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Abstract—Low bone mineral density (BMD) and osteoporosis
are health concerns among older adults and individuals with
physical, neurological, and/or mobility impairments. Detrimen-
tal changes in bone density and bone architecture occurring in
these individuals may be due in part to the reduction/cessation of
physical activity and the accompanying reduction of mechanical
strain on bone. Changes in bone architecture predispose these
individuals to fragility fractures during low-trauma events.
Whole-body vibration (WBV) has been examined as an inter-
vention for maintaining or improving bone mass among people
with low BMD, because it may emulate the mechanical strains
observed during normal daily activities. This article provides an
overview of WBV including terminology, safety considerations,
and a summary of the current literature; it is intended for rehabil-
itation healthcare providers considering WBV as a potential
therapy for individuals with osteoporosis.
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INTRODUCTION

The World Health Organization has defined osteoporo-
sis as a skeletal disease characterized by “low bone density
and microarchitectural deterioration of bone tissue with a
consequent increase in bone fragility and susceptibility to
fracture” [1]. Fractures can lead to increased morbidity,
decreased functional mobility, and increased attendant care

and healthcare costs. In the United States, 43.6 million peo-
ple over the age of 50 have or are at risk for osteoporosis. By
2010, this figure is expected to rise to 52.4 million and by
2020, to 61.4 million [2]. In 2002, the incidence of fractures
related to osteoporosis amounted to 1.5 million [3], at an
annual direct medical care expenditure of $17.5 billion [4].

Osteoporosis is most commonly associated with older
women and is in part due to hormonal changes (e.g., reduc-
tions in estrogen) and a decline in physical activity. How-
ever, men, young adults, and children can also develop
osteoporosis [5]. Several subpopulations at increased risk
of developing osteoporosis are astronauts [6], older adults
[7], postmenopausal women [8], and individuals with
physical impairments such as muscular dystrophy [9–10]
or neurological impairments like spinal cord injury (SCI)
[11]. For example, throughout long-duration space flights
(4.0–14.4 months), astronauts experience an average
decrease of bone mineral density (BMD) in weight-
bearing bones of 1 percent per month [6]. Postmenopausal
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women experience an average 20 to 25 percent decline in
lower-limb BMD over a 16-year period [8], and one in two
women who are 50 years of age will develop an
osteoporotic fracture in their remaining lifetime [12]. The
incidence of fractures in boys with Duchenne muscular
dystrophy has been shown to be as high as 44 percent [9].
Finally, 25 to 46 percent of individuals living with SCI
develop fragility fractures secondary to osteoporosis, and
individuals with SCI are two times more likely than con-
trols to experience a fragility fracture [13].

Load-bearing physical activity reduces or ceases in the
microgravity environment of space, with age, or with mobil-
ity or neurological impairment. A relationship between
mechanical loading and bone adaptation over time has been
proposed [14–15] such that reduction in the magnitude or
frequency of regular load-bearing physical activity leads to
excess bone resorption and a decline in BMD. Increased
daily physical activity is often suggested to prevent bone loss
among individuals with osteoporosis [16–18]. However,
exercise may be difficult when muscles are weak or may not
be feasible among persons with mobility or neurological
impairments. Whole-body vibration (WBV) is an interven-
tion that has been evaluated in animal [19–29] and human
studies [30–37] as a means for emulating the mechanical
strains on bone observed during normal daily activities.

The aims of this review are to (1) provide an over-
view of the physiological basis for the potential effects of
WBV on the skeletal system, (2) review WBV-related ter-
minology and safety considerations associated with the
use of WBV as an intervention, and (3) summarize the
current literature regarding the use of WBV as an inter-
vention for preventing bone density decline or improving
bone mass among astronauts, older adults, and individu-
als with physical or neurological impairments. The goal
of this review is to provide a clinical overview of WBV
for rehabilitation professionals who may be considering
WBV as a potential therapy for individuals with
osteoporosis. Comprehensive reviews of key biomechani-
cal concepts and the theoretical constructs presented
herein are available elsewhere [14–15,38–40].

MECHANICAL LOADING AND THE SKELETAL
SYSTEM

Bone is living tissue that requires mechanical stimuli
to remain healthy [14]. When a load or “stress” is applied,
bone is deformed. “Strain” is a measure of this deforma-

tion and refers to the relative change in the bone dimen-
sion, such as length, width, or angulation [41]. Research
exploring the bone adaptive response to mechanical load-
ing suggests that bone cells are responsive to mechanical
signals including strain magnitude and strain frequency,
signals that may be important stimuli for eliciting a bone
adaptive response [22,42–46]. The Daily Stress Stimulus
Theory describes the intensity of bone tissue mechanical
loading in terms of a daily stress stimulus [15], which
considers both the magnitude and the number of cycles of
loading applied to the skeleton during daily activities. The
theory proposes that if the daily stress stimulus is greater
than some target stimulus, a net bone gain will occur and
that if the daily stress stimulus is less than some target
stimulus, a net bone loss will occur. The theory also pro-
poses that a high cycle number and low magnitude stimu-
lation may be sufficient for maintaining bone mass [15].
Further research on the Daily Stress Stimulus Theory indi-
cates that strain frequency may be an additional factor
critical to the process of bone adaptation [40,47].

The magnitude and rate of forces applied to the skele-
ton are determined by the velocity of the segments in
motion, number of repetitions, and muscular activity, as
well as by boundary conditions such as the individual’s
somatotype, fitness level, performance surface, climate/
weather, and shoe type [48–50]. Running and jumping
induce ground reaction forces (GRFs) three to six times
body weight [41]. Gravitational forces, muscle forces,
and GRFs are among the loads applied to the skeleton
during activities of daily living and contribute to bone
modeling and remodeling. BMD accrual in young people
has been associated with long-term physical activity,
including running and weight training [51]. In addition,
high-impact exercise has been shown to promote bone
gain among well-trained female athletes [52–53].

Skeletal responses to WBV are purported to be simi-
lar to that of physical activity in that WBV activates
mechanotransduction in bone and stimulates osteogene-
sis [43,46]. Controlled dynamic loading using varying
frequencies ranging from 1 to 10 Hz produced perturba-
tions of the intermedullary pressure in adult female rats
[54]. Consequently, fluid flow increased through the
extracellular spaces of the bone’s canaliculi and lacunae
in response to loading, and the increase in fluid flow was
proportional to the loading frequency. Shear stresses on
cell membranes caused by fluid flow stimulate bone cells
in culture [54–55]. Extracellular fluid forces could be
converted into cellular responses via several different
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mechanisms: activation of membrane mechanoreceptors,
focal adhesion proteins, cytoskeletal signaling, or extra-
cellular fiber bowing [56]. Vibration stimuli have been
proposed to provide mechanical loading adequate to
increase fluid flow in bone and facilitate mechanotrans-
duction [55–56].

The forces applied to bone from muscle contraction
during physical activity may also create fluid flow
through the extracellular spaces of the bone, thereby
inducing mechanotransduction [57]. The movement of
the vibration plate during WBV exposure is postulated to
activate both monosynaptic and polysynaptic neural
pathways adequate to generate a “tonic vibration reflex,”
similar to the stretch reflex. The tonic vibration reflex has
been reported to be activated continuously during WBV
so that the muscles continue to contract and relax cycli-
cally until the stimulus stops [58]. Consequently, bone
may respond to the applied forces generated during mus-
cle contractions from a tonic vibration reflex.

WBV may also influence the regulation of bone
remodeling indirectly via the endocrine system. WBV
has been shown to acutely alter testosterone and growth
hormone levels [59–60]. Serum testosterone levels have
been positively associated with BMD at the ultradistal
radius, lumbar spine, and hip regions in healthy men and
women [61–63]. Growth hormone is known for its effects
at the epiphyseal growth plate; abnormalities of skeletal
growth ensue if the individual has excess or deficient
growth hormone levels [41]. Growth hormone levels
decrease with age but increase with exercise [41]. One
study showed a 7 percent increase in testosterone and a
361 percent increase in growth hormone following an
acute bout of WBV at 26 Hz and 17 g [59].

A second study with three intervention arms includ-
ing a squat group, a squat and WBV group, and a WBV
group (standing but not squatting) reported (1) an
increase in serum testosterone in both the squat group
and squat and WBV group, and (2) an increase in growth
hormone levels in all three groups, with the greatest
increases observed in the squat and WBV group [60].
Therefore, the combination of a mechanical load and
WBV exposure may stimulate larger increases in growth
hormone than mechanical load alone. However, no stud-
ies to date have explored whether WBV-induced changes
in growth hormone or testosterone are sustained or are
translated into changes in indexes of bone health.

WHOLE-BODY VIBRATION TRAINING 
AND TERMINOLOGY

Five factors dictate the human skeletal system’s
response when standing on a WBV platform: vibration
direction (vertical vs oscillatory alternating), vibration
frequency (in hertz), vibration magnitude measured as
amplitude (displacement, in millimeters) and acceleration
(in gravitational units, where 1.0 g = 9.81 m/s2), duration
of the WBV, and body position/posture on the platform.

A number of different WBV platforms are commer-
cially available [64–68], and they provide a vibratory
stimulus in one of two ways: (1) vertical displacements
and (2) oscillatory alternating displacements [69]. The
vertical vibration plates maintain equal vibration at all
points on the plate. The plate with oscillatory motion tilts
from side to side over a central fulcrum, lifting one side of
the body while displacing/dropping the other side, simu-
lating human gait. Literature comparing the effects of
vibration direction on bone characteristics is limited;
therefore the overall effect the direction of vibration has
on bone density or whether either direction is more bene-
ficial is unclear. One study looking at the effects of verti-
cal versus oscillatory alternating vibrations on bone
biomarkers found no significant difference between
groups but reported a slightly greater increase of procol-
lagen type 1 N-propeptide, a biomarker of bone forma-
tion, following oscillatory alternating vibrations (+20.2%)
when compared with vertical vibrations (+15.2%) after
3 days/week for 12 weeks of WBV exposure [70].

A WBV platform provides several different vibration
frequency and magnitude options. Resonance frequency
refers to the natural vibration that every object maintains,
and when a system is vibrated at its resonant frequency it
will oscillate at its maximum amplitude and acceleration
[71]. The internal organs of the body vibrate in a fre-
quency range of ~5 to ~20 Hz [72], and therefore the
body will attempt to damp these frequencies of vibration
via bone, cartilage, synovial fluids, soft tissue, and mus-
cular activity as a protective mechanism [73]. Conse-
quently, vibration frequencies at or near ~5 to ~20 Hz
may not be anabolic or may be harmful [71,74–75]. In
addition, muscle damage can occur if frequencies exceed
70 Hz [76]. Therefore, using frequencies ≥20 and ≤70 Hz
for WBV training is recommended as a safety measure.
Studies that demonstrate improvements in muscle
strength and size using WBV have employed frequencies
of 25 to 45 Hz [59,77–85].
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The magnitude of a vibration stimulus is a combina-
tion of amplitude and acceleration; however, acceleration
alone is often used interchangeably with the term “mag-
nitude.” Amplitude describes how much motion exists in
each direction (in millimeters) while acceleration
describes how quickly the motion exists in each direction
(in gravitational units) [69]. As mentioned, gravitational
forces obtained from activities of daily living contribute
to bone modeling and remodeling; in parallel, applied
forces from a WBV platform could provide these same
gravitational forces. For a given peak-to-peak displace-
ment, an increase in frequency will increase acceleration
(and therefore the cyclic forces applied to the subject)
according to the following Equation:

where A = acceleration (in millimeters per seconds
squared), F = vibration frequency (in hertz), and D = peak-
to-peak displacement (in millimeters) (Figure). Thus,
while a 2 mm displacement magnitude at 20 Hz will pro-
duce only 1.6 g peak acceleration, a 2 mm displacement
magnitude at 60 Hz will produce 14.5 g peak acceleration.

Numerous animal studies reporting positive effects
of WBV on bone characteristics have employed magni-
tudes of <1 g [19–21,24–25], and studies among young
human participants showing improvements in bone char-
acteristics following WBV have employed magnitudes of
<1 g [30–32]. In contrast, magnitudes of <1 g utilized in
studies among older adults showed no positive changes
in bone characteristics [33,35], but higher magnitudes of
1 to 5 g did show positive changes [36–37].

Duration of WBV stimuli is defined as the length of
time a participant is exposed to a WBV stimulus in one
session. Recommendations for duration of WBV exposure
in a single session vary from ~2 to 20 minutes depending
on the therapeutic objectives [64,86]. Repeated cycles of
short vibration periods followed by quiescent periods are
most likely to stimulate bone formation [41]; intermittent
vibration is more beneficial than continuous vibration for
promoting musculoskeletal adaptations [87].

The final factor influencing the response of the body
to WBV stimuli is joint angle, because it affects the trans-
missibility of vibration through the body. An erect pos-
ture will enhance the transmissibility through the hip,
spine, and possibly head, whereas a relaxed stance (i.e.,
flexed knees) will decrease transmissibility [74].

As a result of the large number of vibration factor
interactions, standardized WBV guidelines for the main-
tenance or improvement of BMD among older adults or
those with physical or neurological impairments have not
yet been established. For individuals who cannot weight
bear or stand independently, WBV can be modified or
used in conjunction with other rehabilitation apparatus,
such as a passive standing frame or a body-weight-
supported harness.

WHOLE-BODY VIBRATION SAFETY
CONSIDERATIONS

Given that older adults and individuals with physical
or neurological impairments are at a higher risk of expe-
riencing adverse effects from WBV stimuli, the safety of
these individuals must be ensured. The contraindications
for both vertical and oscillatory alternating WBV are
similar, and manufacturers that have equipment regis-
tered with the Food and Drug Administration have guide-
lines stating that individuals who have one of the
following conditions should not partake in WBV train-
ing: kidney or bladder stones, arrhythmia, pregnancy,
epilepsy, seizures, cancer, a pacemaker, untreated orthos-
tatic hypotension, recent implants (joint/corneal/cochlear,
etc.), recent surgery, recently placed intrauterine devices
or pins, acute thrombosis or hernia, acute rheumatoid
arthritis, serious cardiovascular disease, severe diabetes,
or migraines [64–66].

Most of the documented negative effects of WBV
have been observed in the workplace through exposure to
large vibration loads or chronic exposure to vibration.

A 2 π2× F2× D× ,=

Figure.
Amplitude (peak-to-peak displacement) from vertical whole-body
vibration platform.
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These negative effects include damage to biological struc-
tures including peripheral nerves, blood vessels, joints,
and perceptual function [88–89]. The frequency and mag-
nitude of workplace WBV are very different than those
used for therapeutic WBV. Although published research
on vertical WBV is more comprehensive than that on
oscillatory alternating WBV, very little is documented or
published regarding adverse events or serious adverse
events resulting from either type of WBV exposure.
Among published literature, several studies utilizing a low
magnitude, high frequency WBV stimulus among popula-
tions with physical or neurological impairments have
reported no adverse reactions [33,35,90–96]. In the field
of WBV, whether adverse events in fact do not occur or
are underreported or not reported is unknown. Future
studies of WBV should systematically record and report
data on side effects and adverse events. One clinical trial
conducted at Lyndhurst Centre, Toronto Rehabilitation
Institute, on the effects of passive standing and WBV
among individuals with SCI reported several adverse
events including pain, pressure sores on the feet, auto-
nomic dysreflexia, and dizziness, which were largely
attributed to the passive standing portion of the interven-
tion. Two serious adverse events were reported including
a fall resulting in lower-limb fracture (unrelated to inter-
vention) and one case of deep vein thrombosis (unknown
whether related or unrelated to intervention).* Research-
ers at Lyndhurst Centre caution that WBV may elicit
inner ear troubles, dizziness, headache, lower-limb
spasticity, fracture (especially among those with severe
osteoporosis), and/or hardware loosening (plates or
screws as a result of surgery).*

ANIMAL STUDIES OF WHOLE-BODY VIBRATION

Animal studies looking at the therapeutic effects of a
WBV stimulus on bone utilize relatively low vibration
magnitudes, and in some studies, the magnitudes of
acceleration were lower than those typical of walking
(0.3 g) [19–21]. As previously mentioned, high vibration
frequency (~25–45 Hz) is suggested to produce anabolic
responses in the musculoskeletal system. WBV studies in

animals indicate that bone cells may be responsive to a
low magnitude, high frequency WBV stimulus [19–27].
Compared with controls, one study reported a 10.6 per-
cent increase in trabecular bone mineral content of sheep
tibia after a low magnitude (0.3 g), high frequency (20–
50 Hz) WBV stimulus for 20 minutes/day for 1 year [21].
Similarly, 6.5 and 34.2 percent increases in total BMD
and trabecular BMD, respectively, of the tibia in adult
female sheep were observed following a low magnitude
(0.3 g), high frequency (30 Hz) WBV stimulus for
20 minutes/day for 1 year [19]. Ovariectomized rats
exposed to WBV had increased BMD relative to controls
[28]. Further research has reported augmented BMD fol-
lowing WBV in sheep animal models [20,22].

Improved trabecular bone stiffness, strength, and
number have also been reported following a low magni-
tude, high frequency WBV stimulus [19,21–22,27]. The
observed changes in bone quantity and quality may be
due to increases in bone formation. Increases of 88 and
66 percent in trabecular bone formation rate were demon-
strated following a 0.3 and 0.6 g magnitude, high fre-
quency (45 Hz) WBV stimulus, respectively [24]. In
addition, when compared with controls, adult female rats
showed a 97 percent increase in bone formation rate fol-
lowing a low magnitude (0.25 g), high frequency (90 Hz)
WBV intervention for 10 minutes/day for 28 days [25].
Other studies support these findings, reporting an
increase in bone formation rate [23] and a doubling of
bone formation rate [22] following low magnitude, high
frequency WBV. Following disuse, bone formation rates
can decrease by 92 percent [25]; WBV has been shown to
prevent bone loss in a model of disuse osteoporosis [22]
and to normalize bone formation rates [25]. Two studies
utilizing an ovariectomized rat model reported reduced
bone loss following WBV exposure (2 g, 50 Hz) for
30 minutes/day for 12 weeks [28] and an inhibited bone
resorption paired with an increased bone formation rate
following WBV exposure (3g, 45 Hz) for 30 minutes/day
for 90 days [29]. In summary, research in animals pro-
vides evidence that WBV may alter bone remodeling and
improve bone density and bone structure.

WHOLE-BODY VIBRATION TRAINING IN 
ASTRONAUTS

Bone loss and muscle atrophy experienced among
astronauts in the microgravity environment of space can be

*Craven BC. Effectiveness of vibration and standing versus standing
alone for the treatment of osteoporosis for people with spinal cord
injury. http://clinicaltrials.gov/, NCT00150683; 2001.
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compared in varying degrees to that which is experienced
by individuals confined to bed rest or individuals with
motor complete SCI. Bone loss among astronauts is per-
haps the best-known consequence of space flight; it is a
major concern, as bone loss is accelerated by a factor of 10
compared with Earth [25]. The extent to which astronauts
experience bone loss depends on time spent in space, indi-
vidual adaptation to weightlessness, and efficacy of coun-
termeasures [97]. Augmenting existing countermeasures
with mechanical stimulation such as WBV has shown
some success in the prevention of bone loss over the past
decade [98–99]. For example, BMD was maintained dur-
ing a long-term space flight (5 months) following a short-
term, high-impact WBV stimuli, while BMD was reduced
by up to 7 percent among the astronauts who received no
WBV stimulus [98].

WHOLE-BODY VIBRATION STUDIES AMONG 
YOUNG PERSONS

WBV has been shown to be anabolic to trabecular and
cortical bone among young adults [30] and children [31–
32] with low BMD or physical impairments (Table 1).
Following a 12-month WBV intervention (0.3 g, 30 Hz,
10 minutes/day), a 2.1 percent increase in trabecular BMD
of the lumbar vertebrae and a 3.4 percent increase in corti-
cal BMD of the femoral midshaft were reported among
young women aged 15 to 20 years with low BMD and a
history of at least one prior skeletal fracture [30]. Note that
this was not a randomized design; participants were
assigned to each group based on residential address. Stud-
ies conducted among children with physical impairments
implemented a WBV intervention as a surrogate for sup-
pressed muscular activity by inducing muscular contrac-
tions and, consequently, increasing BMD. Following a
WBV stimulus (0.3 g, 30 Hz) for 3 days/week for 8 weeks
in a pilot study, a 6.2 percent increase in trabecular BMD
and a 2.1 percent increase in cortical BMD were found
among children with diabetes mellitus or idiopathic
osteoporosis [31]. In addition, a randomized control trial
(RCT) study conducted among children with cerebral
palsy or muscular dystrophy reported a 6.3 percent
increase in tibial volumetric trabecular BMD in the WBV
group (0.3 g, 90 Hz, 10 minutes/day, 5 days/week for
6 months) compared with a 11.9 percent decrease in the
control group, resulting in a net benefit of treatment of
17.7 percent [32]. Knee angle was not controlled for on the
platform, which could have influenced the transmissibility

of the mechanical signal to the axial skeleton. The plat-
form incorporated a desktop, which may have been used as
a standing aid or simply to allow the child to read or draw
during the intervention. Larger clinical trials are required
to confirm the utility of WBV for improving bone mass
among children and young adults.

WHOLE-BODY VIBRATION STUDIES AMONG 
OLDER ADULTS/POSTMENOPAUSAL WOMEN

The literature looking at the effects of WBV on bone
health among older adults and postmenopausal women is
somewhat inconclusive. Three studies showed no change
in bone characteristics following a 6-month (0.1–10 g,
12–28 Hz), 12-month (20 Hz), and 12-month (<0.3 g,
30 Hz) WBV intervention among postmenopausal
women and older postmenopausal women, respectively
[33–35]. On the other hand, a small group of studies has
reported findings suggesting that WBV may represent an
effective nonpharmacological intervention for preventing
a decline in BMD or for increasing or maintaining BMD
in populations with below-normal BMD or osteoporosis
(Table 2). Two studies conducted in 2004 and 2006 indi-
cate that WBV may inhibit the decline in BMD of the hip
following menopause [36–37]. One study utilizing verti-
cal vibrations reported a 0.93 percent increase in BMD
from baseline at the hip following a 6-month WBV inter-
vention (2.28–5.09 g, 35–40 Hz) [36]. The other study,
utilizing oscillatory alternating vibrations (12.6 Hz,
median 3.3 g [oscillatory alternating], and 0.7 g [verti-
cal]), reported a 4.3 percent increase in BMD at the fem-
oral neck in the group receiving an 8-month WBV
intervention compared with the walking control group
[37]. Investigators from one of the clinical trials reporting
no change in bone characteristics (12 months, <0.3 g,30 Hz)
later ran a post hoc subgroup analysis that suggested that
adherence and body weight may influence the response
to the WBV intervention [35]. A recent systematic
review and meta-analysis of RCTs on the effects of WBV
on BMD in postmenopausal women concluded that
WBV appears to effectively attenuate the decline in
BMD at the hip [100]. This effect is similar to that of
physical activity on BMD, as reported in a study demon-
strating that moderate or walking exercise suppressed
bone turnover, thereby maintaining lumbar BMD among
postmenopausal women [101].
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LIMITATIONS AND CONCLUSIONS

Limitations in WBV research do exist. Diverse study
design and choice of intervention likely account for the dis-
crepancies in outcomes following WBV exposure. Exam-
ples of factors that are inconsistent in study design include
direction of vibration, range of vibration parameters
selected, duration of WBV exposure, length of WBV inter-
vention, frequency of intervention, type/brand of platform
used, participant demographic and health-related character-
istics, movement performed during exposure, body posture,

and research design and outcome measures. In addition,
very few of the studies listed here conducted an intention-
to-treat analysis. The absence of this analysis may have
introduced bias in the results and an overestimation of treat-
ment effects. Study design characteristics should not be
overlooked, because variations between protocols limit the
generalizability of the findings.

In the future, WBV platform manufacturers should be
encouraged to publish their findings from phase I and II
clinical trials. In addition, clinicians need to conduct more
rigorous phase III RCTs held to the same standard as

Table 1.
Long-term whole-body vibration (WBV) exposure as an intervention for improving indexes of bone strength among young adults.

Study Population: N
(M/F); Type Methods/Intervention Plate/Parameters Frequency & Duration Outcomes

Torvinen et al.,
2003 [1]

56 (21 M/35 F);
young, healthy,
nonactive

1. WBV
2. CON
WBV did light exercise
on platform (light
squatting, standing with 
knees flexed, light
jumping, etc.)

Kuntotäry, Erka Oy,
Kerava, Finland;
25–45 Hz, 2 mm,
2–8 g (↑ with time)

3–5×/wk for 8 mo,
4 min/session

No change in any bone density 
(DXA, pQCT) or serum markers 
(bone formation: OC, 
aminoterminal propeptide of type I 
procollagen; bone resorption:
carboxy-terminal collagen 
crosslinks, osteoclast-derived 
TRACP isoform 5b)

Ward et al.,
2004 [2]

20 (14 M/6 F);
children with CP, MD;
age (mean ± SD) =
9.1 ± 4.3 yr; limited 
mobility but stand
independently

1. WBV
2. PL
Standing position
on platform

Vertical, ground-based 
vibration; 90 Hz, 0.3 g

5×/wk for 6 mo,
10 min/session

WBV: ↑ proximal tibia vTBMD 
(+6.3%)
PL: ↓ proximal tibia vTBMD
(–11.9%)

Gilsanz et al.,
2006 [3]

48 (0 M/48 F); young
with low BMD; age 
(range) = 15–20 yr;
history of at least one 
skeletal fracture

1. WBV
2. CON

Vertical, sinusoidal
acceleration; 30 Hz,
0.3 g

At least 2 min/d for
12 mo (preferably
10 min/d)

WBV: ↑ trabecular bone in
lumbar vertebrae (+2.1%),
↑ cortical bone in femoral
midshaft (+3.4%)
CON: ↑ trabecular bone in
lumbar vertebrae (+0.1%),
↑ cortical bone in femoral
midshaft (+1.1%)

Pitukcheewanont
& Safani, 2006 [4]

8 (0 M/8 F); children; 
DM: n = 7, idiopathic 
osteoporosis: n = 1

1. WBV
Upright standing
position

Smith & Nephew;
30 Hz, 0.3 g

3×/wk for 8 wk,
30 min/session

↑ trabecular BMD (+6.2%),
↑ cortical BMD (+2.1%)
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bone mineral density.
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Table 2.
Long-term whole-body vibration (WBV) exposure as an intervention for improving indexes of bone strength among older adults and post menopausal
women.

Study Population: N
(M/F); Type Methods/Intervention Plate/Parameters Frequency & Duration Outcomes

Russo et al.,
2003 [1]

29 (0 M/29 F);
postmenopausal
on HRT

1. WBV (n = 14)
2. CON (n = 15)
Standing position on
WBV platform; RCT

Galileo 2000 (lateral
oscillations); 12–28 Hz,
0.1–10.0 g

2×/wk for 6 mo,
3 × 2 min/session

No change in bone
characteristics; decline in
cortical BMD tended to be less 
in WBV than CON group

Verschueren
et al., 2004 [2]

70 (0 M/70 F);
postmenopausal
(58–74 yr), no
disease or medicines 
affecting bone
metabolism

1. WBV (n = 25)
2. RES (n = 22)
3. CON (n = 23)
WBV performed static
& dynamic knee-
extension exercises
RES performed dynamic
leg press & leg-extension
exercises; RCT

Power Plate®; 35–40 Hz,
1.7 or 2.5 mm, 2.28–5.09 g, 
progressive increase

3×/wk for 6 mo,
maximum 30 min/session 
(progressive increase)

WBV: ↑ BMD of hip
(+0.93%); net benefit of 
1.5% compared with controls;
no change in bone turnover 
markers (OC, C-telopeptide)

Rubin et al.,
2004 [3]

56 (0 M/56 F);
3–8 yr post-
menopause

1. WBV (n = 28)
2. PL (n = 28)
Double-blind study

Vertical, ground-
based vibration;
30 Hz, 0.2 g

2 × 10 min/d for
12 mo

No change in BMD

Iwamoto et al.,
2005 [4]

50 (0 M/50 F);
postmenopausal
with osteoporosis
& chronic back pain
(55–88 yr)

1. WBV + ALN
2. ALN
Standing position on
platform; ALN =
5 mg/d

Galileo; 20 Hz 1×/wk for 12 mo,
4 min/session

No change in lumbar BMD
or urine or serum markers of 
bone turnover between groups

Gusi et al.,
2006 [5]

28 (0 M/28 F); 5 yr
postmenopause,
untrained

1. WBV (n = 14)
2. Walking (n = 14)
Standing position on
platform with 60° knee
flexion; walking
session = 55 min

Galileo 2000 (lateral
oscillations); 12.6 Hz, 
median 3.3 g (lateral)
and 0.7 g (vertical),
progressive increase

3×/wk for 8 mo,
6 × 60 s/session with
60 s rest (progressive 
increase)

WBV: ↑ BMD at femoral
neck (+4.3%) compared with
walking group; no change
in lumbar spine BMD

Corrie et al.,
2007 [6]

33 (not specified);
older patients, mean
age = 80 yr

1. Vertical WBV
(n = 11)
2. Tilting WBV
(n = 11)
3. PL (n = 11)
RCT

Not specified 3×/wk for 12 wk
6 × 60 s/session
(progressive increase)

Vertical WBV: ↑ P1NP
(marker of bone formation) 
(+15.2%) Tilting WBV:
↑ P1NP (+20.2%)
PL: ↓ P1NP (–1.3%)

1. Russo CR, Lauretani F, Bandinelli S, Bartali B, Cavazzini C, Guralnik JM, Ferrucci L. High-frequency vibration training increases muscle power in postmeno-
pausal women. Arch Phys Med Rehabil. 2003;84(12):1854–57. [PMID: 14669194]
DOI:10.1016/S0003-9993(03)00357-5

2. Verschueren SM, Roelants M, Delecluse C, Swinnen S, Vanderschueren D, Boonen S. Effect of 6-month whole body vibration training on hip density, muscle
strength, and postural control in postmenopausal women: A randomized controlled pilot study. J Bone Miner Res. 2004;19(3):352–59. [PMID: 15040822]
DOI:10.1359/JBMR.0301245

3. Rubin C, Recker R, Cullen D, Ryaby J, McCabe J, McLeod K. Prevention of postmenopausal bone loss by a low-magnitude, high-frequency mechanical stimuli:
A clinical trial assessing compliance, efficacy, and safety. J Bone Miner Res. 2004;19(3):343–51. [PMID: 15040821]
DOI:10.1359/JBMR.0301251

4. Iwamoto J, Takeda T, Sato Y, Uzawa M. Effect of whole-body vibration exercise on lumbar bone mineral density, bone turnover, and chronic back pain in post-
menopausal osteoporotic women treated with alendronate. Aging Clin Exp Res. 2005;17(2):157–63. [PMID: 15977465]

5. Gusi N, Raimundo A, Leal A. Low-frequency vibratory exercise reduces the risk of bone fracture more than walking: A randomized controlled trial. BMC Mus-
culoskelet Disord. 2006;7:92. [PMID: 17137514]
DOI:10.1186/1471-2474-7-92

6. Corrie H, Brooke-Wavell K, Mansfield N, D’Souza O, Griffiths V, Morris R, Attenborough A, Masud T. Effect of whole body vibration on bone formation and
resorption in older patients: A randomised controlled trial. Osteoporos Int. 2007;18(Suppl 3):S285.

ALN = alendronate, BMD = bone mineral density, CON = control, F = female, HRT = hormone replacement therapy, M = male, OC = osteocalcin, P1NP = procol-
lagen type 1 N-propetptide, PL = placebo, RCT = randomized control trial, RES = resistance training.

http://www.ncbi.nlm.nih.gov/pubmed/14669194
http://dx.doi.org/10.1016/S0003-9993%2803%2900357-5
http://www.ncbi.nlm.nih.gov/pubmed/15040822
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pharmaceutical trials. Future studies should follow the
Consolidated Standards of Reporting Trials (CONSORT)
in an effort to alleviate the problems arising from inade-
quate reporting of RCTs. CONSORT includes an evi-
dence-based set of guidelines for reporting RCTs, enabling
readers to understand a trial’s design, conduct, analysis,
and interpretation and to assess the validity of its results
[102–103].

Animal research provides evidence to suggest that
WBV may stimulate mechanotransduction and elicit a bone
adaptive response. Although studies demonstrate that WBV
may positively affect bone density, any effect of WBV
observed in adults is likely due to a prevention of bone loss.
In addition, limitations in research design among existing
WBV clinical trials in humans limit conclusions or compar-
isons across studies. Given that the risk of injury or adverse
effects is high if inappropriate WBV parameters are used or
screening of subjects is inappropriate, evidence-based
guidelines for application of WBV parameters are needed
to ensure the safety and efficacy of WBV.
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