
Whole-body Motion Planning with

Centroidal Dynamics and Full Kinematics

Hongkai Dai, Andrés Valenzuela and Russ Tedrake

Abstract— To plan dynamic, whole-body motions for robots,
one conventionally faces the choice between a complex, full-
body dynamic model containing every link and actuator of the
robot, or a highly simplified model of the robot as a point mass.
In this paper we explore a powerful middle ground between
these extremes. We exploit the fact that while the full dynamics
of humanoid robots are complicated, their centroidal dynamics
(the evolution of the angular momentum and the center of mass
(COM) position) are much simpler. By treating the dynamics of
the robot in centroidal form and directly optimizing the joint
trajectories for the actuated degrees of freedom, we arrive at
a method that enjoys simpler dynamics, while still having the
expressiveness required to handle kinematic constraints such as
collision avoidance or reaching to a target. We further require
that the robot’s COM and angular momentum as computed
from the joint trajectories match those given by the centroidal
dynamics. This ensures that the dynamics considered by our
optimization are equivalent to the full dynamics of the robot,
provided that the robot’s actuators can supply sufficient torque.
We demonstrate that this algorithm is capable of generating
highly-dynamic motion plans with examples of a humanoid
robot negotiating obstacle course elements and gait optimization
for a quadrupedal robot. Additionally, we show that we can plan
without pre-specifying the contact sequence by exploiting the
complementarity conditions between contact forces and contact
distance.

I. INTRODUCTION

Humanoids are created with the dream of performing com-

plex and dynamical motions like humans. Recent demonstra-

tions, like the December 2013 Trials of the DARPA Robotics

Challenge, have shown that while today’s humanoids are

capable of performing kinematically complex motions in

uncontrolled environments, they are often restricted to the

quasi-static regime. One reason for this is the difficulty in

planning complex whole-body dynamic motions at interac-

tive rates when the environment is not known a priori.

There are, broadly speaking, two approaches to dynamic

motion planning for a humanoid robot. Some researchers

use trajectory optimization with full-body dynamics. This

approach can produce beautiful trajectories [16] [20] [4],

but due to the complexity of the full-body dynamics, these

optimizations can take an excessively long time to run, and

may also suffer from local minima. Thus, this approach can

become intractable for complex robots. On the other hand,

there exists a large arsenal of planning algorithms that use

a simple dynamics model like the linear inverted pendulum

[12], [5]. With Zero Moment Point (ZMP) as the stability

H.Dai, A.Valenzuela and R.Tedrake are with Com-
puter Science and Artificial Intelligence Lab, MIT
daih,avalenzu,russt@csail.mit.edu

Fig. 1: Atlas robot subject to contact forces (blue arrows)

on feet and hand, and contact torque (green arrows) on left

hand when it grasps the hand rail. These contact wrenches

and the gravitational force generate the aggregated force

(blue arrow), and the aggregated torque (green arrow) at the

Center of Mass (red sphere). The aggregated force and the

torque equals to the rate of the centroidal linear and angular

momentum.

criteria, motion plans can be computed at interactive rates.

However, there are some limitations to this approach. The

over-simplified model regards the robot as a point-mass, and

thus ignores all the kinematics constraints. Moreover, these

models typically rely on the assumption that the center of

mass (COM) height is constant (or on a constant slope), that

the ground is flat, and the robot is only subject to unilateral

ground contact forces on the feet. Thus, the formulation

requires variations to apply to walking on uneven ground,

and it is not applicable to more complicated motions like

jumping and climbing. Additionally, the point-mass model

suggests that the centroidal angular momentum is zero,

which is not valid for motions requiring fast arm swinging.

As a result, we need to resort to other stability criteria and

models to design complex whole-body motion.

Maintaining the contact wrench sum (CWS) within the

contact wrench cone (CWC) is proposed as a universal sta-

bility criteria for robot dynamics to replace the conventional

ZMP [10]. It states that the aggregated wrench generated

by the contact and the gravitational force, should be equal to

the rate of linear and angular momentum of the robot. Unlike

maintaining the ZMP within a support polygon, this criterion

holds for arbitrary motions and contact profiles. However,

like ZMP-based criteria, it eschews the complex, joint-level

dynamics of a full-body model, and summarizes the robot’s

dynamic state into a simple quantity, in this case its momenta.

There has been a great success in controlling robots based

on momenta [14] [13], including the resolved momentum

control framework proposed by Kajita et. al. [11] [18]. In the

graphics community, Ye constructs an abstract model with

momenta being the state, and develops an optimal controller

to simulate the character in the physics based animation [26].

The success of using momenta in motion control encourages

us to apply the similar idea to whole-body motion planning.

A key observation is that the simple dynamics formu-

lations, including ZMP and CWS formulations, can all be

formulated as a nonlinear trajectory optimization problem.

While this is not the standard formulation, it can still provide

extremely efficient solutions. Similarly, while the inverse

kinematics problem can be solved in closed-form for simple

kinematic chains and relatively simple constraints, we have

recently developed a fast and rich inverse kinematics engine

based on nonlinear optimization[6]. Together, these obser-

vations highlight a continuum of algorithms which range

from using simple dynamics to full dynamics, and/or simple

kinematics to full kinematics. In this paper we explore a

powerful middle ground, with simple dynamics and full

kinematics. The hope is that we can rapidly find feasible

trajectories for complex tasks. We demonstrate a variety

of dynamic behaviors including a humanoid dynamically

negotiating an obstacle course and dynamic gait optimization

for a quadruped.

This paper is organized as follows. In Section II we de-

scribe the simple dynamics model and full kinematics model,

as well as our formulation of the nonlinear programing

problem. We also describe the variation of our formulation

to incorporate planning unscheduled contact sequence. In

Section III, we show our results on Atlas performing a variety

of complex motions, and on LittleDog. We conclude our

discussion in Section IV.

II. APPROACH

When a humanoid robot is in interacting with complex

environments, kinematic reachability and collision avoidance

can be just as important and constraining as the dynamic

constraints like maintaining contact forces inside of a friction

cone. To this end, we use a full kinematics model to

enforce geometric contact conditions, and a dynamics model

that encodes the relationship between the contact wrench

(force/torque) on the robot and the robot’s momenta.

A. Simple dynamics model

Robots with n joints have a total of n + 6 degrees

of freedom (DOF), including joints and the 6 generalized

coordinates for floating base. Even with full actuation of the

joints, the six DOFs of the floating base are un-actuated.

Those six degrees of freedom cannot be controlled directly;

instead, the rates of those six DOFs are determined by the

motion of the robot’s links and the external wrenches on the

robot, namely, the contact wrenches and the gravitational

force. Those six DOFs can be represented using the robot’s

linear and angular momentum at the COM. A necessary

condition for a physically tractable motion is that the rate

of centroidal linear and angular momentum, computed from

the robot’s joint angles and velocities, equals the total wrench

generated by the external contacts and the gravitational force:

mr̈ =
∑

j

Fj +mg (1a)

ḣ(q,v) =
∑

j

(cj − r)× Fj + τj (1b)

where m is the total mass of the robot, r ∈ R
3 is the

COM position, Fj ∈ R
3 is the contact force at jth contact

point, and g ∈ R
3 is the gravitational acceleration. Eq.(1a)

is Newton’s second law enforcing that the rate of linear

momentum of the robot equals the total external forces.

h(q,v) ∈ R
3 is the centroidal angular momentum computed

from the robot posture q ∈ R
n+6 and posture velocity

v ∈ R
n+6. cj ∈ R

3 is the position of the jth contact point.

τj ∈ R
3 is the contact torque at the jth contact point. Eq.(1b)

enforces that the rate of centroidal angular momentum equals

the torque generated by the contact wrenches at the COM.

The centroidal angular momentum can be computed using

the method described in [19]

h(q,v) = A(q)v (2)

where A(q) ∈ R
3×(n+6) is the centroidal angular momen-

tum matrix.

Assuming sufficient control authority (sufficient DOFs

away from singularity and strong actuators), the six equa-

tions (1a-1b) are also sufficient conditions for planning

dynamically feasible motions. Many robots, including most

humanoids, have actuators for every internal joint; in that

case, for any desired joint acceleration there is always a

joint torque to achieve such motion. As a result, if we

ignore force/torque limits of the actuators, then we can ignore

the internal, joint-level dynamics of the robot. Thus the six

equations (1a-1b), which relate the external wrenches to the

overall momentum of the robot, are necessary and sufficient

to describe the dynamics of the robot. This dynamics model

is much simpler than the full-body model, with fewer con-

straints (n+6 to 6), and fewer variables, as the joint torques

can be computed subsequently using inverse dynamics.

B. Full kinematics model

In order to accommodate the geometric constraints im-

posed by interaction between the robot and its environment,

we plan using a full model of the robot’s kinematics. This

allows us to specify a rich variety of constraints on the

robot’s motion. These range from simple constraints on

the position/orientation of the robot’s end-effectors, to gaze

constraints between links of the robot (“the head must look

at the right hand”), to constraints across multiple points in

time (“the right foot must remain stationary between times t1
and t2”), to collision avoidance constraints. Several of these

constraint types are demonstrated in Figure 2.

Since we wish to resolve kinematic constraints at multi-

ple instants in time, where the joint configuration at each

Fig. 2: Solving inverse kinematics problem with different

types of kinematic constraints. The left foot and the right

foot toes are constrained to lie within the shaded regions.

A point (red sphere) on the right hand is constrained to be

within the shaded bounding box. The head camera gazes

at the point (red sphere) on the right hand, such that the

point is within a cone originated from the camera, with 15◦

being the half angle of the cone. The left hand orientation is

constrained to be the same as the green hand drawn by side.

instant is in some way related to that at adjacent instants,

analytical or Jacobian transpose based approaches to inverse

kinematics that consider the solution at a single instant in

time [2] are not sufficient. However, the formulation of

inverse kinematics as a nonlinear optimization extends quite

naturally to this situation. The kinematic model requires n+6
decision variables for each instant considered which leads

to large optimization problems. Fortunately, satisfaction of

each kinematic constraints depends only on the state of the

robot during a particular interval in time. Therefore a motion

planning problem with kinematic constraints will tend to be

sparse, in that each constraint will depend on only a small

fraction of the decision variables.

C. Collision model

One of the more complex kinematic constraints on the

motion of a humanoid robot is that the motion be collision

free. Our collision model consists of nelem convex collision

geometries each of which is attached to the world or one of

the robot’s links at a known transform. Let dij (q) denote

the minimum distance between the i-th and j-th collision

elements for the configuration vector q. The distance be-

tween two collision elements can be efficiently computed

for many classes of convex geometries with the Gilbert-

Johnson-Keerthi algorithm (GJK) [7]. In this work we use

the implementation of GJK in the Bullet Physics SDK [3].

Let dmin denote the minimum allowable distance between

any pair of collision geometries, and let d̄ij (q) denote their

difference. Thus we wish to enforce that

d̄ij = dij (q)− dmin ≥ 0, ∀ (i, j) ∈ P (3)

where P ⊂ {1, . . . , nelem} × {1, . . . , nelem} is the set of

index pairs that correspond to pairs of potentially colliding

geometries. The number of potential collision pairs grows

with the square of the number of collision geometries. In

order to decrease the number of collision avoidance con-

straints that must be added to the trajectory optimization,

we can combine all of the collision pairs using a hinge-loss-

like function. Schulman et. al. use a true hinge-loss function

for a similar purpose [22]. Here we use a smooth function

γ (x) that is identically zero for all positive x, greater than

zero for all negative x, and approaches −x asymptotically

as x goes to negative infinity:

γ (x) =

{

0 x ≥ 0

−xe
1

x x < 0
(4)

This function has the advantage of being infinitely differ-

entiable for all x. The overall collision constraint is given

by

Γ (q) =
∑

(i,j)∈Pij

γ
(

cd̄ij (q)
)

= 0, (5)

where c is a positive scaling factor. In the examples shown

here c was taken to be 1
dmin

. Since each term of the sum in

(5) is non-negative, (5) holds if and only if all terms of that

sum are zero, which in turn implies that (3) holds.

D. Trajectory Optimization

To compute a feasible motion plan, we transcribe the

differential equations of the simple dynamics (1a-1b) to

algebraic equations and solve them through nonlinear op-

timization. This technique is widely used in trajectory op-

timization [1], [9], [25]. Here we sample all time-varying

quantities at N knot points, with the time durations, h,

between knot points being flexible. The optimization problem

we formulate contains as decision variables the robot state

q,v, COM position r, velocity ṙ, acceleration r̈, contact

positions c, contact forces F, contact torques τ , centroidal

angular momentum h and its rate ḣ at each knot as well as

the time duration between each pair of adjacent knot points,

dt. We use the following objective for our optimization:

min
q[k],v[k],dt[k]
r[k],ṙ[k],̈r[k]

cj [k],Fj [k],τj [k]

h[k],ḣ[k]

N
∑

k=1

(

|q[k]− qnom[k]|
2
Qq

+ |v[k]|
2
Qv

+ |̈r[k]|
2

+
∑

j

(c1 |Fj [k]|
2
+ c2|τj [k]|

2)



 dt[k],

(6)

where |x|2Q is the abbreviation for the quadratic cost

x′Qx, Q � 0. The square bracket [k] means the sampled

value at the kth knot point. qnom represents a nominal

posture. The first three quantities in the cost are penalization

of the weighted sum on the posture error, joint velocities

and COM acceleration. We also penalize the weighted L2

norm of the contact wrench with the cost
∑

j(c1 |Fj [k]|
2
+

c2|τj [k]|
2),where c1, c2 are positive scaling factors. This L2

norm cost has two effects: it can prevent a large contact

wrenches which could damage the robot, and it also encour-

ages the contact wrenches to be more evenly distributed.

The constraints for the optimization problem include the

dynamical constraints (1a-1b, 2), at each knot point:

mr̈[k] =
∑

j

Fj[k] +mg (7a)

ḣ[k] =
∑

j

(cj[k]− r[k])× Fj[k] + τj[k] (7b)

h[k] = A(q[k])v[k]. (7c)

For simplicity, we use Euler integration to approximate the

time derivative function for posture q and centroidal angular

momentum h. For numerical stability, backward-Euler is

adopted in our formulation. The time integration constraints

are

q[k]− q[k − 1] = v[k]dt[k] (7d)

h[k]− h[k − 1] = ḣ[k]dt[k]. (7e)

The COM position is approximated using a piecewise

quadratic polynomial, and its time integration constraints are

r[k]− r[k − 1] =
ṙ[k] + ṙ[k − 1]

2
dt[k] (7f)

and

ṙ[k]− ṙ[k − 1] = r̈[k]dt[k]. (7g)

We also have the kinematic constraints that compute the

COM and contact positions from robot posture

r[k] = com(q[k]) (7h)

cj [k] = pj(q[k]) (7i)

cj [k] ∈ Sj [k] (7j)

where com (q) is a function that computes the COM location

given the robot posture q, pj(q) is the forward kinematics

function to compute the position of the jth contact point for

configuration q, and the set Sj is the desired contact region

(ground, stepping stones, hand rail, etc).

We further include joint-limit constraints on posture q,

constraints on joint velocities, and constraints on the contact

wrench.

q ∈ Q,v ∈ V,

[

Fj

τj

]

∈ wj (7k)

where Q is the admissible set of the posture, V is the admis-

sible set of velocities. The set wj represent the constraints

on the contact wrench, for example, friction cone constraints,

or bounded magnitude on the contact wrench. We can also

incorporate additional kinematics constraints, such as those

described in subsections II-B and II-C.

This nonlinear optimization problem has very sparse gra-

dients, since most constraints only depend on variables at a

single knot point or two adjacent knot points. Such nonlinear

Fig. 3: Illustration of the contact point cj , its distance φj to

the contact surface Sj , and the local coordinate frame on the

tangential surface, with unit vector tx, ty . The complemen-

tarity condition holds between contact distance φj and the

normal contact force Fn
j .

programs with sparse gradients can be solved efficiently

using powerful nonlinear solvers like SNOPT [8], which we

use for the examples in Section III.

E. Unscheduled Contact Sequence

When designing robot motion with contact, the traditional

approach is to pre-specify a contact mode sequence, for

example, heel touch → toe touch → heel off → toe off, and

then use optimization to find a trajectory for this fixed mode

sequence. However, the number of possible contact modes

grows exponentially with the number of contact points, and

the number of possible mode sequences for a given set of

contact modes grows exponentially with the number of knot

points. This makes it hard to choose a mode sequence prior to

optimization in many cases. Optimization methods that can

search over all possible mode sequences at once are therefore

very useful. By exploiting the complementarity condition

between the contact force and the distance to contact, Posa

formulates a direct trajectory optimization problem that does

not require a pre-specified contact sequence [21]. In this

paper we apply the same idea to our motion planning

algorithm.

The complementarity constraints on the contact wrench

and contact distance are

Fn
j [k]φj(q[k]) = 0 (8a)

|τj [k]|
2φj(q[k]) = 0 (8b)

Fn
j [k] ≥ 0, φj(q[k]) ≥ 0 (8c)

where Fn
j ∈ R is the magnitude of the normal contact

force at the jth contact point, φj(q) is the distance of

the jth contact point cj to the contact surface Sj (ground,

hand rail, etc.). The scalar product being zero in equations

(8a-8b) means that either the body is not in contact with

the environment, and thus the contact wrench is zero, or

the distance between the body and the contact surface is

zero and therefore the contact wrench may be non-zero.

The relationship between the contact force and distance is

illustrated in Fig. 3.

For simplicity of analysis, we also impose the constraint

that bodies in contact with the environment do not slide. We

can use the following complementarity constraint when only

contact forces exist at a certain contact point, and the contact

torque is always zero:

Fn
j [k] ((cj [k]− cj [k − 1])′tx) = 0 (9a)

Fn
j [k] ((cj [k]− cj [k − 1])′ty) = 0, (9b)

where tx, ty ∈ R
3 are mutually orthogonal unit vectors

on the tangent surface of the contact (Fig. 3). The com-

plementarity constraints (9a-9b) state that if the normal

contact force exists, i.e. , the body is in contact, then the

tangential displacement of the body between the two adjacent

knots must to be zero; if the body moves in the tangential

directions, then the normal force has to be zero, i.e. , the

body is not in contact.

When we want the solver to search over all possible

contact sequences, we add the complementarity constraints

(8a-8b, 9a-9b) into the optimization problem in the previous

subsection. Additionally, the objective function (6) must be

changed: it can no longer include the L2 norm on the contact

wrench. This is due to the fact that penalizing the L2 norm

would encourage the forces to be distributed more evenly

among the contact points, biasing the optimization towards

solutions in which all potential contact points are active at the

same knot point. Therefore, the objective function is reduced

to

min
N
∑

k=1

(

|q[k]− qnom[k]|
2
Qq

+ |v[k]|
2
Qv

+ |̈r[k]|
2
)

dt[k].

(10)

Alternatively, we could also add the L1 norm of the

wrench in the cost, so as to encourage sparse solutions,

meaning the contact points tend to be active at different

moments.

With the extra complementarity constraints and the revised

objective function, the solver can search over all possible

contact sequences.

III. RESULTS

For our numerical experiments, we primarily use a dy-

namic model of the Atlas humanoid robot [17], built by

Boston Dynamics, Inc for use in the DARPA Robotics

Challenge.

A. Jumping

Our first example is to command the robot to jump off the

ground, as illustrated in Fig. 4. We assign contact points to

the four corners of each foot. The contact sequence is fixed as

1) heels take off 2) toes take off 3) toes touch ground 4) heels

touch ground. After computing the planned trajectory, we

simulate the jumping motion in Drake [24], stabilized by the

feedback controller developed by Kuindersma, Permenter,

and Tedrake [15]. The simulated motion is shown in the

supplemental video.

We also compute the motion of Atlas jumping off of a box,

with box height 29 centimeters. The contact sequence is the

same as that used in the flat ground case. In this example we

Fig. 4: Atlas jumps off the ground

Fig. 5: Snapshots of Atlas jumping off from a box

add the kinematic constraint that the feet must avoid collision

with the box during the flight phase. Some snapshots of the

resulting motion are shown in Figure 5.

B. Running

Our next example consists of generating a periodic running

gait for Atlas. To do this, we plan a trajectory consisting of

a single half-stride starting at the apex of a flight phase. The

mode sequence is specified to be flight, left-stance, left-toe-

stance, flight. We constrain the initial and final states relative

to each other such that all quantities are mirrored about the

robot’s sagittal plane. This yields a half-stride that can be

mirrored and concatenated to yield a full stride. In addition

to these periodicity constraints and the kinematic constraints

enforcing the mode sequence, we specify a stride length

and speed (2m and 2m/s respectively), require a minimum

distance between collision geometries of 3 cm, and constrain

the robot’s head cameras be point within 15◦ of the robot’s

direction of travel. The remainder of the robot’s trajectory

is unconstrained. Snapshots from the stance phase of the

resulting motion are shown in Figure 6. Figure 7 shows

the resulting COM trajectory and vertical ground reaction

force profile. We also simulated this running motion with

the controller from [15]; the simulated motion is shown in

the supplemental video.

Starting from this periodic gait we can employ our col-

lision avoidance constraints to generate running motions in

obstructed environments. Figure 8 shows snapshots from a

trajectory which takes Atlas through the obstructed door

presented by Schulman et. al. [22] at 2m/s. The end-points

(a) Touch-down (b) Mid-stance (c) Toe-off

Fig. 6: Snapshots of Atlas during stance

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.85

0.9

0.95

1

C
O
M
h
e
ig
h
t
(m

e
te
rs
)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

1

2

3

V
e
rt
ic
a
l
N
G
R
F

COM height

NGRF

touch−down

heel take off

toe−off

Fig. 7: COM height and normalized vertical ground reaction

force
(

F
mg

)

during running. The markers indicate the height

of the COM at the knot points

of this trajectory are the same as those of the original,

un-obstructed half-stride, allowing an immediate return to

periodic motion after traversing the door.

C. Monkey bars

In this test case, the robot jumps up from a platform to

grasp a bar, then makes several swings, and finally to lands

on another platform, as illustrated in Fig. 9. The spacing or

the height of the bars changes between each swing.

As grasp-planning is outside of the scope of this work, we

do not use a full hand model for this example. Rather, we

assume that the kinematic constraint for grasping consists of

the center of the hand coinciding with the axis of the bar,

and a predefined axis on the hand being coaxial with the bar

Fig. 8: Atlas goes through an obstructed door

Fig. 9: A snapshot of the monkey bars

(a) Landing with a fixed mode
sequence. The left and right toes
touch the ground first

(b) Landing without a pre-
specified mode sequence. The
left heel touches the ground first

Fig. 10: Comparison of landing posture without pre-specified

contact sequence

to within 15◦. In order not to avoid damaging the hand with

excessive contact wrenches, we suppose the magnitude of

the contact force on each hand is bounded, and the contact

torque is within a bounding box centered at the origin. With

these assumptions, we compute the motion in the monkey

bar tasks, which is shown in the attached video.

Unspecified contact sequence for landing: While it is sim-

ple to determine the contact sequence for swinging across the

bars (recall that the timing of the modes is still determined by

the optimization), it is non-intuitive to determine the contact

sequence while the robot swings itself forward from the

last bar and lands on the platform. We compare the fixed

mode version to the mode-free version with complementarity

constraints for the landing phase. We first fix the mode

to be 1) left/right foot toes touch ground 2) left/right foot

heels touch ground. With the solution to the fixed mode

as the seed, we re-compute the landing motion using the

complementarity formulation and free mode sequence. The

results are compared in Fig. 10. The contact sequence and

the robot motion change significantly after optimization

with the complementarity constraints. This indicates that our

algorithm is indeed searching over different mode sequences.

To our eyes the motion obtained from complementarity

formulation looks more natural.

(a) t=0 (b) t=0.8 (c) t=1.41

Fig. 11: Snapshots of climbing salmon ladder

(a) Take off (b) Flight (c) Landing

Fig. 12: Snapshots of the flight phase during LittleDog

running

D. Salmon ladder

Our final humanoid test-case is the obstacle course element

called the “salmon ladder” (popularized by the ‘Sasuke’

and now ‘American Ninja Warrior’ competitions), shown in

Fig. 11 and in the attached video. Despite the restrictive

kinematics of Atlas’ arms, the robot is able to launch itself

from one level to the next by bending its elbows and

swinging its legs in much the same way as human athletes.

E. LittleDog

Our algorithm is not restricted to humanoids, it can be

applied to a large class of robots. To show the generality

of our approach, we compute a running trot trajectory for

LittleDog, a quadruped robot [23]. Snapshots of its flight

phase are shown in Fig. 12. We also designed several

galloping, bounding, and walking gaits for LittleDog, with

very little variation on the code. Those gaits are also included

in the attached video.

IV. DISCUSSION AND CONCLUSION

A major concern in solving any NLP is running time.

The current un-optimized MATLAB code employed in the

examples above usually generates those motions within

several minutes, but can take as long as several hours

in some poorly initialized cases. We will implement the

approaches described here in C++ next; our experience

is that the C++ code is about two orders of magnitude

faster than the MATLAB code for NLPs of a comparable

size to the ones presented here. For the DARPA Robotics

Challenge Trials, we developed a C++ implementation of

an NLP-based kinematics-only planner that treated the same

kinematic constraints as those employed here. It generates

motion trajectories interactively with the user, in less than

0.2 seconds.

We also wrote a planner that uses the full-body dynamics

model for comparison. For the rich constraints used in these

examples, we struggled to have that solver return even a

feasible solution, even after hours or days of computation.

We believe this failure is due to the large size of the problem,

and the presence of many local minima; however more work

is required to show that that is the case.

In this paper we combine a simple dynamics model

and a full kinematics model to generate robots’ whole-

body motions. We believe this combination encodes the

physical laws necessary to efficiently generate dynamically

and kinematically feasible motions, giving it an advantage

over both the full-body model and over-simplified models.

To handle the case when the contact mode sequence cannot

be obtained prior to the trajectory optimization, we present

a formulation with complementarity constraints, so that the

solver can search over all possible combinations of contact

sequences simultaneously. In addition to demonstrating the

effectiveness of our algorithm on several examples with a

humanoid robot, we further show that our algorithm is not

restricted to humanoids, but is applicable to a much larger

class of robots.

V. ACKNOWLEDGEMENT

We gratefully acknowledge the support of the Defense

Advanced Research Projects Agency via Air Force Research

Laboratory award FA8750-12-1-0321, and the support of

David S.Y Wong and Harold Wong Fellowship. We are also

grateful for the help we received from members of the Robot

Locomotion Group and the MIT DARPA Robotics Challenge

Team. Special thanks go to Pat Marion for his great help

in visualizing the robot motions, Phil Cherner for making

the Robotiq hand model, and Amara Mesnik for editing the

video. We also want to express our deep gratitude to Prof.

Seth Teller for his guidance of our team and his passion and

vision for robotics.

REFERENCES

[1] John T. Betts. Practical Methods for Optimal Control Using Nonlinear

Programming. SIAM Advances in Design and Control. Society for
Industrial and Applied Mathematics, 2001.

[2] Samuel R. Buss. Introduction to inverse kinematics with jacobian
transpose, pseudoinverse and damped least squares methods. April
2004.

[3] Erwin Coumans et al. Bullet physics library. bulletphysics. org, 4(6),
2014.

[4] Moritz Diehl, Hans Georg Bock, Holger Diedam, and P-B Wieber.
Fast direct multiple shooting algorithms for optimal robot control. In
Fast motions in biomechanics and robotics, pages 65–93. Springer,
2006.

[5] Dimitar Dimitrov, Alexander Sherikov, and Pierre-Brice Wieber. A
sparse model predictive control formulation for walking motion gener-
ation. In Proceedings of the 2011 IEEE/RSJ International Conference

on Intelligent Robots and Systems, 2011.

[6] Maurice Fallon, Scott Kuindersma, Sisir Karumanchi, Matthew An-
tone, Toby Schneider, Hongkai Dai, Claudia Pérez D’Arpino, Robin
Deits, Matt DiCicco, Dehann Fourie, Twan Koolen, Pat Marion,
Michael Posa, Andrés Valenzuela, Kuan-Ting Yu, Julie Shah, Karl
Iagnemma, Russ Tedrake, and Seth Teller. An architecture for online
affordance-based perception and whole-body planning. Journal of

Field Robotics, September 2014.

[7] E.G. Gilbert, D.W. Johnson, and S.S. Keerthi. A fast procedure for
computing the distance between complex objects in three-dimensional
space. Robotics and Automation, IEEE Journal of, 4(2):193–203, Apr
1988.

[8] Philip E. Gill, Walter Murray, and Michael A. Saunders. SNOPT: An
SQP algorithm for large-scale constrained optimization. SIAM Review,
47(1):99–131, 2005.

[9] C. R. Hargraves and S. W. Paris. Direct trajectory optimization using
nonlinear programming and collocation. J Guidance, 10(4):338–342,
July-August 1987.

[10] H Hirukawa, S Hattori, K Harada, S Kajita, K Kaneko, F Kanehiro,
K Fujiwara, and M Morisawa. A universal stability criterion of the
foot contact of legged robots - Adios ZMP. Proc. of the IEEE Int.

Conf. on Robotics and Automation, pages 1976–1983, May 2006.
[11] Kajita, S. Kanehiro, F. Kaneko, K. Fujiwara, K. Harada, K. Yokoi,

K. Hirukawa, and H. Resolved momentum control: humanoid motion
planning based on the linear and angular momentum. Intelligent

Robots and Systems (IROS), Proceedings, 2003.
[12] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiware, K. Harada, K. Yokoi,

and H. Hirukawa. Biped walking pattern generation by using preview
control of zero-moment point. In ICRA IEEE International Conference

on Robotics and Automation, pages 1620–1626. IEEE, Sep 2003.
[13] Twan Koolen, Jesper Smith, Gray Thomas, Sylvain Bertrand, John

Carff, Nathan Mertins, Douglas Stephen, Peter Abeles, Johannes
Englsberger, Stephen Mccrory, and Jeff Egmond. Summary of team
ihmc s virtual robotics challenge entry. In Proceedings of the IEEE-

RAS International Conference on Humanoid Robots., Atlanta, GA, oct
2013. IEEE, IEEE.

[14] K. Koyanagi, H. Hirukawa, S. Hattori, M. Morisawa, S. Nakaoka,
K. Harada, and S. Kajita. A pattern generator of humanoid robots
walking on a rough terrain using a handrail. In Intelligent Robots

and Systems, 2008. IROS 2008. IEEE/RSJ International Conference

on, pages 2617–2622, Sept 2008.
[15] Scott Kuindersma, Frank Permenter, and Russ Tedrake. An efficiently

solvable quadratic program for stabilizing dynamic locomotion. In
Proceedings of the International Conference on Robotics and Automa-

tion, Hong Kong, China, May 2014. IEEE.
[16] Katja D. Mombaur. Using optimization to create self-stable human-

like running. Robotica, 27(3):321–330, 2009.
[17] Gabe Nelson, Aaron Saunders, Neil Neville, Ben Swilling, Joe

Bondaryk, Devin Billings, Chris Lee, Robert Playter, and Marc
Raibert. Petman: A humanoid robot for testing chemical protective
clothing. Journal of the Robotics Society of Japan, 30(4):372–377,
2012.

[18] E.S. Neo, K. Yokoi, S. Kajita, and K. Tanie. Whole-body mo-
tion generation integrating operator’s intention and robot’s autonomy
in controlling humanoid robots. Robotics, IEEE Transactions on,
23(4):763–775, Aug 2007.

[19] David E. Orin, Ambarish Goswami, and Sung-Hee Lee. Centroidal
dynamics of a humanoid robot. Autonomous Robots, (September
2012):1–16, jun 2013.

[20] Michael Posa, Cecilia Cantu, and Russ Tedrake. A direct method for
trajectory optimization of rigid bodies through contact. International

Journal of Robotics Research, 33(1):69–81, January 2014.
[21] Michael Posa and Russ Tedrake. Direct trajectory optimization of

rigid body dynamical systems through contact. In Proceedings of

the Workshop on the Algorithmic Foundations of Robotics, page 16,
Cambridge, MA, June 2012.

[22] John Schulman, Jonathan Ho, Alex Lee, Ibrahim Awwal, Henry
Bradlow, and Pieter Abbeel. Finding locally optimal, collision-free
trajectories with sequential convex optimization. In Robotics: Science

and Systems, volume 9, pages 1–10. Citeseer, 2013.
[23] Alexander Shkolnik, Michael Levashov, Ian R. Manchester, and Russ

Tedrake. Bounding on rough terrain with the littledog robot. The

International Journal of Robotics Research (IJRR), 30(2):192–215,
Feb 2011.

[24] Russ Tedrake. Drake: A planning, control, and analysis toolbox for
nonlinear dynamical systems. http://drake.mit.edu, 2014.

[25] O. von Stryk and R. Bulirsch. Direct and indirect methods for
trajectory optimization. Annals of Operations Research, 37:357–373,
1992.

[26] Yuting Ye and C. Karen Liu. Optimal feedback control for character
animation using an abstract model. ACM Trans. Graph., 29(4):74:1–
74:9, July 2010.

