusion of a microfinance program in these villages

and show that, if the bank in charge of this program had targeted individuals in the village with

the highest eigenvector centrality (a measure related to the Katz-Bonacich centrality), the diffusion

of the microfinance program (i.e. take-up rates) would have been much higher. More generally,

in developing countries, one could apply the key player policy to the issue of adoption of a new

technology since there is strong evidence of social learning (Conley and Udry, 2010) and take-up

rates in microfinance programs.

Political networks

Another application of a key player policy could be the political world. There is evidence that

personal connections amongst politicians have a significant impact on the voting behavior of U.S.

politicians (Cohen and Malloy, 2014). There is also evidence on lobbying to persuade public opinion

when members of the public influence each other’s opinion (Lever, 2010). When people are deciding

how to vote or which product to buy, they discuss their decision with people in their social environ-

ment. Competitions to persuade public opinion are the essence of political campaigns, but also occur

in marketing between rival firms or in lobbying by interests groups on opposite sides of a legislation.

Matching data on campaign contributions by lobby groups with data on co-sponsorship networks in

the US House of Representatives, Lever (2010) finds that changes in both network in influence and

pivot probabilities are significant predictors of changes in campaign contributions. Our key-player

policy suggests that resources should be spent on key voters who have an influential position in the

social network.

8 Concluding remarks

This paper presents a methodology for determining the key player whose exclusion from her network

would result in the greatest impact on the outcome of interest (adolescent crime rates in the case of

our Add Health data). We provide a structural estimation of the model, and a simulation describing

how such a key player is identified, and furthermore, that this “greatest impact” key player cannot be

accurately identified by the other measures prominent in the literature. This methodology provides

a cost effective instrument for a wide variety of policy interventions. Implementation of a key-player

based policy intervention in networks would result in drastic cost reductions by taking advantage of

multiplier effects.
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The key-player methodology has great scope for practical implementation, since it takes advan-

tage of multiplier effects in naturally occurring networks. Given the right data (which in several

instances already exist), it can be implemented in many contexts.22 Consider the recent Obama-

Romney US presidential election, which recorded the most extensive campaign spending in US his-

tory. Implementation of our key-player methodology would shift attention away from “swing states”

and rather target “swing voters”, who would have the greatest possible impact on voter decision

within their social networks. Such an approach could easily have tempered the USD 2.3 billion total

campaign cost.23 The cost of gathering the necessary data could not be expected to be more than

a fraction of this. Alternatively consider vaccination in developing countries, targeting individuals

who would reduce the spread of infectious diseases the most would be highly cost effective, freeing

up resources to make more vaccination projects viable, and reducing the overall infection rate. Even

where data is not yet freely available, implementing the key-player policy could be cost-effective

overall, if the cost of data gathering is recouped by the cost saving in the actual policy intervention

that stems from targeting key-players rather than all individuals.
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Appendices

A Identification of the local-aggregate model

For simplicity, we assume  = 1. Let

Λ1 =

⎡⎢⎢⎢⎢⎣
β21 1 −11

β1 + β22 −1 −12
β23 0 1− 13

 0 0

⎤⎥⎥⎥⎥⎦ (16)

and

Λ2 =

⎡⎢⎢⎢⎢⎢⎢⎣
−β21 1 11

β1 − β22 −1 12

−β23 −1 13 + 1

β2 − β1 − β24 1 14 − 1

−β25 0 15 − 1

⎤⎥⎥⎥⎥⎥⎥⎦  (17)

Proof of Proposition 2. We follow the identification strategy as in Bramoullé et al. (2009) by

investigating identification conditions which can be revealed via networks as functions on a vector of

regressors to outcomes. First, we consider the case that, for some network , G has non-constant

row sums. In this case, E(JZ|GX) = J[E(Gy|GX)XG∗X] has full column rank if

J[E(Gy|GX)1 +X2 +G
∗
X3] = 0 (18)

implies 1 = 2 = 3 = 0. As J = I − 1

ιι

0

, (18) can be rewritten as

E(Gy|GX)1 +X2 +G
∗
X3 + ι = 0 (19)

where  = − 1

ι0 [E(Gy|GX)1 +X2 +G

∗
X3]. As

(I − 1G)E(Gy|GX) =GXβ1 +GG
∗
Xβ2 +Gι

from the reduced form equation, premultiplying (19) by (I − 1G) gives

X2 +GX(β11 − 12) +G
∗
X3 +GG

∗
X(β21 − 13) + ι+Gι(1 − 1) = 0

Note, as G = RG
∗
 , where R is a diagonal matrix with the -th diagonal element being ̄ =P

 , GG
∗
 are linearly independent if and only if rows sums of G are not constant. For

G with non-constant row sums, we consider two cases. (i) I GG
∗
 GG

∗
 are linearly inde-

pendent. In this case, [XGXG
∗
XGG

∗
X] has full column rank. Thus, for a general X,

[XGXG
∗
XGG

∗
X ι Gι ] has full column rank, which implies 2 = β11 − 12 =

3 = β21 − 13 =  = 1 − 1 = 0. Therefore, 1 = 2 = 3 = 0 if β1β2  are not all zeros.
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(ii) GG
∗
 = 1I + 2G + 3G

∗
 for some constant scalars 1 2 3. In this case,

0 = X(β211 + 2 − 113) +GX[(β1 + β22)1 − 12 − 123]

+G∗X[β231 + (1− 13)3] + ι+Gι (1 − 1)

which implies 1 = 2 = 3 = 0 if Λ1 given by (16) has full rank. When  6= 0, a sufficient condition
for Λ1 to have full rank is |11 + 2|+ |1− 13| 6= 0.
Next, consider the case that G has constant row sums such that ̄ = ̄ for all . In this case,

G = G
∗
 . E(JZ|GX) = J[E(Gy|GX)XG∗X] has full column rank if

J[E(Gy|GX)1 +X2 +G
∗X3] = 0 (20)

implies 1 = 2 = 3 = 0. As J(I − 1G)
−1GL = 0, substitution of E(Gy|GX) = (I −

1G)
−1(GXβ1 +GG

∗Xβ2 +GL) into (20) gives

J(I− 1G)
−1[X2 +GX(β11 − 12) +G

∗X3 +GG
∗X(β21 − 13)] = 0

which implies

X2 +GX(β11 − 12) +G
∗X3 +GG

∗X(β21 − 13) = L (21)

because JL = 0. As G∗L = L, premultiplying (21) by G∗ gives

G∗X2 +GG
∗X(β11 − 12) +G

∗2X3 +GG
∗2X(β21 − 13) = L (22)

From (21) and (22), when IGG∗GG∗G∗2GG∗2 are linearly independent, 1 = 2 = 3 = 0 if

β1β2 are not both zeros. WhenGG
∗2 = 1I+2G+3G

∗+4GG∗+5G∗2 and IGG∗GG∗G∗2

are linearly independent, 1 = 2 = 3 = 0 if Λ2 given by (17) has full rank. On the other hand,

if ̄ = ̄ for all , then G = G∗. When IG∗G∗2G∗3 are linearly independent, (21) and (22)

imply 1 = 2 = 3 = 0 if ̄1β1 + β2 6= 0.

B Estimation of the general network model

We consider the 2SLS and GMM estimation of the (within-transformed) general network model (10).

This appendix presents the derivation and asymptotic properties of the estimators.

For any  ×  matrix A = [ ], let vec(A) = (11 · · ·  )0, A = A + A0, A = A −
tr(A)Jtr(J), and A− denote a generalized inverse of a square matrix A. Let 3 and 4 denote,

respectively, the third and fourth moments of the error term .

B.1 2SLS estimation

LetM = (I−1G−2G∗)−1, X∗ = [XG∗X], and β = (β01β02)0. From the reduced form equation,
E(y|GX) =M(X∗β + Lη). For Z = [GyG∗yX∗], the ideal IV matrix for the regressor matrix
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JZ in (10) is given by

F = E(JZ|GX) = J[E(Gy|GX)E(G∗y|GX)X∗] (23)

However, this IV matrix is infeasible as it involves unknown parameters. Note that F can be consid-

ered as a linear combination of the IVs in the matrix Q∞ = J[GMX
∗GMLG∗MX∗G∗MLX∗].

As L has ̄ columns, the number of IVs in Q∞ increases as the number of groups ̄ increases. Fur-

thermore, if ̄max|1|+ |2|  1, we haveM = (I− 1G− 2G
∗)−1 =

P∞
=0(1G+ ∗2G)

 . Hence,

M can be approximated by a linear combination of [IGG∗G2GG∗G∗GG∗2 · · · ].
To achieve asymptotic efficiency, we assume the number of IVs increases with the sample size so

that the ideal IV matrix F can be approximated by a feasible IV matrix Q with an approximation

error diminishing to zero. That is, for an  ×  IV matrix Q , there exists some conformable

matrix ξ such that ||F −Qξ ||∞ → 0 as  → ∞. Let P = Q(Q
0
Q)

−Q0
 , the 2SLS

estimator of θ = (1 2β
0)0 is given by θ̂2 = (Z0PZ)

−1Z0Py

If → 0, then it follows by a similar argument as in Liu and Lee (2010) that
√
(θ̂2 − θ−

b2)
→ (0 2H̄−1), where H̄ = lim→∞ 1


F0F and b2 = 2(Z0PZ)

−1[tr(PGM) tr(PG
∗M)0]0 =

(). The 2SLS estimator has an asymptotic bias term due to the large number of IVs. When

2→ 0, the leading order bias term
√
b2 converges to zero and the proposed 2SLS estimator

is the most efficient IV-based estimator as the variance matrix 2H̄−1 attains the efficiency lower

bound for the class of IV estimators.

To correct for the many-instrument bias in the 2SLS estimator, one can estimate the leading

order bias term and adjust the 2SLS estimator by the estimated leading-order bias b̃2. With√
-consistent initial estimates ̃2 ̃1 ̃2, the bias-corrected 2SLS (BC2SLS) estimator is given by

θ̂2 = θ̂2 − b̃2 where b̃2 = ̃2(Z0PZ)
−1[tr(PGM̃) tr(PG

∗M̃)0]0 and M̃ = (I −
̃1G− ̃2G

∗)−1. The BC2SLS estimator
√
(θ̂2 − θ) → (0 2H̄−1) when → 0.

B.2 GMM estimation

The 2SLS estimator can be generalized to the GMM with additional quadratic moment equations.

Let ²(θ) = J(y − Zθ). The IV moment conditions Q0
²(θ) = 0 are linear in ² at the true value

of θ. As E(²0U1²|G) =E(²0U2²|G) = 0 for U1 = (JGMJ) and U2 = (JG∗MJ), the quadratic

moment conditions for estimation are given by [U1²(θ)U1²(θ)]
0²(θ) = 0. The proposed quadratic

moment conditions can be shown to be optimal (in terms of efficiency of the GMM estimator) under

normality (see Lee and Liu, 2010). The vector of linear and quadratic empirical moments for the

GMM estimation is given by g(θ) = [Q U1²(θ)U1²(θ)]
0²(θ).

In order for inference based on the following asymptotic results to be robust, we do not impose

the normality assumption in the following analysis. The variance matrix of g(θ) at the true value

of θ is given by

Ω = Var[g(θ)|GX] =

Ã
2Q0

Q 3Q
0
ω

3ω
0Q (4 − 34)ω0ω + 4Υ

!


where ω = [vec(U1) vec(U2)] and Υ =
1
2
[vec(U

1) vec(U

2)]

0[vec(U
1) vec(U


2)]. By the general-
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ized Schwarz inequality, the optimal GMM estimator is given by

θ̂ = argming(θ)
0Ω−1g(θ) (24)

Let B−1 = (4 − 34)ω0ω + 4Υ− 23
2
ω0Pω,

D = −2
Ã
tr(U

1GM) tr(U
1G
∗M) 0

tr(U
2GM) tr(U

2G
∗M) 0

!


D̄ = D− 3
2
ω0F, and Ď = D− 3

2
ω0PZ. When 32→ 0, the optimal GMM estimator24 has

the asymptotic distribution

√
(θ̂ − θ − b)

→ (0 (−2H̄+ lim
→∞

1


D̄0BD̄)−1) (25)

where b = (
−2Z0PZ+ Ď

0BĎ)−1[tr(PGM) tr(PG
∗M)0]0 = ().

As the asymptotic bias
√
b is (

√
), the asymptotic distribution of the GMM estimator

θ̂ will be centered at the true value of θ only if 2 → 0. With a consistently estimated

leading order bias b̃, the bias-corrected GMM (BCGMM) estimator θ̂ = θ̂ − b̃

has a proper centered asymptotic normal distribution as given in (25) if 32→ 0.

The asymptotic variance matrix of the many-IV GMM estimator can be compared with that

of the many-IV 2SLS estimator. As D̄0BD̄ is nonnegative definite, the asymptotic variance of the

many-IV GMM estimator is smaller relative to that of the 2SLS estimator. Thus, the many-IV

GMM estimator with additional quadratic moments improves efficiency upon the 2SLS estimator.

24The weighting matrices for quadratic moments U1U2 and the optimal weighting matrix for the objective function

Ω−1 involves unknown parameters 1 2 2 3 and 4. With consistent preliminary estimators of those unknown

parameters, the feasible optimal GMM estimator can be shown to have the same asymptotic distribution given by

(25).
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Table 1: Data Summary 

Variable Definition 
Sample with 

networks 3-1786 
ሺ݊ ൌ 64186ሻ 

Sample with 
networks 3-200 
ሺ݊ ൌ 3785ሻ 

  Mean SD Mean SD 
delinquency In the text    1.16    1.02    1.03    0.95 
age  Age    15.03    1.69   13.77    1.63 
female 1 if female    0.52    0.50    0.56    0.50 
white 1 if white    0.60    0.49    0.48    0.50 
born in the U.S. 1 if born in the U.S.    0.92    0.27    0.94    0.24 
grade 7th-12th grades are coded as 1,…,6    3.67    1.59    2.36    1.50 
fitness 1 if physically fit    0.66    0.48    0.62    0.49 
math score 1 if the recent math grade is A or B    0.53    0.50    0.52    0.50 
self esteem 1 if thinks himself/herself has a lot of 

good qualities 
   0.79    0.40    0.73    0.44 

school attachment 1 if feels like being part of the school    0.57    0.50    0.58    0.49 
neighborhood safety 1 if feels safe in the neighbourhood    0.72    0.45    0.63    0.48 
school safety 1 if feels safe at school    0.61    0.49    0.60    0.49 
live with both parents 1 if lives with both parents    0.74    0.44    0.71    0.45 
parental care 1 if parents care very much    0.84    0.36    0.85    0.36 
Parent Education      
(less than HS) 1 if parent’s education is less than high 

school (HS) 
   0.11    0.32    0.14    0.35 

HS grad 1 if parent’s education is HS or higher 
but no college degree 

   0.45    0.50    0.46    0.50 

college grad 1 if parent’s education is college or 
higher 

   0.32    0.47    0.24    0.42 

missing 1 if parent’s education information is 
missing 

   0.11    0.32    0.17    0.37 

Parent Job      
(stay home) 1 if parent is a homemaker, retired, or 

does not work 
   0.09    0.29    0.12    0.32 

professional 1 if parent’s job is a doctor, lawyer, 
scientist, teacher, librarian, nurse, 
manager, executive, director 

   0.28    0.45    0.19    0.39 

other jobs 1 if parent’s job is not “stay home” or 
“professional” 

   0.54    0.50    0.57    0.49 

missing 1 if parent’s job information is missing    0.09    0.28    0.12    0.33 
The variable in the parentheses is the reference category. 
If both parents are in the household, the education and job of the father is considered. 
 

   



Table 2: Estimation of the General Network Model (Reciprocal Nominations) 
 2SLS BC2SLS GMM BCGMM 

local-aggregate peer effect   0.0112***   0.0118***   0.0144***   0.0158*** 
  (0.0047)  (0.0044)  (0.0040)  (0.0039) 
local-average peer effect   0.5761***   0.4153***   0.1260***   0.1082*** 
  (0.1502)  (0.0983)  (0.0286)  (0.0281) 
age   0.0717***   0.0744***   0.0794***   0.0796*** 
  (0.0240)  (0.0236)  (0.0233)  (0.0233) 
female   -0.3314***  -0.3299***  -0.3273***  -0.3273*** 
  (0.0333)  (0.0327)  (0.0324)  (0.0323) 
white  -0.0521  -0.0490  -0.0452  -0.0450 
  (0.0436)  (0.0428)  (0.0423)  (0.0423) 
born in the U.S.   0.1123   0.1199*   0.1341**   0.1351** 
  (0.0683)  (0.0670)  (0.0661)  (0.0661) 
grade   0.0173   0.0120   0.0024   0.0013 
  (0.0408)  (0.0400)  (0.0394)  (0.0394) 
fitness   0.0273   0.0267   0.0235   0.0233 
  (0.0366)  (0.0360)  (0.0356)  (0.0356) 
math score  -0.1403***  -0.1475***  -0.1602***  -0.1615*** 
  (0.0322)  (0.0313)  (0.0306)  (0.0306) 
self esteem  -0.0392  -0.0445  -0.0535  -0.0548 
  (0.0407)  (0.0399)  (0.0393)  (0.0393) 
school attachment  -0.0892***  -0.0950***  -0.1065***  -0.1079*** 
  (0.0360)  (0.0352)  (0.0346)  (0.0346) 
neighborhood safety  -0.0846**  -0.0797**  -0.0724*  -0.0718* 
  (0.0386)  (0.0378)  (0.0373)  (0.0373) 
school safety  -0.1271***  -0.1325***  -0.1414***  -0.1423*** 
  (0.0404)  (0.0396)  (0.0390)  (0.0390) 
live with both parents   0.0281   0.0261   0.0233   0.0224 
  (0.0363)  (0.0356)  (0.0352)  (0.0352) 
parental care  -0.3182***  -0.3261***  -0.3407***  -0.3418*** 
  (0.0461)  (0.0450)  (0.0443)  (0.0443) 
parent education: HS grad  -0.0710  -0.0740  -0.0802*  -0.0814* 
  (0.0469)  (0.0461)  (0.0456)  (0.0456) 
parent education: college grad  -0.1634***  -0.1716***  -0.1876***  -0.1908*** 
  (0.0560)  (0.0548)  (0.0540)  (0.0540) 
parent education: missing  -0.2322***  -0.2425***  -0.2611***  -0.2637*** 
  (0.0582)  (0.0568)  (0.0559)  (0.0559) 
parent job: professional  -0.0328  -0.0379  -0.0493  -0.0496 
  (0.0589)  (0.0578)  (0.0571)  (0.0571) 
parent job: other  -0.0707  -0.0670  -0.0622  -0.0610 
  (0.0494)  (0.0485)  (0.0480)  (0.0479) 
parent job: missing  -0.1529***  -0.1517***  -0.1507***  -0.1500*** 
  (0.0648)  (0.0637)  (0.0630)  (0.0630) 
contextual effects Yes Yes Yes Yes 
network fixed effects Yes Yes Yes Yes 
Standard errors in parentheses. Statistical significance: ***p<0.01; **p<0.05; *p<0.1. 
2SLS First Stage F test statistic: 4.287; OIR test p-value: 0.219 
 
 



Table 3: Estimation of the General Network Model (Actual Nominations) 
 2SLS BC2SLS GMM BCGMM 

local-aggregate peer effect   0.0074   0.0046   0.0147**   0.0130** 
  (0.0072)  (0.0071)  (0.0064)  (0.0063) 
local-average peer effect   0.3726***   0.2219***   0.1499***   0.1474*** 
  (0.1318)  (0.0933)  (0.0317)  (0.0313) 
age   0.0796***   0.0844***   0.0849***   0.0852*** 
  (0.0238)  (0.0235)  (0.0233)  (0.0233) 
female   -0.3225***  -0.3215***  -0.3219***  -0.3218*** 
  (0.0330)  (0.0327)  (0.0327)  (0.0327) 
white  -0.0355  -0.0343  -0.0348  -0.0346 
  (0.0422)  (0.0418)  (0.0418)  (0.0418) 
born in the U.S.   0.1429**   0.1422**   0.1440**   0.1435** 
  (0.0669)  (0.0664)  (0.0663)  (0.0663) 
grade   0.0261   0.0216   0.0210   0.0206 
  (0.0321)  (0.0317)  (0.0316)  (0.0316) 
fitness   0.0398   0.0357   0.0322   0.0313 
  (0.0361)  (0.0357)  (0.0356)  (0.0356) 
math score  -0.1465***  -0.1532***  -0.1564***  -0.1573*** 
  (0.0315)  (0.0310)  (0.0307)  (0.0307) 
self esteem  -0.0589  -0.0623  -0.0634  -0.0645 
  (0.0398)  (0.0395)  (0.0394)  (0.0394) 
school attachment  -0.1038***  -0.1048***  -0.1103***  -0.1086*** 
  (0.0350)  (0.0347)  (0.0346)  (0.0346) 
neighborhood safety  -0.0766**  -0.0720*  -0.0721*  -0.0712* 
  (0.0379)  (0.0375)  (0.0374)  (0.0374) 
school safety  -0.1374***  -0.1399***  -0.1399***  -0.1402*** 
  (0.0394)  (0.0391)  (0.0390)  (0.0390) 
live with both parents   0.0244   0.0234   0.0244   0.0241 
  (0.0356)  (0.0353)  (0.0352)  (0.0352) 
parental care  -0.3223***  -0.3295***  -0.3325***  -0.3332*** 
  (0.0451)  (0.0445)  (0.0443)  (0.0443) 
parent education: HS grad  -0.0685  -0.0745  -0.0794*  -0.0799* 
  (0.0465)  (0.0460)  (0.0458)  (0.0458) 
parent education: college grad  -0.1571***  -0.1704***  -0.1794***  -0.1807*** 
  (0.0558)  (0.0548)  (0.0542)  (0.0542) 
parent education: missing  -0.2590***  -0.2654***  -0.2712***  -0.2715*** 
  (0.0567)  (0.0561)  (0.0560)  (0.0560) 
parent job: professional  -0.0391  -0.0410  -0.0452  -0.0450 
  (0.0578)  (0.0573)  (0.0572)  (0.0572) 
parent job: other  -0.0613  -0.0604  -0.0624  -0.0621 
  (0.0484)  (0.0480)  (0.0480)  (0.0480) 
parent job: missing  -0.1257**  -0.1300**  -0.1314**  -0.1327** 
  (0.0637)  (0.0631)  (0.0630)  (0.0630) 
contextual effects Yes Yes Yes Yes 
network fixed effects Yes Yes Yes Yes 
Standard errors in parentheses. Statistical significance: ***p<0.01; **p<0.05; *p<0.1. 
2SLS First Stage F test statistic: 4.498; OIR test p-value: 0.392 
   



Table 4: Estimation of Local-aggregate and Local-average Models Separately  
(Reciprocal Nominations) 

 Local-aggregate Model Local-average Model 
 BCGMM QML 

local-aggregate peer effect    0.0249***   
   (0.0033)   
local-average peer effect      0.1677*** 
     (0.0242) 
age    0.0810***    0.0788*** 
   (0.0233)   (0.0233) 
female    -0.3291***   -0.3240*** 
   (0.0324)   (0.0324) 
white   -0.0426   -0.0436 
   (0.0424)   (0.0425) 
born in the U.S.    0.1393**    0.1339** 
   (0.0662)   (0.0663) 
grade   -0.0011    0.0008 
   (0.0395)   (0.0395) 
fitness    0.0209    0.0294 
   (0.0356)   (0.0356) 
math score   -0.1659***   -0.1586*** 
   (0.0306)   (0.0307) 
self esteem   -0.0581   -0.0558 
   (0.0394)   (0.0394) 
school attachment   -0.1188***   -0.0947*** 
   (0.0345)   (0.0345) 
neighborhood safety   -0.0705*   -0.0692* 
   (0.0374)   (0.0374) 
school safety   -0.1462***   -0.1413*** 
   (0.0391)   (0.0391) 
live with both parents    0.0208    0.0222 
   (0.0353)   (0.0353) 
parental care   -0.3458***   -0.3408*** 
   (0.0444)   (0.0444) 
parent education: HS grad   -0.0837*   -0.0800* 
   (0.0456)   (0.0457) 
parent education: college grad   -0.1981***   -0.1858*** 
   (0.0541)   (0.0542) 
parent education: missing   -0.2682***   -0.2651*** 
   (0.0559)   (0.0560) 
parent job: professional   -0.0566   -0.0418 
   (0.0572)   (0.0573) 
parent job: other   -0.0609   -0.0566 
   (0.0480)   (0.0481) 
parent job: missing   -0.1480***   -0.1502*** 
   (0.0631)   (0.0632) 
contextual effects  Yes  Yes 
network fixed effects  Yes  Yes 
Standard errors in parentheses. Statistical significance: ***p<0.01; **p<0.05; *p<0.1. 
 



 

Table 5: Logit Regression of the Link Formation Model 
BCGMM estimation residuals  -0.0003 
  (0.0006) 
age   0.2107 
  (0.1400) 
gender   0.4469** 
  (0.2110) 
race   0.9396*** 
  (0.3284) 
place of birth   3.7119*** 
  (0.7549) 
grade   1.6042*** 
  (0.3014) 
fitness  -0.1280 
  (0.1880) 
math score   0.5768** 
  (0.2389) 
self esteem   0.1085 
  (0.2151) 
school attachment  -0.0440 
  (0.1918) 
neighborhood safety  -0.0248 
  (0.1954) 
school safety  -0.2204 
  (0.1920) 
live with both parents   0.1054 
  (0.3476) 
parental care  -0.5231* 
  (0.2764) 
parent education  -0.0835 
  (0.1099) 
parent job   0.3226** 
  (0.1453) 

Sample size: 219,671. 
Standard errors in parentheses.  
Statistical significance: ***p<0.01; **p<0.05; *p<0.1. 
 

 

 

 

 

 



Table 6: Characteristics of the Key Player 
Variable Key Players Other Students  

 Mean SD Mean SD p value 
Own Characteristics      
age    14.52    1.89   13.75    1.62    0.00 
white    0.34    0.48    0.49    0.50    0.00 
grade    2.92    1.60    2.34    1.50    0.00 
math score    0.33    0.47    0.53    0.50    0.00 
self esteem    0.59    0.49    0.74    0.44    0.00 
school attachment    0.27    0.45    0.59    0.49    0.00 
school safety    0.45    0.50    0.61    0.49    0.00 
parental care    0.70    0.46    0.85    0.35    0.00 
parent job: professional    0.50    0.50    0.57    0.49    0.09 
parent job: other jobs    0.17    0.38    0.12    0.32    0.07 
Friends’ Characteristics      
age    14.44    1.66   13.73    1.47    0.00 
white    0.36    0.42    0.49    0.42    0.00 
born in the U.S.    0.89    0.25    0.94    0.18    0.03 
grade    2.92    1.53    2.34    1.43    0.00 
math score    0.42    0.31    0.54    0.33    0.00 
school attachment    0.52    0.31    0.61    0.31    0.00 
neighborhood safety    0.56    0.34    0.65    0.31    0.00 
school safety    0.49    0.34    0.62    0.33    0.00 
The two-sample t test p value is reported in the last column. 
 


