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Abstract

Finite population non-cooperative games with linear-quadratic utilities, where each player de-
cides how much action she exerts, can be interpreted as a network game with local payo¤ com-
plementarities, together with a globally uniform payo¤ substitutability component and an own-
concavity e¤ect. For these games, the Nash equilibrium action of each player is proportional to her
Bonacich centrality in the network of local complementarities, thus establishing a bridge with the
sociology literature on social networks. We then analyze a policy that consists of targeting the key
player, that is, the player who, once removed, leads to the optimal change in aggregate activity. We
provide a geometric characterization of the key player identi…ed with an inter-centrality measure,
which takes into account both a player’s centrality and her contribution to the centrality of the
others.

Keywords: Social networks, peer e¤ects, centrality measures, policies.
JEL Classi…cation: A14, C72, L14.

¤We are grateful to the editor, Andrew Postlewaite, and three anonymous referees for very helpful comments
and suggestions. We also thank Phillip Bonacich, Antonio Cabrales, Alessandra Casella, Joan de Martí, Steve
Durlauf, Sanjeev Goyal, Matt Jackson, Jordi Massó, Karl Schlag, Joel Sobel, Giancarlo Spagnolo, Sergio Vicente
and, especially, Rachel Kranton for their interesting comments. Financial support from the Fundación Ramón Areces,
the Spanish Ministry of Education through grant BEC2002-02130, and the Barcelona Economics Program CREA
is gratefully acknowledged by Coralio Ballester and Antoni Calvó-Armengol. Yves Zenou thanks the Marianne and
Marcus Wallenberg Foundation for …nancial support.

yUniversitat Autònoma de Barcelona. Email: ballester@idea.uab.es
zCorresponding author: ICREA, Universitat Autònoma de Barcelona and CEPR. Address of correspondence:

Department of Economics and Economic History, UAB, Edi…ci B, 08193 Bellaterra (Barcelona), Spain. Email:
antoni.calvo@uab.es. http://selene.uab.es/acalvo

xIUI, GAINS (Université du Maine) and CEPR. Email: yvesz@iui.se

1



1 Introduction

The dependence of individual outcomes on group behavior is often referred to as peer e¤ects in the
literature.1 In standard peer e¤ects models, this dependence is homogeneous across members, and
corresponds to an average group in‡uence. Technically, the marginal utility to one person of under-
taking an action is a function of the average amount of the action taken by her peers. Generative
models of peer e¤ects, though, suggest that this intragroup externality is, in fact, heterogeneous
across group members,2 and varies across individuals with their level of group exposure.

In this paper, we allow for a general pattern of bilateral in‡uences, and analyze the resulting
dependence of individual outcome on group behavior.

More precisely, consider a …nite population of players with linear-quadratic interdependent
utility functions. Take the matrix of cross derivatives in these players’ utilities. Our …rst task
is to decompose additively this matrix of cross e¤ects into an idiosyncratic component, a global
interaction component, and a local interaction network. The idiosyncratic e¤ect re‡ects (part of)
the concavity of the payo¤ function in own e¤orts. The global interaction e¤ect is uniform across all
players, and re‡ects a strategic substitutability in e¤orts across all pairs of players. Finally, the local
interaction component re‡ects a (relative) strategic complementarity in e¤orts that varies across
pairs of players. The population wide pattern of these local complementarities is well-captured by
a network. This description allows for a clear view of global and local externalities and their sign
for a given general pattern of interdependencies.

Based on this reformulation, the paper provides three main results. First, we relate individual
equilibrium outcomes to the players’ positions in the network of local interactions. Second, we show
that the aggregate equilibrium outcome increases with the density and size of the local interactions
network. Finally, we characterize an optimal network disruption policy that exploits the geometric
intricacies of this network structure.

In network games, the payo¤ interdependence is, at least in part, rooted in the network structure
of players’ links.3 In these games, equilibrium strategies, that subsume the payo¤ interdependence
in a consistent manner, should naturally re‡ect the players’ network embeddedness. When the
relative magnitude of global and local externalities for our decomposition of cross e¤ects scale ade-
quately, our network game has a unique and interior Nash equilibrium, proportional to the Bonacich
network centrality. This measure has been proposed for nearly two decades ago in sociology by
Bonacich (1987), and counts the number of all paths4 emanating from a given node, weighted by
a decay factor that decreases with the length of these paths.5 This is intuitively related to the

1Durlauf (2004) o¤ers an exhaustive survey of the theoretical and empirical literature on peer e¤ects.
2For instance, when job information ‡ows through friendship links, employment outcomes vary across otherwise

identical agents with their location in the network of such links (Calvó-Armengol and Jackson, 2004).
3See, in particular, the recent literature survey by Jackson (2004).
4Not just shortest paths.
5 It was originally interpreted as an index of in‡uence or power of the actors of a social network. Katz (1953) is a
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equilibrium behavior, as the paths capture all possible feedbacks. In our case, the decay factor
depends on how others’ actions enter into own action’s payo¤.

The sociology literature on social networks is well-established and extremely active (see, in
particular, Wasserman and Faust, 1994). One of the focus of this literature is, precisely, to propose
di¤erent measures of network centralities and to assert the descriptive and/or prescriptive suitability
of each of these measures to di¤erent situations.6 This paper provides a behavioral foundation to
the Bonacich’s index, thus singling it out from the vast catalogue of network measures.

The relationship between equilibrium strategic behavior and network topology given by the
Bonacich index allows for a general comparative statics exercise. We show that a denser and larger
network of local interactions increases the aggregate equilibrium outcome. This is simply because
the aggregate number of network paths increase with the number of available connections.

When the Nash-Bonacich linkage holds, the variance of equilibrium actions re‡ects the variance
of network centralities. In this case, a planner may want to remove a few suitably selected targets
from the local interactions network so as to alter the whole distribution of outcomes. To characterize
the network optimal targets, we propose a new measure of network centrality, the inter-centrality
measure, that does not exist in the social network literature. Players with the highest inter-
centrality are the key players whose removal results in the maximal decrease in overall activity.

Contrary to the Bonacich centrality index, this new centrality measure does not derive from
strategic (individual) considerations, but from the planner’s optimality (collective) concerns. Bonacich
centrality fails to internalize all the network payo¤ externalities agents exert on each other, while
the inter-centrality measure internalizes them all. Indeed, removing a player from a network has
two e¤ects. First, less players contribute to the aggregate activity level (direct e¤ect), and second,
the network topology is modi…ed, the remaining players thus adopting di¤erent actions (indirect
e¤ect). As such, the inter-centrality measure accounts not only for individual Bonacich centralities
but also for cross-contributions across them. In particular, the key player is not necessarily the
player with the highest equilibrium outcome.

Section 2 presents the model. Sections 3 contains the equilibrium analysis, and Section 4 the
network-based policy. Section 5 contains a number of applications, including crime networks, R&D
collaboration links in oligopoly markets, and conformist behavior. Section 6 discusses a number of
extensions.

seminal reference.
6See Borgatti (2003) for a discussion on the lack of a systematic criterium to pick up the “right” network centrality

measure for each particular situation.
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2 The model

2.1 The game

Each player i = 1; :::; n selects an e¤ort xi ¸ 0, and gets a payo¤ ui(x1; :::; xn). We focus on bilinear
payo¤ functions of the form:

ui(x1; :::; xn) = ®ixi +
1
2
¾iix2i +

X

j 6=i
¾ijxixj; (1)

strictly concave in one’s e¤ort, that is, @2ui=@x2i = ¾ii < 0. We set ®i = ® > 0 and ¾ii = ¾,
identical for all players. Net of bilateral in‡uences, players have thus the same payo¤s.

Bilateral in‡uences are captured by the cross derivatives @2ui=@xi@xj = ¾ij, i 6= j. They depend
on the pair of players considered, and can be of either sign. When ¾ij > 0, an increase in e¤ort from
j triggers a downwards shift in i’s response. We say that e¤orts are strategic complements from i’s
perspective within the pair (i; j). Reciprocally, when ¾ij < 0, e¤orts are strategic substitutes from
i’s perspective within the pair (i; j).

Let ¾ = minf¾ij j i 6= jg and ¾ = max f¾ij j i 6= jg.
We assume that ¾ < minf¾; 0g. When ¾ ¸ 0, this is simply the concavity of payo¤s in own

e¤orts. When ¾ < 0, this requires that own marginal returns decrease with the level of xi at least
as much as cross marginal returns do.

Let § = [¾ij ] be the square matrix of cross e¤ects:

§ =

2
664

¾11 ¢ ¢ ¢ ¾1n
...

. . .
...

¾n1 ¢ ¢ ¢ ¾nn

3
775 :

We use § as a short-hand for the simultaneous move n¡player game with payo¤s (1) and
strategy spaces IR+.

2.2 The decomposition of cross e¤ects

We decompose the matrix § additively into an idiosyncratic concavity component, a global (uni-
form) substitutability component, and a local complementarity component, in the following way.

Let ° = ¡minf¾; 0g ¸ 0. If e¤orts are strategic substitutes for some pair of players, then ¾ < 0
and ° > 0. Otherwise, ¾ ¸ 0 and ° = 0. As we shall see below, the parameter ° accounts for the
global substitutability of e¤orts across all pairs of players.

Let ¸ = ¾ + ° ¸ 0. We assume that ¸ > 0. This is a generic property, as ¸ = 0 if and only
if ¾ = ¾, and this equality is not robust to small perturbations of the coe¢cients ¾ and ¾.7 Let
also gij = (¾ij + °)=¸, for i 6= j, and set gii = 0. By construction, 0 · gij · 1. This is just

7The set of parameters ¾ijs for which ¾= ¾ has Lebesgue measure zero in IRn(n¡1).
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a normalization and centralization of the cross e¤ects. The parameter gij measures the relative
complementarity in e¤orts from i’s perspective within the pair (i; j) with respect to the benchmark
value ¡° · 0. This measure is expressed as a fraction of ¸, that corresponds to the highest possible
relative complementarity for all pairs.

Consider the matrix G = [gij ] of these coe¢cients. This is a zero diagonal matrix. We interpret
it as the adjacency matrix of a network g that re‡ects the pattern of existing payo¤ (relative)
complementarities across all pairs of players. When ¾ij = ¾ji, for all i; j, the matrix G is symmetric
and the network g is un-directed. When, moreover, cross e¤ects only take two values, that is,
¾ij 2 f¾; ¾g, for all i 6= j with ¾ · 0, then G is a symmetric (0; 1)¡matrix and the network g
is un-directed and un-weighted. In this case, g can be represented by a graph without loops nor
multiple links, where nodes stand for players and two nodes i and j are directly linked if and only
if e¤orts are relative strategic complements across these two players, that is, ¾ij = ¾ji = ¾.

Finally, we write the (common) second order derivative in own e¤orts as @2ui=@x2i = ¾ = ¡¯¡°,
where ¯ > 0. Given our assumption that ¾ < minf¾; 0g, this is without loss of generality.

Proposition 1 Let I be the n¡square identity matrix, and U the n¡square matrix of ones. Then:

§ = ¡ ¯I ¡ °U + ¸G; (2)

with ¯ > 0, ° ¸ 0 and ¸ > 0.

Proof. From the de…nition of ¯; °; ¸ and G.

The pattern of bilateral in‡uences results from the combination of an idiosyncratic e¤ect, a
global interaction e¤ect, and a local interdependence component.

The idiosyncratic e¤ect re‡ects (part of) the concavity of the payo¤ function in own e¤orts.
The global interaction e¤ect is uniform across all players (matrix U) and corresponds to a sub-
stitutability e¤ect across all pairs of players with value ¡° · 0. The local interaction component
captures the (relative) strategic complementarity in e¤orts that varies across pairs of players, with
maximal strength ¸ and population pattern re‡ected by G.

Let § be a matrix of cross e¤ects for some bilinear payo¤ functions (1). Following the decom-
position of § in (2), we rewrite these payo¤s as:

ui(x1; :::; xn) = ®xi ¡
1
2

(¯ ¡ °)x2i ¡ °
nX

j=1

xixj + ¸
nX

j=1

gijxixj ; for all i = 1; :::; n: (3)

Let ¸¤ = ¸=¯ and °¤ = °=¯ denote, respectively, the strength of local and global interactions,
relative to self-concavity.
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2.3 The Bonacich network centrality measure

Before turning to the equilibrium analysis, we de…ne a network centrality measure due to Phillip
Bonacich (1987) that proves useful for this analysis.

The n¡square adjacency matrix G of a network g keeps track of the direct connections in this
network. Indeed, two players i and j are directly connected in g if and only if gij > 0, in which
case 0 · gij · 1 measures the weight associated to this direct connection.

Let Gk be the kth power of this adjacency matrix with coe¢cients g[k]ij , where k is some non-

zero integer. This matrix keeps track of the indirect connections in the network. Indeed, g[k]ij ¸ 0
measures the number of paths of length k ¸ 1 in g between i and j.8In particular, G0 = I, that is,
g[0]ii = 1 and g[0]ij = 0 for all i 6= j.

Given a scalar a ¸ 0 and a network g, we de…ne the following matrix:

M(g; a) = [I¡aG]¡1 =
+1X

k=0

akGk:

Note that these expressions are all well-de…ned for low enough values of a.9 The parameter a is a
decay factor that scales the down the relative weight of longer paths.

Provided the matrix M(g; a) is non-negative, its coe¢cients mij(g; a) =
P+1
k=0 akg[k]ij count the

number of paths in g starting at i and ending at j, where paths of length k are weighted by ak.
Let 1 be the n¡dimensional vector of ones.

De…nition 1 Consider a network g with adjacency n¡square matrix G and a scalar a such that
M(g; a) = [I¡aG]¡1 is well-de…ned and non-negative. The vector of Bonacich centralities of
parameter a in g is:

b(g; a) = [I¡aG]¡1 ¢ 1:

The Bonacich centrality of node i is bi(g; a) =
Pn
j=1 mij(g; a), and counts the total number of

paths in g starting from i.10 It is the sum of all loops mii(g; a) starting from i and ending at i,
8A path of length k from i to j in g is a sequence hi0; i1; :::; iki of players such that i0 = i, ik = j, ip 6= ip+1, and

gipip+1 > 0, for all 0 · p · k ¡ 1, that is, players ip and ip+1 are directly linked in g. In fact, g[k]ij accounts for the

total weight of all paths of length k, from i to j. When the network is un-weighted, that is, G is a (0; 1)¡matrix,
g[k]ij is simply the number of paths of length k from i to j.

9Take a smaller than the norm of the inverse of the largest eigenvalue of G.
10 In fact, b(g; a) is obtained from Bonacich (1987)’s measure by an a¢ne transformation. Bonacich de…nes the

following network centrality measure:

Ã (g; a; b) = b [I¡ aG]¡1G ¢ 1:

Therefore, b(g; a) = 1+aÃ (g; a; 1) = 1+ · (g; a), where · (g; a) is an early measure of network status introduced by
Katz (1953). See also Guimerà et al. (2001) and Newman (2003) for related network centrality measures.
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and all outer paths
P
j 6=imij(g; a) that connect i to every other player j 6= i, that is:

bi(g; a) = mii(g; a) +
X

j 6=i
mij(g; a):

By de…nition, mii(g; a) ¸ 1, and thus bi(g; a) ¸ 1.

3 Nash equilibrium and Bonacich centrality

3.1 Characterization and uniqueness

We now characterize a Nash equilibrium of the game §, where equilibrium strategies are propor-
tional to Bonacich centralities in the network of local complementarities g derived from §. We
provide conditions such that this equilibrium is unique and interior.

Consider a matrix § of cross e¤ects decomposed as in Proposition 1. From now on, we focus
on symmetric matrices such that ¾ij = ¾ji, for all j 6= i. Then, the largest eigenvalue ¹1(G) of G,
sometimes referred to as the index of the network g, is well-de…ned. Also, ¹1(G) > 0 as long as
¾ij 6= 0, for some j 6= i.11

For all vector y 2IRn, denote by y = y1 + ::: + yn the sum of its coordinates.

Theorem 1 The matrix [¯I ¡ ¸G]¡1 is well-de…ned and non-negative if and only if ¯ > ¸¹1(G).
Then, the game § has a unique Nash equilibrium x¤ (§), which is interior and given by:

x¤ (§) =
®

¯ + °b(g; ¸¤)
b(g; ¸¤) (4)

Proof. The necessary and su¢cient condition for [¯I ¡ ¸G]¡1 to be well-de…ned and non-
negative derives from Theorem III¤, page 601 in Debreu and Herstein (1953).

An interior Nash equilibrium in pure strategies x¤ 2 IRn+ is such that @ui=@xi(x¤) = 0 and
x¤i > 0, for all i = 1; :::; n. If such an equilibrium exists it then solves:

¡§ ¢ x = [¯I + °U ¡ ¸G] ¢ x = ®1: (5)

The matrix ¯I+ °U¡¸G is generically non-singular, and (5) has a unique generic solution in IRn,
denoted by x¤.12 Using the fact that U ¢ x¤=x¤1, (5) is equivalent to:

[I ¡ ¸¤G] ¢ x¤ =
® ¡ °x¤

¯
1 , x¤ =

® ¡ °x¤

¯
b(g; ¸¤);

11Note that G is symmetric from the symmetry of §. By the Perron-Frobenius theorem, the eigenvalues of a
symmetric matrix G are all real numbers. Also, the matrix G with all zeros in the diagonal has a trace equal to zero.
Therefore, ¹1(G) > 0 whenever G 6= 0.

12The set of parameters ¯; °; ¸ for which det(¯I+ °U¡ ¸G) = 0 has Lebesgue measure zero in IR3.
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and (4) follows by simple algebra. Given that ® > 0 and bi(g; ¸¤) ¸ 1, for all i, it follows that x¤

is interior.
We now establish uniqueness. First, the previous argument shows that x¤ is a unique interior

equilibrium. We deal with corner solutions. We …rst need a technical result.
Denote by ¯(§); °(§); ¸(§) and G(§) the elements from the decomposition of § in Proposition

1. We omit the dependence in § when there is no confusion. For all matrix Y, vector y and set
S ½ f1; :::; ng, YS is the sub-matrix of Y with rows and columns in S, and yS is the sub-vector of
y with rows in S.

Lemma 1 If ¯(§) > ¸(§)¹1(G), then ¯(§S) > ¸(§S)¹1(GS), for all S ½ f1; :::; ng.

Proof of the Lemma. Note that °(§S) · °(§); ¯(§S) ¸ °(§) and ¸(§S) · ¸(§), for all S.
Now, ¸G = § + °(U ¡ I) ¡ ¾I: Therefore, the coe¢cients in the S rows and columns of ¸G are
at least as high as the corresponding coe¢cients in ¸(§S)GS . Theorem I¤, page 600 in Debreu
and Hernstein (1953) then implies that ¹1(¸(§S)GS) · ¹1(¸(§)G). Given that eigenvalues are
homogeneous of degree one, we can conclude. Q.E.D.

Let y¤ be a non-interior Nash equilibrium of the game §. Let S ½ f1; :::; ng such that y¤i = 0
if and only if i 2 NnS. Therefore, y¤i > 0, for all i 2 S. Note that S 6= ;, as @ui=@xi(0) = ® > 0,
and 0 cannot be a Nash equilibrium. Then,

¡§S ¢ y¤S = [¯IS + °US ¡ ¸GS ] ¢ y¤S = ®1S :

By Lemma 1 and the previous argument, we have

y¤S =
® ¡ °y¤S

¯
b(gS ; ¸¤): (6)

Now, every player i 2 NnS is best-responding with y¤i = 0, so that:

@ui
@xi

(y¤) = ® +
X

j2S
¾ijy¤j = ® ¡ °y¤S + ¸

X

j2S
gijy¤j · 0, for all i 2 NnS,

where the last equality uses the decomposition of §. Using (6), we rewrite this inequality as:

(® ¡ °y¤S)(1 + ¸¤
X

j2S
gijbj(gS ; ¸¤)) · 0, equivalent to ® ¡ °y¤S · 0.

Using (6), we conclude that y¤i · 0, for all i 2 S, which is a contradiction.

When the matrix of cross e¤ects § reduces to ¸G (that is, ¯ = ° = 0), the game § is super-
modular and we have a multiplicity of Nash equilibria. If, instead, this matrix reduces to ¡¯I¡°U
(that is, ¸ = 0), the equilibrium is generically unique. The condition in Theorem 1 requires that the
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parameter for own-concavity ¯ be high enough to counter the payo¤ complementarity captured by
¸¹1(G). Here, ¸ has to do with the level and ¹1(G) with the population-wide pattern of positive
cross e¤ects. Note that this condition does not impose any bound on the absolute values for these
cross e¤ects, but only on their relative magnitude.

The Bonacich-equilibrium expression (4) also implies that:

x¤i (§) =
bi(g; ¸¤)
b(g; ¸¤)

x¤(§):

Each player contributes to the aggregate equilibrium outcome in proportion to her network central-
ity. The dependence of individual outcomes on group behavior is referred to as peer e¤ects. Here,
this intragroup externality is not an average in‡uence. It is heterogeneous across members, with a
variance related to the Bonacich network centrality.

Remark 1 Consider the general game (§;®), where ®i > 0 di¤ers across players. Then, (4)
still holds where ®b(g; ¸¤) is replaced by the weighted Bonacich centrality measure b®(g; ¸¤) =
[I¡¸¤G]¡1 ¢®.

When g is an un-directed and un-weighted network, the condition in Theorem 1 can be expressed
directly in terms of the number of nodes and links in g, thus dispensing with computing the network
index.

Let g =
P
i;j gij be the sum of all direct links in g. When G is a (0; 1)¡ matrix, this is twice

the number of direct links in the un-directed and un-weighted network g.

Corollary 1 Suppose that ¾ij 2 f¾; ¾g, for all i 6= j with ¾ · 0, and that the network g induced
by the decomposition of § in (2) is connected. If ¯ > ¸

p
g + n ¡ 1, the only Nash equilibrium of

the game § is given by (4).

Proof. From the upper bound on the index of a connected graph in Theorem 1.5, page 5 in
Cvetkovíc and Rowlinson (1990).

3.2 Comparative statics

The previous results relate individual equilibrium outcomes to the Bonacich centrality in the net-
work g of local complementarities. The next result establishes a positive relationship between the
aggregate equilibrium outcome and the pattern of local complementarities.

Given two networks g;g0 without loops, we say that g ½ g0 if and only if g0ij ¸ gij, for all i; j,
with at least one strict inequality. This is a partial ordering on networks.

Theorem 2 Let § and §0 symmetric such that (®; ¯; °; ¸) = (®0; ¯0; °0; ¸0) and g ½ g0 for the
decomposition (2). If ¯ > ¸¹1(G0), then x¤(§0) > x¤(§).
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Proof. First note that ¯ > ¸¹1(G0) and g ½ g0 imply that ¯ > ¸¹1(G0). Then, ¡§ ¢ x¤(§) =
¡§0 ¢ x¤(§0) = ®1. We prove the inequality for g ½ g0 such that g0ij = gij, for all i; j =2 f1; 2g and
g0ij = gij + ", for i; j 2 f1; 2g, with " > 0. Given that (®; ¯; °; ¸) = (®0; ¯0; °0; ¸0), we have:

§0= §+¸"

2
66666664

0 1 0 : : : 0
1 0 0 : : : 0
0 0 0 : : : 0
...

...
...

. . .
...

0 0 0 : : : 0

3
77777775

:

We compute ¡x¤t(§0) ¢ § ¢ x¤(§) in two di¤erent ways. First, ¡x¤t(§0) ¢ § ¢ x¤(§) =®x¤t(§0) ¢ 1 =
®x¤(§0). Second, using the symmetry of §0, we have:

¡x¤t(§0) ¢ § ¢ x¤(§) = ¡x¤t(§0) ¢ §0 ¢ x¤(§) + ¸"[x¤2(§
0)x¤1(§) + x¤1(§

0)x¤2(§)]

= ®x¤(§) + ¸"[x¤2(§
0)x¤1(§) + x¤1(§

0)x¤2(§)]:

Using the fact that ® > 0, we conclude that x¤(§0) >x¤(§).

In words, the denser the pattern of local complementarities, the higher the aggregate outcome,
as players can rip more complementarities in g0 than in g. The geometric intuition for this result
is clear. Recall that b(g; ¸¤) counts the total number of weighted paths in g. This is obviously an
increasing function in g (for the inclusion ordering), as more links imply more such paths.

4 A network-based policy

4.1 Finding the key player

In our model, individual equilibrium behavior is tightly rooted in the network structure through
(4). The removal of a player from the population, holding the pattern of social interactions among
the other players …xed, alters the whole distribution of outcomes.

We provide a simple geometric criterion to identify the optimal target in the population when
the planner wishes to reduce (or to increase) optimally the aggregate group outcome.13

In what follows, we suppose that § is symmetric with ¾ij 2 f¾; ¾g for all i 6= j, and ¾ · 0.
In this case, the decomposition of § in (2) yields a (0; 1)¡adjacency matrix G and an un-weighted
and un-directed network g, with its corresponding graph representation.

Let’s eliminate some player i from the current population. Suppose that for each possible value
v 2 f¾; ¾g for the cross e¤ects, there exists at least two di¤erent pairs of players (i; j) and (i0; j0),

13Bollobás and Riordan (2003) contains a mathematical analysis of the relative network disruption e¤ects of a
topological attack versus random failures in large networks. See also Albert et al. (2000) for a numerical analysis for
the case of the World Wide Web.
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di¤ering two-by-two, such that ¾ij = ¾i0j0 = v. This is a mild requirement that guarantees that
the values of ¯, ° and ¸ in the decomposition (2) of § do not change for any such single player
removal. The adjacency matrix becomes G¡i, obtained from G by setting to zero all of its ith row
and column coe¢cients. The resulting network is g¡i.14

Similarly, denote by §¡i the matrix that results from removing the ith row and column from
§.

The planner’s problem is to reduce x¤(§) optimally by picking the adequate player from the
population.15 Formally, she solves maxfx¤(§) ¡ x¤(§¡i) j i = 1; :::; ng, equivalent to:

minfx¤(§¡i) j i = 1; :::; ng (7)

This is a …nite optimization problem, that admits at least one solution.
Let i¤ be a solution to (7). We call player i¤ the key player. Removing i¤ from the initial

network g has the highest overall impact on the aggregate equilibrium level. We provide a simple
and direct geometric characterization of the key player.

De…nition 2 Consider a network g with adjacency n¡square matrix G and a scalar a such that
M(g; a) = [I¡aG]¡1 is well-de…ned and non-negative. The inter-centrality of player i of parameter
a in g is:

ci(g; a) =
b2i (g; a)
mii(g; a)

:

The Bonacich centrality of player i counts the number of paths in g stemming from i, while the
inter-centrality computes the total number of such paths that hit i at some time. It is the sum of i’s
Bonacich centrality and i’s contribution to every other player Bonacich centrality. Holding bi(g; ¸¤)
…xed, ci(g; ¸¤) decreases with the proportion mii=bi of i’s Bonacich centrality due to self-loops.

Theorem 3 If ¯ > ¸¹1(G), the key player i¤ that solves minfx¤(§¡i) j i = 1; :::; ng is the one
with the highest inter-centrality measure of parameter ¸¤ in g, that is, ci¤(g; ¸¤) ¸ ci(g; ¸¤), for all
i = 1; :::; n.16

Proof. We …rst prove a useful result.

Lemma 2 Let a > 0 such that M(g; a) = [I¡aG]¡1 is well-de…ned and non-negative. Then,
mij(g; a)mik(g; a) = mii(g; a)

£
mjk(g; a) ¡ mjk(g¡i; a)

¤
.

14 If the primitive of our model is the bilinear expression for the payo¤s in (1), the key player analysis applies to
matrix of cross e¤ects § symmetric and for which the ¾ijs only take two possible values, that is, ¾ij 2 f¾; ¾g with
¾ · 0. In this case, G is a (0; 1)¡matrix. If, instead, the primitive of our model is the expression for the payo¤s in
(3), the key player analysis carries over to any symmetric adjacency matrix G with 0 · gij · 1.

15Corollary ?? below considers the symmetric case where the planner wishes to increase x¤(g; ¸¤) optimally.
16Note that there may be more than just one key player.
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Proof of the Lemma. First note that the symmetry of § implies that mjk(g; a) = mkj(g; a),
for all j; k and g. We have:

mii(g; a)
£
mjk(g; a) ¡ mjk(g¡i; a)

¤
=

+1X

p=1

ap
X

r+s=p
r¸0;s¸1

g[r]ii
³
g[s]jk ¡ g[s]j(i0)k

´
=

+1X

p=1

ap
X

r+s=p
r¸0;s¸2

g[r]ii g
[s]
j(i)k

=
+1X

p=1

ap
X

r0+s0=p
r0¸1;s0¸1

g[r
0]
ji g[s

0]
ik = mji(g; a)mik(g; a);

where g[s]j(i0)k (resp. g[s]j(i)k) is the compound weight of length¡s paths from j to k not containing i

(resp. containing i), and g[0]ii = 1. Q.E.D.
First, note that ¹1(G) ¸ ¹1(G¡i). Therefore, if M(g; ¸¤) is well-de…ned and non-negative (as

implied by the condition in Theorem 1), so is M(g¡i; ¸¤), for all i = 1; :::; n.
With ® > 0, x¤(§¡i) increases in b(g¡i; ¸¤), and (7) is equivalent to minfb(g¡i; ¸¤) j i =

1; :::; ng. De…ne:

bji(g; ¸¤) = bj(g; ¸¤) ¡ bj(g¡i; ¸¤), for all j 6= i.

This is the contribution of i to j’s Bonacich centrality in g. Summing over all j 6= i, and adding
bi(g; ¸¤) to both sides gives:

b(g; ¸¤) ¡ b(g¡i; ¸¤) = bi(g; ¸¤) +
X

j 6=i
bji(g; ¸¤) ´ di(g; ¸¤).

The solution of (7) is i¤ such that di¤(g; ¸¤) ¸ di(g; ¸¤), for all i = 1; :::; n. We have:

di(g; ¸¤) = bi(g; ¸¤) +
X

j 6=i

£
bj(g; ¸¤) ¡ bj(g¡i; ¸¤)

¤
= bi(g; ¸¤) +

X

j 6=i

nX

k=1

£
mjk(g; ¸¤) ¡ mjk(g¡i; ¸¤)

¤
:

Using Lemma 2, this becomes:

di(g; ¸¤) = bi(g; ¸¤) +
X

j 6=i

nX

k=1

mij(g; a)mik(g; a)
mii(g; a)

= bi(g; ¸¤)

2
41 +

X

j 6=i

mij(g; a)
mii(g; a)

3
5 =

b2i (g; ¸¤)
mii(g; ¸¤)

.

Example 1 Consider the network g in Figure 1 with eleven players.
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Figure 1

There are three di¤erent locations in this network: player 1, players 2, 6, 7 and 11, and players
3, 4, 5, 8, 9, and 10. Type¡1 and type¡3 players have four direct links, while type ¡2 players
have …ve. Player 1 bridges together two fully intra-connected communities of …ve players each. By
removing player 1, the network is maximally disrupted. By removing a type¡2 player, we get a
network with the lowest total number of links.

Table 1 computes the Bonacich and inter-centrality measures for di¤erent values of the decay
factor a. A superscript star identi…es the highest column value.17

a 0.1 0.2
Player Type bi ci bi ci

1 1:75 2:92 8:33 41:67¤

2 1:88¤ 3:28¤ 9:17¤ 40:33
3 1:72 2:79 7:78 32:67

Table 1

Type¡2 players have the highest Bonacich centrality. They have the highest number of direct
connections and are directly connected to the bridge player 1, who gives them access to a wide span
of indirect connections. When a is low, they are also the key players. When a is high, though, the
most active players are not the key players anymore. Now, indirect e¤ects matter, and eliminating
player 1 has the highest joint direct and indirect e¤ect on aggregate outcome.

Corollary 2 If ¯ > ¸¹1(G), the key player i¤ that solves maxfx¤(§¡i) j i = 1; :::; ng is the one
with the lowest inter-centrality measure of parameter ¸¤ in g, that is, ci¤(g; ¸¤) · ci(g; ¸¤), for all
i = 1; :::; n.

5 Applications

In this section, we propose three di¤erent applications of the previous results

5.1 Crime networks

There are n criminals, each exerting a level of crime xi that results from a trade o¤ between the
costs and bene…ts of criminal activities. The expected utility of criminal i is:

ui(x; r) = yi(x) ¡ pi(x; r)f; (8)

17Here, the highest value for ¸¤ compatible with our de…nition of centrality measures is 2
3+
p
41
' 0:213:
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where yi(x) are the proceeds, pi(x; r) the apprehension probability, and f the corresponding …ne.
Following Ballester et al. (2004) and Calvó-Armengol and Zenou (2004), the cost of committing
crime pi(x; r)f increases with xi, as the apprehension probability increases with one’s involvement
in crime, hitherto, with one’s exposure to deterrence.

Also, and consistent with standard criminology theories, criminals improve illegal practice
through interactions with their direct criminal mates.18 Formally, criminals are connected through
a friendship network r, where rij = 1 when i and j are directly related to each other. For instance,
let:

8
<
:

yi (x) = xi
h
1 ¡ ´

Pn
j=1 xj

i

pi(x; r) = p0xi
h
1 ¡ º

Pn
j=1 rijxj

i :

The expected utility then becomes:

ui(x; r) = (1 ¡ ¼)xi ¡ ´
nX

j=1

xixj + ¼º
nX

j=1

rijxixj ; (9)

where ¼ = p0f is the marginal expected punishment cost for an isolated criminal, and ¡´ < 0
captures a congestion in the crime market. The utility function (9) coincides with the expression in
(3) with ® = 1¡¼, ¯ = ° = ´, ¸ = ¼º and g = r. When ¼º¹1(r) < ´, the unique Nash equilibrium
of the crime game with payo¤s (9) is:

x¤ =
1 ¡ ¼

´
1

1 + b(r; ¼ º´ )
b(r; ¼

º
´
):

Here, the key player policy in Theorem ?? has both a direct and an indirect e¤ect on crime reduction.
On the contrary, a standard deterrence policy (an increase in ¼) has a positive direct impact on
crime reduction, but a negative indirect e¤ect, as criminals now counter the extra deterrence they
face by strenghtening their network interactions.

5.2 R&D collaboration networks

Consider a standard Cournot game with n (ex ante) identical …rms, each of them choosing the
quantity qi. As in Goyal and Moraga-González (2001) and Goyal and Joshi (2003), …rms can form
bilateral agreements to jointly invest in cost-reducing R&D activities. We set cij = 1 when …rms
i and j set up a collaboration link. Firm i’s marginal cost is ¸0 ¡ ¸

P
j 6=i rijqj. Here, ¸0 > 0,

represents the marginal cost of an isolated …rm, while ¸ > 0 is the cost reduction induced by each
link it forms. With a linear inverse demand, the pro…t function of …rm i is:

ui(x; r) =

2
4Á¡

nX

j=1

qj

3
5 qi ¡

2
4¸0 ¡ ¸

X

j 6=i
rijqj

3
5 qi = (Á ¡ ¸0) qi¡

nX

j=1

qiqj + ¸
X

j 6=i
rijqiqj : (10)

18See, e.g., Sutherland (1947).
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Again, this objective function is a particular case of (3), where ® = Á ¡ ¸0 > 0, ¯ = ° = 1 and
g = r. Using Corollary 1, we conclude that the Cournot game with payo¤s (10) has a unique Nash
equilibrium in pure strategies:

q¤ =
Á ¡ ¸0

1 + b(r; ¸)
b(r; ¸);

when 1 > ¸
p

g + n ¡ 1. In particular, Theorem 2 implies that the overall industry output increases
when the network of collaboration links expands, irrespective of this network geometry and the
number of additional links. For the case of a linear inverse demand curve, this generalizes the
…ndings in Goyal and Moraga-González (2001) and Goyal and Joshi (2003), where monotonicity of
industry output is established for the case of regular collaboration networks, where each …rm forms
the same number of bilateral agreements. For such regular networks, links are added as multiples
of n, as all …rms’ connections are increased simultaneously.

5.3 Conformism and social norms

There are n players whose well-being depends on their behavior compared to that of their reference
group. More precisely, each player choses an action xi ¸ 0 and loses utility when failing to conform
to the social norm of his reference group, equal to the average action of its members. This framework
encompasses a variety of issues where conformism is the driving force for individual behavior.19

Here, contrarily to previous models, we allow for the reference group, and its induced social norm,
to vary with the friendship and community ties of each player.

Formally, when i and j are friends we set fij = 1. Let also fii = 0 for all i. This collection of
links constitutes a network f . Player i has fi =

Pn
j=1 fij direct links in f , whose average action is

xi =
Pn
j=1 fijxj=fi. This is the social norm of player i. We assume that fi > 0, for all i.

Consider the following utility function, with »; ®; µ; d > 0:

ui(x; f) = » + ®xi ¡ µx2i ¡ d(xi ¡ xi)2: (11)

In words, non-conformist behavior entails a quadratic utility loss. When f is the complete network
with self-loops, this is equation (5) in Akerlof (1997), page 1009. We have:

@2ui(x; f)
@xi@xj

=

8
><
>:

¡2(µ + d), when i = j
0, when i 6= j and fij = 0
2d=fi > 0, when i 6= j and fij = 1

:

19Di¤erent issues have been explored in the literature. For example, and to name a few, (i) peer pressures and
partnerships, when individuals are penalized for working less than the group norm (Kandel and Lazear 1992), (ii)
religion, when the bene…ts of praying increase with the number of participants (Iannaccone 1992, Berman 2000), (iii)
social status and social distance, when deviations from the social norm imply a loss of reputation and status (Akerlof
1980 and 1997 and Bernheim 1994, among others).
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This utility function (11) thus coincides with (3) with ¯ = 2(µ +d), ° = 0, ¸ = 2d and gij = fij=fi.
Note that g is a row-normalization of the initial friendship network f , as illustrated in the following
example, where F and G are the adjacency matrices of, respectively, f and g.

Example 2 Considers the following friendship network f :

t t t
2 1 3

Then,

F =

2
64

0 1 1
1 0 0
1 0 0

3
75 and G =

2
64

0 1=2 1=2
1 0 0
1 0 0

3
75

If µ > (n ¡ 2) d,20 this conformity game with payo¤s (11) has a unique Nash equilibrium in
pure strategies given by:

x¤ =
®

2 (µ + d)
b

µ
g;

d
µ + d

¶
:

6 Discussion

We discuss a number of possible extensions of this work.
First, our analysis is restricted to linear-quadratic utility functions that capture linear exter-

nalities in players’ actions. First order conditions for interior equilibria then produce a system of
linear equations that leads to the Bonacich-Nash linkage. Suppose, instead, that externalities are
non-linear, and that utility functions u are C2. Let §(x¤) be the (symmetric) Jacobian of ru
evaluated at an interior Nash equilibrium x¤ > 0. Decompose §(x¤) as in (2). Then, by a simple
continuity argument, the …rst order approximation of x¤ corresponds to the Bonacich centrality
vector for this decomposition.

Second, Theorem ?? characterizes the key player when the planner’s objective function is the
aggregate group outcome x¤(§). Suppose, instead, that the planner’s objective is to maximize the
welfare function W ¤(§) =

Pn
i=1 ui(x¤(§)). Simple algebra gives 2W ¤(§) = (¯ + °)

Pn
i=1 x¤i (§)2

and, when ° = 0, this becomes 2¯W ¤(§) = ®2 Pn
i=1 bi(g; ¸¤)2. A geometric characterization of the

key player is also possible in this case. The corresponding network index, less intuitive than the
inter-centrality measure, now accounts for individual direct contributions to the aggregate outcome,
indirect contributions, and the variance of the latter.

Third, Theorem ?? characterizes geometrically single player targets, but the inter-centrality
measure can we generalized to a group index.21 Note that the group target selection problem is

20Here, we use the fact that ¹1(G) · ¹1(F) · n¡ 1.
21See Ballester et al. (2004).
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not amenable to a sequential key player problem. For instance, the key group of size 2 in Example
1 when a = 0:2 is f2; 7g, rather than the sequential optimal pair f1; 2g.

Fourth, beyond the optimal player removal problem, the network policy analysis can also ac-
commodate more general optimal targeted tax or subsidy problems. Consider a population of n+1
agents i = 0; 1; :::; n and a matrix of cross e¤ects § with associated network g in (2). Suppose that
the planner holds the outcome of player i = 0 to some …xed exogenous value s 2 IR. The case
s > 0 (resp. s < 0) is a subsidy (resp. tax), while s = 0 corresponds to the key player problem
solved above. Players i = 1; :::; n then play an n¡player game with interior Bonacich-Nash equi-
librium x¤¡0(§

¡0; s). Denote by g0 the n¡dimensional column vector with coordinates g01; :::; g0n
that keeps track of player 0’s direct contacts in g, and let ¿ = ®=¯. Then, the total equilibrium
population outcome is s + x¤¡0(§

¡0; s), where:

x¤¡0(§
¡0; s) =

1
1 + °¤b(g¡0; ¸¤)

[(¿ ¡ s)b(g¡0; ¸¤) + ¸¤sbg0(g
¡0; ¸¤)]:

Here, bg0(g¡0; ¸
¤) is the weighted Bonacich centrality de…ned in Remark 1. Given an objective

function related to the total population output s+x¤¡0(§¡0; s), and a set of constraints, the planner’s
problem is to …x optimally the value of s and the target identity i. Holding s constant, the choice
of the optimal target is a simple …nite optimization problem. In particular, when s = 0 and the
planner wants to minimize the overall output, the solution to this problem is i¤ 2 arg max ci(g; ¸¤).

Finally, the analysis so far deals with a …xed network. We can easily endogenize the network
with a two-stage game the following way. In the …rst stage, players decide simultaneously to stay
in the network or to drop out of it (and get their outside option). This is modelled as a simple
binary decision. In the second stage, the players that stay play the network game on the resulting
network. Uniqueness of the second-stage Nash equilibrium and its closed-form expression crucially
simplify the analysis of this two-stage game. See, e.g, Ballester et al. (2004) and Calvó-Armengol
and Jackson (2004) for analysis along this vein.
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