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Abstract—As phylogenetic datasets have increased in size, site-heterogeneous substitution models such as CAT-F81 and
CAT-GTR have been advocated in favor of other models because they purportedly suppress long-branch attraction (LBA).
These models are two of the most commonly used models in phylogenomics, and they have been applied to a variety of
taxa, ranging from Drosophila to land plants. However, many arguments in favor of CAT models have been based on tenuous
assumptions about the true phylogeny, rather than rigorous testing with known trees via simulation. Moreover, CAT models
have not been compared to other approaches for handling substitutional heterogeneity such as data partitioning with site-
homogeneous substitution models. We simulated amino acid sequence datasets with substitutional heterogeneity on a
variety of tree shapes including those susceptible to LBA. Data were analyzed with both CAT models and partitioning to
explore model performance; in total over 670,000 CPU hours were used, of which over 97% was spent running analyses with
CAT models. In many cases, all models recovered branching patterns that were identical to the known tree. However, CAT-
F81 consistently performed worse than other models in inferring the correct branching patterns, and both CAT models often
overestimated substitutional heterogeneity. Additionally, reanalysis of two empirical metazoan datasets supports the notion
that CAT-F81 tends to recover less accurate trees than data partitioning and CAT-GTR. Given these results, we conclude
that partitioning and CAT-GTR perform similarly in recovering accurate branching patterns. However, computation time
can be orders of magnitude less for data partitioning, with commonly used implementations of CAT-GTR often failing to
reach completion in a reasonable time frame (i.e., for Bayesian analyses to converge). Practices such as removing constant
sites and parsimony uninformative characters, or using CAT-F81 when CAT-GTR is deemed too computationally expensive,
cannot be logically justified. Given clear problems with CAT-F81, phylogenies previously inferred with this model should

be reassessed. [Data partitioning; phylogenomics, simulation, site-heterogeneity, substitution models.]

Nucleotide and amino acid substitution models
are integral components of modern-day phylogenetic
algorithms (Philippe et al. 2005; Rokas and Carroll 2006).
Commonly used substitution models include the general
time-reversible (GTR) model for both nucleotides and
amino acids (Tavaré 1986) and amino acid substitution
models with fixed exchange matrices such as WAG and
LG (Whelan and Goldman 2001; Le and Gascuel 2008).
Many amino acid substitution models either use fixed
amino acid frequencies that are unique to each model
or amino acid frequencies derived from the data being
analyzed (e.g.,, WAG+F, LG+F). Substitution models
can also be extended to incorporate rate heterogeneity
across sites by incorporating a gamma distribution or
modeling invariant sites (e.g., WAG+H+I', WAG+HT+F,
WAGHI+T, WAGHI4T'+F; Yang 1994; Gu et al. 1995).
The aforementioned models are homogeneous across
sites in the sense that the same underlying model of
amino acid substitution applies to all sites. These models
also assume that there are no lineage-specific differences
in the substitution process, which is also an assumption
that may be violated in large datasets (Jayaswal et al.
2014).

The onset of phylogenomics and increasingly large
sequence datasets has led to development of site-
heterogeneous substitution models (Lartillot and
Philippe 2004; Le et al. 2008) and new methods that
employ heuristicalgorithms that use objective criteria for
partitioning data for use with site-homogeneous models

(Lanfear et al. 2012, 2014). CAT models, implemented
in PhyloBayes under a Bayesian framework (Lartillot
and Philippe 2004), are by far the most widely used
site-heterogeneous models (Brinkmann and Philippe
2008; Delsuc et al. 2008; Liu et al. 2009; Philippe et al.
2009; Finet et al. 2010; Philippe et al. 2011a; Timme et al.
2012; Nesnidal et al. 2013; Nosenko et al. 2013; O’Hara
et al. 2014; Siu-Ting et al. 2014; Chang et al. 2015; Kenny
et al. 2015; Luo 2015; Whelan et al. 2015b; Cannon et al.
2016; Rouse et al. 2016), but site-heterogeneous models
can also be implemented in a maximum likelihood
framework (Le et al. 2008). Site-heterogeneous CAT
models implemented in PhyloBayes should not be
confused with the CAT estimation for modeling rate
heterogeneity in RAXML as these are two different
models with different objectives (Stamatakis 2006;
unless otherwise noted, when we refer to CAT models
we mean site-heterogeneous substitution models
implemented in PhyloBayes). CAT models employ a
Dirichlet process prior to allow for multiple categories
of substitution profiles with different nucleotide or
amino acid frequencies coupled with a single set of
exchange rates for the entire sequence dataset that is
either fixed to flat values (i.e., CAT-F81; this model is
often referred to simply as “CAT”) or inferred from data
(i.e., CAT-GTR). These multiple substitution categories
are used to account for substitutional heterogeneity
across a phylogenetic data matrix. As infinite mixture
models, CAT models are considerably more complex
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than site-homogeneous, fixed amino acid substitution
models. However, model complexity should not be
taken as a guarantee of quality in empirical analyses
because sometimes data are of insufficient quality or
quantity to allow for accurate parameter estimation
(Ludwig and Walters 1986; Gan et al. 1997).

An alternative method to site-heterogeneous models
for handling substitutional heterogeneity in a dataset
is to apply different site-homogeneous models (e.g.,
WAG) to different partitions of a supermatrix. One
common approach is to assign a different model to
each gene (e.g., Moore et al. 2010; Cannon et al. 2014;
Moroz et al. 2014), but this may result in overpartitioning
and poor parameter estimation (Kainer and Lanfear
2015). An objective measure for grouping genes into
partitions is testing best-fit partitions and associated
substitution models with a program like PartitionFinder
(Lanfear et al. 2012, 2014). The downside to partitioning
with site-homogeneous models is that genes, or other
partitions such as codon positions, must be specified
a priori and substitutional heterogeneity within pre-
defined data segments cannot be modeled as with
site-heterogeneous models. Both partitioning with site-
homogeneous models and CAT models assume that the
substitution process is homogeneous across lineages and
that all taxa and genes share similar compositions.

CAT models have often been described as more
“realistic” than other models (Lartillot and Philippe
2004; Liu et al. 2009; Tsagkogeorga et al. 2009; Finet et al.
2010; Philippe et al. 2011b; Nosenko et al. 2013), and
they have also been described as the most significant
area of recent progress in mitigating systematic error
in phylogenetics (Telford et al. 2015). In some previous
studies, CAT models have inferred different trees than
other models, and such trees inferred with CAT models
have often matched preconceived notions of animal
phylogeny (e.g., sponges as the sister group to other
animals, Philippe et al. 2009, 2011a; Pick et al. 2010;
platyzoan paraphyly, Egger et al. 2015). Such results
have yielded conclusions that CAT models suppress
long-branch attraction (LBA) better than other models
(Lartillot et al. 2007; Brinkmann and Philippe 2008;
Philippe et al. 2011b; Roure et al. 2013). However, these
statements about CAT model performance are based on
assumptions about the true tree, many of which are
tenuous. For example, both Brinkmann and Philippe
(2008) and Philippe et al. (2011a) argued that CAT
models perform better than site-homogeneous models
in suppressing LBA because of where Xenoturbella and
acoels were recovered by CAT models. However, these
papers recovered Xenoturbella and acoels in different
positions, both of which conflict with that of more recent
studies placing Xenoturbella and acoels in a clade sister
to all other bilaterians (Simakov et al. 2015; Cannon
et al. 2016). The tendency of CAT models to recover
sponges as the sister group to all other animals and
cnidarians as the sister group to ctenophores has also
been used to argue that CAT models are more accurate
atinferring phylogeny and that they suppress LBA better

than other models (Philippe etal. 2009, 2011b; Roure et al.
2013). However, the underlying assumption from these
studies that the supposed accuracy of the CAT model
relies on—sponges as the sister group to other animals
and cnidarians as the sister group to ctenophores—is a
hypothesis that has now been contradicted by numerous
studies including some that employed CAT models
(Dunn et al. 2008; Hejnol et al. 2009; Nesnidal et al. 2013;
Ryan et al. 2013; Moroz et al. 2014; Borowiec et al. 2015;
Chang et al. 2015; Whelan et al. 2015b).

Part of the argument concerning superior CAT model
performance made by Philippe et al. (2011b) included
the observation that CAT models appeared to fit data
better than a single WAG model applied to the entire
dataset, but a model test or analysis comparing CAT
models to partitioning with site-homogeneous models
was not done. Other authors have also noted that CAT
models appear to fit empirical datasets better than any
single site-homogeneous model applied to an entire
dataset (Philippe et al. 2009, 2011b; Nosenko et al. 2013;
Pisani et al. 2015; Tarver et al. 2016), but such tests
of model fit ignore the fact that most studies that
use site-homogeneous models couple their use with
partitioning. Therefore, we view such tests of model fit as
unhelpful for assessing model performance, especially
because using a single site-homogeneous model on
a large sequence dataset can result in less accurate
trees than when partitioning is employed (Brown and
Lemmon 2007; Kainer and Lanfear 2015). Rather than
using assumptions about animal phylogeny to assess the
effectiveness of CAT models for inferring relationships,
simulation analyses should be used to compare
performance of CAT models and partitioning with
site-homogeneous models. Performance comparisons
between CAT-F81 and CAT-GTR are also needed. CAT-
GIR is probably a more reasonable model than CAT-
F81 because CAT-F81 applies equal exchange rates
for nucleotides or amino acids across all categories,
but analyses done with CAT-GTR require much more
CPU time than CAT-F81 (Lartillot et al. 2013). This
is presumably why many studies have used CAT-F81
instead of CAT-GTR (e.g., Philippe et al. 2009, 2011b;
Pisani etal. 2012; Nesnidal et al. 2013; Nosenko et al. 2013;
Chang et al. 2015). Nevertheless, practical implications
of applying equal exchange rates are unclear, and
they warrant investigation. Furthermore, studies are
needed to explore whether CAT models accurately
assess substitutional heterogeneity in a dataset. Such
analyses can only be done in simulation when the
true number of substitutional categories is known.
Simulation studies are a powerful tool for testing
model and software performance (Hillis and Bull 1993;
Huelsenbeck 1995a, 1995b; Guindon and Gascuel 2003;
Williams and Moret 2003; Stamatakis et al. 2004), but
only CAT-F81 has been tested in simulation (Holder et al.
2008). Comparisons of how well data partitioning with
site-homogenous models, CAT-F81, and CAT-GTR infer
accurate phylogenies in simulation are needed to better
characterize model performance.

220z ¥1snBny 0z uo 1senb Ad 8600.92/2€2/2/99/101e/01qsAS/W0ddnoolwspeoe)/:sdjy Woj papeojumoq



234 SYSTEMATIC BIOLOGY

VOL. 66

We tested the performance of CAT models, as
currently implemented in PhyloBayes MPI (Lartillot
et al. 2013), compared to data partitioning with site-
homogeneous models (herein referred to as simply
“partitioning”) in simulation with known trees to
determine if current implementations of CAT models
actually perform better than other techniques at inferring
accurate trees. We chose to explore performance of CAT
models instead of other site-heterogeneous models (e.g.,
Pagel and Meade 2004; Le et al. 2008) because CAT
models implemented in PhyloBayes are widely used,
and they may be the only available site-heterogeneous
models computationally efficient enough to run on
phylogenomic-scale datasets. In particular, we explored
model performance on datasets susceptible to LBA
and assessed how well each method characterizes
substitutional heterogeneity. Simulated data may never
be as complex as empirical data, and so we also
characterized the performance of CAT models versus
data partitioning by reanalyzing the metazoan datasets
of Philippe et al. (2009) and Nosenko et al. (2013), both
of which have been hypothesized to suffer from LBA.

METHODS

All datasets generated for this study consist of amino
acid sequences. We utilized amino acid sequences
because most studies using CAT models have employed
amino acids. Simulated datasets were generated using
site-homogeneous and site-heterogeneous models.
Relatively small-sized simulated datasets were used
to explore model performance over a large region of
tree space, whereas large-sized datasets were utilized
to more be representative of empirical data susceptible
to LBA. Although areas of tree and model space not
covered by analyses herein surely exist (e.g., variable
rate heterogeneity among lineages), this study is an
important step in better characterizing the relative
performance of CAT models and dataset partitioning in
tree reconstruction. In total, 53 datasets were generated
and analyzed with an unpartitioned amino acid
GTR model, partitioning, CAT-F81, and CAT-GTR.
Over 670,000 CPU hours (~76.5 CPU years) were
used for this study. Although analyses we performed
may not have been exhaustive, they explored model
performance under a wide variety of conditions that are
applicable to empirical studies. All datasets, partitioning
schemes, and inferred trees have been placed on Dryad
(available at http://dx.doi.org/10.5061/dryad.85b2m).
All code used in this study can be found at
github.com/nathanwhelan. Table 1 provides an
overview of the 53 simulated datasets and naming
conventions.

Generating Small, Simulated DataSets

The general approach to simulations is shown in
Figure 1. Using the phytools R package (Revell 2012;

R Core Development Team 2015), we generated two
stochastic, pure-birth trees with 10 taxa (Fig. 2) and
two pure-birth trees with 50 taxa (Fig. 3). Six datasets
with different starting gene lengths (ranging from 500
to 3500 amino acids; Table 1) for each 10-taxon tree
and four datasets for each 50-taxon tree with different
starting gene lengths (ranging from 500 to 1500 amino
acids; Table 1) were simulated using the programs
indel-Seq-Gen 2.0 (Strope et al. 2009) and INDELible
(Fletcher and Yang 2009). Initially, we planned on only
using indel-Seq-Gen because it has a well-described
indel model (Strope et al. 2009), includes a variety
of amino acid models implemented in commonly
used phylogenetics programs (e.g., RAxML), and it
has been recently updated. However, initial analyses
showed that indel-Seq-Gen 2.0 failed to incorporate rate
heterogeneity in amino acid datasets, hence datasets
were also generated using INDELible. Thus, two datasets
were simulated for each tree, starting gene length, and
associated indel probability (Table 1), but only datasets
simulated with INDELible had a gamma distribution
of rate heterogeneity incorporated into data. Datasets
generated with indel-Seq-Gen are labeled with “_iSG,”
and datasets generated with INDELible are labeled with
“_1” (Table 1).

Each small dataset consisted of five genes simulated
under a different substitution model [i.e., WAG
(Whelan and Goldman 2001), MTREV (Adachi and
Hasegawa 1996), BLOSUM62 (Henikoff and Henikoff
1992), JTT (Jones et al. 1994), and DCmut (Kosiol
and Goldman 2005)]. This resulted in datasets with
five different substitutional categories. Five genes
were simulated to create a reasonable amount of
heterogeneity while being small enough to allow
for reasonable computational times. All genes were
simulated with identical amino acid composition.
For datasets simulated with INDELible, a discrete
gamma distribution with four categories (a=1.0) of
rate heterogeneity were incorporated into each model.
An alpha value of 1.0 was chosen because it represents
a moderate level of rate heterogeneity that both CAT
models implemented in PhyloBayes and partitioning in
RAXML should be able to model similarly as they both
use a gamma distribution to model rate heterogeneity.
Two of the six datasets generated on each 10-taxon tree
(Fig. 2) and two of the four datasets generated on each
50-taxon tree (Fig. 3) were simulated with indels using
indel probabilities of either 0.01 or 0.1 and a maximum
length of 5 amino acids following the indel model
described by (Strope et al. 2009) for indel-Seq-Gen or a
Zipfian distribution with an alpha value of 0.01 or 0.1 and
maximum length of 5 amino acids following the indel
model described by (Fletcher and Yang 2009, see Table 1).
Generating some datasets with indels was undertaken
to explore model performance under conditions similar
to empirical datasets. Furthermore, indels introduced
missing data into dataset, which may also affect model
performance. Any amino acid matrix column output
by indel-Seq-Gen or INDELible that contained only
gaps was removed. The respective simulation programs
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TaBLE 1.  Simulation conditions and dataset characteristics
Dataset®? Tree Number of taxa Gene starting length Indel probability Number of genes Number of sites Gaps/missing data (%)
S10.T1.1.iSG  10T_1 10 500 0 5 2,500 0
S$10.T1.2_iSG 10T_1 10 500 0.01 5 2,463 0.93
S$10.T1.3_iSG 10T_1 10 500 0.1 5 2,516 10.25
S10.T1.4_iSG 10T_1 10 1,500 0 5 7,500 0
S$10.T1.5_iSG 10T_1 10 2,500 0 5 12,500 0
$10.T1.6_iSG  10T_1 10 3,500 0 5 17,500 0
S10.T2.1_iSG  10T_2 10 500 0 5 2,500 0
S$10.T2.2_iSG 10T_2 10 500 0.01 5 2,500 0.86
510.T2.3_iSG  10T_2 10 500 0.1 5 2,498 10.47
S510.T2.4_iSG 10T_2 10 1,500 0 5 7,500 0
S$10.T2.5_iSG  10T_2 10 2,500 0 5 12,500 0
S510.T2.6_iSG 10T_2 10 3,500 0 5 17,500 0
S50.T1.1_iSG 50T_1 50 500 0 5 2,500 0
$50.T1.2_iSG 50T_1 50 500 0.01 5 2,687 8.17
S50.T1.3_iSG 50T_1 50 500 0.1 5 4,153 46.63
S$50.T1.4_iSG 50T_1 50 1,500 0 5 7,500 0
$50.T2.1_iSG  50T_2 50 500 0 5 2,500 0
S50.T2.2_iSG 50T_2 50 500 0.01 5 2,841 14.68
S$50.T2.3_iSG 50T_2 50 500 0.1 5 4,775 59.69
$50.T2.4_iSG 50T_2 50 1,500 0 5 7,500 0
L13.TA.1_iSG A 13 Random 0.01 200 86,097 5.63
L13.TA2_iSG A 13 Random 0.01 200 45,957 5.45
L13.TA3_iSG A 13 Random 0.01 200 23,232 5.46
L13.TA.4_iSG A 13 Random 0.1 200 69,390 5.65
L19.TB.1_iSG B 19 Random 0.01 200 76,625 4.16
L19.TB.2_iSG B 19 Random 0.1 200 86,343 29.23
S10.T1.1_I 10T_1 10 500 0 5 2,500 0
S10.T1.2_1 10T_1 10 500 0.01 5 2,481 1.25
S10.T1.3_1 10T_1 10 500 0.1 5 2,479 10.12
S510.T14_1 10T_1 10 1,500 0 5 7,500 0
S10.T1.5_1 10T_1 10 2,500 0 5 12,500 0
S10.T1.6_1 10T_1 10 3,500 0 5 17,500 0
S10.T2.1_1 10T_2 10 500 0 5 2,500 0
510.T2.2_1 10T_2 10 500 0.01 5 2,505 0.99
S10.T2.3_1 10T_2 10 500 0.1 5 2,511 10.09
510.T2.4_1 10T_2 10 1,500 0 5 7,500 0
S10.T2.5_1 10T_2 10 2,500 0 5 12,500 0
S510.T2.6_1 10T_2 10 3,500 0 5 17,500 0
S50.T1.1_1 50T_1 50 500 0 5 2,500 0
S50.T1.2_1 50T_1 50 500 0.01 5 2,681 8.21
S50.T1.3_I 50T_1 50 500 0.1 5 4,234 48.52
S$50.T1.4_I 50T_1 50 1,500 0 5 7,500 0
S50.T2.1_1 50T_2 50 500 0 5 2,500 0
S50.T2.2_1 50T_2 50 500 0.01 5 2,868 15.02
S50.T2.3_1 50T_2 50 500 0.1 5 4,838 60.49
S50.T2.4_1 50T_2 50 1,500 0 5 7,500 0
L13.TA1_I A 13 Random 0.01 200 81,099 0.62
L13.TA.2_I A 13 Random 0.01 200 40,313 0.64
L13.TA3_1 A 13 Random 0.01 200 21,546 0.62
L13.TA4_1 A 13 Random 0.1 200 69,362 5.78
L19.TB.1_I B 19 Random 0.01 200 76,792 4.53
L19.TB.2_I B 19 Random 01 200 86,667 30.23

?Datasets are named with their dataset size (“S” or “L”), number of taxa, tree identity, and dataset number.
b iSG and _I indicate datasets simulated with indel-seq-Gen and INDELBILE, respectively.

See Figs. 2—4.

generated alignments, so alignment uncertainty was not
a factor in downstream analyses. All five genes for each
dataset were subsequently concatenated into a single
supermatrix using FASconCAT (Kiick and Meusemann
2010).

The above datasets were designed to have
substitutional heterogeneity across genes, but not within
genes. In empirical datasets, intra-gene heterogeneity

may be pervasive (Betts and Russell 2003). This is
the primary argument for using site-heterogeneous
models instead of partitioning (Lartillot and Philippe
2004). However, how accounting for only inter-gene
heterogeneity, compared to accounting for inter-
and intra-gene heterogeneity, affects tree inference is
unclear. Thus, we generated another suite of datasets
for which intra-gene substitutional heterogeneity was
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1) Generate Tree. 2) Choose gene lengths.

- Predetermined for small datasets. /

- Randomly drawn from gamma

distribution for large
datasets.

™~

4) Model testing with PartitionFinder.
- Greedy heuristic for small
datasets.
- 20% relaxed clustering for
large datasets.

—

5) Phylogenetic inference.

- Partitioning wtih RAXML. )

- CAT-GTR with Phylobayes )
- CAT-F81 with Phylobayes ——— =or#

3.1) Simulate sequences under
different amino acid models.

- indel-Seg-Gen 2.0 & INDELible
WAG+G, DCMUT+G,
BLOSUM62+G,

JTT+G, MTREV+G

\

3.2) Randomly combine “genes” to
create intra-gene heterogeneity.

6) Compare inferred trees
to true trees.

FIGURE 1. Visual schematic of how data were simulated and analyzed.
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FIGURE 2.  Topologies used for simulating 10-taxon amino acid sequence datasets. A) Datasets S10.T1.1-6. B) Datasets S10.T2.1-6 (see Table 1).

simulated by taking each dataset generated above
and twice randomly combining two genes simulated
under different models. This resulted in three genes:
two that were the result of combining two genes
simulated under different models and one leftover
gene without intra-gene substitutional heterogeneity.
The combined genes were treated as a single data
block for model testing and phylogenetic inference
with partitioning (see below). Amino acid positions
in these datasets are identical to datasets that they
were generated from, but starting gene blocks used in
ParitionFinder were combined. Datasets with intra-gene
heterogeneity are scenarios where CAT models would

be expected to perform better than partitioning because
partitioning is blind to heterogeneity within genes. At
the same time, by not creating datasets from scratch
we saved on computational time, and we could directly
compare partitioning when there was only inter-gene
heterogeneity versus when intra-gene heterogeneity
existed.

Generating Large, Simulated DataSets

In addition to small datasets, we simulated datasets
designed to be more representative of phylogenomic
sized studies (i.e., many genes of different lengths
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FIGURE 3.

and tens of thousands of amino acids) because CAT
models have been forcefully advocated for use with
large datasets (Brinkmann and Philippe 2008; Philippe
et al. 2009, 2011a,b; Nosenko et al. 2013; Pisani et al.
2015; Tarver et al. 2016). Trees and datasets generated
for this second set of simulations were designed to
test the supposed superior performance of CAT models
in suppressing LBA (Lartillot et al. 2007; Philippe
et al. 2011b). The first tree used for large dataset
simulations, herein referred to as “Tree A” (Fig. 4A),
was generated by reconstructing a tree from the insect
18S rRNA dataset of Huelsenbeck (1997), which suffers
from LBA when analyzed under maximum parsimony
(MP). 18S sequences were retrieved from GenBank
(Supplementary Table S1 available on Dryad), and a
tree was inferred with PhyML 3.0 (Guindon et al. 2010)
using the HKY model as in Huelsenbeck (1997). To avoid
confusing real 185 sequences with simulated data, we
mapped terminal node names to single letter identifiers
as in Figure 4A, but corresponding species names and
185 GenBank numbers are in Supplementary Table S1,
available on Dryad. For the second tree, herein referred
to as “Tree B,” we created a nonrandom, hypothetical
phylogeny with 19 tips, a long-branched outgroup, short
internode branches, and two long internal branches
(Fig. 4B).

Topologies used for simulating 50-taxon amino acid sequence datasets. A) Datasets S50.T1.1-4. B) Datasets S50.T2.1-4 (see Table 1).

Amino acids were separately simulated for datasets
L13.TA1, L13.TA4, L19.TB.1, and L19.TB.2 with both
indel-Seq-Gen and INDELible (Table 1). Datasets
L13.TA1l and L13.TA4 were simulated on Tree A,
and datasets L13.TA.2 and L13.TA.3 were generated
by randomly removing 50% and 75% of sequences
from dataset L13.TA.l, respectively. This was done
to explore model performance with different sized
datasets, and to further assess whether PartitionFinder
and CAT models accurately categorize substitutional
heterogeneity or if the number of partitions/categories
determined by PartitionFinder and CAT models simply
scales with dataset size. One characteristic of empirical
datasets we wished to mimic was variable gene
length. To do this, 200 “gene” lengths were randomly
drawn from a gamma distribution with a shape
parameter of 2.5 and scale parameter of 150. Individual
sequence lengths were placed into corresponding input
files that were formatted for indel-Seq-Gen 2.0 and
INDELible. Both steps were done with a custom Python
script (github.com/nathanwhelan/generateSequences),
and they were done for each of the four full-sized,
simulated datasets (Table 1).

As with small datasets, indel-Seq-Gen 2.0 and
INDELible were used to simulate amino acid sequences.
For each full-sized, large dataset, five substitution
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Ficure 4. Topologies used for simulating large amino acid sequence datasets. A) Datasets L13.TA.1-4. B) Datasets L19.TB.1-2. (see Table 1).

models were used to generate amino acid sequences
on known trees by randomly assigning 40 genes to
be simulated under the WAG, MTREV, BLOSUMS®62,
JTIT, and DCmut substitution models, respectively.
All genes were simulated with identical amino acid
composition. This resulted in five different substitutional
categories for each dataset. Four categories of a discrete
gamma distribution (a=1.0) of rate heterogeneity were
incorporated into each model for datasets generated
with INDELible. Large datasets were designed to have
characteristics of empirical datasets, so each dataset
had indels, and they were simulated similarly to small
datasets (see Table 1).

Like the small datasets, we simulated large datasets
with only inter-gene heterogeneity as well as datasets
with intra-gene heterogeneity, but for the latter, three
genes were randomly combined instead of two as with
the small datasets; this was done 66 times without
replacement and the remaining two genes were also
combined. We also attempted to simulate data under
CAT-GTR. Simulating data under the CAT-GTR model
is done with Bayesian posterior predictive simulation,
which uses empirical data as a starting point so CAT-
GTR can infer substitutional heterogeneity present in
the dataset for use as a simulation parameter. A major
caveat of this approach is the assumption that CAT-
GTR accurately captures the real level of heterogeneity
in any given dataset, but this may not always be a valid
assumption (see below). Data simulated with CAT-GTR
failed to produce well-supported, accurate trees, even
when using CAT-GTR for tree inference. Therefore, the

usefulness of data we generated under CAT-GIR in
comparing model performance is limited. Additional
details concerning data simulated under CAT-GTR
and associated results are discussed in Supplementary
Material available on Dryad.

Empirical DataSets

We reanalyzed two metazoan datasets from Philippe
et al. (2009) and Nosenko et al. (2013). We retrieved
the Philippe et al. (2009) dataset with all outgroups
included and the Nosenko et al. (2013) dataset with both
ribosomal and non-ribosomal proteins included from
the original publications (details in Supplementary
Material available on Dryad). These super matrices
were split into individual genes with a custom R script
(github.com/nathanwhelan/Split_supermatrix_into_
partitions) using annotations provided in the original
studies. We chose to reexamine Philippe et al. (2009)
because Philippe et al. (2011b) used this dataset
to purportedly demonstrate that CAT models are
better than site-homogeneous models, but it was only
analyzed with CAT-F81 and a single WAG model,
not CAT-GTR or partitioning. Nosenko et al. (2013)
was reanalyzed because it was originally analyzed
with both CAT models but not with data partitioning.
Furthermore, both studies recovered trees with CAT-F81
that placed sponges as the sister group to all other
animals and ctenophores as the sister group to
cnidarians, which are hypotheses that have recently
been contradicted by numerous studies (Ryan et al. 2013;
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Moroz et al. 2014; Borowiec et al. 2015; Chang et al. 2015;
Whelan et al. 2015b). Unlike studies on other animal
groups where CAT models and site-homogeneous
models have inferred different topologies [e.g., among
lophotrochozoans (Egger et al. 2015), placement of
acoels and Xenoturbella (Brinkmann and Philippe 2008;
Philippe et al. 2011a; Cannon et al. 2016; Rouse et al.
2016)] an emerging consensus has developed concerning
relationships among non-bilaterian phyla (Ryan et al.
2013; Moroz et al. 2014; Borowiec et al. 2015; Chang
et al. 2015; Whelan et al. 2015a,b). Even though a recent
reanalysis of some small datasets disputed the finding of
ctenophores as the sister group to other animals (Pisani
et al. 2015, but see Halanych et al. 2016), a reanalysis of
Philippe et al. (2009) and Nosenko et al. (2013) in the
context of CAT models versus partitioning is warranted
as no recent study has recovered ctenophores and
cnidarians sister to each other as in Philippe et al. (2009)
and Nosenko et al. (2013).

Model Testing and Phylogenetic Inference

Both CAT models are site-heterogeneous models,
so if they perform well in modeling substitutional
heterogeneity then we expect them to accurately capture
the heterogeneity as well as, or better than, the best-fit
partitions inferred with PartitionFinder. Furthermore,
models used to simulate data can be described with a
GTR model so we expect CAT-GTR to perform as well as,
or better than, partitioning. Partitioning can be expected
to perform worse than CAT models when using genes
that had intra-gene substitutional heterogeneity because
partitioning was blind to some of the heterogeneity
present.

For each dataset, the potential of LBA was examined
using MP tree inference as this method is more
susceptible to LBA than model-based methods
(Felsenstein 1978; Huelsenbeck 1997). In other words,
MP served as a control to determine if datasets were
susceptible to LBA, an issue of model performance
we wished to explore. MP analyses were done with

PAUP* (people.sc.fsu.edu/dswofford /paup_test/). MP
trees were inferred with starting trees obtained through
stepwise addition and 10 replicates of random sequence-
addition. If more than one most parsimonious tree was
recovered, a strict consensus of equally parsimonious
trees was generated after each analysis. Nodal support
was measured with 100 bootstrap (BS) replicates using
the same search parameters as the full MP search.

Even though exact models (i.e., WAG, BLOSUMS62,
JTT, DCmut, MTREV) and number of appropriate
partitions (i.e., five) that datasets were simulated
under was known, we wanted to avoid biasing our
analyses toward any one model or method. Therefore,
PartitionFinder 1.1.1 (Lanfear et al. 2012, 2014) was used
to determine inferred best-fit partitions and models for
each dataset. Models tested by PartitionFinder were
WAG+T', BLOSUM62+T', MTREV+I", MTMAM+T,
RTREV+T, CPREV+T, DCmut+I', DAYHOFF4T,

JTT+T, LG4+T, VI4T, and corresponding models with
empirically derived amino acid frequencies (i.e., + F).
PartitionFinder requires starting blocks, or genes, to be
specified and then tests which, if any, genes should be
combined for use with the same substitution model. For
analyses of datasets with only inter-gene heterogeneity,
individual genes served as starting blocks, but for
analyses of datasets with intra-gene heterogeneity we
used combined genes (described above) as starting
blocks. All PartitionFinder analyses used linked branch
lengths. The greedy search algorithm in PartitionFinder
was used for small datasets. Twenty percent relaxed
clustering, which is a faster alternative to the greedy
search in PartitionFinder designed for phylogenomic
scale datasets (Lanfear et al. 2014), was used for the large
simulated datasets, datasets simulated with CAT-GTR,
and empirical datasets.

The AVX executable of RAXML 8.2.4 Stamatakis
(2014) was used for ML analyses with best-fit partitions
and models inferred by PartitionFinder, a gamma
distribution with four discrete categories to model rate
heterogeneity, and 100 fast BS replicates to assess nodal
support. For each dataset, three ML analyses were done:
1) with a single protein GTR model applied to the entire
amino acid matrix, 2) partitioning scheme resulting from
PartitionFinder analysis using gene blocks lacking intra-
gene heterogeneity, and 3) partitioning scheme resulting
from PartitionFinder analysis using gene blocks with
intra-gene heterogeneity. Using a single protein GTR
model applied to the whole dataset was done to explore
the practical effect of completely ignoring substitutional
heterogeneity. Even though ML analyses can become
stuck in local optima, we only ran RAXML once as is
typically done in empirical studies (Moroz et al. 2014;
Whelan et al. 2015b).

We used PhyloBayes MPI 1.5a (Lartillot et al. 2013)
for Bayesian inference, and trees for each dataset were
inferred with both CAT-GTR and CAT-F81 models.
When CAT-F81 recovered a worse branching pattern
than other model-based methods, we also analyzed
those datasets in PhyloBayes with a single F81 model.
This was done to explore whether failures of CAT-F81
were a result of problems with CAT or with applying a
F81 model to datasets. Four discrete gamma categories
were employed in each PhyloBayes analysis to model
rate heterogeneity. Default priors were used because
PhyloBayes MPI does not let users modify priors. For
each analysis, two chains were run, but additional chains
were used if one appeared stuck in a local optima
based on trace plots viewed in Tracer (Rambaut and
Drummond 2007). Burn-in for each BI analysis was
assessed with Tracer by determining when chains had
reached stationarity (Table 2). Convergence of Bayesian
runs cannot be known with certainty, but apparent
convergence was considered to have occurred when
the post burn-in maximum difference in topologies
among chains and relative difference of parameters
among chains was below 0.3 and when the effective
sample size for each parameter was greater than 50 as
measured by bpcomp and tracecomp (Lartillot et al.
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TABLE2.  Burn-in and total MCMC generations for CAT-GTR and CAT-G81 analyses
CAT-F81 CAT-GTR
Dataset Burn-in Generations per chain Burn-in Generations per chain
S10.T11_iSG 1,000 39,218 1,000 3,637
510.T1.2_iSG 1,000 62,456 1,000 23,537
510.T1.3_iSG 1,000 6,234 1,000 17,771
510.T1.4_iSG 500 6,071 1,500 5,498
510.T1.5_iSG 5,000 27,223 1,000 7,040
510.T1.6_iSG 5,000 15,633 16,000 17,636
$10.T2.1_iSG 10,000 67,354 500 20,111
510.T2.2_iSG 20,000 48,099 10,000 35,304
510.12.3_iSG 20,000 67,390 10,000 23,538
510.T2.4_iSG 10,000 53,258 2,000 16,911
510.T2.5_iSG 10,000 26,210 16,000 22,970
510.12.6_iSG 10,000 32,025 6,000 16,358
S50.T1.1_iSG 10,000 31,747 1,000 10,619
S50.T1.2_iSG 10,000 61,280 1,000 11,326
550.T1.3_iSG 40,000 70,841 20,000 56,404
550.T1.4_iSG 1,500 9,056 5,000 11,533
S50.1T2.1_iSG 15,000 20,465 1,000 38,444
550.T2.2_iSG 10,000 29,081 8,000 13,796
550.7T2.3_iSG 15,000 26,078 10,000 31,036
550.12.4_iSG 10,000 34,304 5,000 32,164
L13.TA1_iSG 8,000 36,945 2,500 17,048
L13.TA.2_iSG 2,500 24,265 1,000 21,015
L13.TA.3_iSG 1,000 34,945 2,000 11,658
L13.TA.4_iSG 2,500 10,968 5,000 20,320
L19.TB.1_iSG 6,000 32,665 10,000 21,417
L19.TB.2_iSG 7,500 35,291 5,000 47,241
510.T1.1_I 5,000 30,000 5,000 44,777
510.T1.2_1 10,000 32,513 35,000 45,546
510.T1.3_1 8,000 32,812 8,000 9,676
510.T1.4_1 17,000 21,067 8,000 16,872
510.T1.5_1 5,000 25,345 15,000 24,559
510.T1.6_1 10,000 21,652 5,000 14,379
510.T2.1_I 10,000 27927 25,000 42,226
510.12.2_1 20,000 75,665 5,000 17,276
510.12.3_1 10,000 15,600 20,000 33,386
510.T2.4_1 13,000 23,459 15,000 27,236
510.T12.5_1 13,000 22,111 13,000 17,726
510.12.6_1 20,000 26,742 4,500 14,100
S50.T1.1_1 10,000 26,559 5,000 19,403
S50.T1.2_1 10,000 20,421 6,090 16,801
S50.T1.3_1 20,000 70,601 15,000 44,481
S50.T1.4_1 8,200 12,145 2,500 10,146
S50.T2.1_1 45,000 47907 5,000 13,092
S50.T2.2_1 25,000 33,496 5,000 10,388
550.T2.3_1 61,000 113,368 15,000 42,576
550.T2.4_1 18,000 21,451 25,000 37,446
L13.TA1_I 10,000 16,336 3,000 7923
L13.TA2 1 2,000 20,639 6,100 11,269
L13.TA.3_1 25,000 60,841 2,000 27429
L13.TA4_1 6,000 11,999 3,000 6,956
L19.TB.1_1L 15,000 33,933 5,000 25,757
L19.TB.2_1 12,000 25,839 4,000 10,358
Nosenko et al. 1,000 4,633 7,200 14,985
Philippe et al. 1,000 12,267 1,500 14,000

2013). For each BI analysis, once convergence appeared
to have been reached, a majority rule consensus of the
post-burin posterior distribution of trees was generated
using bpcomp and nodal support was measured by
posterior probability (PP).

Our goal was not to compare PhyloBayes versus
RAXML, per se, but limited overlap in what methods
could be used in any given phylogenetic program

necessitated practical considerations about which
programs to use. For example, PhyloBayes is the
only program that implements site-heterogeneous
CAT models, but PhyloBayes does not permit data
partitioning. Furthermore, PhyloBayes and RAxML
are, by far, the most widely used programs for
phylogenomics so conclusions made using trees inferred
with these programs are broadly applicable to the field.
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To determine if substitutional heterogeneity was
being correctly inferred, the number of categories
inferred by CAT-F81 and CAT-GTR was recorded
after each PhyloBayes analysis by calculating the
average number of categories across post burn-in
posterior distributions. Total partitions inferred by
PartitionFinder were also documented. We plotted
inferred categories/partitions versus number of overall
amino acids (i.e., alignment columns multiplied by
number of taxa minus gaps) for each dataset and
performed a linear regression using R (R Core
Development Team 2015) to determine how inferred
partitions/categories corresponded to the amount of
data and actual number of substitutional categories. For
CAT models, the number of categories for all simulated
datasets was analyzed at once, but for partitioning,
small and large simulated datasets were analyzed
separately because two different methods were used
within PartitionFinder based on dataset size (i.e., greedy
search for small datasets, 20% relaxed clustering for large
datasets). Datasets simulated with indel-Seq-Gen and
INDELible were also explored separately to determine
if inferred number of categories/partitions differed
when a gamma distribution of rate heterogeneity was
incorporated in data simulations.

Accuracy of phylogenetic inference with simulated
data was measured with normalized Robinson-Foulds
(RF) distances (Robinson and Foulds 1981; Kupczok
et al. 2010) and the branch-score distance metric
of Kuhner and Felsenstein (1994). Raw RF distances
between inferred trees and true trees were calculated
with the R package Phangorn (Schliep 2011) and
normalized by dividing raw RF distances by 2*(n—3)
where 7 is the number of taxa; only normalized RF
distances are reported. Branch-score distances were
directly calculated with Phangorn. An RF distance
of zero indicates that the inferred tree matches
the branching order of the known tree, whereas a
branch-score distance of zero would indicate that the
inferred tree had identical branch lengths and branching
order as the known tree. Larger distances of each metric
indicate less accurate trees. Branch-score distance was
not calculated for MP trees because the branch length
scale was not in substitutions per site as with other
trees.

Computational time for each model-based
phylogenetic analysis was tracked to quantify differences
in computational demand. CPU time for Bayesian chains
stuck in local optima was not recorded in an effort to
limit bias in reported CPU time resulting from stochastic
issues. Bayesian analyses were run on either the Dense
Memory Cluster of the Alabama Super Computer
(ASC) or on the CASIC High Performance Cluster at
Auburn University. Individual Bayesian analyses were
run with openMPI on either Intel Xeon E5-2660 2.20
GHz cores (CASIC), Intel Nehalem 2.26 GHz cores
(ASC), or 2.30 GHz AMD Opteron Magny-Cours cores
(ASC). PartitionFinder was run on the SkyNet cluster
at Auburn University with Intel Xeon E7-4800 2.4GHz
cores, and RAxML analyses were run on ASC with

Xeon E5-4640 2.40 GHz cores. We note that required
computational time using different processors is not
exactly equivalent. However, we were most interested
in comparing required computational time for analyses
with CAT models in PhyloBayes versus partitioning with
PartitionFinder and RAXxML analyses. The observed
differences in computational time were so great between
methods that differences in processor performance are
effectively negligible.

RESULTS

Model Performance on Small DataSets

Maximum parsimony analyses of 10- and 50-taxon
small datasets resulted in trees with correct and incorrect
branching patterns according to RF distances (Table 3).
At least some incorrect relationships inferred with MP
appeared similar to what would be expected from LBA
(Supplementary Figs. S1, S2A, S3A and Supplementary
Material available on Dryad). Maximum likelihood
phylogenetic inference with a single amino acid GTR
model of small datasets generated with indel-Seq-
Gen almost always performed worse than partitioning
and CAT-GTR in inferring the true tree based on RF
and branch-score distances (Table 3; Supplementary
Material available on Dryad). Results were less clear
when comparing tree inference accuracy with GTR
to partitioning and CAT-GTR on datasets simulated
with INDELible. A single GTR model never recovered
a tree with a lower RF distance than partitioning,
but GIR recovered a tree with a lower RF distance
than the tree recovered with CAT-GTR on dataset
S50.T1.2_1 (Table 3). When branching patterns were
identical among models for datasets simulated with
INDELible, GTR often, but not always, performed better
at inferring branch lengths than partitioning on datasets
with among-gene substitutional heterogeneity based on
branch-score distances (Table 3). Results with a single
GTR model suggest that simulated datasets possessed
at least some substitutional heterogeneity that was not
adequately accounted for when analyzed with a single
site-homogeneous substitution model.

PartitionFinder did not always recover the correct
number of partitions (i.e., five) or correct models for
small datasets, but it did generally perform better at
inferring the correct number of partitions and correct
models on datasets with more characters and taxa
(Supplementary Table S2 and Supplementary Material
available on Dryad). The number of partitions inferred
by PartitionFinder for small datasets was significantly
correlated with dataset size (indel-Seq-Gen: P =0.004;
INDELible: P=0.005), but linear regression fit was
poor (indel-Seq-Gen: R? = 0.371; INDELible: R? = 0.391;
Fig. 5A, C; Supplementary Table S3 available on
Dryad). Despite the correlation with increased dataset
size, PartitionFinder inferred the correct number of
substitutional categories for 28 of 40 small datasets
(Fig.5A, C; Supplementary Table S2 available on Dryad).
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TABLE3.  Metrics comparing inferred trees to true tree (RF; branch score)

CAT-GTR CAT-F81 Partitioning Partitioning, intra-gene GIR Parsimony F81
510.T1.1_iSG 0.000 ; 0.680 0.000 ; 0.497 0.000 ; 0.646 0.000 ; 0.807 0.000; 0.835 0.000; N/A -
510.T1.2_iSG 0.000 ; 0.847 0.000 ; 0.683 0.000;0.933 0.000;0.933 0.000; 0.918 0.000; N/A -
510.T1.3_iSG 0.000 ; 0.493 0.071;1.15 0.000; 0.292 0.000; 0.292 0.000 ; 0.632 0.000; N/A 0.000; 1.26
510.T1.4_iSG 0.000; 0.834 0.000; 1.51 0.000; 0.652 0.000; 0.953 0.000; 0.059 0.000;N/A -
510.T1.5_iSG 0.000; 0.884 0.000;2.34 0.000 ; 0.674 0.000; 0.873 0.000; 0.979 0.000; N/A -
510.T1.6_iSG 0.000; 0.833 0.000;2.30 0.000 ; 0.622 0.000; 0.918 0.000 ; 0.900 0.000; N/A -
510.T2.1_iSG 0.000; 0.164 0.000 ; 0.204 0.000; 0.179 0.000; 0.153 0.000; 0.190 0.000; N/A -
510.T2.2_iSG 0.000 ; 0.209 0.000; 0.363 0.000; 0.192 0.000; 0.206 0.000; 0.230 0.000; N/A -
510.T2.3_iSG 0.000 ; 0.230 0.000; 0.195 0.000; 0.218 0.000;0.270 0.000; 0.139 0.000; N/A -
510.T2.4_iSG 0.000; 0.204 0.071; 0.167 0.000; 0.174 0.000; 0.201 0.000 ; 0.224 0.000; N/A 0.000 ; 0.309
510.T2.5_iSG 0.000; 0.185 0.000; 1.95 0.000; 0.143 0.000; 0.185 0.000; 0.200 0.000; N/A -
510.T2.6_iSG 0.000 ; 0.190 0.000;2.010 0.000; 0.155 0.000; 0.181 0.000 ; 0.206 0.000; N/A -
550.T1.1_iSG 0.021 ;141 0.032;1.54 0.021; 1.08 0.021;1.25 0.021;1.45 0.032;N/A 0.042;213
550.T1.2_iSG 0.011 ; 1.26 0.000; 1.328 0.000;01.02 0.000; 1.17 0.021;1.31 0.021;N/A -
550.T1.3_iSG 0.053 ; 1.50 0.053 ; 1.57 0.042 ;1.36 0.042 ;1.36 0.064 ;1.53 0.085;N/A 0.042;2.20
550.T1.4_iSG 0.000;1.33 0.021;1.46 0.021 ; 1.02 0.000;1.23 0.021;1.95 0.021; N/A 0.021 ;2.07
550.T2.1_iSG 0.021;1.90 0.053;2.44 0.021;1.28 0.021;2.19 0.021;1.95 0.021;N/A 0.021; 3.07
550.T2.2_iSG 0.011;1.91 0.032;2.48 0.000; 1.27 0.021; 1.08 0.021;1.95 0.032;N/A 0.032;3.08
550.72.3_iSG 0.021; 1.99 0.021;2.33 0.021;1.43 0.021;1.91 0.021;2.04 0.042;N/A 0.000;3.17
550.T2.4_iSG 0.021;1.86 0.032; 2.67 0.021;1.26 0.021; 1.74 0.021;1.95 0.032;N/A 0.021;3.11
L13.TA.1_iSG 0.000 ; 0.260 0.000 ; 0.260 0.000;0.228 0.000; 0.254 0.000; 0.275 0.100; N/A -
L13.TA.2_iSG 0.000; 0.257 0.000;0.179 0.000; 0.217 0.000; 0.239 0.000; 0.272 0.100; N/A -
L13.TA.3_iSG 0.000; 0.265 0.000; 0.185 0.000; 0.214 0.000; 0.258 0.000; 0.275 0.100; N/A -
L13.TA4_iSG 0.000 ; 0.264 0.000; 0.182 0.000; 0.235 0.000;0.263 0.000; 0.280 0.100; N/A -
L19.TB.1_iSG 0.000;3.25 0.000;2.94 0.000;0.276 0.000 ; 3.01 0.000; 3.37 0.125;N/A -
L19.TB.2_iSG 0.000;3.17 0.063 ;2.41 0.000;2.73 0.000; 3.00 0.000; 3.37 0.125;N/A 0.000; 4.26
510.T1.1_I 0.000; 0.196 0.000; 1.01 0.000; 0.169 0.000; 0.063 0.000; 0.099 0.000; N/A -
510.T1.2_1 0.000; 0.211 0.000; 1.69 0.000;0.285 0.000; 0.264 0.000;0.285 0.000; N/A -
S10.T1.3_1 0.000; 0.317 0.143;1.88 0.000;0.321 0.143 ; 0.606 0.143 ; 0.634 0.000;N/A 0.000; 0.757
510.T1.4_1 0.000 ; 0.065 0.000; 1.69 0.000;0.116 0.000; 0.133 0.000 ; 0.057 0.000; N/A -
510.T1.5_1 0.000 ; 0.064 0.000; 2.01 0.000; 0.072 0.000; 0.133 0.000; 0.078 0.000; N/A -
510.T1.6_1 0.000 ; 0.054 0.000;2.26 0.000; 0.073 0.000; 0.177 0.000 ; 0.054 0.000; N/A -
510.T2.1_1 0.000 ; 0.084 0.000 ; 0.427 0.000 ; 0.100 0.000; 0.075 0.000; 0.080 0.000; N/A -
510.T2.2_1 0.143 ; 0.081 0.143; 0.274 0.143;0.091 0.143; 0.119 0.143 ; 0.086 0.143 ;N/A 0.143 ; 0.280
510.T2.3_1 0.000 ; 0.055 0.000 ; 0.245 0.000; 0.079 0.000 ; 0.061 0.000 ; 0.056 0.000; N/A -
510.T2.4_1 0.000;0.043 0.000; 0.683 0.000 ; 0.054 0.000; 0.040 0.000; 0.041 0.000; N/A -
510.T2.5_1 0.000 ; 0.045 0.071; 0.856 0.000 ; 0.041 0.000; 0.090 0.000 ; 0.050 0.143 ;N/A 0.143 ; 0.260
510.T2.6_1 0.000 ; 0.034 0.000; 1.05 0.000 ; 0.032 0.000; 0.317 0.000; 0.044 0.000; N/A -
S50.T1.1_1 0.021 ; 0.401 0.042;1.03 0.021; 0.288 0.021;0.373 0.021 ; 0.401 0.042;N/A 0.042;1.49
550.T1.2_I 0.032;0.235 0.021;0.738 0.000; 0.292 0.000 ; 0.614 0.021;0.234 0.021;N/A 0.064 ;1.38
S50.T1.3_I 0.021 ; 0.356 0.021; 0.697 0.021; 0.327 0.021;0.323 0.021;0.335 0.064; N/A 0.042 ; 1.50
550.T1.4_I 0.021; 0.151 0.021 ; 0.802 0.021 ; 0.142 0.021;0.248 0.021; 0.165 0.021;N/A 0.021; 1.47
550.T2.1_1 0.000 ; 0.655 0.000; 1.88 0.000 ; 0.547 0.000 ; 0.614 0.000; 0.628 0.021;N/A -
550.T2.2_1 0.000; 0.681 0.021 ; 1.82 0.000 ; 0.455 0.000 ; 0.481 0.000 ; 0.655 0.042;N/A 0.000; 2.47
550.T2.3_1 0.011 ; 0.644 0.021;1.23 0.021;0.535 0.000 ; 0.601 0.021;0.819 0.085;N/A 0.021;2.27
550.T2.4_1 0.000; 0.419 0.000; 1.46 0.000; 0.265 0.000 ; 0.465 0.000; 0.421 0.021;N/A -
L13.TA1_I 0.000;0.013 0.000; 0.324 0.000 ; 0.006 0.000 ; 0.007 0.000; 0.031 0.100; N/A -
L13.TA2_I 0.000 ; 0.030 0.000;0.288 0.000; 0.022 0.000; 0.013 0.000; 0.039 0.100; N/A -
L13.TA3_I 0.000 ; 0.030 0.000; 0.253 0.000 ; 0.022 0.000; 0.034 0.000; 0.034 0.100; N/A -
L13.TA4 I 0.000; 0.011 0.000 ; 0.360 0.000; 0.016 0.000; 0.025 0.000; 0.013 0.100; N/A -
L19.TB.1_I 0.000; 0.105 0.000 ; 0.744 0.000; 0.070 0.000 ; 0.062 0.000 ; 0.062 0.375;N/A -
L19.TB.2_1 0.000 ; 0.141 0.063;1.72 0.000 ; 0.097 0.000; 0.211 0.000; 0.272 0.375;N/A 0.000;2.17

Note: RF values of zero indicate identical topology to known tree, and lower branch-score values indicate more accurate trees.

In instances where combined genes were used as
starting blocks to simulate intra-gene heterogeneity,
PartitionFinder inferred two or three partitions for
all but six datasets (Supplementary Table S2 and
Supplementary Material available on Dryad); notably,
since the original five genes simulated with different
models were combined to form three genes (see section
“Methods”) the greatest number of partitions that could
be inferred by PartitionFinder was three. Various models
were inferred as best fit for each partition with datasets

possessing intra-gene heterogeneity, including the VT
model. We did not use the VT model to simulate
data, but it probably offers a reasonable fit for genes
that had components simulated under two different
models as seen in datasets with intra-gene heterogeneity.
Linear regression of the number of inferred partitions on
datasets with intra-gene heterogeneity was significantly
correlated to dataset size (indel-Seq-Gen: P=0.007;
INDELible: P=0.0008), but the relationship was
weak (indel-Seq-Gen: R? =0.344; INDELible: R?> =0.473;
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FIGURE5. Linear regression plots of total characters versus number of substitutional partitions inferred with PartitionFinder for small datasets
using the greedy search algorithm. Gray line represents correct number of substitutional partitions. A) Partitioning of genes without intra-gene
heterogeniety and simulated with indel-Seq-Gen. B) Partitioning of genes that were combined to create intra-gene heterogeneity and simulated
with indel-Seg-Gen. C) Partitioning of genes without intra-gene heterogeneity and simulated with INDELible. D) Partitioning of genes that were
combined to create inra-gene heterogeneity and simulated with INDELible.

Fig. 5B, D; Supplementary Table S3 available on Dryad).
Including data from large datasets (see below), the
number of categories assigned by CAT-F81 was always
much higher than the actual number of substitutional
categories/partitions (Supplementary Table 52 available
on Dryad), but it was only correlated with dataset
size on datasets simulated with INDELible éindel—Seq—
Gen: P=0.1436; INDELible: P=3.509 x107>; Fig. 6A,
C; Supplementary Table S3 available on Dryad). The
number of categories assigned by CAT-GTR was
significantly correlated with dataset size (indel-Seq-Gen:
P=3.357 x10~10; INDELible: P=3.34 x 10~8) and fit of
linear regression was good (indel-Seq-Gen: R? =0.8125;
INDELible: RZ=0.726; Fig. 6B, D; Supplementary
Table S3 available on Dryad).

All analyses of 10-taxon datasets generated with indel-
Seqg-Gen recovered the correct branching order, except
for CAT-F81 on datasets S10.T1.3_iSG and S10.T2.4_iSG
(Table 3; Fig. 7; Supplementary Material available

on Dryad). For analyses done on 10-taxon datasets
simulated with INDELible, all models recovered an
inaccurate branching pattern on dataset S10.T2.2_I
(RF = 0.143 for all models; Table 3). Partitioning on
datasets with intra-gene heterogeneity recovered an
inaccurate branching pattern on one additional 10-taxon,
INDELible dataset (S10.T1.3_I: RF = 0.143) and CAT-F81
recovered inaccurate branching patterns on two 10-taxon
INDELible datasets (S10.T1.3: RF = 0.143; 510.T2.5_I:
RF = 0.071), Furthermore, many correct relationships
inferred by CAT-F81 across all 10-Taxon datasets were
poorly supported (e.g., datasets S10.T1.3_iSG, S10.T1.1_I;
Supplementary Figs. 54 and S5 available on Dryad).
When a single F81 model was applied to 10-taxon
datasets generated with indel-Seq-Gen where CAT-
F81 failed to recover accurate branching patterns (i.e.,
S10.T1.3_iSG, S10.T2.4_iSG), F81 recovered the correct
branching pattern. When a single F81 model was applied
to 10-taxon datasets generated with INDELible, it
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Seq-Gen. C) CAT-F81 on genes simulated with INDELible. D) CAT-GTR on genes simulated with INDELible.

recovered a more accurate branching pattern than CAT-
F81 on dataset 510.T1.3_I, an identical branching pattern
on dataset S10.T2.2_I, and a less accurate branching
pattern on dataset 510.T2.5_I based on RF distances
(Table 3). For 10-taxon datasets that CAT-F81 failed
on, both partitioning and CAT-GTR recovered correct
relationships, except on dataset 510.T2.2_I where all
models recovered equally inaccurate branching patterns
(RF = 0.143).

Trees with correct branching patterns were much
less commonly inferred with 50-taxon datasets than
with 10-taxon datasets (Table 3), but incorrectly inferred
relationships had low support (Fig. 8; Supplementary
Figs. S2 and S6, Supplementary Material available on
Dryad). In some instances, CAT models would infer
a polytomy where partitioning inferred a poorly or
moderately supported node (e.g., datasets S50.T1.2_iSG,
S50.T1.2_1, Fig. 9). These differences were a result of
RAXML producing a bifurcating tree but BI majority
rule consensus trees allowing for polytomies if a node
was not recovered in at least 50% of the posterior
distribution. Nevertheless, similar overall patterns were

observed with 50-taxon datasets as with 10-taxon
datasets. For example, CAT-F81 produced trees with
worse RF and branch-score distances than partitioning
and CAT-GTR on seven of eight 50-taxon datasets
simulated with both indel-Seq-Gen and INDELible
(Table 3; Supplementary Material available on Dryad).
CAT-F81 inferred a more accurate branching pattern
than CAT-GTR once with data simulated with indel-
Seq-Gen (dataset S50.T1.2_iSG, CAT-F81: RF = 0.000,
CAT-GTR: RF = 0.011) and once with data simulated
withINDELible (dataset S50.T1.2_I, CAT-F81: RF =0.021,
CAT-GTR: RF = .0.032). These were the only instances
with simulated data where CAT-F81 outperformed CAT-
GTR at inferring accurate relationships.

Tree inference with PhyloBayes and CAT-F81 never
resulted in a more accurate branching pattern than
partitioning according to RF distances (Table 3).
Surprisingly, when a single F81 matrix was applied to
datasets where CAT-F81 recovered incorrect branching
patterns, F81 performed as well as or better than
CAT-F81 at inferring accurate branching patterns
on 16 out of 18 datasets (Table 3; Supplementary
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unless labeled. A) Single most parsimonious tree. B) ML with data partitioning. C) BI with CAT-E81. D) Bl with CAT-GTR. All models inferred

correct trees with well supported, correct relationships except CAT-F81.

Material available on Dryad). CAT-F81 on 50-taxon
datasets, particularly those generated with indel-
Seq-Gen, also often had poor support for correctly
inferred nodes, whereas other methods (i.e., CAT-
GIR, partitioning, single site-homogeneous models)
had strong support for the same, correctly inferred
nodes (e.g., dataset 550.2.3_iSG; Fig. 8; Supplementary
Figs. S2 and S6; Supplementary Material available on
Dryad). CAT-GTR and partitioning recovered identical
relationships with ten of the sixteen 50-taxon datasets
(Table 3; Supplementary Material available on Dryad).
Partitioning inferred more accurate branching patterns
than CAT-GTR for four of the six datasets where
they inferred different branching patterns based on RF
distances (i.e., S50.T1.2_iSG, S50.T1.3_iSG, S50.T2.2_iSG,
550.T1.2_I; Table 3; Supplementary Material available on
Dryad).

Analyses with CAT-GTR and CAT-F81 took
considerably more CPU hours to finish than
corresponding analyses with ML and partitioning
(Table 4). In the most extreme instance on small
datasets, CAT-GTR took over 9,558 CPU hours longer
than partitioning for dataset S50.T2.4_iSG. Every

Bl analysis converged, but for some datasets (e.g.,
§50.T1.4_iSG, S50.T2.3_iSG, S50.T2.4_iSG, S$10.2.3_1,
550.T1.4_I) at least one CAT-GTR chain appeared to be
stuck in a local maximum, which required additional
chains being run.

Model Performance on Large DataSets

All MP analyses of the simulated, large datasets
resulted in incorrect branching patterns consistent with
LBA (Figs. 10A, 11A; Supplementary Figs. S7-512;
Supplementary Material available on Dryad). Analyses
with a single GTR model applied to entire datasets
resulted in accurate branching patterns, but comparably
poor branch lengths for most datasets based on
branch-score distances (Table 3; Supplementary Material
available on Dryad). Partitioning and CAT-GTR always
recovered branching patterns identical to the known
tree according to RF distances (Table 3; Figs. 10, 11;
Supplementary Figs. S7-512 available on Dryad). In
contrast, CAT-F81 recovered a well-supported, incorrect
placement of long-branched taxon “m” when used on
dataset L19.TB.2_iSG and L19.TB.2_I (Table 3, Fig. 11C;
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Supplementary Fig. S8 available on Dryad). Instead
of this branch being pulled toward the long-branched
outgroup, as seen with MP, it was pulled to a more
derived position inside a three-taxon clade (Fig. 11C;
Supplementary Fig. S8C available on Dryad). For all
other model-based analyses, there were only small
differences in branch lengths, but not branching pattern,
between the known tree and inferred tree (Table 3;
Figs. 10, 11; Supplementary Figs.S7-512; Supplementary
Material available on Dryad). This includes when a
single F81 model was applied to dataset L19.TB.2_iSG
and L19.TB.2_I (Table 3; Supplementary Figs. S13 and
S14 available on Dryad).

As mentioned above, there was no correlation between
dataset size and the number of categories inferred by
CAT-F81 for datasets inferred with indel-Seq-Gen, but
the number of categories was always much higher
than the real number of substitutional categories (i.e.,
five) both for datasets simulated with indel-Seq-Gen
and INDELible (Fig. 6A, C, Supplementary Table S2
available on Dryad). The number of substitutional

categories inferred by CAT-GTR was also significantly
and strongly correlated with the number of characters
in a dataset (Fig. 6B Supplementary Table S2 available
on Dryad). PartitionFinder with non-combined gene
blocks and 20% relaxed clustering also inferred a
greater number of substitutional categories than
what was present (Supplementary Table S2 available
on Dryad), but it was not correlated with dataset
size (indel-Seq-Gen: P= 0.4671; INDELible: P=
0.697; Supplementary Table S3 available on Dryad;
Fig. 12A). PartitionFinder with combined genes
(i.e., analyses with intra-gene heterogeneity) and
20% relaxed clustering had a significant positive
relationship with dataset size and inferred substitutional
categories (indel-Seq-Gen: P=0.0371, RZ=0.7028;
INDELible: P=0.005, R?=0.892; Supplementary
Table S3 available on Dryad; Fig. 12B). As with small
datasets, all BI analyses of large datasets converged, but
CAT-F81 and CAT-GTR took over 418,000 more CPU
hours to finish than partitioning on large datasets
(Table 4).
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FIGURE 9.

Trees inferred with dataset 550.1.2_iSG. Nodes are supported with 100% BS or PP unless otherwise noted. Gray ovals indicates

incorrectly inferred polytomy (see Fig. 3). A) BI with CAT-GTR. B) ML with partitioning and RAXML. Both trees are similar except for an

incorrectly inferred polytomy with CAT-GTR.

Empirical Data Analyses

When we reanalyzed the Philippe et al. (2009) dataset
with MP, partitioning, CAT-F81, and CAT-GTR we
recovered ctenophores as the sister group to all other
animals (Supplementary Fig. S15 available on Dryad),
conflicting with the reported CAT-F81 tree in Philippe
et al. (2009); CAT-GTR was not used in original study.
Nodal support for ctenophores as the sister group to
other animals on trees inferred here with CAT-F81
and the Philippe et al. (2009) dataset was 0.93 PP.
We recovered 99% BS support with partitioning and
0.97 PP with CAT-GTR for ctenophores as the sister
group to all other animals. Our analyses of the Nosenko
et al. (2013) dataset also conflicted with the original
study as ctenophores were recovered as the sister group
to all other extant metazoans with partitioning and
CAT-GTR (Supplementary Fig. S16 available on Dryad;
partitioning BS = 99, CAT-GTR PP = 0.98). In contrast,
our CAT-F81 analysis of Nosenko et al. (2013) recovered a
paraphyletic Porifera as sister groups to all other animals
and ctenophores as the sister group to cnidarians

(Supplementary Fig. S16 available on Dryad). CAT-
F81 inferred 621.7 and 477.6 substitutional categories
and CAT-GTR inferred 1049.99 and 760.76 substitutional
categories for the Philippe et al. (2009) and Nosenko et al.
(2013) datasets, respectively (Supplementary Table S2
available on Dryad). We assume differences between
trees in the original publications and those inferred here
with the same models are a result of algorithmic and/or
programming improvements in more recent versions of
PhyloBayes considering that Philippe et al. (2009) and
Nosenko etal. (2013) used an older version of PhyloBayes
(PhyloBayes 2.3 and 3.2e, respectively) than the one used
here (PhyloBayes MPI 1.5a).

DiscussioN

Our results show that CAT-F81 is less accurate in
inferring correct trees than CAT-GTR and partitioning
with site-homogeneous models (Table 3). CAT-F81
has occasionally been used instead of CAT-GIR
when analyses with CAT-GTR were deemed too
computationally demanding, even when CAT-GTR was
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TaBLE4. Computational time used for each analysis
Partitioning Partitioning with
including intra-gene heterogeneity ML with single
CAT-F81 CAT-GTR PartitionFinder including PartitionFinder GTR matrix
Dataset (CPU hours) (CPU hours) (CPU hours) (CPU hours) (CPU hours)
S10.T11_I 165.24 975.38 1.39 1.48 2.27
510.T1.2_1 281.64 992.59 1.56 1.22 2.08
510.T1.3_1 215.18 300.26 2.15 2.06 2.90
S10.T1.4_1 590.93 1,821.89 3.72 3.29 5.43
S10.T1.5_1 546.34 3,133.15 5.63 5.50 8.66
510.T1.6_1 1,388.38 2,061.91 7.72 7.34 12.34
510.T2.1_1 222.44 1,048.40 1.18 1.36 2.27
510.T2.2_1 607.65 530.54 1.55 1.37 2.37
510.T2.3_1 103.63 974.01 1.50 1.52 2.51
510.T2.4_1 539.15 2,779.79 3.50 3.62 5.87
510.T2.5_1 609.34 3,810.08 6.70 5.86 10.95
510.T2.6_1 1,538.88 3,116.28 7.16 6.88 13.22
S50.T1.1_1 803.10 3,132.52 20.88 17.59 22.32
550.T1.2_1 805.32 3,177.38 22.58 21.39 26.39
550.T1.3_1 3,824.19 12,880.30 33.98 32.55 4211
550.T1.4_1 1,413.01 5,193.53 49.72 52.22 69.94
S50.T2.1_1 1,601.42 1,494.17 19.05 17.87 24.02
550.T2.2_1 1,455.57 2,172.33 21.11 22.13 29.43
550.T2.3_1 7,511.40 13,874.00 46.08 40.15 55.32
550.T2.4_1 2,611.23 17,662.00 47.14 42.55 65.98
L13.TA1_I 19,303.03 10,433.19 162.86 61.81 62.38
L13.TA2 I 9,642.86 18,087.57 59.86 43.32 32.59
L13.TA.3_1 17,824.85 24,925.02 19.34 13.03 17.48
L13.TA4_1 11,003.42 18,020.56 174.78 57.58 60.34
L19.TB.1_I 9,915.97 23,632.76 204.81 187.01 252.00
L19.TB.2_I 18,076.70 14,744.94 330.33 232.53 287.36
510.T1.1_iSG 384.81 163.75 6.01 1.57 3.43
510.T1.2_iSG 607.42 584.89 5.69 1.51 3.04
510.T1.3_iSG 496.13 530.24 6.98 1.84 9.74
510.T1.4_iSG 61.89 363.67 6.59 4.66 9.99
510.T1.5_iSG 408.99 967.43 8.65 7.19 21.48
510.T1.6_iSG 729.60 3,801.69 35.73 10.01 18.98
510.T2.1_iSG 842.13 930.22 1.95 1.42 2.95
510.T2.2_iSG 487.82 627.62 2.10 1.64 7.99
510.T2.3_iSG 540.16 695.05 1.95 1.57 1.31
510.T2.4_iSG 878.70 933.00 491 4.81 10.77
510.T2.5_iSG 384.23 1,414.17 7.80 7.15 15.09
510.1T2.6_iSG 829.55 3,272.34 10.64 10.29 29.65
550.T1.1_iSG 959.71 995.44 21.82 20.19 29.95
550.T1.2_iSG 1,313.43 1,458.69 22.92 21.85 30.87
550.T1.3_iSG 2,538.68 7,014.88 36.93 33.49 45.90
550.T1.4_iSG 916.75 6,441.94 63.69 49.98 56.08
550.T2.1_iSG 1,677.56 7,589.39 23.88 23.05 29.71
550.T2.2_iSG 1,027.90 1,648.33 29.53 26.36 34.89
550.72.3_iSG 1,068.38 6,770.47 50.82 43.16 65.09
550.T2.4_iSG 1,437.61 9,611.40 54.57 52.96 56.85
L13.TA1_iSG 13,000.94 18,283.30 1,277.70 269.45 94.75
L13.TA.2_iSG 4,620.36 13,480.51 286.25 62.13 53.26
L13.TA.3_iSG 3,967.73 4,6066.39 72.00 24.53 26.63
L13.TA.4_iSG 2,823.51 22,539.99 1,146.27 245.67 88.52
L19.TB.1_iSG 49,140.75 37,150.44 1,408.67 393.54 267.30
L19.TB.2_iSG 17,250.33 56,176.79 1,945.49 749.34 343.65
Nosenko et al. 1,006.13 23,198.15 333.07 - -
Philippe et al. 8,895.73 14,622.54 330.36 -
Total 219,894.38 436,907.26 8,459.26 2,952.57 2,476.38

acknowledged to be a better-fitting model than CAT-
F81 (e.g., Nosenko et al. 2013; Pisani et al. 2015). We
argue that CAT-F81 should not be used in future
studies, due to concerns about inaccurate inference. In
contrast, both CAT-GTR and partitioning performed
similarly in inferring correct branching patterns based

on RF distances (Table 3). A single protein GTR model
performed rather well in inferring accurate branching
patterns, but when all simulated datasets analyzed
here are considered in aggregate, GIR inferred slightly
less accurate trees than CAT-GTR and partitioning.
Broadly, we found that partitioning performed as well
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Trees inferred with dataset L13.TA.1_I. Gray arrows indicate where branches should be based on the known tree (see Fig. 4). All

nodes have 100% BS or PP. A) Single most parsimonious tree. B) ML with data partitioning. C) BI with CAT-F81. D) BI with CAT-GTR.

as, or slightly better than, PhyloBayes and CAT-GTR at
inferring accurate relationships, including with datasets
that were susceptible to LBA.

Topological Accuracy

In instances when CAT-F81 recovered inaccurate
branching orders with small datasets, the recovered
pattern was often similar to errors recovered with MP
and indicative of LBA, but incorrect branching patterns
were poorly supported (Figs. 7 and 8; Supplementary
Figs. 52 and S3; Supplementary Tree Files available
on Dryad). In contrast, when applied to large
dataset LB.TB.2_iSG and LB.TB.2_I, CAT-F81 recovered
strong support for an incorrect relationship (Fig. 11C;
Supplementary Fig. 513C available on Dryad). However,
this relationship was not the same as the incorrect
relationships inferred by MP on datasets LB.TB.2_iSG
and LB.TB.2_I, and it may not be a LBA artifact (Fig. 11C;
Supplementary Fig. S13C available on Dryad). Errors
observed with CAT-F81 conflict with past claims that
this model performs well on datasets susceptible to
LBA (Brinkmann and Philippe 2008; Philippe et al.
2009, 2011b; Nosenko et al. 2013). Even more troubling

is the observation that CAT-F81 sometimes performed
worse at inferring correct branching patterns than
MP and a single F81 model applied to an entire
dataset (e.g., 510.T2.4_iSG, S50.T2.1_iSG, LB.TB.2_iSG,
510.T1.3_I, LB.TB.2_I; Table 3). Some problems observed
with CAT-F81 may stem from applying a model that
assumes equal substitution frequencies among all amino
acids (i.e., F81). However, when we applied a single F81
model across the entirety of datasets CAT-F81 failed
on, a more accurate branching order was recovered
with 10 out of 20 datasets according to RF distances
(Table 3), suggesting problems with the CAT component
of CAT-F81.

Our analyses with CAT-GTR and partitioning
recovered similar, or identical, branching patterns even
on simulated datasets with intra-gene heterogeneity and
empirical datasets (Table 3; Supplementary Material
available on Dryad), but CAT-GTR recovered less
accurate branching patterns than partitioning on
datasets that lacked intra-gene heterogeneity more times
(i.e., four) than CAT-GTR did better than partitioning
(i.e., twice; Table 3). As a site-heterogeneous model,
CAT-GTR should have been able to model intra-gene
heterogeneity that partitioning was blind to. Yet, CAT-
GTR recovered a less accurate branching pattern than
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FIGURE 11.
labeled, nodes have 100% BS or PP. A) Single most-parsimonious tree. B) ML with data partitioning. C) BI with CAT-F81. D) BI with CAT-GTR.

partitioning on datasets with intra-gene heterogeneity
on four datasets (i.e., S50.T1.2_iSG, S50.T1.3_iSG,
S50.T1.2_1, S50.T2.3_I; Table 3), and CAT-GIR only
recovered a more accurate topology than partitioning
with intra-gene heterogeneity twice (S50.T2.2_iSG,
510.T1.3_I; Table 3). Notably, partitioning appears robust
to at least some intra-gene substitutional heterogeneity.

Accuracy of Branch Length Inference

Even though many biologists are likely more
interested in branching pattern than branch lengths,
accurate branch lengths are needed for many analyses
such as inferences about phenotypic evolution or timing
of cladogenesis. Both CAT models implemented in
PhyloBayes and partitioning in RAXML report branch
lengths in substitutions per site so, we consider the
general tendency of CAT models to perform worse than
partitioning in terms of branch lengths, according to
branch-score distances (Table 3), to be notable. We were
especially surprised that partitioning in RAXML inferred
more accurate branch lengths, based on branch-score
distances (Table 3), than CAT-GTR in PhyloBayes on
some datasets when genes were combined to create
intra-gene heterogeneity. Notably, potential problems
with completely ignoring substitutional heterogeneity
in datasets can be seen when comparing methods that
account for substitutional heterogeneity in some fashion
(i.e., CAT models and partitioning) and those that do
not (i.e., a single GTR or F81 model). For instance,
even though F81 performed better than CAT-F81 on
dataset L19.TB.2_I in inferring correct relationships

Trees inferred with dataset L19.TB.2_I. Gray arrows indicate where branches should be based on the known tree. Unless otherwise

(F81: RF = 0.000; CAT-F81: RF = 0.021), branch lengths
of the F81 tree were considerably worse than those
inferred with CAT-GTR and partitioning based on
branch-score distance (F81: branch-score = 2.17; CAT-
GTR: branch-score = 0.141; partitioning: branch-score =
0.097). However, on datasets simulated with INDELible,
a single protein GTR model surprisingly recovered trees
with more accurate branch lengths than partitioning and
CAT-GTR in some instances (Table 3). Nevertheless, we
do not advocate for the use of a single protein GTR
model on large datasets, because it did recover less
accurate relationships than partitioning and CAT-GTR
in two instances, whereas partitioning always recovered
as accurate or more accurate branching patterns than a
single protein GTR model.

Computational Time and Estimation of Substitutional
Heterogeneity

One possible reason CAT models were often less
accurate than partitioning in inferring branch lengths
according to branch-score distances is their tendency
to overestimate the true number of substitutional
categories, particularly for larger datasets. We were
surprised that the number of categories inferred by
the two different CAT models often differed, as
substitutional heterogeneity was the same regardless of
the CAT model used. Of concern, as more sequence data
was present, CAT-GTR performed worse in estimating
substitutional heterogeneity on our simulated datasets.
CAT-F81 also overestimated the number of substitutional
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FIGURE 12.  Linear regression plots of total characters versus number of substitutional partitions inferred with PartitionFinder for small

datasets using the 20% relaxed clustering algorithm. Gray line represents correct number of substitutional partitions. A) Partitioning of genes
without intra-gene heterogeniety simulated with indel-Seq-Gen, B) Partitioning of genes that were combined to create intra-gene heterogeneity
simulated with indel-Seq-Gen. C) Partitioning of genes without intra-gene heterogeneity simulated with INDELible. D) Partitioning of genes
that were combined to create intra-gene heterogeneity simulated with INDELible.

categories in our simulated datasets, but this was
only correlated with dataset size when analyzing
datasets simulated with INDELible. Such behavior
of CAT models may have more to do with their
implementation in PhyloBayes MPI than CAT models per
se. For instance, because CAT models are implemented
in a Bayesian framework, prior choice likely affects
how sites are assigned to categories, but priors
cannot be modified with PhyloBayes MPIL. Thus, how
different priors may affect CAT model performance
in inferring substitutional heterogeneity and accurate
trees is unclear. PartitionFinder was also not perfect
in determining the number of substitutional categories,
particularly on larger datasets when relaxed clustering
was used and when PartitionFinder was blind to
intra-gene heterogeneity. Supposed advantages of CAT
models hinge on their ability to accurately estimate
substitutional heterogeneity. However, we present
strong evidence that how many categories are inferred
in any given analysis by current implementation of CAT
models, particularly CAT-GTR, has more to do with

dataset size than actual substitutional heterogeneity
(Fig. 6; Supplementary Tables S2 and S3 available on
Dryad).

Knowing the true extent of substitutional
heterogeneity in empirical datasets is impossible,
but given simulation results we suspect substitutional
heterogeneity in empirical datasets is overestimated by
CAT models. For instance, CAT-GTR inferred an average
of 760.76 substitutional categories for the Nosenko et al.
(2013) dataset for only 20,242 amino acid positions, and
a similar pattern was seen with Philippe et al. (2009; i.e.,
1049.99 categories for 30,257 amino acid positions). Even
if CAT-GTR inferred the true amount of substitutional
heterogeneity present in the Nosenko et al. (2013)
dataset, it means that, on average, each category will
possess only 26.6 amino acids. When, or if, so few amino
acids applied to each category will result in incorrect
branching patterns is unclear with our data, but it may
be the reason why CAT-GTR analyses sometimes infer
odd relationships that are not recreated in other studies
[e.g., sponges and ctenophores as sister groups to each
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other (Ryan et al. 2013), acoels + Xenoturbella as the
sister group to protostomes (Rouse et al. 2016)].

In total, our simulation analyses required over 670,414
CPU hours (Table 4). Over 97% of this time was spent
running analyses with CAT models, and our calculations
do not include CPU hours required for restarting chains
stuck in local optima. Computational demands and
convergence issues associated with our relatively simple
datasets support anecdotal statements that BI with
CAT models is not computationally feasible for studies
analyzing numerous, large, empirical datasets (Nosenko
et al. 2013; Ryan et al. 2013; Struck et al. 2014; Borowiec
et al. 2015; Pisani et al. 2015; Whelan et al. 2015b). Most
importantly, accurate trees can be more rapidly obtained
with partitioning than with CAT models.

Relevance to Empirical Studies

The most dramatic differences that have been
documented between trees inferred with CAT models
versus other models are arguably from studies exploring
nonbilaterian animal relationships (Philippe et al. 2009,
2011b; Pick et al. 2010; Nosenko et al. 2013; Pisani et al.
2015), but our results conflict with a conclusion of
these studies that only CAT models should be used for
phylogenomic analyses. In particular, simulation results
indicate that trees inferred with CAT-F81 from past
studies that recovered sponges as the sister group to all
other animals (i.e, Philippe et al. 2009, 2011b; Pick et al.
2010; Nosenko et al. 2013; Pisani et al. 2015) are inaccurate.
More broadly, our simulation results suggest that rather
than suppressing LBA, CAT models, particularly CAT-
F81, can cause systematic error in empirical studies.
For instance, ctenophores tend to be pulled away from
non-metazoans and toward cnidarians and bilaterians
on some trees inferred with large datasets and CAT-
F81 (Fig. S16; Philippe et al. 2009, 2011b; Nosenko et al.
2013); this pattern is similar to how taxon “m” was
repelled from the outgroup with CAT-F81 on datasets
L19.TB.2_iSG and L19.TB.2_I (Fig. 11C; Supplementary
Fig. 513 available on Dryad). Surprisingly, CAT-GTR and
partitioning with the Nosenko et al. (2013) dataset and
partitioning, CAT-F81, and CAT-GTR with the Philippe
et al. (2009) dataset—two studies that advocate for
the use of CAT models and concluded that sponges
are the sister group to all other animals—recovered
ctenophores as the sister group to all animals. We
view this as supporting simulation results indicating
that CAT-GTR and partitioning will usually perform
similarly in inferring relationships. We also view the
result from CAT-F81 with the Nosenko et al. (2013)
datasets of ctenophores as the sister group to cnidarians,
a hypothesis that has been rejected by many studies
(Dunn et al. 2008; Hejnol et al. 2009; Pick et al. 2010;
Nesnidal et al. 2013; Moroz et al. 2014; Borowiec et al.
2015; Chang et al. 2015; Pisani et al. 2015; Whelan
et al. 2015b) to support our conclusion that CAT-
F81 can be critically inaccurate. Overall, our empirical
analyses, in the context of our simulation results, support

three conclusions: 1) as indicated in simulation, CAT-
GIR and partitioning will generally result in similar
branching patterns and when they disagree nodal
support is often low; 2) trees inferred with CAT-F81 will
sometimes disagree with trees inferred with CAT-GTR
and partitioning, and such CAT-F81 trees are likely less
accurate; 3) available data suggest that ctenophores are
the sister group to all other animals (see Supplementary
Material available on Dryad, for additional discussion).

We have focused on past studies about non-bilaterian
relationships because they have often been used to
postulate about CAT model accuracy. Reanalyzing every
study that produced different trees with CAT models
and a single site-homogenous model or partitioning was
outside the scope of this study. However, conclusions
that trees not inferred with CAT models must be
inaccurate (Philippe et al. 2009, 2011b; Nosenko et al.
2013; Pisani et al. 2015) should be revisited. Many
studies (Delsuc et al. 2008; Liu et al. 2009; Philippe
et al. 2011a; Nesnidal et al. 2013; O'Hara et al. 2014;
Siu-Ting et al. 2014; Struck et al. 2014; Borowiec et al.
2015; Chang et al. 2015; Feuda and Smith 2015; Luo
2015; Whelan et al. 2015b) have shown that tree
inference using site-homogeneous models, with or
without data partitioning, and CAT models generally
recover similar trees across a variety of taxa. When
trees differ, conflicting nodes are often poorly supported
or have variable support depending on gene choice
(Brinkmann and Philippe 2008; Philippe et al. 2009,
2011b; Egger et al. 2015; Kenny et al. 2015). Nevertheless,
results from analyses using CAT models are often
emphasized (Brinkmann and Philippe 2008; Philippe
etal. 2009, 2011b), and in some cases, trees from Bayesian
analyses that showed no evidence of convergence
have been highlighted (Egger et al. 2015; Pisani et al.
2015). Given our simulation results, preference toward
relationships inferred with CAT models is not supported
by available evidence. This underscores problems with
using empirical data, absent of any simulation studies,
to postulate about the performance of any model or
method. We also find no evidence to support claims that
CAT models are “realistic” or that they comprehensively
mitigate systematic error.

CONCLUSIONS AND FUTURE DIRECTIONS

Resolving many problematic nodes on the tree of
life appears within reach, and our results suggest
that despite substitutional heterogeneity being present
in data, accounting for it in a coarse manner with
partitioning results in reasonably accurate trees. Even
if CAT-GTR, by itself, describes empirical substitution
processes well, using current implementations of the
model donotappear to result in more accurately inferred
branching patterns than partitioning. These findings
are corroborated by a recent study that suggested
partitioning results in relatively accurate trees (Darriba
and Posada 2015), and another paper suggesting
problems with CAT-GTR in inferring accurate branching
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patterns when missing data is high in a small number
of taxa (Li et al. forthcoming). Thus, we argue that
spending computational resources on analyses with
CAT-GTR is unnecessary for accurate phylogenetic
inference. Additionally, practices such as removing
constant characters from analyses, or worse, parsimony
uninformative characters that are informative in ML
and BI, when using CAT-GTR (as in Tarver et al. 2016)
cannot be justified as likelihood calculations are effected.
Moreover, the practice of reporting unconverged CAT-
GIR analyses (as in Egger et al. 2015 and Pisani
et al. 2015) is not only statistically invalid (Gelman
and Rubin 1992; Huelsenbeck et al. 2002), but it can
no longer be rationalized under assumptions of model
performance. Finally, studies that emphasized trees
inferred with CAT-F81 should be reassessed, given the
inaccuracies associated with CAT-F81 that were revealed
in simulation.

We do not wish to imply that complex, or
computationally demanding, substitution models are
inherently problematic. We also are not advocating
against Bayesian phylogenetics or site-heterogeneous
models as a whole. However, complexity should
not be confused with accuracy or realism, and any
new substitution model and/or programs designed
to use such models in phylogenetic inference should
be thoroughly tested before wide-ranging conclusions
about evolution are made. Developing a method for
quantifying substitutional heterogeneity that does not
merely scale with dataset size will likely help improve
both site-heterogeneous models and partitioning.
Furthermore, base compositional homogeneity and
similar substitution processes among lineages are
both assumptions of the models explore here, but
these assumptions may be more problematic than
currently appreciated (Jayaswal et al. 2014; Kocot et al.
forthcoming). Computationally tractable models that
do not make such assumptions, in addition to better
implementations of site-heterogeneous models, may
enhance future studies at deep and shallow scales.
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