
Whole-body Model-Predictive Control applied to the HRP-2 Humanoid

J. Koenemann1,2, A. Del Prete2, Y. Tassa3, E. Todorov4, O. Stasse2, M. Bennewitz1 and N. Mansard2

Abstract— Controlling the robot with a permanently-updated
optimal trajectory, also known as model predictive control,
is the Holy Grail of whole-body motion generation. Before
obtaining it, several challenges should be faced: computation
cost, non-linear local minima, algorithm stability, etc. In this
paper, we address the problem of applying the updated optimal
control in real-time on the physical robot. In particular, we focus
on the problems raised by the delays due to computation and by
the differences between the real robot and the simulated model.
Based on the optimal-control solver MuJoCo, we implemented
a complete model-predictive controller and we applied it in
real-time on the physical HRP-2 robot. It is the first time
that such a whole-body model predictive controller is applied
in real-time on a complex dynamic robot. Aside from the
technical contributions cited above, the main contribution of
this paper is to report the experimental results of this première
implementation.

I. INTRODUCTION

A. Motivations

This papers deals with the problem of generating whole

body motion with contacts in real time for humanoid robots.

This generalized form of locomotion and manipulation would

allow such robots to manipulate heavy objects, climb on

uneven terrain, use the environment to stay balanced while

in multiple contacts (as in Fig. 1) with one single controller.

To achieve this the robot’s dynamical model, forces, motor

torques, self-collision, multi-contact dynamical balance have

to be considered all together on a time horizon. This makes

the problem very hard compared to classical instantaneous

inverse kinematics. MuJoCo [1], [2] realizes this by using

model predictive control and a specific contact model. So far

it was mostly tested in simulation [3]. This paper describes

a first evaluation towards a full deployment of this approach

on a real humanoid robot, namely HRP-2.

B. State of the art

Whole-body motion is typically generated by inverse

kinematics (IK) [4]. By keeping the model simple, IK is

computationally efficient, but it cannot express the whole

variety of constraints and tasks that we would typically

expect from dynamic robots such as humanoids. For instance,

the balance of a humanoid robot is an objective that is

1Jonas Koenemann and Maren Bennewitz are with Uni-
versity of Freiburg jonas.koenemann@yahoo.de,
maren@informatik.uni-freiburg.de

2Andrea Del Prete, Olivier Stasse and Nicolas Mansard
are with LAAS/CNRS, Toulouse adelpret@laas.fr,
ostasse@laas.fr, nmansard@laas.fr

3Yuval Tassa is with Google UK, London
yuval.tassa@gmail.com

4Emo Todorov is with the University of Washington
todorov@cs.washington.edu

Fig. 1: Whole-body multi-contact experiment on HRP-2. The

robot reaches for a target while it uses a table as an additional

support to keep balance.

difficult to express with IK only, except by limiting the range

of possible movements to only quasi-static ones. To extend

the range of expressiveness of motion-generation techniques,

the robotics community is switching to inverse dynamics,

i.e. computing the instantaneous joint torques leading to the

satisfaction of some operational constraints [5], referred to as

operational-space inverse dynamics (OSID) in the following.

Once more, the computation cost of the method is kept low

by considering only the instantaneous linearization of the

system at the current time instant. This more-complex OSID

model provides more expressiveness than IK: for example, it

is possible to consider instantaneous balance criteria like the

ZMP on flat terrain [6] or the positivity of the contact forces

in case of multiple contacts [7]. However, the instantaneous

linearization once more limits the range of expressiveness.

Continuing with the same example, balance control needs to

consider the future evolution of the system, because the best

definition of balance might be the capability of not falling

in the future [8]. Basically, optimal control can be seen as

an extension of OSID that considers the future evolution of

the system [9], rather than its instantaneous linearization.

The main difference is that the problem becomes nonlinear

(and in general nonconvex) and thus much harder to solve.

In particular, it is not longer possible to guarantee that the

solver outputs the global minimum of the problem (not even

that any global minimum exists [10]): we have to accept

to work with a local minimum. The properties of this local

optimum highly depends on the kind of nonlinear heuristic

that was used to search it. A first class of heuristic accepts a

time-consuming search among unfeasible solutions to finally

output a solution that might be far from the provided initial

guess [11], [12]. In that case, the optimal-control solver

rather corresponds to a path planner, providing complex

solutions, but taking minutes or hours of computation. On the

other hand, it is possible to always keep a feasible solution

during the search; in that case, the search algorithm is real-

time (we can interrupt it at any time and get a feasible

trajectory) and usually much faster. The trade-off is that the

optimum is often of lower quality. In that case, the optimal-

control solver rather corresponds to a controller, which is

able to track a planned trajectory, but has only limited

exploration capabilities [2].

C. Approach and contributions

We focus here on a specific optimal-control solver of

this second class, named differential dynamic programming

(DDP) [13]. DDP is a method to exploit the sparsity of the

optimal-control problem without explicit constraints. It is

implemented in the software MuJoCo [1]. Using multicore

parallelization and a smooth dynamics approximation [14],

MuJoCo can compute a 500ms trajectory for a 25-DOF

humanoid robot in 50ms on a standard desktop computer.

Based on this efficiency, it is possible to update in real-time

the robot trajectory and control it from the output of the

nonlinear optimal-control solver. This is referred to as model

predictive control (MPC) [15]. As described in [16], MPC

proposes some additional challenges with respect to standard

optimal control. In particular, MPC has to be able to handle

the noise due to the robot’s sensors and the delay due to the

computation time.

The contribution of this paper is to report the first applica-

tion of whole-body nonlinear model predictive control on a

humanoid robot (i.e. HRP-2). It is the first time that MPC is

applied to the whole body of a humanoid robot, controlling

the balance, handling different constraints (e.g. collisions,

joint limits) and performing the specified reaching task at

the same time.

In the next Section II, the MPC scheme and the DDP

solver are introduced. In particular we describe choices and

technical contributions that we developed to apply DDP as

an MPC on a physical robot. In Section III, the connection

between torque-based MPC model and physical position-

driven actuators is described. The experimental setup is

detailed in Section IV and the results are described and

commented in Section V. Section VI draws the conclusions.

II. MODEL PREDICTIVE CONTROL

A. Challenges in model predictive control

The optimal control problem (OCP) consists in finding the

control and state trajectories optimizing a cost functional,

typically composed of an integral term and a terminal term.

OCP outputs an optimal state trajectory X∗ that can be

followed in open-loop from the starting point to the goal.

Of course, open-loop tracking raises significant issues as

soon as the predicted model does not perfectly match the

physical system. The general idea of MPC is to update the

OCP at every iteration of the control loop and only apply on

the physical system the controls corresponding to the very

first part of the trajectory [17]. MPC is a key methodology

to properly control complex robots such as humanoids. It

would for example unlock behaviors such as multi-contact

locomotion.

The OCP is a planning problem, with its own difficulties

of existence and approximation of the solution. Besides

these problems, MPC raises additional specific challenges.

First, in general we can not neglect computation times,

and more generally neglect the delays between the sensor

measurements and the computation of the associated control

[18], [19]. We will see later that the empirical delay obtained

on HRP-2 corresponds to 10 measurement-and-control cycles

of the real robot. The use of the sensor measurements should

be carefully considered with respect to this asynchronous

delay. Several measurements can be merged to predict the

robot state before each new computation. The state prediction

must take into account the current set of optimal control

candidates [20]. Additionally, each measurement can also

be immediately used at the next control cycle, to servo the

robot on the lastly-computed optimal trajectory. The DDP is

particularly interesting for this last issue, because it outputs

the optimal Riccati gains in addition to the optimal trajectory

[21], providing an locally-optimal policy to feedback on new

sensor measurements while waiting for the DDP solver to

output a new trajectory candidate.

The control literature already described these three chal-

lenges and proposed some solutions, but the corresponding

questions are still open. The main contribution of this paper

is to experimentally exhibit these problems for the first time

on a humanoid robot. In this section, we first recall the main

facts about DDP that are necessary to understand the rest

of the paper. We then describe with more details the three

relevant problems that we noticed when applying MPC to the

real robot, and quickly describe the preliminary solutions that

we have applied in the experiments.

B. Differential dynamic programming

We consider in the following a direct resolution of OCP,

i.e. iteratively approximating a local optimum to the OCP

by a sampled (discrete-time) trajectory of state and control.

This direct method boils down to the resolution of a large

nonlinear optimization problem, using typically a Newton

or quasi-Newton method. One of the important feature to

take into account in the implementation of such a direct

OCP solver is the intrinsic sparsity arising from the temporal

structure of the problem. DDP [13] is an efficient way

to handle this sparsity while keeping the implementation

simple, in the particular case where the OCP is uncon-

strained. In that case, it is nearly equivalent to a Newton

descent [22]. We considered a quasi-DDP descent named

iterative LQR (iLQR), arising when neglecting the second-

order derivatives of both the dynamics function and the

cost residual [21]. In essence, this is very similar to the

Gauss-Newton optimization descent. iLQR is particularly

appropriate for control, since the second-order approximation

increases the computational efficiency (with the drawback,

not very important for control, that the exploration capabil-

ities are lowered by the lack of second-order terms). iLQR

has largely been described in previous papers [21], [2], [3].

We recall the major technical facts in the Appendix. Mainly,

the reader should be aware that DDP: i) is a Newton-like

optimization scheme using only first-order derivatives, ii)

takes advantage of the sparsity of the derivatives to keep

a reasonable computation cost, and iii) is able to consider

box constraints on the control variables. The solver outputs

the optimal state trajectory X∗ and the corresponding control

U∗, but also the gains K of the optimal LQR to regulate X .

We call Π = (U,K) the output policy.

C. Cost overview and real-time property

The cost of one iteration of the DDP solver is in O(m3N),
with m being the dimension of state and control, and N

being the number of preview steps. In the experiments, this

typically represents 10ms of computation (see Section VI

for details). The solver additionally needs to compute the

derivatives of both the dynamics and the cost function. For

the humanoid robot in contact with the environment, the

dynamics are computed by a contact solver and have no

closed-form; the derivatives can only be approximated by

finite differences. Thanks to the parallel computation on

several cores, this typically takes 40ms in the experiments.

These two parts are real-time: the computation time is

bounded and typically has low variance. On the other hand,

the solver also performs a line search (see Appendix), for

which we do not know in advance the number of iterations.

Each iteration is in O(N) and typically takes around 1ms in

the experiments. The intermediate solutions of the line search

are not valid because they cannot be applied on the robot:

this final part of the algorithm is therefore not real-time.

In summary, despite the parallelization, the computation

time of one iLQR iteration (around 50ms in the experiments)

is not negligible with respect to the robot control rate

(typically around 5ms) and it is not real-time. However, it is

fast enough to be recomputed online (driving the motion of

the robot) in a second thread running independently of the

real-time control thread.

D. Real-time and fast-time loops

The robot control loop is typically real-time (the motors

inputs must be updated at a regular and fast rate). On

the opposite, the optimal-control computation is typically

slower and cannot be guaranteed to converge in real-time, i.e.

within a fixed time. The optimal-control solver must then be

embedded in a second thread, which is independent of the

real-time control thread. We say that this second thread is

fast-time, i.e. it cycles as fast as possible, with some non-

constant rate variance. It is not necessary that this second

thread runs on the same computer as the control thread (in

our case, we used a laptop-style CPU onboard the robot to

host the control thread, and a desktop-style CPU offboard

for the optimal-control solver).

The sensor measurements are received by the real-time

control thread, and transferred to the optimal-control thread.

Both the trajectory optimization and the network communi-

cation introduce a delay τ , named the policy lag. The lag

MuJoCo

HRP-2

ti ti+1 ti+2

x̂
(t

i
)

x̂
(t

i
+
1
)

x̂
(t

i
+
2
)

τi τi+1

U
i (
t̄
i
:
t̄
i
+
T
)

U
i
−
1 (
t̄
i
−
1
:
t̄
i
−
1
+
T
)

U
i
+
1 (
t̄
i
+
1
:
t̄
i
+
1
+
T
)

Ui−1(t̄i : ti+1) Ui(ti+1 : t̄i+1)

t̄it̄i−1

t̄i = ti + τ̄

t̄i+1

Fig. 2: Example of communication between the real-time

control thread (“HRP-2”) and the DDP thread (“MuJoCo”).

At time ti, the updated policy Πi−1 is received before

expected (τi−1 < τ̄): the application of the new policy is

delayed. At time ti+1 it is the opposite (τi > τ̄): after

discarding the first outdated samples, the updated policy

is immediately applied. Again, at time ti+2, the lag is

overestimated, so the application of the updated policy is

delayed.

has a varying length, depending on hardware and algorithm

behavior.

E. State prediction

Each cycle of the optimal-control thread is denoted by the

index i. It corresponds to a measurement of the robot x̂i

captured at time ti, and to an output policy Πi. The policy

is received by the control thread after the lag τi. Since ti +
τi corresponds to the time of the next-cycle measurement,

we denote it by ti+1. The policy Πi can be applied at best

from ti+1. It is therefore not necessary to try to optimize

the controls Πi during the policy lag (i.e. from ti to ti+1)

since the robot will not be able to apply them. By using a

proper estimation τ̄ of τi, we therefore predict the state at

ti + τ̄ by integrating the previous policy Πi−1 starting from

the measurement x̂i.

When τ̄ is bigger than the actual τi, the policy switch

is delayed (when the policy arrives at time ti+1, the corre-

sponding control has not been optimized and we have to wait

until ti + τ̄ to have an updated control). When τ̄ is smaller

than the actual τi, the policy switch immediately applies,

but the first controls are not used since they are outdated.

A schematic view of the policy lag and state prediction is

given in Fig. 2.

F. Tracking the state

The DDP outputs redundant information: the control

policy (3) (composed of the feedforward term k and the

feedback matrix K) and the corresponding state trajectory

x∗. The control to send to the motor should then be:

u = −k −K(x− x∗)

, where x− x∗ is the deviation from the planned trajectory.

The feedback gain K will then “distribute” the correction,

depending on the effect of the deviation on the cost. Al-

ternatively, it is possible to neglect the feedback and only

apply the feedforward u = −k. Or only the reference state

x∗ can be used as input to a separate controller. This last

approximation has the advantage to lower the transmission

bandwidth (K and k are not transferred). It is also interesting

when the robot has a very good tracking system, or when

the low-level control loop is difficult to model (and therefore

to integrate in the dynamics of the MPC). This last point is

discussed in Section IV.

We experimentally tested several ways of tracking the op-

timum computed by the MPC and we report the conclusions

in the experimental Section VI.

G. MPC overview

Finally, the two main loops on the real-time control

thread and on the optimal-control threads are summarized

respectively in Alg. 1 and 2. In addition to these two loops,

a “measurement” server runs on the optimal-control thread to

receive the measurements sent from the control thread. The

measurements are buffered when they arrive but most of them

are simply discarded: only most recent measurement before

starting a new optimal-control cycle is used. And a ”policy”

server runs on the real-time control thread to receive the

optimum computed by the DDP. At the end of the transition

interval, the second-last policy is discarded.

1 for i = 0 till end, i++ do

2 get state xti ;

3 predict state xti+τ̄ by forward integration;

4 initialize state x := xti+τ̄ ;

5 initialize policy Π(ti + τ̄);
6 while i < maxiter and improvement > ǫ do

7 improvement,Π(ti+τ̄) := DDP (x,Π(ti+τ̄));
8 end

9 send control trajectory Π(ti + τ̄);
10 end

Algorithm 1: Trajectory optimization loop

1 while not finished do

2 send state xti ;

3 select latest trajectory Π valid for time ti;

4 apply control for current time u = U(ti);
5 end

Algorithm 2: Control loop

III. ACTUATOR MODEL

Typically the forward dynamic model of a mechanical

system takes forces as inputs. This implies that we should

be able to control the joint torques on our humanoid robot.

However, HRP-2 has high-ratio gear boxes, which introduce

large friction (especially static friction), making torque con-

trol challenging [23]. Implementing torque control on this

kind of robots requires a torque feedback, which is currently

not available on HRP-2. That is why HRP-2 is equipped

with a high-gain position control, which allows for accurate

tracking of the desired joint trajectories, but makes the robot

stiff.

To account for this mismatch, we modeled the position

controller in the forward dynamics of the system. On each

motor a fast control loop ensures the tracking of the desired

motor current id, which is computed as:

id = Kp(u− q)−Kdq̇,

where q is the joint position and Kp,Kd are the proportional

and derivative gains, respectively. The control input u is

then the desired joint position commanded to the low-level

controller. The motor current i is directly proportional to the

motor torque µm, which — neglecting the gear-box elasticity

— differs from the joint torque µ (mainly) because of the

friction torque µf :

µ = Kmi
︸︷︷︸

µm

−Kv q̇ − µs
︸ ︷︷ ︸

µf

,

where we split the friction torque into two parts: viscous

friction Kv q̇ and static friction µs. Under the assumption of

perfect current tracking we have then:

µ = KmKp
︸ ︷︷ ︸

K1

(u− q)− (KmKd +Kv)
︸ ︷︷ ︸

K2

q̇ − µs

To add the actuator dynamics inside the robot model

we would need to identify K1, K2 and µs. Unfortunately

modeling static friction is known to be a challenging prob-

lem [24] because it depends on position, temperature and

external forces. However, due to the high gains, the po-

sition control compensates for most of the static friction,

justifying our choice to neglect it. The identification is

performed by exciting the system with sinusoidal trajec-

tories on each joint, while collecting the desired positions

u and real positions qmeas. Then a nonlinear least-squares

problem is solved to identify the gains K1,K2 by minimiz-

ing the squared difference between the measured trajectory

x⊤

meas =
[
q⊤meas q̇⊤meas

]
and the one obtained by simulat-

ing the system:

min
K1,K2

||x− xmeas||
2 s. t. xi+1 = f(xi, ui,K1,K2)

For the simulation of the system we used the MuJoCo

simulator, whereas for the optimization we used the Matlab

function lsqnonlin.

The choice of modeling the position controller and the

actuator inside the dynamics of our system has a number of

pros and cons. On the bright side, MuJoCo is inverting the

actuator-control model, simplifying the work of the onboard

controller. Moreover, by bounding the control inputs we

can ensure the respect of the joint limits. Furthermore, we

could use a model-based reinforcement learning approach

to identify on the fly the parameters of our model, while

generating the optimal control policy. On the other side, in

this case the actuator-control dynamics is rather simple and

we could also invert it outside MuJoCo. Also, bounding the

control inputs inside the joint limits could prevent the robot

from applying the desired forces on the environment. Finally,

the full range of consequences of this choice are still unclear

to us and we believe they need further investigation.

IV. EXPERIMENTAL SETUP

A. Hardware

We carried out all the tests on the humanoid robot HRP-2.

In the first tests we used only the upper body of the robot

(10 DOFs, 4 in each arm and 2 in the torso). In the last tests

we used instead its whole body (27 DOFs), thus dealing with

an underactuated system. Onboard the robot we run a real-

time linux on a 2.93 GHz CPU where the real-time position

controller loops every 5ms, using only encoder feedback. The

local stability of the robot is enforced by the proprietary

stabilizer, which exploits the IMU and force/torque-sensor

feedback. The machine used for the MPC computation is

offboard the robot and it runs a non-real-time Windows on

a 12-core 4 GHz CPU. The two machines are connected

through a standard Wi-Fi (round-trip time below 1ms).

B. Software

In all our tests we used MuJoCo [1] for the online

trajectory optimization. Inside MuJoCo a server thread waits

for receiving the state from the robot, while a client thread

sends the computed trajectories to the robot. Onboard the

robot, a non-real-time server thread waits for the updated

control sequence, takes care of the interpolation (MuJoCo’s

trajectories have a 20ms time step, while the control period

is 5ms) and it updates the buffer containing the future control

sequence. At the same time, the real-time loop takes care of

the PD joint-position control, which applies the last control

received from MuJoCo.

C. Overview of the Experiments

In the first test the robot had to use its upper body to

reach a moving target. The target (i.e. a yellow ball) existed

in simulation only and it was moved by the user through

a 3D mouse. Using only the upper body we could neglect

the balancing problem, and focus on validating the position

control and the state prediction. Then in the second test the

robot used its whole body to reach the same moving target

while balancing (see Fig. 6). In the third test we ask the robot

to make contact on a table with its right hand, and then to

reach for a ball in front of it with the left hand (see Fig. 1).

V. RESULTS

We tested the presented control architecture in different

scenarios, both in simulation and on the real robot. The

simulation results led us to modify the MPC scheme to

overcome two issues: discontinuities in the control sequence

and divergence of the DDP algorithm. Only the modified

MPC scheme was then tested on the real robot.

0 5 10
0

0.5

1

C
os
t
te
rm

s

Time [s]

Joint torques
Joint velocity
Torso orientation
Distance to the target

Fig. 3: Cost terms during upper-body reaching.

A. Position-Driven Model — Upper-Body Reaching

This test validates the high-gain position control that we

inserted inside the dynamical model of the system. Fig. 3

shows the values (scaled to properly fit the plot) of the

cost terms along time, which are: i) distance between hand

and target, ii) z axis of torso (to keep it vertical), iii) joint

velocities, iv) joint torques. Additionally, the whole-body

dynamics and the contact constraints are enforced by the

optimal-control solver, as well as the collision and joint-limit

contraints.

The experiment on the real robot (synchronized with the

movement planned by the solver MuJoCo) is presented in

the accompanying video

1) State Update and State Prediction: The first problem

that we faced have been the discontinuities in the control

sequence introduced by the state update. We observed a

discontinuity every time the controller switched between two

subsequent control sequences received from MuJoCo. Fig. 4

shows that these discontinuities are strongly attenuated when

not updating the state. This led us not to use any state

update in the experiments on the robot. To attenuate the

discontinuities even more we performed a state prediction

(see Section II-E). In other words, each optimization starts

from the state predicted by the integration of the dynamics

(considering the policy lag) rather than from the current state.

Fig. 5 shows that the state prediction that we implemented

actually helps reducing the discontinuities of the control

sequences. Of course this approach would not work in

case of strong external disturbances, but it allowed us to

eliminate the above-mentioned discontinuities and focus on

other crucial aspects.

B. Torque-Driven Model — Whole-Body Reaching

The task was expressed through a cost function that trades

off the following (conflicting) objectives: i) reach the target

with the right hand, ii) keep the feet at their initial position,

iii) keep the capture point at the center of support polygon,

iv) keep the orientation of torso/waist upright, v) penalize

joint velocities, iv) penalize joint torques. Like previously,

the dynamics, contact and collision constraints are also

enforced by the solver.

Fig. 7 shows the values of some cost terms, while Fig. 6

shows some screenshots of both the MuJoCo simulation and

0 0.5 1 1.5 2
−40

−20

0
q
d
[d
eg
]

Time [s]

(a) Control sequence with state update.

0 0.5 1 1.5 2
−40

−20

0

q
d
[d
eg
]

Time [s]

(b) Control sequence without state update.

Fig. 4: Control sequences for the 4 joints of the left arm

during a reaching motion. The discontinuities are much larger

when updating the state.

the real robot. The whole sequence can be watched in the

accompanying video.

1) Actuator Model: In this test we could not use the

position-driven model in MuJoCo because it led to diver-

gence of the DDP. We believe that this did not happen

in the first test because of the lack of contacts with the

ground. To overcome this issue we used a standard torque-

driven dynamic model; then we sent the state trajectories as

references for the joint-position control.

2) Self-Collision Avoidance: Fig. 8 proves the effective-

ness of the self-collision avoidance implemented in MuJoCo.

Even if we moved the target inside the waist of the robot we

see no penetration between the capsules used to approximate

the robot’s links.

C. Torque-Driven Model — Whole-Body Multi-Contact

Finally, we performed a reaching motion while controlling

the robot balance with the other hand. This experiment

confirms the capabilities of the optimal-control approach,

that is able to unify many different operation modes of the

robot in a single controller. For this test the cost function of

the previous test has been marginally modified to bring the

robot in contact. We removed the term penalizing inclinations

of the torso/waist and we decreased the weight of the capture-

point term. Moreover, we added a term to reach a target

with the left hand. Contrary to the previous tests, here we

used a sequence of four different cost functions to guide the

motion of the robot over time. The difference between the

0 2 4 6
−0.1

0

0.1

0.2

0.3

q̇
d
[r
a
d
/
s]

Time [s]
(a) With state prediction, expected policy lag τ̄ = 0.12 s.

0 2 4 6
−0.1

0

0.1

0.2

0.3

q̇
d
[r
a
d
/
s]

Time [s]
(b) Without state prediction, expected policy lag τ̄ = 0 s.

Fig. 5: Numerical derivative of the control sequences for

the 12 leg joints during a reaching motion. Derivatives are

computed by finite differences. Blue circles represent the

difference between the policy lag and the expected policy lag.

When this is greater than zero a discontinuity is expected.

Fig. 6: Whole-body experiment on the real robot. The robot

tracks a ball with its right hand while it keeps balance. The

whole sequence can be seen in the accompanying video.

0 5 10
0

0.5

1

C
os
t
te
rm

s

Time [s]

Joint torques
Joint velocity
Capture point
Distance to the target

Fig. 7: Cost terms during whole-body reaching.

0 0.5 1 1.5 2 2.5
0

5

10

15

20

C
ap

su
le

d
is
ta
n
ce
s
[m

m
]

Time [s]

Fig. 8: Distances between the closest capsules. Negative

distances would imply penetration.

cost functions was only the target positions of the right/left

hands (see position of the colored balls in Fig. 1). To get the

right hand in contact with the table we moved the associated

target below the table. The whole sequence can be seen in

the accompanying video.

VI. CONCLUSIONS

This paper described the first application of real-time

whole-body MPC on a full humanoid robot. We carried out

all the experiments on the HRP-2 robot using MuJoCo for

the online trajectory optimization. Besides the experimental

results, the contributions of this work are the modifications

of the MPC scheme that we implemented to address two

practical issues: the discontinuities in the control sequences

and the actuation differences between model and real robot.

These issues appear only when working with a real complex

mechanical system, which is why they have been overlooked

by previous simulation studies.

In the near future we will investigate how to reintroduce

the state update inside the MPC scheme while maintaining

smooth control sequences. Also we are in the process of

implementing joint-torque control on HRP-2, which would

allow us to use a torque-driven model for the trajectory op-

timization. Our goal is to gradually increase the complexity

of the generated motion: our next step is to have the robot

making dynamic motion while making and breaking contacts

with the environment, e.g. walking with additional support

of the hands.

APPENDIX

DIFFERENTIAL DYNAMIC PROGRAMMING

A. Problem definition

Consider a discrete dynamical system with state x and

control u:

xi+1 = f(xi, ui) (1)

The optimal control problem consists of minimizing a user-

defined cost J(x0, U) over a certain time horizon N :

U∗ = argmin
U

N−1∑

i=0

l(xi, ui) + lf (xN)

︸ ︷︷ ︸

J(x0,U)

Since DDP is an implicit method, it represents the trajectory

through the control sequence U = {u0, . . . , uN−1}, while

the states are computed integrating (1). Let us define the

cost-to-go as:

Jj(xj , Uj) =
N−1∑

i=j

l(xi, ui) + lf (xN),

where Uj = {uj , . . . , uN−1}. The Value at time i is the

optimal cost-to-go starting at xi:

Vi(xi) = min
Ui

Ji(xi, Ui) = min
ui

[l(xi, ui) + Vi+1(f(xi, ui))]

B. Dynamic Programming

The Dynamic-Programming principle simplifies this min-

imization over the entire control sequence U to a cascade of

minimizations over the single controls ui. Starting by setting

VN (xN) = lf (xN), we can optimize backwards in time until

we find the entire optimal control sequence U∗.

C. Differential resolution

Solving this cascade is not possible in the general case, due

to the well-documented Bellman’s curse of dimensionality.

To solve each nonlinear optimization, the cost variation is

therefore approximated with a quadratic function:

Q(δx, δu) =l(x, u)− l(x+ δx, u+ δu)+

V ′(f(x, u))− V ′(f(x+ δx, u+ δu))

≈





1
δx

δu





⊤ 



0 Q⊤

x Q⊤

u

Qx Qxx Qxu

Qu Qux Quu









1
δx

δu



 ,

(2)

where the coefficients (i.e. first and second derivatives of Q

with respect to x and u) are simply obtained as functions of

the derivatives of the cost l(x, u), the Value V (x) and the

dynamics f(x, u) (see [2] for the exact expressions). While

DDP uses the complete expressions of these coefficients,

iLQG neglects the second derivatives of the dynamics in

order to make the computation faster. In both cases, the

solution of the quadratic approximation is then:

δu∗ = argmin
δu

Q(δx, δu) = −Q−1
uuQu

︸ ︷︷ ︸

k

−Q−1
uuQux

︸ ︷︷ ︸

K

δx (3)

Substituting δu∗ in (2) we get a quadratic model of V , which

we need to propagate backwards in time.

D. Line search

After computing δu∗ for the whole horizon we update the

control policy Û and the corresponding state trajectory X̂

starting from x̂0 = x0:

ûi = ui − αki −Ki(x̂i − xi)

x̂i+1 = f(x̂i, ûi),

where α is a backtracking search parameter, initially set to 1

and then iteratively reduced. The complete description of the

nonlinear heuristic to adjust α is based on the Levenberg-

Marquardt algorithm and it is described in [2].

REFERENCES

[1] E. Todorov, T. Erez, and Y. Tassa, “MuJoCo: A physics engine
for model-based control,” in Intelligent Robots and Systems (IROS),

IEEE/RSJ International Conference on, 2012.

[2] Y. Tassa, T. Erez, and E. Todorov, “Synthesis and stabilization of com-
plex behaviors through online trajectory optimization,” in Intelligent

Robots and Systems (IROS), IEEE/RSJ International Conference on,
2012, pp. 4906–4913.

[3] Y. Tassa, N. Mansard, and E. Todorov, “Control-limited differential
dynamic programming,” in Robotics and Automation (ICRA), IEEE

International Conference on, 2013.

[4] P. Baerlocher and R. Boulic, “Task-priority formulations for the kine-
matic control of highly redundant articulated structures,” Intelligent

Robots and Systems, no. 2, 1998.

[5] J. Park, “Control strategies for robots in contact,” Ph.D. dissertation,
Stanford, 2006.

[6] M. Vukobratović and B. Borovac, “Zero-moment pointthirty five years
of its life,” International Journal of Humanoid Robotics, vol. 1, no. 1,
pp. 157–173, 2004.

[7] L. Saab, O. E. Ramos, N. Mansard, P. Soueres, and J.-y. Fourquet,
“Dynamic Whole-Body Motion Generation under Rigid Contacts and
other Unilateral Constraints,” IEEE Transactions on Robotics (to

appear), pp. 1–17, 2013.

[8] P. Wieber, “Viability and predictive control for safe locomotion,” Intel-

ligent Robots and Systems (IROS), IEEE/RSJ International Conference

on, 2008.

[9] P. Geoffroy, N. Mansard, and M. Raison, “From Inverse Kinematics
to Optimal Control,” in ARC, Advances in Robot Kinematics., 2014,
pp. 409–418.

[10] J. Laumond, N. Mansard, and J. Lasserre, “Optimality in robot motion:
optimal versus optimized motion,” Communications of the ACM, 2014.

[11] I. Mordatch, E. Todorov, and Z. Popović, “Discovery of complex
behaviors through contact-invariant optimization,” ACM Transactions

on Graphics, vol. 31, no. 4, pp. 1–8, July 2012.
[12] K. Mombaur, “Using optimization to create self-stable human-like

running,” Robotica, 2009.
[13] D. Jacobson and D. Mayne, Differential dynamic programming. El-

sevier, 1970.
[14] E. Todorov, “Implicit nonlinear complementarity: A new approach

to contact dynamics,” in 2010 IEEE International Conference on

Robotics and Automation, no. 5. Ieee, May 2010, pp. 2322–2329.
[15] M. Alamir, Stabilization of nonlinear systems using receding-horizon

control schemes: a parametrized approach for fast systems. Springer
(LNCIS), 2006.

[16] ——, “Fast NMPC: A reality-steered paradigm: Key properties of fast
NMPC algorithms,” European Control Conference (ECC), June 2014.

[17] M. Diehl, H. G. Bock, and J. P. Schlöder, “A real-time iteration scheme
for nonlinear optimization in optimal feedback control,” SIAM Journal

on control and optimization, vol. 43, no. 5, pp. 1714–1736, 2005.
[18] V. Zavala and L. Biegler, “The advanced-step nmpc controller: Opti-

mality, stability and robustness,” Automatica, vol. 45, no. 1, pp. 86–93,
2009.

[19] M. Alamir, “Monitoring control updating period in fast gradient based
nmpc,” in Control Conference (ECC), 2013 European. IEEE, 2013,
pp. 3621–3626.

[20] ——, “Fast nmpc: Some good news and some facts to keep in mind,”
in European Control Conference (ECC), Strasbourg, France, June
2014, [plenary talk].

[21] W. Li and E. Todorov, “Iterative linear-quadratic regulator design for
nonlinear biological movement systems,” in ICINCO (1), 2004, pp.
222–229.

[22] D. M. Murray and S. J. Yakowitz, “Differential dynamic programming
and Newton’s method for discrete optimal control problems,” Journal

of Optimization Theory and Applications, vol. 43, no. 3, pp. 395–414,
July 1984.

[23] S. Traversaro, A. Del Prete, R. Muradore, L. Natale, and F. Nori, “Iner-
tial Parameter Identification Including Friction and Motor Dynamics,”
in Humanoid Robots, 13th IEEE-RAS International Conference on,
Atlanta, Georgia, 2013, pp. 1–6.

[24] H. Olsson and K. Å ström, “Friction models and friction compensa-
tion,” European journal of control, vol. 4, no. 3, pp. 176–195, 1998.

