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Foreword

About this Manual

This report documents version 2.0 of WHOI Cable. While it is our intention to provide up-to-

date, comprehensive, accurate documentation, WHOI Cable remains a work in progress and as

such undergoes frequent change. If you find something that behaves differently than the way this

document says it should behave then please let us know.

This report is an updated version of WHOI Technical Report 97-15. It is presented largely as a

user’s guide for WHOI Cable and as such contains a complete description of the WHOI Cable suite

of programs as of version 2.0. It does not provide numerical or technical details about the program.

Technical information about many aspects of the program is available in [2]. Other sources of

information include the previous report [3], and the theses that laid the groundwork for the original

implementation of WHOI Cable [4, 8].
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Typographical Conventions

This report employs a number of typographical conventions to mark buttons, command names,

menu options, screen interaction, etc.

Bold Font Used to mark buttons, and menu options in graphical environments.

Italics Font Used to indicate an application program name, e.g. res2mat.

Typewriter Font

Used to represent screen interaction at the shell prompt. Also used for example

input files, and keywords that belong in input files.

Key Represents a key (or key combination) to press, as in press Return to continue.
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Chapter 1

Introduction

1.1 Overview of problem types

The types of systems that we classify as oceanographic mooring systems include simple tethered

buoys, towed and drifting systems, and complex strings of instrumentation suspended in deep water.

From an engineering design perspective it is important that we can predict how these systems will

respond to a variety of environmental factors, such as waves, wind, and current. We might want to

know just how much current it will take to pull a surface buoy under water or what the maximum

tension will be in a mooring line during a large storm. The scientific purposes of a system might

require that the motion of a particular instrument not exceed a certain level in typical operating

conditions. The unifying problem behind analyzing these kinds of systems is one of nonlinear cable

mechanics.

Typical oceanographic mooring systems consist of rope, wire, and chain connected together by

shackles, instruments, and buoys and terminated at the ends with buoys, ships, sinker weights, or

anchors. WHOI Cable is a collection of computer programs for cable mechanics designed specifi-

cally to solve this nonlinear problem for systems which can be defined in these terms and which fit

into one of several basic categories.

WHOI Cable was developed with usability by the operational community in mind. The program

can solve a wide range of problems all from within a single consistent interface. The modeled sys-

tem can consist of any combination of different cable, chain, and rope segments, with instruments,

floats, and connectors between segments. The geometry of the system can be multiply-connected

(multi-leg moorings and geometries with segments dangling from other segments). The program

can also solve towing and drifter problems.

In all cases WHOI Cable can produce solutions in either two or three dimensions and can solve

either the static (steady-state) problem given forcing by current, wind, and ship speed, or the dy-
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namic problem given forcing by waves and time varying wind, current, ship speed, and cable pay-out

rates.

1.2 WHOI Cable mathematical features

A detailed derivation of the governing equations for two- and three-dimensional, static, and dynamic

problems can be found in [2, 8]. For all problem types the governing differential equations for

WHOI Cable include bending stiffness, material nonlinearities, coordinate transformation based

on Euler parameters, and a model for cable-bottom interaction. These features provide important

new capabilities compared to previous software programs used for modeling oceanographic cable

structures.

Incorporating the effects of bending stiffness eliminates the singularity associated with slack

tension [4]. Implicit codes without bending stiffness become unstable when tension goes to zero

anywhere in the system. For oceanographic applications a very small bending stiffness is usually

adequate to overcome this numerical instability. The incorporation of bending stiffness also allows

for the seamless modeling of systems with much larger materials, including offshore production

risers.

Another instability in many three-dimensional codes arises from the use of three Euler angles to

transform between local and global coordinates. Given a specific sequence of rotations, the trans-

formation matrix can become singular in this approach. In long time simulations of geometrically

nonlinear systems it is difficult to initialize the transformations such that this singularity will not oc-

cur. By using four parameters and treating the transformation as a single rotation about a principal

axis, Euler parameter based transformations avoid this problem [5, 8].

The model for the interaction of cable segments with the sea floor is based on a linear elastic

foundation [9]. This approach is very general and with appropriate care in selecting parameters, is

quite accurate [2]. It treats both bottom stiffness and damping and allows for an arbitrarily varying

elevation of the bottom.

1.3 WHOI Cable numerical features

For both static and dynamic problems, the mathematical problem is posed as a system of coupled,

nonlinear partial differential equations. The program solves this system numerically by discretizing

the continuous (exact) forms of the governing equations using spatial finite differences centered on

the half-grid points (which makes the approximation second order accurate [10]) and for dynamic

problems, the generalized-α time integration algorithm [1]. The generalized-α algorithm offers

superior accuracy and stability compared to alternative algorithms such as the box method, trape-
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zoidal rule, and backward differences [2]. Together with an adaptive time stepping algorithm, the

generalized-α algorithm produces very stable dynamic solutions.

At each step of the problem the discretized system of nonlinear equations is solved by an it-

erative, implicit, adaptive relaxation technique [2, 6]. The initial guess for the solution in static

problems is calculated using a shooting method. For the dynamic solution, the initial guess at each

time step is the solution from the previous time step. At each iteration the equations are solved using

a a sparse Gaussian elimination algorithm [7] for which the computational effort scales linearly with

the number of nodes.

1.4 WHOI Cable implementation features

WHOI Cable is a suite of applications, all of which are centered around the primary solver program,

cable. cable is responsible for processing user input files and generating results for all of the various

problem types. For a given model system, a single input file is used to define numerical settings,

environmental parameters, system components, and system geometry. Input files are constructed

using an intuitive, object based syntax. Definitions for commonly used components can also be

contained in central database files. The input syntax allows for the use of symbolic expressions in

most assignment statements and for variable expressions in many of the environmental and forcing

function definitions. For example, current can be defined as a function of depth using the symbolic

variable H.

The program does not impose any restrictions on the units used in defining a problem. The

ability to use expressions in assignment statements allows for easy conversion from one set of units

into the base units chosen for a given problem.

The main post-processing program is animate. Solutions for three-dimensional problems can

be drawn and animated in perspective view, with controls for on-the-fly perspective rotation and

scaling. The program can also generate animated plots of the various independent variables in the

solution (velocities, forces, etc.). Plots are available both for the variable as a function of Lagrangian

coordinate along the system, updated at each time step, and for the variable at a specific node as

a function of time for the entire simulation. Spectra of the temporal plots can be generated with

the click of a button. All of the plots and drawings provide controls for unlimited zooming. A

mechanism for printing to postscript files is also provided.

For more detailed access to the results, WHOI Cable also includes post-processors to convert

results to binary Matlab format or to ASCII text files. The Matlab file contains all of the results

generated by the solver, with conveniently assigned variable names. A result converted to a text file

contains only those variables specifically requested by the user.

All of the component programs are written in the C programming language, making them easily
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portable across platforms. The primary interface under Windows is an encapsulator that provides

a graphical interface to all of the component programs. The animation post-processor is written

for the X Window environment commonly found on scientific workstations. Under Windows, the

encapsulator communicates with the animation application via an X server running locally on the

PC. This approach to the development of WHOI Cable allows a single code base to be used for both

PC and workstation platforms. The addition of the encapsulator interface under Windows provides

a more comfortable environment for PC users who may be unfamiliar with command-line based

workstation applications.

12



Chapter 2

Structure of a cable Problem

2.1 Notation and coordinate systems

The basic coordinate system for cable is shown in figure 2.1. Note that the origin of the coordinate

system is always located at the anchor and that the global z direction is positive upwards, global x

is positive to the right, and global y is positive into the page1. Current can be defined as a function

of depth and can flow in both the x and y directions. Currents with vertical components (along the

z axis) are not allowed. Depending on the problem type under consideration the depth may or may

not be required in the problem definition.

2.2 Basic language features

The input language for cable is meant to be as flexible and as forgiving as possible in terms of the

detailed structure of an input file. The file is broken into sections, with each section containing

definition statements for a particular aspect of the problem. In general, sections can be specified in

any order, as can definitions within a section. Multiple sections of the same type can be included in

a single input file.

White space (blank lines, spaces, tabs) does not affect the interpretaion of the problem and

can be used arbitrarily to suit individual tastes. Comments are denoted as in the C programming

language; anything between /* and */ will be ignored as a comment no matter where it appears in

the file.

Object names (i.e., the names you assign to specific buoy or material definitions) cannot be key-

words. They must begin with an alphabetic character and should contain only alphabetic characters,

1Note that cable uses a rotated internal coordinate system for calculations and results storage in which x is up, y is

right, and z is into the page. Both user and internal coordinate systems have their origin at the anchor.
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Figure 2.1: Geometric definitions for cable.

numbers, and underscores. If a name has spaces in it then it must be contained in double quotes

The case of keywords (either upper, lower, or mixed) does not matter. The capitalization of object

names, however, is relevant.

2.2.1 Expressions

2.2.1.1 Constant expressions

As a convenience, wherever a floating point numeric value is required for a parameter you can

specify an arbitrary mathematical expression, including the operators +, -, *, /, % (modulo)

and the standard mathematical library functions sin, cos, tan, sqrt, hypot, pow, exp, log, log10,

floor, ceil, fabs and fmod. Note that arguments to the trigonometric functions should be given in

terms of radians just as if you were calling them from a C program using the standard math library.

Expressions can also contain the ternary conditional operator as in the C programming language:

“if a then b else c” is symbolized in a cable input file as a ? b : c where a, b, and c are all

valid expressions. The logical operators to use in constructing a are the same as those in C (==, &&

(and), || (or), <=, <, >, >=, != (not equal)). The symbolic constant pi can be used in any

expression as the value of π (to 20 places).

2.2.1.2 Variable expressions

For parameter specifications that require a functional dependence on a variable, these same con-

structs can be used with symbolic variables. For example a current definition could be written using
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the symbolic variable H to specify depth. Speed, thrust, and pay-rates at terminal definitions, and

wind and current modulation functions in the environment definition can be specified as functions

of time, t. The bottom elevation in the environment definition can be written as a function of both

x and y. Constitutive functions for nonlinear materials can be written as a function of strain e.

For example, a ship speed that varies sinusoidally between -5 and +5 knots with a period of 5

minutes could be written as

x-speed = 0.514*5.0*sin(2.0*pi/300*t)

A bilinear stress-strain relationship could be written as

T = e < 0.01 ? 50000*e : 25000*e

2.2.1.3 Discrete functions

Because some functions (particularly currents) are easier to express in a discretized (as opposed to

continuous) form, the cable syntax also includes a mechanism for specifying a discrete representa-

tion of a function. The basic specification consists of a series of pairs of the form (x, f(x)) where

f(x) is the value of the function at independent variable x. In evaluating the function, cable will

linearly interpolate between adjacent pairs for positions that fall between two pairs. The following

illustrates this idea for the case of a current defined piecewise linear

x-current = (0, 0.4) (100, 0.4) (500, 0.2) (1000, 0.0)

From the surface (depth = 0.0) to a depth of 100, the current is constant at 0.4. Over the interval

from 100 to 500, the current decreases linearly from 0.4 to 0.2. From a depth of 500 to 1000 the

current decreases linearly from 0.2 to 0.0. Points below 1000 would be extrapolated based on the

last two pairs (in our example, extrapolation would result in negative values for current at depths

greater than 1000). Note that the pairs must be given in order of increasing independent coordinate.

You can express a periodic discrete function simply by defining one period and then entering a +

symbol at the end of the expression.

2.2.2 Units

There are no set units for the dimensional quantities that you specify in defining a problem for

cable. The important thing is to remain consistent in the units that you use; numerical results will

then be consistent with the input dimensions. Some examples of consistent units would be lengths

in meters, weights in Newtons, elastic moduli in Pascals (N m ✁ 2); moments of inertia would be

in m ✁ 4. Convenient English units are often pounds, feet, and psf (pounds per square foot) or kips

(kilopounds), feet, and ksf.
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2.3 Components of an input file

A cable input file consists of a series of definition statements contained within eight distinct sections.

There are three sections which define the basic numerical and environment set-up for the model

(problem description, environment, analysis parameters), four sections for defining the

system components (materials, connectors, buoys, anchors) and a single section to define how

the system gets put together (layout). Detailed definitions for all elements of the input syntax are

provided below. Chapter 6 offers some suggestions about how the various input elements can be

manipulated to get fast, robust, and accurate solutions for models that may initially prove difficult

to converge.

2.3.1 Problem description

The problem description section contains the most basic description of the system: a descriptive

title string and the definition of the problem type. It must be the first section within the input file

and cannot be repeated.

title = string

A character string containing the problem title to be used in the display of results.

If the title contains spaces it should be enclosed in double quotation marks.

type = problem type

problem type can currently be one of general, surface, subsurface, towing,

drifter, positioned, tensioned, riser.

general general problems are the simplest problem for cable to solve.

The second terminal can be either an anchor or buoy (an anchor

if the end is fixed in dynamics and a buoy if motions or forces

will be applied to the end). The static solution is based on forces

applied at the second terminal which must be specified directly

with x-force=, y-force=, etc. defined. Thus, while this type is

simple for cable, it is not very useful for real problems because the

static forces are typically not known a priori.

surface This is the type to use for single point surface mooring problems.

The second terminal end must have a completely defined buoy at-

tached. cable will perform outer loop iterations to solve for the

static draft of the buoy. Oftentimes surface mooring static so-

lutions are difficult to obtain; automatic dynamic relaxation of-

ten works well in such cases (see section 6.2). With some care
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surface problems can also be used to define multileg moorings.

subsurface This type is for subsurface single point moorings. The second

terminal end must also be a completely defined buoy but cable

can calculate the forces on that buoy without outer loop iterations.

Thus, these problems are typically much easier to solve statically

than surface problems. However, automatic dynamic relaxation

will work for these problems if difficulties do arise.

towing towing problems must have buoys defined at both terminals. The

buoy description at the first terminal defines the tow-body and must

be complete. The buoy at the second terminal does not need to be

completely defined. Tow speeds (x-speed=, etc) must be specified

for the second terminal of a towing problem.

drifter drifter problems are terminated with buoys at both ends; both

buoy definitions must be complete. cable will use outer loop iter-

ations to calculate the steady state drift speed of the system.

positioned These problems were called horizontal in earlier versions of

WHOI Cable. In positioned problems, the second terminal end

must be positioned away from the first terminal with x=, y=, z=

definitions. cable will perform outer loop iterations to calculate

the appropriate reaction force at the second terminal that brings

the terminal to the required position. The terminal can contain ei-

ther an anchor or a buoy, depending on the whether motions are to

be applied in the dynamic problem. This is often the best choice

of problem type for multileg moorings (particularly if there is no

surface expression).

riser riser problems are nearly identical to positioned problems ex-

cept for the treatment of material above the free surface. In positioned

problems buoyant material above the surface is made to float on

the surface. In riser problems, the weight of material above the

surface is taken to be the air weight of the material.

tensioned This problem type is useful for systems with a specified pre-tension

applied. Both tension= and z= (vertical position) of the second

terminal must be specified. cable will use outer loop iterations to

calculate the angle at the top of the mooring that brings the top

node to the specified vertical position given the applied tension.
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deployment This type is used to simulate anchor last deployment of single point

moorings. The first terminal should have a fully defined anchor

and a speed specification. The second terminal should have a fully

defined buoy specified. The static solution will be calculated by

assuming that the surface buoy is being towed (at the speed given

in the first terminal definition) with all of the mooring paid out and

only the anchor left on deck. This is essentially a surface moor-

ing solution where the tow speed can be represented as a current

flowing in the opposite direction and the anchor is on the surface

rather than the bottom. At the beginning of the dynamic solution

the anchor is released from surface and the whole system begins to

fall towards the bottom. Once the anchor hits the bottom it is fixed

in place. Static solutions for these problems can be difficult to ob-

tain. Brute force with small static relaxation factor and near unity

outer relaxation typically works best if problems are encountered.

2.3.2 Analysis parameters

The analysis parameters section contains definitions that control the numerical algorithms which

are used in the solution of cable problems. The solution of a cable problem can be broken down

into two main phases: static and dynamic solutions. The dynamic solution is actually quite straight-

forward from a user perspective. The static solution can be more complicated.

Within the static solution process there is an initial guess solution, static iterations, and, in

many problems, static outer iterations. The first step in a static solution is always an initial guess

based on either a catenary or a shooting solution. Shooting solutions require iterations and can

fail to converge, but are quite accurate when they can be obtained. Catenary solutions are nearly

foolproof, but they are seldom a good guess and thus leave much work for the following stages.

After the initial guess is calculated the program uses an iterative relaxation solver to calculate a

static solution given a complete set of prescribed boundary conditions (forces at buoys, anchor

positions, etc.) Static outer iterations are needed when the some of the boundary conditions are not

known a priori. For example, the forces on a buoy are dependent on the draft of the buoy, but the

draft cannot be calculated until all the forces are known. Thus, the boundary conditions must be

solved for in this outer loop of iterations. Once a final static solution is calculated, that solution is

used as the initial condition for the dynamic solution. The dynamic solution uses a single set of

iterations to find the instantaneous equilibrium solution at each time-step, with the solution from

the previous time-step as the initial guess.
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2.3.2.1 Global options

relaxation = constant expression

The primary nonlinear solution technique within cable is known as relaxation. Us-

ing an initial guess at a solution vector, the algorithm calculates an update to the

solution that will bring the system closer to equilibrium. The updated solution is

then fed back into the algorithm and the process repeats until some suitably close

approximation of equilibrium is achieved. The relaxation factor is used to speed

or slow this iterative process. In highly nonlinear problems the update to the solu-

tion may not be very accurate and thus should not be fully applied. The relaxation

factor allows this partial application of the update. cable does have an adaptive

relaxation algorithm that will adjust the relaxation factor in troublesome portions

of the solution (see section 2.3.2.4 below).

tolerance = constant expression

The global convergence tolerance of the relaxation iterations to be used if specific

tolerances are not given for the separate phases of the problem. The tolerance

dictates the minimum acceptable relative error between iterations for a solution

phase to be considered converged.

max-iterations = integer

The global maximum number of iterations in all convergence loops. It provides a

single default for the other iteration controls.

2.3.2.2 Static solution options

static-initial-guess = string

Determines the algorithm used to form the initial guess for the static solution algo-

rithm. Must be one of shooting or catenary. Defaults to catenary if it is not

explicitly given. shooting is often a better choice but shooting solutions are not

available for all problem types.

static-solution = string

Determines the algorithm used to calculate the final static solution to be used as the

initial condition in the dynamic solver. Must be one of relaxation, shooting,

or catenary. When dynamic solutions are desired it should almost always be

relaxation and this is the default. The other options are provided primarily for

debugging purposes. Also, because shooting solutions are often very fast and rea-

sonably accurate, they can be useful in preliminary design studies or when dynamic

solutions are not desired.
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static-relaxation = constant expression

The relaxation factor to be used in the static solution. In many problems, it may

be necessary to have different factors for static and dynamic solutions. Dynamic

solutions almost always proceed best with a relaxation factor of 1.0 (full update ap-

plied at each iteration), but many static problems (particularly those with complex

geometry or cable lying on the bottom) are only stable with a relaxation factor of

0.1 or smaller. If not given the static relaxation factor will default to the value given

by relaxation=. At least one or the other must be given.

static-tolerance = constant expression

The convergence tolerance for static iterations. In some problems, it may be desir-

able to have different tolerances for static and dynamic solutions. If not given then

it will default to the value given by tolerance=. At least one or the other must be

given. For many static problems a tolerance of 0.01 - 0.0001 is adequate. In some

rare cases a static tolerance that is too large leads to poor resolution of boundary

conditions and static outer iterations can fail to converge.

static-iterations = integer

The maximum permitted number of relaxation iterations in the static solution. This

number may need to be quite high for problems with small static-relaxation

factors. It will default to max-iterations if not given explicitly. At least one or

the other must be given.

static-outer-relaxation = constant expression

The “relaxation” or “stiffness” factor to be used in static outer iterations. This is

not actually a relaxation factor in the same sense as described above. It is really a

scaling factor that has different uses depending on what type of problem is being

solved. In surface problems it is the factor by which the trial draft of the buoy

is multiplied at each outer iteration when the algorithm is trying to bracket the

solution between the maximum draft and a minimum draft at which a solution

can be obtained. It defaults to 0.95 in these problems; smaller values can speed

outer loop convergence, but can also lead to solution instabilities. For positioned

problems it is the factor by which distance errors are multiplied to generate an

update to the applied force vector at a positioned boundary. It defaults to 5.0 in

these problems; larger values can lead to faster convergence, but can also can cause

solution instabilities.

static-outer-tolerance = constant expression

The convergence tolerance for the outer loop of static iterations. This will control

the relative error in the iterations used to determine surface draft (in a surface

20



problem) or position of the second terminal (in a positioned problem) for ex-

ample. If not given then it will default to the value given by tolerance= then

to static-tolerance. At least one of these must be given. A value of 0.01 is

typically sufficient for an accurate solution.

static-outer-iterations = integer

The maximum permitted number of iterations to take in resolving the anchor or

buoy position in the static solution. Because the algorithms for finding the position

of the second anchor in a positioned problem or the surface buoy in a surface

mooring problem are quite conservative, they can often take many hundreds of it-

erations to converge. This parameter gives you the capability to allow for large

numbers of iterations in these outer convergence loops, but not in the general relax-

ation iteration. It will default to max-iterations or static-iterations in that

order of preference.

shooting-iterations = integer

This is the maximum number of allowed iterations in shooting solution initial

guesses. If not given it will default to the maximum number of allowed static iter-

ations. Shooting solutions can require outer iterations similar to those for regular

static solutions. The limit determined by static-outer-iterations is used for

those iterations.

2.3.2.3 Dynamic solution options

duration = constant expression

The total length of the dynamic simulation. Must be given if a dynamic solution is

going to be performed.

time-step = constant expression

The time step of the dynamic simulation. Decreasing the time step is sometimes

a good way to get around a singularity that may be occuring. Must be given if a

dynamic solution is going to be computed. cable does have an adaptive time step-

ping algorithm that allows it to dynamically decrease the time step if it encounters a

singularity or a time step which exceeds the dynamic iteration limit. The time step

will be reduced by successive factors of ten up to a maxium of 5 times. If after the

fifth nested reduction a singularity is encountered the program will halt. Typical

base time steps range from 0.01 to 0.1 seconds for mooring problems to 0.5 to 1.0

seconds for towing problems.

dynamic-tolerance = constant expression
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The convergence tolerance for dynamic iterations. In some problems, it may be

desirable to have different tolerances for static and dynamic solutions. If not given

it will default to the value given by tolerance=. At least one or the other must

be given. This tolerance should generally be low ( ✂ 10 ✁ 6) to prevent errors from

building up as the solution progresses in time.

dynamic-relaxation = constant expression

The relaxation factor to be used in the dynamic solution. In some problems, it

may be necessary to have different factors for static and dynamic solutions (see

relaxation= above). If not given then it will default to the value given by relaxation=.

At least one or the other must be given. The best choice for this parameter is almost

always 1.0.

dynamic-iterations = integer

The maximum permitted number of relaxation iterations at each time step. Gener-

ally, static solutions can take more iterations than the dynamic solution at a single

time step so this number can be set lower. It will default to max-iterations if

not given explicitly. At least one or the other must be given. A value of 20 is

appropriate for most problems.

ramp-time = constant expression

The time period over which the excitation amplitudes will be linearly ramped up

to their full values. A non-zero ramp time is often used to minimize numerical

transients. If not specified or if given as 0.0 then the excitation amplitudes will

simply be at their full value right from the start of the simulation. It is generally

advisable to ramp the excitation over one or two excitation or wave periods.

2.3.2.4 Advanced options

current-steps = integer

The number of steps to take in bringing the current up to its full value in the static

solution. For some problems with high currents it can help convergence if the

current is brought up to speed slowly. Use with caution though, as other problems

may converge most quickly at high current.

relax-adapt-up = constant expression

This is the amount by which the current relaxation factor will be multiplied when

the iterative solution is progressing well. It will not grow beyond the base value. To

turn off adaptive relaxation set this value and relax-adapt-down to 1.0. relax-adapt-up

defaults to 1.02.
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relax-adapt-down = constant expression

This is the amount by which the current relaxation factor will be divided when

the iterative solution is not progressing well. The relaxation factor can continue to

shrink until it becomes so small that the solution stalls (see relax-stall-limit

below). When the solution starts to make progress again relax-adapt-up will be

applied and the relaxation factor will slowly increase back to its baseline value or

to an equilibrium value at which the solution can make the best overall progress. To

turn off adaptive relaxation set this value and relax-adapt-up to 1.0. relax-adapt-down

defaults to 1.1.

relax-stall-limit = integer

This is the maximum number of iterations allowed with a non-progressing solution

before the relaxation factor will revert back to its baseline value.

mesh-smoothing-length = constant expression

This is the length over which the curvature will be averaged to compute the the

mesh distribution weighting function.

mesh-amplification = constant expression

The adaptive mesh distribution algorithm tries both to increase node density in

areas of high curvature and to keep nodes from being placed too far apart. In that

algorithm, this is the weight given to curvature effects (relative to unity for spacing

effects). A value of 20 appears to reasonable for chain catenary moorings.

dynamic-integration = string

Specifies the integration algorithm to use for calculating spatial positions of nodes.

Must be one of spatial or temporal. spatial calculates positions by starting

at the first node and integrating upwards using orientation and stretched length.

temporal calculates the position of each node independently using nodal veloc-

ities. The default is spatial. Changing to temporal may help remove drift or

positioning inaccuracies in some problems.

dynamic-alpha-k = constant expression

This is the weighting factor for stiffness and force terms in the generalized-α time

integration algorithm.

dynamic-alpha-m = constant expression

This is the weighting factor for mass terms in the generalized-α time integration

algorithm.

dynamic-gamma = constant expression
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This is the generalized trapezoidal rule integration weighting factor in the generalized-

α time integration algorithm. The time integration will be second order accurate so

long as

γ ✄ αm ☎ αk ✆ 1
2 ✝ (2.1)

dynamic-lambda = constant expression

This is the value of λ∞
1 ✞ 2 in the generalized-α time integration algorithm. If speci-

fied, values for αk, αm, and γ will be calculated automatically from

αk ✆ λ∞

λ∞ ☎ 1 ✟ αm ✆ 3λ∞ ✄ 1

2λ∞ ☎ 2 ✟ (2.2)

and the requirement that the integration be second order accurate (equation 2.1).

Valid values are ☎ 1 ✠ λ∞
1 ✞ 2 ✂ 1. The box method (the closest thing to the algo-

rithm in previous versions of cable) is defined by λ∞
1 ✞ 2 ✆✡☎ 1. Useful values for the

generalized-α algorithm are 0.5 to -0.8. It defaults to -0.5.

dynamic-rho = constant expression

Same as dynamic-lambda.

2.3.3 Environmental parameters

The environment section is used to define the external conditions under which the simulation is

run. Density, gravity, depth, waves, current, and bottom parameters are all defined here

gravity = constant expression

The acceleration of gravity expressed in appropriate units. Must always be speci-

fied.

rho = constant expression

The density of the fluid medium. Must always be specified.

depth = constant expression

The depth of the water. Required for all problems except towing and drifter.

input-type = string

Specifies the nature of the dynamic inputs, either regular (harmonic) or random.

regular type inputs treat the excitation as harmonic functions with the given am-

plitude, period and phase. random inputs build a random profile using the given

amplitude as the significant amplitude and the given period as the peak period. In-

put phase information is ignored in random type inputs because the phase of each

component is assigned randomly.
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forcing-method = string

This must be specified for dynamic problems. The only currently acceptable values

are: wave-follower, morison, velocity, and force.

wave-follower

With wave following surface buoys the heave motion of the buoy

is governed by the instantaneous vertical displacement of the wave

field defined by x-wave= and y-wave= or wave-file=. The buoy

is unconstrained in the horizontal directions and is free to respond

to time-varying forcing by current and wind. Horizontal motions

are not forced by wave inputs.

velocity For velocity forcing the motion at the top of the system is com-

pletely described by x-input=, y-input=, and z-input= or velocity-file=.

force Like velocity but the inputs are taken to be forces rather than

motions.

morison morison forcing calculates drag and inertial forces on subsurface

bodies based on wave particle velocity and acceleration. This is

the most physically realistic choice for subsurface moorings.

x-wave = (constant expression, constant expression, constant expression)

The amplitude, period, and relative phase of the surface wave traveling in the global

x direction. Used with wave-follower and morison forcing.

y-wave = (constant expression, constant expression, constant expression)

The amplitude, period, and relative phase of the surface wave traveling in the global

y direction. Used with wave-follower and morison forcing.

x-input = (constant expression, constant expression, constant expression) ✝☛✝☛✝
The amplitude, period, and relative phase of the dynamic input in the global x direc-

tion. Only useful when forcing-method is velocity or force. For input-type

= regular up to ten distinct harmonic components can be specified.

y-input = (constant expression, constant expression, constant expression) ✝☛✝☛✝
The amplitude, period, and relative phase of the dynamic input in the global y direc-

tion. Only useful when forcing-method is velocity or force. For input-type

= regular up to ten distinct harmonic components can be specified.

z-input = (constant expression, constant expression, constant expression) ✝☛✝☛✝
The amplitude, period, and relative phase of the dynamic input in the global z direc-
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tion. Only useful when forcing-method is velocity or force. For input-type

= regular up to ten distinct harmonic components can be specified.

x-current = variable expression

The current in the global x-direction, possibly as a function of depth (using either

a discrete expression or a continuous expression with the symbolic variable H).

y-current = variable expression

The current in the global y-direction, possibly as a function of depth (using either

a discrete expression or a continuous expression with the symbolic variable H).

x-current-modulation = variable expression

The time varying modulation of the current in the x-direction, either as a discrete

expression or a continuous expression with the symbolic variable t. Defaults to 1.0

(no modulation).

y-current-modulation = variable expression

The time varying modulation of the current in the y-direction, either as a discrete

expression or a continuous expression with the symbolic variable t. Defaults to 1.0

(no modulation).

x-wind = variable expression

Wind, possibly as a function of time, in the x-direction.

y-wind = variable expression

Wind, possibly as a function of time, in the y-direction.

bottom-elevation = variable expression

The elevation of the bottom relative to the origin (the anchor in most problems).

The elevation can be specified as a continuous function of both x and y. It should

always be defined such that the origin is at elevation zero. Discrete expression

syntax can only be used to describe elevations as a function of x only.

bottom-friction = constant expression

The coefficient of static friction between mooring line and sea floor.

bottom-stiffness = constant expression

The spring stiffness of the bottom per unit length. For oceanographic applications

values from 100 to 1000 (in MKS units) are typical.

bottom-damping = constant expression

The damping ratio of the bottom. The dashpot coefficient for the bottom is calcu-
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lated from this ratio using a natural frequency based on bottom stiffness and cable

mass. Setting this parameter too high can sometimes lead to instabilities in the

dynamic solution of a problem. A value greater than 1.0 is seldom necessary.

wave-file = string

The name of the data file containing a spectral description of the input wave field in

the x-direction. The file should be ASCII data with three columns per line: radial

frequency, spectral power, and phase.

velocity-file = string

The name of the data file containing time series of input velocity. The file should be

ASCII data with four columns per line: time, x velocity, y velocity, and z velocity.

This is typically most useful for model validation and calibration when trying to

match experiment results given an observed time series of input motions.

force-file = string

Same as velocity-file when forcing-method=force.

2.3.4 Cable, chain and rope materials

The materials section defines the cable materials that make-up the system. Each material defini-

tion consists of a unique name followed by a series of material property definitions, such as

wire EA = 4.4e6 EI = 500 GJ = 25

m = 0.160 am = 0.05 wet = 1.15

d = 0.0063 Cdt = 0.01 Cdn = 1.5

Remember that white space and ordering does not matter so these properties could be arranged in

many other ways.

m = constant expression

The mass per unit length of the material. Must be non-zero.

wet = constant expression

The wet weight (weight in the fluid characterized by the density defined in the

environment section) per unit length. If the wet weight for a material is not speci-

fied (or is specified to be zero) then it will be calculated as wet = mg ☎ Aρg where

A is the cross-sectional area of the material based on the specified material diame-

ter, m is the specified material mass per unit length, and g and ρ are the gravitational

acceleration and density of the fluid medium defined in the environment section.

For neutrally buoyant materials specify some very small number.
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d = constant expression

The diameter of the material. This value is used in drag calculations for projected

area and to calculate wet weight and added mass when these values are not explic-

itly given. For chains, this diameter is typically taken as the outside width of a

single link.

length = constant expression

For fixed length instruments and assemblies treated as materials, the length can be

specified in the material definition. If the segment length is omitted in a layout

entry then the length from the associated material definition will be used.

Cdn = constant expression

The drag coefficient in the normal (transverse) direction. Typically between 1.5

and 2.0 for standard circular oceanographic cables and 0.5 to 0.6 for chain.

Cdt = constant expression

The drag coefficient in the tangential (longitudinal) direction. Typical values for

oceanographic cables range between 0.003 (for smooth cables) and 0.05 (for some

faired cables). A typical value for chain is 0.01.

EA = constant expression

The axial stiffness of the material. Must be non-zero. For ropes and cables this

value should typically be less than the straight product of E (elastic modulus) times

A (cross-sectional area). It is best determined from the slope of an experimentally

derived load-elongation curve.

EI = constant expression

The bending stiffness of the material. Must be non-zero. For chains it should be

very small. For ropes and cables the value should probably be something less than

the the theoretical value for a solid rod given by

E
πR4

4 ✝ (2.3)

GJ = constant expression

The torsional stiffness of the material. Must be non-zero, but is ignored in 2D

problems and could thus be arbitrary in those cases. For ropes and cables the value

should probably be something less than the theoretical value for a solid rod given

by

G
πR4

2 ✝ (2.4)
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am = constant expression

The transverse added mass per unit length of the material. If the added mass for

a material is not specified (or is specified to be zero) then the added mass will be

calculated as am = Aρ where A is the cross-sectional area of the material based on

the specified material diameter and ρ is the density of the fluid medium defined in

the environment section.

amt = constant expression

The tangential added mass per unit length of the material. If not given it will be

taken to be 0.0. Generally only applies for chain and some instruments that are

modeled as material segments.

amn = constant expression

Same as am.

Cat = constant expression

The tangential added mass coefficient. If amt is not given and Cat is specified the

tangential added mass will be calculated as AρCat
.

Can = constant expression

The normal added mass coefficient. If amn is not given and Can is specified the

normal added mass will be calculated as AρCan
.

Cmt = constant expression

The tangential virtual mass coefficient. If amt and Cat are not given and Cmt is

specified the tangential added mass will be calculated as Aρ ☞ Cmt ☎ 1 ✌ .

Cmn = constant expression

The normal virtual mass coefficient. If amn and Can are not given and Cmt is speci-

fied the normal added mass will be calculated as Aρ ☞ Cmn ☎ 1 ✌ .

bt = constant expression

Structural damping constant of the material for tangential motions. Negligible in

most applications.

bn = constant expression

Structural damping constant of the material for transverse motions. Negligible in

most applications.

type = string

Specifies the type of constitutive relationship to use for this material. Valid values

are linear and nonlinear. If the material is linear then EA will be used for all
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tension-strain calculations. If nonlinear is specified T, Te, and Tee must be given.

Default is linear.

T = variable expression

For nonlinear materials this function defines the load-elongation curve as a function

of strain using the symbolic variable e. If this function is given both Te and Tee

must be given as well. In such cases these functions will be used rather than EA to

calculate the material’s tension response.

Te = variable expression

For nonlinear materials the first derivative of the load-elongation curve as a function

of strain, e. For linear materials the slope of the load-elongation curve is EA.

Tee = variable expression

For nonlinear materials the second derivative of the load-elongation curve as a func-

tion of strain, e. For linear materials the second derivative of the load-elongation

curve is zero.

comment = string

Defines a string that can be used to identify the material definition more fully than

its symbolic name.

2.3.5 Connectors

The connectors section is used to define the shackles, floats, and instruments that are placed

between cable segments. A connector is defined by a unique name followed by a series of property

definitions.

wet = constant expression

The wet weight of the connector.

m = constant expression

The mass of the connector.

d = constant expression

The characteristic diameter used to calculate a drag area.

am = constant expression

The added mass of the connector. If it is not specified it will be calculated based on

the specified characteristic diameter.
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Cdt = constant expression

The tangential drag coefficient of the connector. In global coordinates this is the

drag coefficient used for vertical motions.

Cdn = constant expression

The normal drag coefficient of the connector. In global coordinates this is the drag

coefficient used for horizontal motions.

comment = string

Defines a string that can be used to identify the connector definition more fully than

its symbolic name.

All connectors are currently moment releasing – that is they cannot transmit a moment between the

segments which they are placed between. For shackle and pin-type connectors this is a reasonable

assumption.

2.3.6 Buoys

The buoys section defines the buoy or ship that is used at the top of the mooring. If part of the

solution involves calculating the static forces at the top of the mooring due to buoyancy and drag,

or if morison forcing was specified in the environment section then buoy definitions must be

complete. Buoys are also used to represent the towed vehicle end of a towing problem or the sinker

weight in a drifter problem. In this case they should be defined as an equivalent sphere with the

diameter and an explicitly specified buoyancy (rather than an automatically calculated buoyancy

based on the diameter of the sphere) manipulated to simulate the proper drag area and wet weight.

type = string

The basic buoy type. Currently recognized values are sphere, cylinder, capsule,

axisymmetric, ship, platform.

d = constant expression

The diameter of the buoy for buoy shapes with pre-defined geometry (cylinder,

sphere, capsule).

h = constant expression

The total height of a cylinder buoy or the total length of a capsule buoy.

diameters = (x1, d1) ✝☛✝☛✝ (xn, dn)

The description of the geometry of an axisymmetric buoy from the bottom up.

Each pair of numbers represents a level and a diameter. The buoy geometry is

defined as an axisymmetric body of revolution formed by the lines connecting these
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points.

buoyancy = constant expression

If given this will be used as the fully submerged displacement of the buoy. If not

given it will be computed based on buoy type and specified geometry. This is not

the same as the available buoyancy or wet weight.

m = constant expression

The mass of the buoy.

am = constant expression

The added mass of the buoy. Currently only used when morison forcing is active

or for the motions of tow bodies. If it is not specified it will be calculated based on

buoy diameter.

Cdt = constant expression

The tangential drag coefficient of the buoy. Also used for vertical forces in global

coordinates.

Cdn = constant expression

The normal drag coefficient of the buoy. Also used for horizontal forces in global

coordinates.

Cdw = constant expression

The drag coefficient of the buoy in wind.

Sw = constant expression

The surface area of the buoy exposed to wind drag. If not given it will be calculated

from the buoy draft and shape, but this will only be accurate for a small class of

systems.

comment = string

Defines a string that can be used to identify the buoy definition more fully than its

symbolic name.

2.3.7 Anchors

The anchors section defines the anchors that are used at one or both ends of the system. The

parameters are currently only used in deployment problems. For other problems you must create a

valid anchor name to be used in the terminal definitions of the layout section for any problems

that require it.
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m = constant expression

The mass of the anchor.

wet = constant expression

The wet weight of the anchor.

d = constant expression

The characteristic diameter of the anchor. The forces on the anchor are calculated

assuming that the anchor is a sphere with this diameter.

Cdn = constant expression

The normal drag coefficient of the anchor. Also used for forces in the global hori-

zontal directions.

Cdt = constant expression

The tangential drag coefficient of the anchor. Also used for forces in the global

vertical direction.

mu = constant expression

The coefficient of static friction between the anchor and the bottom. In future

versions of cable this may be used in calculating the holding power of the anchor.

It is currently unused in all problem types.

2.3.8 System layout

2.3.8.1 Single point, simply connected systems

The geometry of the most model systems is built from the bottom up as a series of segments with

optional connectors between segments and terminal points at the ends. Terminal points can consist

either of buoys or anchors. The layout section for a single point mooring with just one shot of

material looks like the following

Layout

terminal = { anchor = clump }

segment = {

length = 200

material = wire

nodes = (100, 1.0)

}

terminal = { buoy = snubber }
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If there was a shot of nylon above the wire connected by a shackle then we simply add a connector

= statement and a second segment = statement

Layout

terminal = {

anchor = clump

}

segment = {

length = 200

material = wire

nodes = (100, 1.0)

}

connector = shackle

segment = {

length = 50

material = nylon

nodes = (100, 1.0)

}

terminal = {

buoy = snubber

}

In both of these examples all of the named objects clump, wire, shackle, snubber need to be

defined in the above described sections of the input file.

If we wanted to define a problem with both ends anchored to the bottom then we simply specify

a different terminal at the second end of the system

Layout

terminal = {

anchor = clump

}

segment = {

length = 20

material = wire

nodes = (40, 1.0)

}

connector = glass_sphere

segment = {

length = 100
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✍ ✍✎ ✎ ✏ ✏✑ ✑
anchor clumpanchor clump

40 m nylon

5 m nylon

buoy sinker

30 m nylon30 m nylon
20 m wire 20 m wire

connector shackle

connector glass_sphere

Figure 2.2: Geometry of the branched layout described in the text.

material = nylon

nodes = (50, 1.0)

}

connector = glass_sphere

segment = {

length = 20

material = wire

nodes = (40, 1.0)

}

terminal = {

anchor = clump

z = 0.0

x = 100.0

}

This would define a three segment system with both ends anchored; the second anchor is located

100 units to the right of the first anchor.

2.3.8.2 Branched and multileg systems

Any system that cannot be described as a single, simply connected string of segments between two

terminals must be described using branches. Branches can be used to describe multileg systems and

system that have strings of segments hanging from other segments. Branches were originally added

to cable to handle this latter case for horizontal array moorings. The geometry shown in figure 2.2

is described by a modified version of the layout with both ends anchored described above:

Layout
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terminal = {

anchor = clump

}

segment = {

length = 20

material = wire

nodes = (40, 1.0)

}

connector = glass_sphere

segment = {

length = 30

material = nylon

nodes = (30, 1.0)

}

connector = shackle

branch = {

segment = {

length = 5

material = nylon

nodes = (5, 1.0)

}

terminal = {

buoy = sinker

}

}

segment = {

length = 40

material = nylon

nodes = (40, 1.0)

}

connector = shackle

branch = {

segment = {

length = 5

material = nylon

nodes = (5, 1.0)

}

terminal = {

buoy = sinker
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}

}

segment = {

length = 30

material = nylon

nodes = (30, 1.0)

}

connector = glass_sphere

segment = {

length = 20

material = wire

nodes = (40, 1.0)

}

terminal = {

anchor = clump

z = 0.0

x = 100.0

}

The strings hanging off the horizontal member are defined by adding a branch= specification

after a connector=. For multileg moorings multiple branches can leave from the same connector

by adding more branch= specifications. Within a branch definition segments and connectors are

strung together to define the branch just as they are on the main system. A branch definition must

end with a terminal. The terminal can contain an anchor or a buoy, or it can rejoin the main system

to form a loop using node=.

2.3.8.3 Layout parameters

segment = ✒ segment definition ✓
A segment definition consists of three required statements: length = , material

= , and nodes = . The statement attachments = is optional.

length = constant expression

The length of the segment. This entry can be omitted if the associ-

ated material has a valid length defined.

material = string

The material type to be used for this segment.

nodes = (integer, constant expression) (integer, constant expression) ✝☛✝☛✝
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The number and distribution of nodes to be used in discretizing the

segment. In general a discretization will consist of a series of pairs

of the form (number of nodes, fraction of length) where the total

number of nodes for the segment is derived from the number of

nodes listed in each pair and the length fractions of all pairs must

add to 1.0. The construct allows for increasing node density over

portions of a segment where high spatial gradients are expected

(oftentimes the endpoints of a segment). For instance a speci-

fication of the form nodes = (100, 0.1) (100, 0.8) (100,

0.1) will place 100 nodes in both the first and last 10% of the seg-

ment and 100 nodes in the middle 80% of the segment. This entry

can be omitted only if length is omitted and the associated mate-

rial has a length defined. If omitted, three nodes will be distributed

uniformly over the entire segment.

attachments = string : (n1
1, n1

2, ✝☛✝☛✝ ), string : [nstart, nstep, nstop], ✝☛✝☛✝
Specifies an optional list of attached objects on this segment. At-

tachments add mass, weight, and drag at a node. Each attachment

consists of an object defined in the connectors section and a list

of local node numbers (i.e., node numbers referenced to the seg-

ment that is being defined) at which that type of object should be

placed. Multiple types of attachments can be defined as shown.

Any given node can only have one type of object attached, how-

ever. For irregularly spaced attachments the list of nodes can be

given explicitly inside parentheses. For regularly spaced attach-

ments you can use the square bracket construct to define the start-

ing node, interval, and ending node for the placement of an attach-

ment.

connector = string

Specifies the optional connector that can be placed between segments. If no connec-

tor is specified between segments then the joined ends of the two segments simply

overlap and the results for the two nodes located at that point will always be iden-

tical. Omitting a connector between segments is one way to model a connection

that does not transmit moments. A connector must precede a branch (i.e., moments

must be released at a point where more than two segments come together).

branch = ✒ branch definition ✓
Specifies a branched series of segments and connectors that leaves from the main

system. Each branch definition must end with a terminal.
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2.3.8.4 Terminal parameters

terminal = ✒ terminal definition ✓
A terminal definition must come both at the beginning and end of the list of seg-

ments and connectors and at the end of every branch. It can consist of statements of

the form anchor=, buoy=, x=, y=, z=, x-force=, y-force=, z-force=, x-speed=,

y-speed=, z-speed=, x-thrust=, y-thrust=, z-thrust=, tension=, pay-rate=

and release-time=. Main terminal definitions must contain at least an anchor or

buoy definition. Branch terminals must have an anchor, buoy or node= statement.

anchor = string

Specifies the anchor to use at this termination.

buoy = string

For traditional single point moorings this defines the name of the buoy to be used at

the top terminal of the system. For drifter and towing problems, a buoy = statement

is used in the first terminal definition to define the mass at the subsurface free end

of the system (usually a depressor weight or a vehicle).

z = constant expression

The z location (vertical) of an anchor in the global coordinate space.

x = constant expression

The x location (2D in-plane horizontal) of an anchor in the global coordinate space.

y = constant expression

The y location (3D out-of-plane horizontal) of an anchor in the global coordinate

space.

z-force = constant expression

Optionally user provided static force on a buoy. If specified it is important that it

be large enough to support the weight of the mooring. If it is not large enough

the solution will either be upside down or the problem will not be solvable. User

specified static forces are only used for general problems. In all other cases,

cable automatically calculates end-point static forcing based on currents and drag

properties and weights and buoyancies.

x-force = constant expression

Optionally user provided static force on a buoy.

y-force = constant expression

Optionally user provided static force on a buoy.
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x-speed = variable expression

Optionally user specified speed of the terminal in the global x direction. The ex-

pression can be a function of t (time) or a discrete step-wise expression. This is

most commonly used to specify a tow speed or the speed of a surface drifter. As

functions of time, the x-speed and y-speed can be used to specify complex mo-

tions of a surface tow ship (for example, two sinusoidal functions out of phase with

one one another could be used to specify circular or elliptical tow patterns). In or-

der to get a valid static (steady-state) solution, at least one component of the speed

should evaluate to non-zero values at time t = 0.0.

y-speed = variable expression

Optionally user specified speed of the terminal in the global y direction.

z-speed = variable expression

Optionally user specified speed of the terminal in the global z direction.

x-thrust = variable expression

This the time varying force applied on a buoy terminal in the global x direction. It

is intended to be used with ROV towing problems.

y-thrust = variable expression

Time varying thrust in the global y direction.

z-thrust = variable expression

Time varying thrust in the global x direction.

pay-rate = variable expression

The pay-out (or pay-in) rate of material off of the terminal. This is typically most

useful for towing problems. The expression can be a function of time or a discrete

expression. Positive rates indicate material being added to the system; negative

rates indicate material being taken out of the system. Rates should be specified in

units of length per time. Remember that for problems with positive pay-rates the

total number of nodes in the problem will be greater than the total number defined

by the sum of all nodes over all segments defined in the layout section.

node = integer

In a branch terminal definition this option is used in lieu of an anchor or buoy to

specify that the branch rejoins the main segment string to form a loop. The node

number must be a valid global node number on the main system.

release-time = constant expression

The time point during the simulation at which the the buoy or anchor should be
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released from the system. This can be used to simulate anchor release for mooring

retrieval problems and cable breaking for towing problems.

2.3.9 The end statement

The final statement in any input file must be an end statement.
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Chapter 3

The cable Application

3.1 Basic operation

The basic way to solve a static problem with cable is simply to type

% cable -in foo.in -out foo.res -static

on the command line, where foo.in is the name of a cable input file and the output file will be

named foo.res1. For a dynamic problem, a typical command line might look like

% cable -in foo.in -out foo.res -nodes 50 100 -sample 0.1 -snap_dt 1.0

Like the static problem, the input and output files are required parameters on the command line. The

contents of the results file are determined by the remaining parameters; it will contain information

at nodes 50 and 100 at every 0.1 seconds and information at all nodes (a “snapshot”) at every 1.0

seconds. Exactly what information gets saved at those time points (and the information written for a

static result) is controlled by additional parameters. By default, as many variables as are applicable

will be output for a given problem – you can change this behavior by turning unnecessary variables

off. In static solutions, available information includes motion (position), forces, moments and Euler

parameters; in dynamic solutions, velocity is added to the list of available information.

For example, a static problem solved with the command

% cable -in foo.in -out foo.res -static +motion +moment +euler

1There are no enforced naming conventions for input or output files (i.e., there is no requirement that input files have

the extension .in or that output files have the extension .res).
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will contain only force (tension and shear forces) information because all other applicable variables

have been turned off (with the +motion, +moment, and +euler switches). If we remove the static

solution switch and add sampling information

% cable -in foo.in -out foo.res -snap_dt 1.0 +motion +moment +euler

then cable will follow the static solution with a dynamic solution and the results file will contain

both force and velocity information, but only in snapshot form at 1.0 second intervals. If we also

wanted a detailed time history of the position of node 100 then the above command line would

become

% cable -in foo.in -out foo.res -snap_dt 1.0 -sample 0.1 -nodes 100

+moment +euler

3.2 Using the run-time solution controls

By default, cable provides run-time feedback in the form of ASCII text output to the terminal. This

information consists of the current iteration number, time step, error tolerance and any diagnostic

messages. This information can be logged by redirecting the stdout output stream to a file.

An alternative to this form of feedback is the graphical information and control dialog pictured

in figure 3.1. This control can be enabled by specifying -X on the cable command-line. If this

dialog is enabled then the textual output to the stdout stream of the terminal will be suppressed and

all diagnostic information is sent to the appropriate fields of the control dialog. The status message

window provides a 100 line circular buffer for algorithmic and solution progress information. You

can use the arrow buttons next to the message window to scroll forward and backward through this

buffer. Note that with the information and control dialog enabled, cable does not automatically exit

after the solution is complete. The dialog will remain on the screen until the quit button is pressed

unless the -quit command-line option was specified.

The information and control dialog also allows certain aspects of the analysis parameters to be

adjusted during the solution of the problem. The relaxation factor, tolerance and iteration limit for

all three iteration loops (static, static outer, and dynamic) can be adjusted. A typical need for such

an adjustment might be to allow for more iterations if a problem is observed to be converging but

not fast enough that it will reach the desired tolerance by the iteration limit pre-set within the input

file. Relaxation factors can also sometimes be adjusted advantageously to speed-up convergence or

to stabilize an iteration.

To adjust a parameter, the problem must be paused. With the problem paused, changes can

be made within the grid of nine adjustable parameters. In order for these changes to take affect,
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Figure 3.1: cable’s graphical information and control dialog.

the update button must be pushed and the problem unpaused. The problem can be paused and

parameters adjusted any number of times. The restore button will reset all fields to their original

values.

In a dynamic problem, the time-step can also be changed while the solution is in progress. Care

must be taken so that the solution remains on the sampling grid. Also, changes to the time-step do

not take effect instantaneously. If the adaptive time-stepping algorithm is active then the changed

time-step will not take effect until the solution is back on the original grid. When the solution is on

the regular temporal grid, the updated time-step takes effect one step after the change is made. So

if the current time is 3.55 and the time-step is changed from 0.01 to 0.05, the next solution will be

at 3.56, not 3.60 as was probably intended. You can pause and unpause the solution as needed to

make sure that time-step changes are made in the step prior to a step on the new solution grid.

3.3 Using the C pre-processor

Every input file that is run through cable is pre-processed by the C preprocessor. This allows for

the use of macro definitions and include files within an input file. This is a particularly powerful

feature for users doing parametric design studies of a given system or for users who have built up

large databases of cable, buoy, and connector properties.

For the parametric design study, consider the case where we have written an input file for a
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mooring system and we want to generate time series of the results at node 100 for a variety of

system inputs – say for sinusoidal vertical excitation at 3.0 m amplitude and 4.0, 6.0, 8.0, 10.0, and

12.0 second period. In our input file then we might have an environmental description line (see

chapter 2) that looks like

z-input = (3.0, PERIOD, 0.0)

When we run cable we just need to supply a C pre-processor macro to replace the PERIOD variable

with the actual period that we want to run

% cable -in foo.in -out foo.res -nodes 100 -sample 0.1 -DPERIOD=4.0

Running the full series of excitation periods is very simple with shell constructs such as csh’s foreach

command

% foreach T (4, 6, 8, 10, 12)

? cable -in foo.in -out foo_$T.res -nodes 100 -sample 0.1 -DPERIOD=$T

? end

This will run, one right after another, the model for each of the five periods and store the results in

files named foo 4.res, foo 6.res, etc.

To create a material database, simply create a file with just a materials section (the same

concepts apply to other objects as well: anchors, buoys, connectors) and definition information for

all of the material types that you regularly use. If you called that file ropes.db then all you need to

do to use the database information in any input file is to include the line

# include "ropes.db"

in your input file (it must come after the problem description section, but other than that it can

be anywhere in the input file). Because sections can be repeated in an input file you can include as

many such databases as necessary and also have “local” sections defined right in the file.

3.4 Summary of command line parameters

The following are all of the available command line switches and parameter controls for cable.

-in filename

the name of the cable input file.
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-out filename

the name to use in creating the output results file.

-load filename

if given, indicates that the static solution should be read from the results file given

by filename (as opposed to the static solution being generated during the cur-

rent run). filename must contain a complete (all variables present) static solution

for the exact problem geometry defined by the current input file. This option is

most useful for problems which require time consuming static solutions (surface

problems, bottom interaction problems) and for which numerous different dynamic

inputs are being investigated. The output filename and the load filename cannot be

the same.

-initial filename

if given, indicates that the static solution should use the solution from filename as

the initial guess, foregoing catenary or shooting solutions. The output filename and

the initial filename cannot be the same. Like the load filename the solution con-

tained in filename must contain a complete static solution for the exact problem

geometry defined by the current input file.

-twoD boolean option to use the two-dimensional algorithm for static and dynamic solu-

tions of this problem. This is currently the default. To get the 3D solver specify

+twoD.

-static stops the solution process after the static solution is calculated, i.e., no dynamic

solution will be generated.

-quit forces the program to exit without waiting for the quit button after an error or once

the solution is complete. This is only meaningful when the graphic information and

control dialog is enabled.

-auto overrides the analysis parameters in the input file and forces an auto-mode static

solution. Only useful for surface or subsurface problems.

-dynstat filename

causes the final solution in a dynamic problem to be written as a static solution

in the separate output file given by filename. This is useful for calculating static

solutions using dynamic relaxation.

-nodes n1 n2 n3 ✝☛✝☛✝
specifies a list of node numbers at which temporal results will be written to the

output file. Remember that for problems with positive pay-rates the total number
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of nodes in the problem will be greater than the total number defined by the sum of

all nodes over all segments defined in the layout section of the input file.

-first boolean option that adds the first node to the list of output nodes at which temporal

results will be written to the output file.

-last boolean option that adds the last node to the list of output nodes at which temporal

results will be written to the output file. This can be useful for problems for which

it may be difficult to manually determine what the total number of nodes will be in

the problem (such as problems with positive pay-rates).

-terminals boolean option that adds all terminal nodes to the list of output nodes at which

temporal results will be written to the output file. This can be useful for branch

problems.

-connectors boolean option that adds the top node of every segment with a connector defined

to the list of output nodes at which temporal results will be written to the output

file. This is typically the node below the connector. If you want output at the node

above the connector you must explicitly specify that node number using the -nodes

option.

-sample dt specifies the time increment for writing temporal results to the output file. If no

value is given the sample rate will be set to the time step of the dynamic analysis;

this can result in the output file becoming much larger than is necessary.

-snap dt dt specifies the time increment at which spatial distributions of the output variables

will be written to the results file. These distributions are snapshots of the output

variables at all of the nodes in the problem and are generally most useful for ani-

mations. If no value is given then no snapshots will be recorded in the output.

-decimate x specifies the increment to use when writing spatial (static and snapshot) results. The

default is 1 (every node will be written). The decimation factor must be set such

that the node 1 and node n are included in the output. Decimation will produce

possibly strange results in branched problems. Static solutions cannot be loaded

from a file containing a decimated result.

-motion boolean option to include motion (x, y, z coordinate information) results in the

output file. The default is for this option to be on; to turn it off use +motion.

-vel boolean option to include velocity (u, v, w in local coordinates) results in the output

file. The default is for this option to be on; to turn it off use +vel.
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-force boolean option to include force (tension and shear forces) results in the output file.

The default is for this option to be on; to turn it off use +force.

-moment boolean option to include moment (torsion and normal and bi-normal bending mo-

ments) results in the output file. The default is for this option to be on; to turn it off

use +moment.

-euler boolean option to include Euler angle (2D problems) or Euler parameters (3D prob-

lems) results in the output file. The default is for this option to be on; to turn it off

use +euler. Euler information must be included in the results file if you want to

do any rotations into global coordinates during post-processing (see chapter 4).

-version display the current version number of cable and exit.

-help display a brief help message which lists all of the available command line options.

-debug will generate a cable file, that if all is working well, should look exactly like the

original input file. The generated file represents what the application thinks it was

given.

-cpp filename

substitute filename for the pre-processor to run on the input file.

-nocpp do not run the input file through the pre-processor.

-Idirectory add directory to the standard search path for include files in the pre-processor.

-Uname undefine the macro name in the pre-processor.

-Dname=value

define name to be the macro value in the pre-processor.

3.5 Interpreting the output from cable

The output files that come out of cable are written in a custom binary format outlined in figure 3.5.

The basic layout of the file is a static solution with the user specified result variables at every

node followed by an optional dynamic results section with node–time histories interleaved with full

system snapshots, again only for the user specified result variables. Variables from the dynamic

solution (except for absolute position: x, y, z) are always stored as dynamic quantities. That is

they represent the dynamic deviation from the static value given by the static solution. Because

the static solution is always present in an output file the total quantity of any variable can always be

reconstructed. Remember that non-linearities in the equations of motion or boundary conditions can
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’c’ ’a’ ’b’ ’r’ ’e’ ’s’ six character magic number

problem type indicator 8 bits used to indicate the way that the results should be interpreted. Least significant bit is always 1. Second bit indicates that a depth is stored in the

output. Third bit indicates a horizontal problem, i.e., that both ends are anchored. Fourth bit indicates a towing problem, i.e., that the first end is not

fixed on the bottom and that the top end is a ship. Fifth bit indicates that the solution is from a 2D algorithm. Sixth bit indicates a multi-leg or branched

problem. The last two bits are currently unused.

dynamic byte used as Boolean indicator for the presence of the dynamic solution in the file.

n the number of nodes in the problem as a 4-byte integer

length the number of characters in the title string as a 4-byte integer

title string the problem title string stored as an array of characters

✔
depth ✕ water depth for this system as an 8-byte double. This is an optional entry - its presence is dependent on the depth reference bit of the problem type

indicator byte.

output map a length 10 array of bytes, each byte being a Boolean flag indicating the presence of a single variable type in the file. The ordering is motion, velocity,

force, moment, euler. The last five bytes are currently unused. Example: [1 0 1 0 1] indicates that only motion, force, and Euler parameters are

contained in this file.

✔
branch information ✕ Optional - only present if the branch info bit is set in the problem type indicator byte. The first four bytes are the number of branches as an integer. The

starting node of each branch is then given as a four byte integer. Results are written sequentially by branch, with the mainline first. So if branch 1 starts

at 101 and branch 2 starts at 201, then results for branch 1 are stored in array indices (unit offset) 101 through 200.

s(1)
✔
x ✖ 1 ✗ y ✖ 1 ✗ z ✖ 1 ✗ ✕ ✔ T ✖ 1 ✗ Sn ✖ 1 ✗ Sb ✖ 1 ✗ ✕ ✔ Mt ✖ 1 ✗ Mn ✖ 1 ✗ Mb ✖ 1 ✗ ✕ ✔ B0 ✖ 1 ✗ B1 ✖ 1 ✗ B2 ✖ 1 ✗ B3 ✖ 1 ✗ ✕✙✘✚✘✚✘

s(n)
✔
x ✖ n ✗ y ✖ n ✗ z ✖ n ✗ ✕ ✔ T ✖ n ✗ Sn ✖ n ✗ Sb ✖ n ✗ ✕ ✔ Mt ✖ n ✗ Mn ✖ n ✗ Mb ✖ n ✗ ✕ ✔ B0 ✖ n ✗ B1 ✖ n ✗ B2 ✖ n ✗ B3 ✖ n ✗ ✕

array of 8-byte doubles containing the static solution. The only variable guaranteed to be present is s, the Lagrangian coordinate of the node. The curly

braces indicate variable groupings which may or may not be present depending on the information in the output map. This is the end of the file if the

dynamic solution is not present.

duration the total time length of the simulation as an 8-byte double

dt the time step of the simulation as an 8-byte double

sample dt the sampling time step for the node–time histories as an 8-byte double

snapshot dt the time increment between system snapshots as an 8-byte double. If it is zero, then no snapshots are present

no a 4-byte integer giving the total number of output nodes for which node–time histories are stored. If the number is zero then no node–time histories are

present.

output nodes a length no array of 4-byte integers giving the node numbers for which node–time histories are stored

’t’
✔
x ✖ 1 ✗ y ✖ 1 ✗ z ✖ 1 ✗ ✕ ✔ u ✖ 1 ✗ v ✖ 1 ✗ w ✖ 1 ✗ ✕ ✔ T ✖ 1 ✗ Sn ✖ 1 ✗ Sb ✖ 1 ✗ ✕ ✔ Mt ✖ 1 ✗ Mn ✖ 1 ✗ Mb ✖ 1 ✗ ✕ ✔ B0 ✖ 1 ✗ B1 ✖ 1 ✗ B2 ✖ 1 ✗ B3 ✖ 1 ✗ ✕✙✘✚✘✚✘

✔
x ✖ no ✗ y ✖ no ✗ z ✖ no ✗ ✕ ✔ u ✖ no ✗ v ✖ no ✗ w ✖ no ✗ ✕ ✔ T ✖ no ✗ Sn ✖ no ✗ Sb ✖ no ✗ ✕ ✔ Mt ✖ no ✗ Mn ✖ no ✗ Mb ✖ no ✗ ✕ ✔ B0 ✖ no ✗ B1 ✖ no ✗ B2 ✖ no ✗ B3 ✖ no ✗ ✕

’s’
✔
x ✖ 1 ✗ y ✖ 1 ✗ z ✖ 1 ✗ ✕ ✔ u ✖ 1 ✗ v ✖ 1 ✗ w ✖ 1 ✗ ✕ ✔ T ✖ 1 ✗ Sn ✖ 1 ✗ Sb ✖ 1 ✗ ✕ ✔ Mt ✖ 1 ✗ Mn ✖ 1 ✗ Mb ✖ 1 ✗ ✕ ✔ B0 ✖ 1 ✗ B1 ✖ 1 ✗ B2 ✖ 1 ✗ B3 ✖ 1 ✗ ✕✙✘✚✘✚✘

✔
x ✖ n ✗ y ✖ n ✗ z ✖ n ✗ ✕ ✔ u ✖ n ✗ v ✖ n ✗ w ✖ n ✗ ✕ ✔ T ✖ n ✗ Sn ✖ n ✗ Sb ✖ n ✗ ✕ ✔ Mt ✖ n ✗ Mn ✖ n ✗ Mb ✖ n ✗ ✕ ✔ B0 ✖ n ✗ B1 ✖ n ✗ B2 ✖ n ✗ B3 ✖ n ✗ ✕

Type stamped result dumps. A dump of node–time histories will start with a single ’t’ byte; a snapshot dump will start with a single ’s’ byte. There is

no time stamping of either dump – they should simply be written at the appropriate time increment. The time stamp, if needed during post-processing,

can be backed out from the position of a given dump in the output and the known increment between dumps.

Figure 3.2: The binary file format for cable results files.
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mean that the static solution may not always represent the true DC value of the dynamic solution.

Note that the format was designed to be a complete and compact single file container for the

output from cable. Readability and ease of interpretation were not the primary design goals. Aux-

iliary tools do exist which can either interpret this format directly or convert this format into more

user friendly form (see chapter 4).
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Chapter 4

Post-processing cable Results

4.1 Using cable results with Matlab

The binary results files that cable produces can easily be converted into Matlab format using the

res2mat application. res2mat reads the available results information in the cable output file and

writes a Matlab (.mat) file containing symbolically named variables for all of the results. The

results can be written to Matlab format either in local (tangential, normal, bi-normal) or global (x,

y, z) coordinate system. res2mat can only do the transformation to global coordinates if the Euler

information was written into the results file.

4.1.1 Format of the Matlab file

res2mat will convert all of the appropriate information in the cable results file into the Matlab file

according to a few simple rules. Static information is written to variables with no subscript (x,

T, Mn, etc.). Node–time histories are written to variables with names subscripted by t (x t, T t,

Mn t, etc.). Snapshots are given names subscripted with s (x s, T s, Mn s, etc.). The basic variable

names that are used depend on whether or not the results are written to Matlab format in local or

global coordinates. The range of names is detailed in table 4.1. Also included in the Matlab file are

variables with the sample rate (dt), snapshot rate (snap dt), Lagrangian coordinate of each node

(s), a list of output node numbers (nodes) and a time vector appropriate for the node–time histories

(t). The water depth is stored in depth if it is available within the results file.

4.1.2 Example Matlab manipulations

The node–time history result for each variable is an nt ✛ no matrix, where nt is the number of

samples and no is the number of output nodes. Thus, each column of the variable contains the full
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2-D Results 3-D Results

information local names global names local names global names

position x, z x, z x, y, z x, y, z

velocity u, v U, W u, v, w U, V, W

force T, Sn Fx, Fz T, Sn, Sb Fx, Fy, Fz

moment Mb My Mt, Mn, Mb Mx, My, Mz

Euler phi phi B0, B1, B2, B3 B0, B1, B2, B3

Table 4.1: The names that res2mat assigns to Matlab variables. These same names are used with

the -variables option in res2asc to specify which variables to tabulate.

time series of that variable for one node, so

>> plot(t, T t(:, 3));

plots the tension at the third output node as a function of time.

The snapshot results for each variable are stored in an n ✛ ns matrix, where n is the number of

nodes in the system and ns is the total number of snapshots that were written. The tenth snapshot

(at time t = (10 - 1)snap dt) can be plotted simply as

>> plot(s, T s(:, 10));

The geometric configuration of the system at every snapshot can be plotted as a “spaghetti” plot of

lines on a single graph with a command like

>> plot(x s, z s)

If we wanted to plot the total horizontal position of one of our output nodes we would need to

do the following

>> plot(t, x t(:, 3) + x(nodes(3)));

Unless otherwise requested with the -totals command-line switch, variables are written to the

Matlab file in dynamic form (total - static value). Because the static variables contain information

at every node (they are simply an n ✛ 1 vector) we need to use the nodes vector to figure out what

the actual node number of the third output node was.

4.1.3 res2mat command line parameters

res2mat accepts the following command line switches to control its behavior.
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-in results file ✝☛✝☛✝
the name(s) of the file containing the cable results. Multiple input filenames are

allowed. If multiple inputs are given no output names can be explicitly specified.

They will be automatically constructed.

-out matlab file

the name to use in creating the Matlab output file. The suggested extension is .mat

simply because this is what Matlab will look for. res2mat does not enforce any

naming convention. If no output names are provided, names will be constructed

from the input names.

-twoD specify that the results file came from the 2D solution algorithm. The option is not

strictly necessary for 2D results but it will result in a smaller Matlab file because

the all zero 3D information from the results file will not be written to the Matlab

file. It is required if transformation to global coordinates is requested because it

affects the interpretation of the Euler information used in the transformation. This

is currently the default. If the solution is from the 3D algorithm specify +twoD.

This option is provided for backward compatibility with older format result files

which do not have this information stored in the problem type indicator bit. Any

specification of this option will override the information stored in that bit.

-global Boolean option to write results to the Matlab file in global coordinates rather than

the default tangential, normal, bi-normal local coordinate system that they are

stored in within the results file. The transformation cannot be performed if the

results file does not contain the Euler information.

-totals Boolean option to write dynamic results as totals (static + dynamic).

-ft Boolean option to convert length units from meters to feet. Only useful if the results

in the input file are stored in meters.

-lbs Boolean option to convert force units from Newtons to pounds. Only useful if the

results in the input file are stored in Newtons.

4.2 The animate post-processing application

On X11 based workstations, a second post-processing option exists in the form of the animate appli-

cation. animate reads cable results files directly and can produce animations showing system spatial

configuration in conjunction with the spatial distribution of force, moment and velocity quantities

along the cable and/or the temporal distribution of these quantities at the specifically requested
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Figure 4.1: The main window of animate.

output nodes. Spectra of the time series quantities can also be plotted.

4.2.1 The main animation window

On start-up the animate main window (figure 4.1) pops up with the static configuration of the system

drawn in the viewing area. Across the bottom of the window are controls for creating plots and

controlling the time rate of the animation. Along the right side are four toggle button/slider pairs

which control the placement of marker nodes. The marker nodes are used to indicate which of the

output nodes you want to view the results for. The toggle button under each slider activates one

of the markers; you can then use the slider to move the marker between output nodes by clicking

and dragging on the slider thumb with the middle mouse button1. Each marker is identified with a

unique color – this is the color with which the time series or spectral results for that node will be

drawn.

Which variables get plotted is controlled by the five buttons D (displacements), V (velocities), F

(forces), M (moments), E (Euler information). If any of these buttons is engaged, a plot of the spatial

distributions of those variables at the current time step will be generated. These plots show the value

of a given variable as a function of Lagrangian coordinate; this is the coordinate which measures

distance along the system from the first node. The first node always has Lagrangian coordinate 0

1Most X-server software can be configured such that for two button mice, clicking both buttons at the same time

emulates the middle button of a three button mouse
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Figure 4.2: A time plot of the forces at marked nodes.

and the last node always has Lagrangian coordinate L, where L is the total length of the system. If

any of the marker nodes are activated, then temporal distributions of those variables at the marked

nodes will also be generated. A temporal plot of the forces for the animation shown in figure 4.1

is shown in figure 4.2. There is only one curve on each graph because we currently have only one

marked node. The vertical black bars on each graph indicate the current time point. The results

plotted here are the total force (static + dynamic value). Transformation between total and dynamic

only and local and global coordinates can be made by clicking the appropriate button next to the

plot controls. Spatial distribution plots are updated at the same rate as the main animation. Plots

can be popped down simply by disengaging the appropriate lettered button in the main window.

Spectra for time series results can be generated by clicking on the spectrum button at the bottom

of the plot window. A graph window with the frequency domain analog of the time domain results

plotted in that window will be automatically generated. The result for each graph in a window is

based only on the results currently viewed on that graph. For zoomed graphs then, the spectra are

computed using only that portion of the time series which is currently showing. Spectrum plots

can be dismissed by clicking on the dismiss button at the bottom of the window. The length of the

FFTs used in computing the spectra is determined by fitting four windows over the data, with the

data length padded to the nearest power of 2. Thus, a 500 point time series will have a spectrum

computed using four 128 point windows. The spectra are plotted semi-log so the values on the y
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axis represent log10 ☞ S ✌ .

The rate of the animation is controlled by the tape player-type buttons at the bottom of the

main window (figure 4.1). From left to right they are: slow down (increase the time delay between

frames), play the animation in reverse, back up one frame, pause the animation, go forward one

frame, play the animation forward, and speed up (decrease the time delay between frames). The

animation can be sped up or slowed down while it is playing. It must be paused before you can use

the single frame forward and backward controls.

4.2.2 Coordinates and zooming

The coordinate pairs above the exit button give the x, y location of the cursor when it is moved

around the main viewing area. Note that in 3D perspective view the reported coordinates are mean-

ingless. The current time is always displayed on the right side of the window just under the marker

node toggle buttons.

Zooming in the main animation window is accomplished simply by clicking with the left mouse

button and dragging out a window which you want to zoom in on. Scrollbars will appear on the

bottom and right side of the viewing area so that you can scroll around over the whole viewing area.

The full view can be restored by clicking the right mouse button.

With the mouse in a graph window, you can click with the right mouse button to have the

ordinate and abscissa value of that point reported at the bottom of the plot window. Zooming on

plots is achieved by clicking the left mouse button and dragging out a rectangle that encompasses

the area that you want to zoom in on. The full scale of a graph can be restored by clicking on the

middle mouse button within the graph area or by pressing r with the focus on the graph area and

the mouse point on the appropriate graph (you may need to use tab to get the focus on the graph

area).

4.2.3 Animate command line parameters

animate accepts the following command line options to control both how results are presented and

some of the basic appearance parameters.

-in filename

the results file to interpret.

-global boolean option to draw plotted results in global coordinates rather than the default

tangential, normal, bi-normal local coordinate system that they are stored in within

the results file. The transformation cannot be performed if the results file does not
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contain the Euler information. This option can also be toggled while the program

is running by clicking the globals button in the main window.

-totals boolean option to plot quantities as static + dynamic result. In normal operation

only the dynamic portion is plotted for node–time histories. This option can also

be toggled while the program is running by clicking the totals button in the main

window.

-twoD boolean option to treat the Euler information as the angle φ rather than the four

Euler parameters – if results were written from the 2D solution algorithm then this

option must be specified if rotations to global coordinates are to be performed cor-

rectly. This is currently the default. If the solution is from the 3D algorithm specify

+twoD. This option is provided for backward compatibility with older format result

files which do not have this information stored in the problem type indicator bit.

Any specification of this option will override the information stored in that bit.

-realtime specifies that the initial frame rate of the animation should match the snapshot

increment. The default for this parameter is off.

-delay n specify that the initial frame rate should be based on a delay of n microseconds. If

no -delay option is specified and -realtime is off then the initial delay is 60000

microseconds.

-thick specifies that all line drawing should be done with a thick line.

-box specifies that a reference box (in 3D) or surface and bottom (2D) should be drawn

as visual aids in interpreting the problem. The default is on; to turn off box drawing

use +box.

-drifter specifies that the problem should be interpreted as a drifter or towing problem. A

free surface, but no bottom, will be drawn if reference box drawing is enabled.

Any depth specification will be ignored; the free surface will be drawn at the static

position of the last node in the system. This option is automatically activated if the

appropriate bit in the problem type indicator byte of the results file indicates that

this is a towing problem.

-ship boolean flag to enable tow ship drawing for drifter problems. This will place a ship

graphic at the last node in the problem. This option is automatically activated if the

appropriate bit in the problem type indicator byte of the results file indicates that

this is a towing problem.

-color boolean flag to indicate that contrasting colors should be used to draw the back-
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grounds in the main animation window. The default is for this flag to be on and

sky to be white, water to be cyan and bottom to be brown (or wheat). For problems

where you know that you do not want print-outs in color (or shades of grey when

colors get translated by b/w laser printers) you can turn colors off using +colors.

-threeD specifies that the animation should be done in 3D perspective view. The default is

off even if the solution is from the 3D solution algorithm. When this parameter is

on, an auxiliary control window with sliders for rotations and scaling will pop-up

along with the main window.

-control specifies that the 3D rotation and scaling controls should be activated for problems

drawn in 3D perspective view (-threeD). The default is on.

-depth H activates the drawing of a free surface at a depth H . This parameter overrides the

information that may have been stored in the results file. If no depth is specified

and the results file does not contain a depth reference then no free surface will

be drawn. This option is provided for backward compatibility with older format

result files which do not have this information stored in the problem type indicator

information.

-anchors n1 n2 ...

draw anchor symbols at the nodes given by n1, n2, etc. The anchor symbol is

currently a black rectangle. If no buoys or anchors are specified then anchors will be

drawn at nodes appropriate to the information stored in the problem type indicator

of the results file.

-buoys n1 n2 ...

draw buoy symbols at the nodes given by n1, n2, etc. The buoy symbol is currently

a filled black sphere slightly larger than the circles used for node markers. If no

buoys or anchors are specified then anchors will be drawn at nodes appropriate to

the information stored in the problem type indicator of the results file.

-lbs boolean flag to provide the very common conversion of force units from Newtons

to pounds. When this flag is activated all of the force quantities (tension, shear,

global horizontal and vertical forces) will be scaled by 1
4 ✜ 4482216

. The default is off.

-yz draw the 2D Y-Z plane of a 3D problem.

-xrot x the initial x-axis rotation for 3D perspective view. The default is ☎ 20o.

-yrot y the initial y-axis rotation for 3D perspective view. The default is 40o.
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-zrot z the initial z-axis rotation for 3D perspective view. The default is 0o.

-zscale s the initial z-axis scaling (“eye distance”) for 3D perspective view. The default is

0 ✝ 4.

4.3 ASCII output

The post-processing application res2asc can be used to convert binary cable results to tabular ASCII

data. Each of the results matrices (static, node-time histories, and spatial snapshots) are saved to

separate files. The variables that are output can be controlled using the -variables command-line

option. The list of variables available for output depends on whether the solution in the binary

results file is from the 2D or 3D algorithm and whether the -global command-line flag is given.

The variable names for use with the -variables option are the same as those listed in table 4.1.

The variable s is also available for output with static and snapshot results. The time is always output

as the first column in node-time history results.

4.3.1 res2asc command line parameters

res2asc accepts the following command line switches to control its behavior.

-in filename

the name of the file containing the cable results.

-static filename

the name to use in creating the ASCII output file for static results.

-time filename

the name to use in creating the ASCII output file for node-time histories.

-snap filename

the name to use in creating the ASCII output file for time history snapshot results.

-variables v1 v2 v3 ...

list of variable names that you want output into the table.

-global Boolean option to write results in global coordinates rather than the default tan-

gential, normal, bi-normal local coordinate system that they are stored in within

the results file. The transformation cannot be performed if the results file does not

contain the Euler information.
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-totals Boolean option to write dynamic results as totals (static + dynamic).

-ft Boolean option to convert length units from meters to feet. Only useful if the results

in the input file are stored in meters.

-lbs Boolean option to convert force units from Newtons to pounds. Only useful if the

results in the input file are stored in Newtons.
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Chapter 5

cable’s Windows Interface

5.1 Introduction

The Windows version of WHOI Cable includes an encapsulator application for all of the component

programs discussed thus far. The encapsulator combines an editor for building problem description

files with facilities for executing cable, animate, res2mat, and res2asc to solve the problem and post-

process the results, all from within a single Windows 95/98/2000/NT based application. Figure 5.1

illustrates this interaction between the various component programs.

The main editor window, with one of the example problems loaded, is shown in figure 5.2.

Across the top of the window is the main menu bar, with the usual menu entries for file and edit

control and some special entries for solving problems and viewing results. There is also a toolbar

below the main menubar which contains shortcut buttons for the items on the File and Insert menus

and for invoking the various component programs.

5.2 Building an input file

There are several ways to go about constructing an input file for a new model. Starting with a blank

editor (either at start-up or by selecting New from the File menu) you can write the file from scratch,

open an existing problem and modify it to match the new problem, or you can build the file up from

the template blocks or database objects that the encapsulator provides.

You can insert objects from predefined databases by choosing Object browser from the Insert

menu or by choosing one of chain, shackle, buoy, or anchor toolbar buttons. The object browser,

pictured in figure 5.3 allows you to browse through all of the materials, connectors, buoys, and

anchors that are currently defined in the database files. To change between object types click on the

tabs at the top of the browser. Within each object type the database may be divided into sections;

63



Cable

Animate

Res2MAT Matlab

Res2Asc

WHOI Cable

for Windows

results

editor contents

results

X-Server Software

Figure 5.1: The relationships between the WHOI Cable component programs.

Figure 5.2: The main window of the WHOI Cable Windows interface.
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Figure 5.3: The database object browser in the WHOI Cable Windows interface.

the section can be changed by selecting from the pull down list beneath the tabs. All of the objects

defined in the current section for the current object type are shown in the large list in the middle

of the browser. In the example in figure 5.3 the chain section of the materials database has been

selected and all of the predefined chain types are listed. The complete definition for the currently

selected object is shown in the text box beneath the main list. To use a definition highlight the object

and click Insert or double click on the object. The definition will be inserted at the current cursor

position in the main input file editor window. For objects not defined in the database, you can insert

a blank template for the current object type by clicking the Template button.

Templates are also available from the Insert menu. When selected, a template is placed at the

current insertion (cursor) point of the editor. Once placed, the entries in the template must be edited

to match the problem that you are describing. Templates are available for the basic sectional layout

of a problem (complete problem description and analysis parameters sections and section headers

for buoys, anchors, connectors, materials, and layout), object definitions (buoys, anchors, materials,

connectors), and the components of a layout (segments, connectors, branches, terminals). Once

inserted, templates can be deleted, edited, and moved just like any other text in the editor.

Each assignment in a template that requires a value is marked with xxx for values that require

real numbers, nnn for values that require integer numbers, or x name x for cases where you must

specify or assign a symbolic name (remember that names with spaces in them must be enclosed in

double quotation marks). In the analysis parameters and environment sections that are placed
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Figure 5.4: The solution control dialog available by selecting Controls from the Solutions menu.

by the sections template, several typical values have already been set with actual numbers. These

values should be acceptable for most cases, but you should feel free to change them to better suit

your exact problem.

You can get help on a keyword in a template by highlighting the word or words in the main

editor and selecting Keyword from the Help menu (or by pressing F1 ). This will display the

WHOI Cable syntax and keyword help dialog with a paragraph or two describing the highlighted

keyword. If there are multiple ways in which the same keyword can be used, press the Next button

on the help dialog to move through them.

5.3 Solving a problem

In the command-line version of cable, described in chapter 3, the details of the solution are con-

trolled by command-line switches. In the Windows interface those switches are replaced by the

checkboxes and text fields of the solution control dialog pictured in figure 5.4. You can view this

dialog by selecting Controls from the Solutions menu.

The controls in the upper left frame determine the basic solution type – 2D or 3D, static or dy-

namic. If you have a results file that already contains a valid static solution for the current problem,

then you can specify that cable should use that solution rather than generating a new static solution

to use as the initialization for the dynamic solution. Checking the AutoSolve static solution box
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is equivalent to the -auto option in the command line version of cable. The bottom left frame

provides control over which variables are included in the output file.

The controls in the Dynamic Results frame are only enabled when a dynamic solution is re-

quested and define the sampling rates and nodes for the dynamic output. The list of output nodes is

constructed by typing node numbers in the box at the top of the list and pressing Add (or pressing

return ). Nodes can be deleted by highlighting them within the list and clicking Remove. Clear

deletes all entries in a list. The first node, last node, terminal nodes, and nodes associated with

a connector between segments can be automatically included in the output list (without explicitly

specifying their node numbers) by clicking the check boxes below the list of output nodes. At least

one form of dynamic output control must be specified for any dynamic solution of a problem. If a

time series time step is given then a list of output nodes must also be specified. If no time series

time step is given then a snapshot time step must be specified.

The Solve button on the dialog is a shortcut to the Solve selection on the Solutions menu. See

sections 3.1 and 3.4 for additional information on what the various options control.

Once a problem description is constructed, and the appropriate control options have been se-

lected, you can solve the problem simply by selecting Solve from the Solutions menu (also by

pressing the Solve button on the control dialog, using the keyboard shortcut ctrl-L , or using the

menu shortcut alt-S followed by alt-S , see section 5.6 for a complete list of the different ways to

accomplish most tasks). This saves the current editor to a temporary file and invokes cable on that

file. cable’s output is directed to a second temporary file. When the solution is complete, the tempo-

rary input file is deleted and program control returns to the main editor. See section 5.5 for details

on how and when you should save files and how temporary files are used within the encapsulator.

5.4 Viewing and converting results

Post-processing the results of a solved problem is as easy as selecting Animate from the Results

menu. This will invoke the animate program with the current output file as input. Details of using

animate are provided in section 4.2. The dialog to control how animate is invoked is shown in

figure 5.5 and is raised by selecting Controls from the Results menu.

The controls in the upper left frame of figure 5.5 dictate the drawing and animation parameters

that animate will use to present the results. The 3D Drawing options control whether a 3D problem

gets drawn in 3D perspective view or is simply projected onto the x-z plane. The controls in the

Results Transformations frame govern how the result variables should be plotted – local or global

coordinate system, total (static + dynamic) or just dynamic values, and whether force and length

units should be converted from Newtons to pounds and meters to feet (these only makes sense if the

original force units are in Newtons and meters of course). animate will draw additional anchor and

buoy symbols at the nodes indicated in the lists at the bottom right of the dialog. The Add, Remove,
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Figure 5.5: The results control dialog available by selecting Controls from the Results menu.

and Clear buttons apply to both anchor and buoy lists, but only to one list at a time. The active list

is controlled by the Anchors and Buoys toggle buttons over the lists. To add a node number to a list

simply type the number into the box at the top of the list and click Add (or press return ). Nodes

can be deleted by highlighting them within the list and clicking Remove. Clear deletes all entries

in a list.

The four check boxes for results transformations on this control are also used when invoking

res2mat. Conversion from cable results format to Matlab .mat format is done by selecting Matlab

conversion from the Results menu. A file selection dialog will appear asking you to specify the

name of the Matlab file to create.

For more immediate access to numerical rather than graphical results, res2asc can be used.

Under the Windows interface, the ASCII tabulated results will appear directly in a separate output

window. From that window they can be saved or printed. To run res2asc select Tabulate from the

Results menu. The dialog pictured in figure 5.6 will appear to allow you to specify what type of

results you want tabulated (static, time series, or snapshots) and what variables to include in each

table. To add a variable select it from the list on the right and click the Add button. The list of

available variables can be changed by toggling the local and global radio buttons.

5.5 Working with files

When working with the encapsulator it is important to keep track of two files. The first is the current

input file that is contained in the main editor. The contents of the editor are saved to a temporary
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Figure 5.6: The results tabulation dialog in the WHOI Cable Windows interface.

file during each solve procedure, but this temporary file should never be used as your own record of

the problem (it is deleted as soon as the solution is completed). To assign a name to it and save it,

select Save As from the File menu. If you have already assigned a name and simply want to save

(the current name is shown in the titlebar of the main window, as in figure 5.2), then select Save

from the File menu.

The second file type is the current output file. When a problem is solved the output is directed

to a temporary file. That file then defines the current result. If you want to assign a name to the file

and save it then select Save Result As from the File menu. If you have already defined a current

output name then you can simply select Save Result. If you do not explicitly save an output file

before you execute another solve process then that output file will be deleted and the result of the

latest solve will become the current output. Note that you do not need to assign a name to an output

file to view or convert the results; you only need to assign a name if you want to preserve results

before doing additional solutions or exiting the program.

You can define an existing file as the current result (i.e., without doing a solve) by selecting

Load Result from the File menu. Any post-processing selections will then refer to this already

existing file. Note that this name becomes the current output name for the Save Result action so

that any subsequent solves and solution saves will overwrite that pre-existing result.
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Menu Item Menu key Keyboard shortcut Toolbar icon Other

File New Alt-f, Alt-n

Open Alt-f, Alt-o Ctrl-o file folder

Save Alt-f, Alt-s Ctrl-s disk drive

Save As Alt-f, Alt-a Ctrl-a

Load Result Alt-f, Alt-l Ctrl-d

Save Result Alt-f, Alt-r

Save Result As Alt-f, Alt-v

Print Setup Alt-f, Alt-u

Print Alt-f, Alt-p Ctrl-p printer

Exit Alt-f, Alt-x

Edit Undo Alt-e, Alt-u Ctrl-u

Cut Alt-e, Alt-t Ctrl-x

Copy Alt-e, Alt-o Ctrl-c

Paste Alt-e, Alt-p Ctrl-v

Find Alt-e, Alt-f

Find Next Alt-e, Alt-n F3

Insert Object browser Alt-i, Alt-w chain/buoy/anchor/shackle

Section Template Alt-i, Alt-t chain+buoy+anchor+shackle

Buoy Alt-i, Alt-b template button on browser

Anchor Alt-i, Alt-a template button on browser

Material Alt-i, Alt-m template button on browser

Connector Alt-i, Alt-c template button on browser

Layout segment Alt-i, Alt-s cable shot

Layout connector Alt-i, Alt-o shackle+shackle

Layout branch Alt-i, Alt-h triple point

Layout terminal Alt-i, Alt-l buoy+anchor

Solutions Controls Alt-s, Alt-c Ctrl-l

Solve Alt-s, Alt-s Ctrl-r go light button on control box

Results Animate Alt-r, Alt-a Ctrl-n movie button on results box

Matlab conversion Alt-r, Alt-m Ctrl-m matlab button on results box

Tabulate Alt-r, Alt-t Ctrl-b table

Controls Alt-r, Alt-c Ctrl-t

Setup Files Alt-u, Alt-f

Fonts Alt-u, Alt-n

Help Keyword Alt-h, Alt-k F1

About Alt-h, Alt-a

Table 5.1: Complete command structure for the WHOI Cable for Windows encapsulator.

5.6 Command reference

Between the main menu, keyboard shortcuts, and the toolbar, there are generally several ways to

accomplish any one task from within WHOI Cable’s Windows interface. Table 5.1 details this

complete command structure.

5.7 Installing WHOI Cable for Windows

5.7.1 System requirements

WHOI Cable for Windows is only available for 32-bit Windows (95/98/2000/NT), Intel-based plat-

forms. Some static problems can be solved in a reasonable amount of time on any Pentium or even

a fast 486 processor. Dynamic problems and some static problems (notably those that use small

static relaxation factors or require significant numbers of outer iterations) are best solved on faster

Pentium Pro/II/III architectures.

As illustrated in figure 5.1, PC X-server software must be installed if you want to take advantage
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of the animate post-processing program. Numerous companies market inexpensive PC X-server

software. There is a reasonably complete list of commercial vendors, along with a review of four

of them at http://www.sun.com/sunworldonline/swol-11-1995/swol-11-pcx.html. There is an effort

underway to port the free servers from the XFree86 projects to Windows. Check http://sourceware.cygnus.com/cygwin

for the latest information on that effort.

5.7.2 Installation instructions

Because the main Windows interface to WHOI Cable is simply an encapsulator for the rest of the

component programs, it requires that standard versions of the cable component programs, compiled

for 32-bit Windows, be installed on your computer. These programs and the supporting DLLs are

provided as part of the standard distribution of WHOI Cable for Windows. They, along with the

actual encapsulator application, examples, and support files are installed using the provided setup

utility. To install WHOI Cable download the file wcblXXX.exe from ftp.whoi.edu using the login

name cable and the password provided on your license agreement. Replace XXX in the filename

above with the highest version number available. Start the installation process by executing the

downloaded file, either by double clicking or selecting Run from the Windows Start menu. After

installation you can safely remove wcblXXX.exe.

Your PC X-server software should generally be running before you run WHOI Cable. At startup,

WHOI Cable will check to see that it can communicate with the server. If there is a problem with

the server the program will suggest possible remedies. If no communication can be established the

animate options will not be available. In order for the encapsulator to interact with the X-server, you

should check that your DISPLAY environment variable is set. You can do this using the System icon

followed by the Environment tab available under the Control Panel of Windows NT or by adding

the line set DISPLAY=foo:0.0 (where foo is the name of your machine) to your autoexec.bat

file under Windows 95.

5.7.3 Printing from animate under Windows

Printing directly to a printer from animate running under Windows requires that you specify a valid

print device (lpt1, lpt2, com1, etc.) and that this device name be mapped to a Postscript printer.

If you use a network printer rather than a printer connected directly to your computer then you must

map the network printer name to one of the standard MS-DOS printer device names. To do this

under Windows NT you use the net use command from a command prompt. For example,

net use lpt1 \\server\ps_printer /persistent:yes

maps the lpt1 device to a printer named ps printer that is connected to the computer named

server.
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If you do not have a Postscript printer available to you then we recommend that you use the

print to file option in animate and install the freely available1 ghostscript package for printing and

viewing Postscript files on non-Postscript devices.

5.7.4 Modifying the installation

5.7.4.1 File and pathnames

After installation, you can change the paths to any of the component programs or specify replace-

ment programs for those components by selecting Files under the Setup menu. Using the file setup

dialog you can specify locations for the cable, res2mat, animate, res2asc, and cpp programs. You

can also set the directory for database template (*.ctm) and object (*.db) files (this is the directory

that will be used as the C pre-processor search directory). The directory for temporary files created

during the solution of a problem can also be set. Directory names should end with a trailing ✢ .

5.7.4.2 Templates

The template blocks inserted by the selections on the Insert menu are contained in a series of files

located in the WHOI Cable database directory. These files can be customized with any text editor

as long as their filenames are not changed.

5.7.4.3 Database files

At startup, WHOI Cable reads four files from the database directory to load objects into the object

browser. The files are material.db, connect.db, buoy.db, and anchor.db. Each database file

contains regular WHOI Cable object definitions delimited by special lines to provide descriptive

names and sectioning information. There must be at least one section in each file. Section headings

are marked by the presence of ** at the beginning of a line. Individual object definitions within a

section are preceded by a line marked by a single * and a descriptive phrase. Until another section

line (marked by **) or object name line (marked by *) is read, subsequent lines are assumed to be

a part of a valid WHOI Cable object definition. Additional sections and objects can be added to

the database files with any text editor so long as this formatting is maintained. Section names and

object descriptions within sections will be sorted by WHOI Cable upon insertion into the browser.

The database files are read only at program startup.

1from ftp.cdrom.com in pub/simtelnet/win95/print for example
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Chapter 6

Solving a Problem with WHOI Cable

In the following sections brief descriptions of a typical solution path for many different problem

types are provided. Throughout the descriptions references are made to the example input files

distributed with WHOI Cable. These files can be found in the examples subdirectory of the WHOI

Cable installation directory.

6.1 Subsurface single point moorings

Subsurface single point moorings are typically the easiest problems to solve with WHOI Cable.

Because the buoy is fully submerged the forces at the top of the mooring are easy to calculate and

outer iterations are not required. In the mine.cab example, the default static solution procedure

(catenary initial guess and a static relaxation solution) requires just two iterations to converge. In

subsurface problems with excess line on the bottom static-relaxation may need to be reduced.

For particularly complex geometries where reducing the relaxation factor does not help or produces

very slow convergence, automatic dynamic relaxation is available. While this approach is very

robust, it can take some time to converge, particularly on very long moorings.

For dynamic solutions, Morison forcing is usually most appropriate for subsurface problems.

mine.cab illustrates the application of Morison forcing with surface waves propagating in both

horizontal directions. In a two-dimensional simulation the out-of-plane propagating wave is not

used.
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6.2 Single point surface moorings

6.2.1 Taut moorings

Taut surface moorings with simple geometries and no excess line on the bottom are also typically

very easy to solve with WHOI Cable. The fastest solution path is usually a shooting method initial

guess followed by static relaxation. The static relaxation procedure will use outer iterations to

calculate the draft of the surface buoy. With a shooting method initial guess the outer iterations

are minimized because the calculated draft from the shooting method is fairly accurate. This is the

approach taken in taut.cab. When a catenary solution is used to initialize the static relaxation

procedure, the procedure to bracket the draft can be very slow. Automatic dynamic relaxation

solutions are also available for surface moorings, but again can be slow to converge for very long

moorings.

The dynamic forcing method for surface moorings is usually either velocity or wave-follower.

With velocity the motion of the buoy in all three directions can be specified with x-input,

y-input, and z-input. Remember that even though the forcing method is called velocity the

inputs are defined in terms of displacement amplitude and period. If a time series of buoy veloci-

ties are known they can be specified in a separate file using velocity-file. For wave-follower

the vertical motion of the buoy is governed by the waves described by x-wave and y-wave. The

buoy is free to respond to horizontal forcing due to time varying wind or current in each of the

horizontal directions, but horizontal forces based on waves are not part of the model. If you want

to model pure heave motion with horizontal motions constrained use velocity and z-input rather

than wave-follower.

6.2.2 Catenary moorings

The most reliable static solution procedure for shallow water catenary moorings is automatic dy-

namic relaxation. For swex.cab a chain catenary mooring in 40 m of water with a very low current,

this is the only procedure that works well. Because of the low current, the curvature at the bottom

is quite high. This makes the resolution of the touchdown point difficult and thus complicates the

static solution. Automatic dynamic relaxation works by increasing the current until an easy static

solution can be obtained (using a shooting method and a one step static relaxation). This static

solution is then used as the initial condition in a dynamic solution with no waves and the current

set to its real value. Over the course of the dynamic solution the mooring will relax back to its true

equilibrium position under the imposed current. When the mooring has come to equilibrium the so-

lution automatically stops. During this process WHOI Cable specifies a set of analysis parameters

that are designed to make this process as robust as possible. After the procedure has converged the

parameters will revert back to their original values.
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When currents are higher, as in cmo.cab, regular static solutions are more reliable. The example

in cmo.cab can be solved with static relaxation using either a catenary or a shooting initial guess.

Automatic dynamic relaxation is relatively fast for these shallow water moorings, however, and thus

could be used even in this case without a significant performance penalty.

Both swex.cab and cmo.cab demonstrate the use of experimentally recorded time series of

buoy motion in the dynamic simulations. During both the SWEX and CMO experiments time

series of acceleration were recorded at the buoy. The heave component of the acceleration was then

integrated into time series of velocity. These velocity time series are contained in the files defined

by the velocity-file statements.

6.2.3 S-tether, inverse catenary, and lazy wave moorings

Like catenary moorings, s-tether moorings are most difficult to solve when currents are very low.

In shallow water these difficulties can be avoided by using automatic dynamic relaxation as with

catenary moorings. This is the best approach for the problem in shallow s.cab for example.

Because these moorings are often employed in deep water, however, it can sometimes be faster

to employ regular static relaxation with carefully chosen analysis parameters. For deep s.cab in

3500 m of water, the fastest solution uses a catenary initial guess and static relaxation with outer

iterations. The baseline static relaxation factor is set to 0.1. Using this technique a solution is

obtained in 44 outer iteration steps with between approximately 20 and 1000 iterations at each step.

A shooting initial guess will not work for this problem. Automatic dynamic relaxation does work

for this problem but because of the long time scales associated with the motion of this very long

mooring the procedure takes a substantial amount of time (over 5000 seconds of simulation time).

6.2.4 Moorings with line floating on the surface

WHOI Cable can model moorings with line floating on the surface. Like other complex geome-

try surface moorings these problems are most reliably solved with automatic dynamic relaxation

but may be solvable using regular static relaxation with a small relaxation factor ( ✂ 0 ✝ 1) and large

numbers of iterations. Both seatex.cab and shallow s.cab (which in addition to an s-tether con-

figuration has some line floating on the surface) are best solved with automatic dynamic relaxation.

Dynamic solutions will not be accurate for most moorings with floating line because WHOI

Cable does not have a model for the wave induced motion of the line. However, if these moorings

are properly designed then dynamic motions of the mooring are small and are typically not a driving

factor in design decisions.
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6.3 Multipoint and branched moorings

6.3.1 Subsurface

Using branch definitions WHOI Cable can model both multipoint moorings and horizontal ar-

ray/aquaculture longline moorings. For both cases the problem type should be set to positioned.

In multipoint moorings like those defined in multileg.cab or multileg 3d.cab all of the legs

join at a central point. This point is defined by a connector definition (rather than a buoy definition).

Each branch leaving from this central connector defines a leg, as do the segments running from

the first terminal to the connector and the final segments running from the connector to the second

terminal. Thus a four-legged mooring will have two branches defined.

When defining horizontal array moorings branches are used to model the lines that hang down

off the horizontal member. In horiz.cab each of these hanging strings leaves from a connector and

is terminated with a sinker weight that is defined as a buoy. In loops.cab the branches are used

to form loops that run from one point on the mainline to a second point on the mainline. Looped

problems can be very difficult to solve because the force at the second end of the loop must be

adjusted until the end is colocated with the user specified node on the mainline. To get a static

solution for loops.cab adaptive relaxation had to be turned off.

The only static solution procedure available when branches are present in a problem is static

relaxation with a catenary initial guess. Outer iterations are used to calculate the reaction forces at

each of the anchors so that they will be placed at the location specified in the terminal definition.

In these problems static-outer-relaxation is used after each outer iteration to calculate a cor-

rection to the applied terminal forces based on the errors in the anchor positions. A large relaxation

factor will speed the solution but may lead to instabilities when the forces change dramatically from

step to step. It is generally safest to set it small (between 5 and 20 maybe) initially and then increase

it as the errors become smaller.

The Morison forces caused by subsurface wave particle velocities and accelerations are calcu-

lated for connectors. Just like a single point subsurface mooring then, the best choice for dynamic

forcing in these cases is morison.

6.3.2 Surface

Both of the cases using branches described above were based on the positioned problem type.

In general, however, the problem type really just specifies the treatment of the second terminal (at

the end of the main string of segments). Thus, branches can be used with other problem types as

well. The position of anchored branch terminals are only resolved in surface and positioned

problems, however.
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Multipoint moorings with a surface expression are most easily solved with a little bit of trickery.

We cannot simply use a connector as the buoy as with subsurface problems because connectors

floating on the surface are difficult to resolve in the static problem and are not accurately forced in

the dynamic problem. Instead we define the problem as we would a regular surface problem with a

dummy connector just below the surface buoy. A very short segment runs from this connector to the

buoy at the second terminal to define the mainline of the problem. Additional legs can be defined as

branches leaving from this dummy connector. In some cases the resulting problem may be solvable

using regular static relaxation.

In many cases, however, the need to resolve both buoy draft and the anchor positions at the

branch terminals leads to convergence difficulties in the outer iterations. One approach to overcom-

ing these difficulties is to take advantage of symmetry and use a manual dynamic relaxation process.

This approach was used successfully for the surface bi-moor problem in bimoor.cab. The static

solution is obtained in three phases.

In the first phase the problem type is set to positioned, the current is turned off, the branch

(the second leg) is commented out, and the second terminal with the buoy is placed at a horizontal

position in the middle of the anchors and a vertical position at the approximate draft. An easy

estimate of the draft can be calculated by balancing buoyancy and the weight of all mooring legs.

Solving this problem with regular static relaxation gives the solution for one leg.

In the second phase, the branch is uncommented, the problem type is set to general, the re-

action forces calculated at the first anchor in phase one are applied to the second anchor, and an

appropriate vertical force is applied at the buoy. The appropriate force is simply the reaction force

from phase one multiplied by the total number of legs. This problem is then solved with regular

static relaxation.

Finally, the current is turned back on, the problem type is set to surface and the solution from

phase two is loaded as the initial condition (with -load) in a dynamic relaxation solution using the

-dynstat option. With the problem type reset to surface the actual buoy draft will be used to

calculate topside forces and the system will come to a true equilibrium state.

With a complete static solution from the dynamic relaxation procedure the dynamic problem

with waves can be solved just as if this was a regular surface problem. The entire process is ob-

viously more complicated than any of the previously described static solution paths. It is described

here both as an example of a path for this particular kind of problem and also to illustrate the wide

range of possibilities that exists for determining the solution to complex problems.
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6.4 Towing problems

6.4.1 Ship maneuvering

Steady towing problems are solved as static problems. They are typically very quick to solve with

either catenary or shooting initial guesses and static relaxation. For maneuvering problems with

time varying x-speed and/or y-speed at the second terminal (ship end) the steady state (static)

solution is based on the speed at t ✆ 0. The initial cable length is the summed length of all the

segments in the problem. A pay-rate specification changes the length of the cable in the dynamic

simulation. The example problem towing.cab illustrates varying the depth of the tow body (tow-

yow’ing) using either sinusoidally varying x-speed or pay-rate. In tow3d.cab a circular ship

maneuver is used in a three-dimensional simulation to quickly drop the tow body in depth without

changing speed or paying out.

6.4.2 Tow body maneuvering

In many towing applications the ship is held fixed and the tow body is maneuverable under its own

power. By specifying a current profile and zero ship speed it is possible to calculate the motions

of such a vehicle given time varying thrust in the three global directions at the first terminal (tow

body end). The example rov.cab illustrates using a thrust definition to calculate the steady state

position of a deployed ROV when it is applying 100 pounds of thrust against the imposed current.

In some three dimensional problems these sorts of problems can be difficult to solve with regular

static relaxation. Because the steady state information is typically more interesting than dynamic

results, shooting method solutions are often a good choice as the final static solution. In cases where

the steady state configuration is two-dimensional, but three-dimensional dynamic results are desired

you can use a two-dimensional static solution to initialize the three-dimensional dynamic solver.

6.4.3 Cable laying

Cable laying or anchor lowering problems can be defined just like any other towing problem with

pay-out. A depth must be defined and variations in the bottom topography can be specified with

bottom-elevation. Once the tow body (which must be defined as a buoy) at the first terminal

strikes the bottom it is assumed to be anchored to the bottom and cannot move. An example of this

kind of problem is given in lowering.cab.
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6.5 Launch, recovery, and failure problems

6.5.1 Mooring deployment

Mooring deployment problems are defined with the problem type deployment. During a static

solution these problems are actually treated as a special case of surface problems. The anchor is

defined at the first terminal and is initially located on the surface. The speed given at the first

terminal (the ship must be making some headway or there must be some current running) will be

used to calculate the steady state configuration of the system, including buoy draft. For forward

speed into the current that configuration will have the system streamed out behind the anchor. All

of the static solution paths are available for deployment problems. For relatively short systems

automatic dynamic relaxation is usually a good choice. It is also a good choice when a mooring has

subsurface buoyancy elements that will float on the surface when the mooring is paid out but the

anchor has not been released. Regular static relaxation (sometimes with a small relaxation factor)

can also work. Either method works for the example in deploy.cab.

As soon as the regular dynamic solution starts the anchor is released from the ship and begins

to fall. Because the dynamics and hydrodynamics of the anchor are a critical part of the system

response during deployment, these problems are the only type in WHOI Cable that require a com-

pletely defined anchor. Once the anchor hits the bottom it is fixed to bottom. These simulations can

take a significant amount of time simply because the physical response of these systems is such that

they can take a long time to come to equilibrium once the anchor hits the bottom. Also, in deep

water the anchor can take many minutes of simulation time to reach the bottom.

6.5.2 Cable breaking and mooring release

Cable breaking and mooring release problems are implemented by specifying a release-time at

either terminal in any kind of dynamic simulation. After that point the buoy or anchor at that end

will be dropped from the simulation and there will be a zero force boundary condition imposed.

The example breaking.cab illustrates this for the case of breaking ROV tow cable. For mooring

release problems remember that the top (buoy) end is only free to move in the horizontal directions

if forcing-method is morison or wave-follower. Note also that breaks can currently only occur

at the two main terminals.

6.6 General tips and tricks

Regardless of problem type there are some general tricks that are helpful when convergence failures,

singularities and instabilities occur. In this section these tricks are broken down into suggestions for
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static and dynamic problems.

6.6.1 Static problems

✣ Bad initial guess

For any problem in which the initial guess based on the catenary solution for a homoge-

neous, inextensible material with drag forcing only at the two ends is a very poor guess,

consider using a small static-relaxation (maybe 0.1 – 0.2). You can also try to setting

static-initial-guess to shooting if shooting method solutions are available for your

problem type.

✣ Strong currents cause solution instabilities

If the current is sufficiently large to render the initial catenary guess a very poor solution, or if

there is current in both horizontal directions and the static solution will have a complex non-

planar shape, consider using current-steps to ramp the current slowly to its full value. 5 or

10 steps usually does the trick. At each step the initial guess is the solution from the previous

step; a greater number of steps means a smoother transition from the catenary solution with

no current to the actual solution with the full current.

✣ Low currents cause solution instabilities

For problems with very little horizontal forcing and curves in the shape, the bending radius at

the curves can be quite small, leading to difficulty in resolving static solutions. An effective

solution technique for these problems is dynamic relaxation in which the the current is artifi-

cially magnified to obtain an initial solution and then set to its true value in a dynamic solution

so that the system will come to the proper equilibrium position using the physical damping in

the problem to smooth the solution progress. You can use the command line option -dynstat

to achieve this manually or for many problem types you can use the -auto flag to automate

the process.

✣ Cable on the bottom causes singularity or convergence failure

Problems with cable lying on the bottom will almost certainly require that static-relaxation

be set to something on the order of 0.1 or possibly even smaller. Remember to allow for lots

of static-iterations with small static relaxation factors. These problems are also a good

candidate for automatic dynamic relaxation (use the -auto command line flag with cable).

✣ Surface buoy draft is difficult to converge

If the outer-iteration loop to find the draft of a surface buoy seems to be oscillating but never

converging or if it goes down to very small guessed drafts which cause instabilities or singu-

larities, use a larger static-outer-relaxation (but keep it less than 1.0, consider going to
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something like 0.98 or 0.99). You may need to raise the static-outer-iterations limit

as well. Using a the shooting method for the static-initial-guess can also speed things.

✣ Outer-iterations convergence is slow

You can usually speed up outer-iterations by raising the static-outer-tolerance to some-

thing on the order of 0.01. This tolerance translates directly to a percentage error in the

guessed draft or position of the second anchor and so usually means an answer that is good

to a couple of centimeters. A second option is to raise static-tolerance to speed the

inner-iterations at every outer-iteration.

✣ 2D solution is fine, but 3D solution is difficult

If the steady state configuration of the mooring is planar (2D) then you can use the 2D static

solver to get a solution. A solution from the two-dimensional static solver can be used with

the -load option to initialize a three-dimensional dynamic problem. This does not work

going the other way. Static solutions from the 3D solver cannot be used to initialize a two-

dimensional dynamic problem.

6.6.2 Dynamic problems

✣ Time step is always adapting

If cable is constantly adapting the time step downward (but always makes progress at the

smaller time step) then it is best to simply set the base step (time-step=) to something

smaller.

✣ The adaptation limit is exceeded

Exceeding the adaptation limit can be a sign of an unstable problem. Sometimes you will

find that setting a base time-step that is 10% of the original base results in no adaptive

reductions and reliable results. In other cases try lowering dynamic-relaxation to give ca-

ble more ability to work through a problem spot at the larger time steps. Going too low can

dramatically slow the solution down, however; 0.5 is a reasonable lower limit. If cable is

adapting because it is hitting the iteration limit, raise dynamic-iterations (particularly if

you lowered dynamic-relaxation). In very rare cases you may need to adjust the parame-

ters of the generalized-α time integration algorithm. Useful values of dynamic-lambda are

typically in the range ☎ 0 ✝ 8 ✂ λ∞
1 ✞ 2 ✂ 0 ✝ 3. λ∞

1 ✞ 2 ✆✤☎ 0 ✝ 5 is the default.

✣ There is a DC drift in solution variables

If the time histories of the result variables seem to have a large DC drift component, consider

adding nodes to the problem (throughout the system, not just at spots of high gradient) and

using ramp-time to slowly bring the excitation level to its full value. In some cases these
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errors can also be eliminated by changing dynamic-lambda. λ∞
1 ✞ 2 controls the frequency

response of the time integration; depending on the properties and forcing conditions in your

system it may be desirable to change the filtering by changing this parameter.

✣ Cable impacting the bottom causes singularities

A damping ratio that is too high can cause dramatic convergence problems. If the system has

cable which is being lifted and lowered from the bottom and the problem is not converging

well, use a smaller bottom-damping value.

✣ 2D solution is fine, but 3D solution is difficult

If a problem solves with the 2D algorithm, but runs into singularities or exceeds the adaptation

limit with the 3D algorithm, use a smaller dynamic-relaxation and a smaller base value

for time-step when using the 3D algorithm.

✣ Problems with areas of high curvature, sharp bends, or slack regions are unstable

Most of these types of instabilities can be related to the bending stiffness of the material. Try

setting EI to a larger value. For most oceanographic materials EI can be as high as 10 - 100

Nm2 without affecting the accuracy of the overall solution.
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