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Abstract

The conceptual significance of understanding functional brain alterations and cognitive deficits associated with Alzheimer’s
disease (AD) process has been widely established. However, the whole-brain functional networks of AD and its prodromal
stage, mild cognitive impairment (MCI), are not well clarified yet. In this study, we compared the characteristics of the
whole-brain functional networks among cognitively normal (CN), MCI, and AD individuals by applying graph theoretical
analyses to [18F] fluorodeoxyglucose positron emission tomography (FDG-PET) data. Ninety-four CN elderly, 183 with MCI,
and 216 with AD underwent clinical evaluation and FDG-PET scan. The overall small-world property as seen in the CN whole-
brain network was preserved in MCI and AD. In contrast, individual parameters of the network were altered with the
following patterns of changes: local clustering of networks was lower in both MCI and AD compared to CN, while path
length was not different among the three groups. Then, MCI had a lower level of local clustering than AD. Subgroup
analyses for AD also revealed that very mild AD had lower local clustering and shorter path length compared to mild AD.
Regarding the local properties of the whole-brain networks, MCI and AD had significantly decreased normalized
betweenness centrality in several hubs regionally associated with the default mode network compared to CN. Our results
suggest that the functional integration in whole-brain network progressively declines due to the AD process. On the other
hand, functional relatedness between neighboring brain regions may not gradually decrease, but be the most severely
altered in MCI stage and gradually re-increase in clinical AD stages.
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Introduction

Alzheimer’s disease (AD) is the most common cause of

dementia, characterized by progressive cognitive decline including

memory impairment. AD process can disrupt neural activities at

various levels such as molecular pathways, synapses, neuronal

subpopulations, local circuits in specific brain regions, and even

higher-order neural networks [1]. Much evidence from neuro-

pathological [2,3,4], neuroimaging [5,6,7,8,9,10,11], neurophysi-

ological [12,13,14], and neuropsychological studies [15,16,17]

support the idea of AD as a disconnection syndrome [18],

implying that a network-based approach is critical to understand

brain alterations and cognitive deficits associated with AD process.

Graph-theoretical analysis, recently applied to brain networks,

provides a mathematical and conceptual framework for under-

standing the brain as a whole network [19]. Graph theory allows

capturing various aspects of the brain networks’ global topological

organization as well as the local contributions of each area to

network function [20]. Many studies report that the human brain

has a ‘‘small-world’’ property: much higher local clustering and

similar path length compared to matched random networks,

providing balance between local specialization and global

integration to maximize the efficiency of information processing

in brain [21,22,23,24,25,26,27].

Several graph-theoretical analysis studies have been conducted

to study the alteration in whole-brain functional network in

individuals with AD [27,28,29,30]. Although most of them

reported significant AD-related changes in small-world parame-

ters, specific alteration patterns of local clustering and path length

reported were controversial. The conflicting results could be

attributed to different clinical stages of study subjects. Because

brain areas affected by AD pathologies progressively expand as the

clinical severity increases [3], network properties might change

from the earlier stage to the later stages of AD. Therefore,

cautiously selected study samples with distinct disease stages will be

helpful to better understand AD-related alterations in functional

brain network.

However, the characteristics of the brain network of MCI, a

clinical high risk state for AD [31,32], are not very clear. Very

limited numbers of functional brain network studies using

magnetoencephalograms (MEG) [33] or resting-state functional

magnetic resonance imaging (fMRI) [34] were conducted with

MCI individuals reporting inconsistent results. Neuroimaging

PLOS ONE | www.plosone.org 1 January 2013 | Volume 8 | Issue 1 | e53922



studies using multivariate statistical analysis or seed-based

correlation analysis reported increased medial temporal or

prefrontal regions activation with decreased activation in default

mode networks (DMN) in MCI patients compared with healthy

elderly [35,36,37]. They interpreted increased activation as

functional compensation. Therefore, it may be possible that the

functional brain network of MCI is not necessarily intermediate

between those of normal aging and AD. Nevertheless, no study has

directly compared the characteristics of whole-brain functional

network among cognitively normal (CN) elderly, MCI, and AD.

Mounting evidence suggests that AD begins with a subtle

alteration of synaptic function, probably caused by diffusible

oligomeric assembles of the amyloid beta protein [38]. Given the

increase of synaptic activity leading to an increase of glucose

utilization, regional cerebral glucose metabolism (rCMglc), mea-

sured by resting [18F] fluorodeoxyglucose positron emission

tomography (FDG-PET), is a reliable and very sensitive index of

synaptic function [39,40]. To date, however, there have been no

graph-theoretical studies using FDG-PET data of the AD or MCI

brain.

In this study, we compared the properties of whole-brain

functional networks of CN, MCI and AD individuals by applying

graph theoretical analyses to FDG-PET data. Additional analyses

on AD subgroups were also performed to explore the relationships

between whole-brain functional network alterations and clinical

severity.

Materials and Methods

Subjects
In this study, 94 CN, 183 individuals with MCI, 216 individuals

with AD were included. They were recruited among elderly

people who participated in a service program for the early

detection and management of dementia (two public health centers

and one dementia clinic). All subjects lived in the community. A

diagnosis of dementia was made according to the criteria of the

fourth edition of the Diagnostic and Statistical Manual of Mental

Disorders (DSM-IV) [41]. AD was diagnosed according to the

probable AD criteria of the National Institute of Neurological and

Communication Disorders and Stroke/Alzheimer’s Disease and

Related Disorders Association (NINCDS-ADRDA) [42]. Individ-

uals with AD who had an overall clinical dementia rating scale

(CDR) [43] of 0.5 or 1.0 were included. MCI was diagnosed

according to the current consensus criteria for amnestic MCI [32]

and all had an overall CDR of 0.5. All CN subjects received a

CDR of 0. The exclusion criteria for all subjects were presence of

any serious medical, psychiatric, and neurological disorders that

could affect mental function; evidence of focal brain lesions on

magnetic resonance image; the presence of severe behavioral or

communication problems that would make a clinical examination

or FDG-PET scan difficult; left-handedness; an absence of a

reliable informant; and, inability to read Korean. Individuals with

minor physical abnormalities (e.g., diabetes with no serious

complications, essential hypertension, mild hearing loss, or others)

were included. The Institutional Review Board of the Seoul

National University Hospital, Korea, approved the study, and

subjects or their legal representatives gave written informed

consent.

Clinical and Neuropsychological Assessments
All subjects were examined by neuropsychiatrists, who had

advanced training in neuropsychiatry and dementia research,

according to the Consortium to Establish a Registry for

Alzheimer’s Disease (CERAD) clinical, and neuropsychological

assessment battery. Standard administration of the CERAD

battery was previously described in detail [44,45,46]. Reliable

informants were interviewed to acquire the accurate information

regarding the cognitive, emotional and functional changes as well

as the subject’s medical history. A panel consisting of four

psychiatrists with expertise in dementia research made the clinical

decisions and diagnosed dementia, and this panel also reviewed all

available raw data resulting from clinical evaluations.

PET Image Acquisition and Preprocessing
PET studies were performed using the ECAT EXACT 47

scanner (Siemens-CTI, Knoxville, Tenn., USA), which has an

intrinsic resolution of 5.2-mm full width at half maximum

(FWHM) and the images of 47 contiguous transverse planes with

a 3.4-mm thickness for a longitudinal field of view of 16.2 cm.

Mean intervals between PET scan and clinical assessment were 10

days. All of the [18F] FDG PET scans were performed in a dimly

lit room with minimal auditory stimulation during both the

injection and PET scanning. Subjects took a supine position with

their eyes closed during the scanning to minimize the confounding

effects of any activity. More specific information for image

acquisition procedures were previously described in detail [47,48].

Imaging data were preprocessed using Statistical Parametric

Mapping 2 (SPM2) (Institute of Neurology, University College of

London, UK) implemented in the Matlab (Mathworks Inc, USA).

Before statistical analysis, all images were spatially normalized to

the Montreal Neurological Institute (MNI, McGill University,

Montreal, Canada) space. Normalized images were smoothed by

convolution using an isotropic Gaussian kernel with 12 mm full

width at half maximum.

Construction of Brain Metabolic Networks Using Graph
Theoretical Approach
In graph theory, a network is a set of nodes and edges between

pairs of nodes [20]. In our study, nodes were represented by 90

regions of interest (ROI) defined using automated anatomical

labeling (AAL) template [49], which has been broadly used in

brain network studies [21,25,28,30,50]. In AAL template, 45

ROIs in each hemisphere except cerebellum were defined based

on an anatomical parcellation of MNI-normalized single-subject

high-resolution T1 volume [49]. The whole-brain functional

networks were constructed with those 90 cortical and subcortical

mean values of rCMglc (Table 1). The rCMglc of each ROI were

globally normalized with respect to mean metabolic rate for

glucose in each individual’s whole brain. We selected global

normalization procedure because it has higher signal-to-noise ratio

compared to the cerebellar count normalization method [51] and

correlation coefficients are obtained separately for each diagnostic

group. Interregional correlation matrix (90X90) was acquired by

partial correlation analysis controlling for age-, gender-, and

education- effects. These partial correlation coefficients between

every pair of ROIs represent edges, in other words, functional

connections between nodes. To avoid complicated statistical

descriptions in the following network analysis, our graph

theoretical analysis is confined to a simple undirected and

unweighted binary matrix (Figure 1). The interregional correlation

matrix was then transformed into a binary matrix using a fixed

density threshold method. Density is the fraction of present

connections to possible connections [20]. Fixed density threshold

method ensures the graphs from three diagnostic groups have the

same number of edges [52]. As there is no gold standard for a

single threshold, we applied a wide range of density (D), i.e., 6%#

D #40% with an incremental interval of 1% and repeated the full

analysis for each density. This range of density was selected to
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estimate small-world properly as suggested in previous studies

[52,53].

Network Analysis
Network parameters used in the current study are listed with

mathematical definitions in Table S1. Two fundamental network

parameters are the clustering coefficient and the characteristic

path length. Clustering coefficient Ci of node i indicates the

likelihood of the neighboring nodes to be connected to each other.

Clustering coefficient for a network (Cp) is the average Ci from

entire nodes in the network, which quantifies the extent of local

interconnectivity of information transfer in a network [20,54].

Characteristic path length (Lp) is the mean minimum number of

edges of the shortest path connecting any two nodes in a network,

which quantifies the extent of functional integration of a network

[20,54]. The distinctive combination of high Cp with short Lp is the

key property of small-world network [54]. Matched random

networks with the same node degree distribution as the brain

networks in the present study were generated 1000 times

repeatedly and mean value of clustering coefficients (Cp
rand) and

characteristic path length (Lp
rand) were used as representative

parameters of random network. A network is considered as a

small-world network if it shows much higher Cp (c=Cp
real/Cp

rand

&1) while similar Lp (l=Lp
real/Lp

rand
<
1) in comparison with the

matched random network [54]. That is, small-world index s= c/l

is greater than 1. Small-worldness tests were done repeatedly over

a range of density (i.e., 6%# D #40%).

For the local nodal characteristics, we employed betweenness

centrality. Betweenness centrality, Bi of a node i is defined as the

number of shortest paths between any two nodes that run through

node i, which quantifies how much information might traverse the

node, presuming that optimal paths are used [20,55]. Bi of a node i

was used to determine candidate hubs in a network. The Bi was

normalized as bi=Bi/averaged Bi. for all nodes of the entire

network. The nodes that have high bi (.1.5) are considered as

functional hubs of a network. The bi of each node was calculated at

a fixed density 15%. Certain density threshold, which ensures all

of 90 ROIs are included and false-positive paths are minimized,

was determined as a fixed density. The lowest density where the

Figure 1. Whole-brain functional networks in CN, MCI, and AD. The first row displays the correlation matrices obtained from partial
correlation coefficients (indicated by color bar, range from 21.0 to 1.0) between 90 regions of interests controlling for age, education and gender.
The second row displays binary matrices thresholded at a fixed density 15%. The third row illustrates the corresponding brain connectivity graph
from the binary matrices. Brain connectivity graphs were visualized using the BrainNet viewer (NKLCNL, Beijing Normal University). Abbreviations for
the regions are expanded in Table 1. CN= cognitively normal; MCI =mild cognitive impairment; AD=Alzheimer’s disease.
doi:10.1371/journal.pone.0053922.g001
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largest component size was 90 (i.e., all connected nodes included)

was density 15% in the present study.

Calculations of these network parameters were performed using

‘Brain connectivity analysis software’ (http://www.brain-

connectivity-toolbox.net) [20] and the MatlabBGL package

(http://www.stanford.edu/̃dgleich/program/matlab_bgl/). Hubs

were visualized with the BrainNet Viewer (http://www. nitrc.org/

projects/bnv/).

Statistical Analysis
Differences in network parameters. Between-group dif-

ferences in network parameters (Cp, Lp, s and bi) were tested using

a nonparametric permutation test with 5000 repetitions [52,56].

To test if the observed group difference occurred by chance (the

null hypothesis), we randomly reassigned each participant’s 90

ROI rCMglc values to one of two groups. After the randomization

procedure, the interregional correlation matrix was calculated

again and a set of binary matrices was also obtained over the same

density threshold range as in the real brain networks. Cp, Lp, s and

bi were calculated in each network separately, and then between-

group differences in the network parameters were obtained. This

procedure was repeated 5000 times and the 95 percentile scores of

each difference-distribution were considered as the critical values

(p,0.05, one-tailed). This nonparametric permutation test proce-

dure was performed repeatedly at 6%# D #40% (35 times). We

did not make any adjustment for multiple comparisons because we

tried to explore the general trends of between-group differences

through the wide range of density level rather than to put a

separate and specific interpretation on the result at a certain

density level.

Severity subgroup analysis for AD. AD group was divided

into two severity subgroups according to CDR score: ‘very mild

AD (CDR=0.5)’ and ‘mild AD (CDR=1.0)’. Network construc-

tion for each subgroup and between-subgroup comparisons were

performed using the procedures described above.

Results

Subject Characteristics
Demographic and clinical characteristics of participants are

summarized in Table 2. There were no significant differences

between diagnostic groups in age, gender, and education. In terms

of neuropsychological performance, all of the test scores were

significantly different between any two groups. For the subgroups

of AD, 121 were very mild AD (CDR=0.5) and 95 were mild AD

(CDR=1.0).

Small-world Properties and their Alterations in MCI and
AD
All three groups demonstrated small-world property (s.1) over

an entire range of density (Figure 2). Between-group comparisons

revealed that s was not significantly different among groups over a

wide range of density except 14%–15% (greater in CN compared

to MCI) or 15% and 18% (greater in AD compared to MCI). On

the other hand, in terms of individual parameters, both AD and

MCI group had lower Cp than CN over a wide range of density

(Figure 3A). MCI showed significantly lower Cp than AD at certain

densities (11%,12%, 17%,19% and 22%,23%). In terms of Lp,

CN, MCI, and AD did not show significant between-group

differences, but AD had significantly longer Lp than MCI at

certain densities (13%, 23%, 25%, and 26%) (Figure 3B).

In subgroup analysis, mild AD subgroup had increased Cp and

longer Lp than very mild AD subgroup (Figure 3C and 3D), while

there were no group differences in s over entire density.

Table 1. Anatomical parcellation defined by automated
anatomical labeling atlas and abbreviations for the regions.

Abbreviations Regions

PreCG Precental gyrus

SFGdor Superior frontal gyrus, dorsolateral

SFGorb Superior frontal gyrus, orbital part

MFG Middle frontal gyrus

MFGorb Middle frontal gyrus, orbital part

IFGoperc Inferior frontal gyrus, opercular part

IFGtriang Inferior frontal gyrus, triangular part

IFGorb Inferior frontal gyrus, orbital part

ROL Rolandic operculum

SMA Supplementary motor area

OLF Olfactory cortex

SFGmed Superior frontal gyrus, medial

SFGmedO Superior frontal gyrus, medial orbital

REC Gyrus rectus

INS Insula

ACC Anterior cingulate and paracingulate gyri

MCC Median cingulate and paracingulate gyri

PCC Posterior cingulate gyrus

HIP Hippocampus

PHG Parahippocampal gyrus

AMYG Amygdala

CAL Calcarine fissure and surrounding cortex

CUN Cuneus

LING Lingual gyrus

SOG Superior occipital gyrus

MOG Middle occipital gyrus

IOG Inferior occipital gyrus

FFG Fusiform gyrus

PoCG Postcentral gyrus

SPG Superior parietal gyrus

IPL Inferior parietal, but supramarginal and
angular gyri

SMG Supramarginal gyrus

ANG Angular gyrus

PCUN Precuneus

PCL Paracentral lobule

CAU Caudate nucleus

PUT Lenticular nucleus, putamen

PAL Lenticular nucleus, pallidum

THA Thalamus

HES Heschl gyrus

STG Superior temporal gyrus

STGP Temporal pole: superior temporal gyrus

MTG Middle temporal gyrus

MTGP Temporal pole: middle temporal gyrus

ITG Inferior temporal gyrus

doi:10.1371/journal.pone.0053922.t001
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Functional Hubs and their Connectivity Alterations in
MCI and AD
Several brain regions were identified as functional hubs in CN.

They were mainly located in unimodal and multimodal association

cortex and paralimbic regions, such as the prefrontal cortex,

posterior parietal cortex, lateral temporal cortex and parahippo-

campal region (Figure S1 and Table S2). Further between-group

comparisons revealed that both MCI and AD groups had

significantly lower bi in the left inferior frontal triangular part

(IFGtrang_L) and the left precuneus (PCUN_L) compared to CN.

The AD group additionally had significantly lower bi in the

bilateral inferior frontal gyrus and the left middle temporal gyrus.

MCI group additionally showed significant bi decrease in the

parahippocampal gyrus (Figure 4 and Table S2).

To investigate more detailed connectivity alteration patterns

associated with the identified hubs, seed ROI-based interregional

correlation analysis was performed. We selected the IFGtrang_L

and PCUN_L as seed ROIs because their bis significantly

decreased in both MCI and AD groups compared with CN.

Extracted rCMglc values of those two ROIs were used as

covariates to find regions showing significant voxel-wise positive

correlations across three groups using Pearson’s correlation

coefficient (p,0.05, corrected). Figure 5A,5C shows interregional

connectivity with IFGtrang_L seed. These correlation coefficients

maps (R-map) were compared between groups using Fisher’s r-to-z

transformation, which ensures approximate normal distribution,

using Zi=1/2 log [(1+ri)/(1–ri)]. These z-values were compared

between groups by Z statistics using

z = (Z12Z2)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=(n1{3)z1=(n2{3)
p

. R-map comparisons showed

reduced connectivity of IFGtrang_L mainly with the right lateral

prefrontal regions in MCI, and mainly with the bilateral lateral

prefrontal regions and parietal regions in AD, compared with CN

(Figure 5D and 5E). Figure 6A,6C shows interregional connec-

tivity with PCUN_L seed in all subjects (p,0.05, corrected). R-

map comparisons showed reduced connectivity of PCUN_L with

the left inferior frontal gyrus, bilateral middle cingulate cortex, and

right parietal regions in MCI, and with more extensive areas in

AD group (Figure 6D and 6E).

Discussion

This is the first graph theoretical study using FDG-PET data to

investigate the characteristics of whole-brain functional network in

CN, MCI, and AD. To date no study has directly compared the

characteristics of whole-brain functional network among these

three groups. Our study revealed three main findings: (1) Whole-

brain functional networks of CN, MCI, and AD all showed small-

world property; (2) local clustering (Cp,) of network was lower in

both MCI and AD compared with CN, while small-world index

(s) itself and path length (Lp) were not different among the three

groups. Then, MCI showed lower level of local clustering than

AD; (3) subgroup analyses for AD showed that very mild AD had

lower local clustering and shorter path length compared to mild

AD.

Altered Global Properties of MCI and AD Functional Brain
Networks
Although whole-brain functional networks of MCI and AD

showed small-world properties like that of CN, local clustering

reflecting the degree of closeness between neighboring brain

regions was lower in MCI and AD compared to CN network.

Interestingly, MCI showed a more severe alteration in local

clustering than AD. This finding was rather unexpected because

MCI has been regarded as an intermediate state between CN and

AD dementia. The novel finding may be explained by the patterns

of regional brain hypometabolism in MCI and AD. MCI

individuals show localized hypometabolism pattern typically

involving the posterior cingulate/precuneus [57,58,59] or medial

Table 2. Demographic and clinical characteristics.

CN MCI AD

(n=94) (n=183) (n=216)

Age (SD), yrs 70.1 (6.2) 71.1 (6.6) 70.8 (8.0)

Education (SD), yrs 9.3 (4.9) 8.8 (4.9) 7.9 (5.6)

Gender (n of male/female) 32/62 54/129 63/153

CDR (n of 0/0.5/1.0) 94/0/0 0/183/0 0/121/95

CDR SOB 0 (0) 1.25 (0.62)a 4.25 (1.69)a, b

MMSE score (SD) 26.5 (2.4) 22.6 (4.0)a 17.4 (5.0)a, b

Neuropsychological Test

Animal fluency 16.0 (4.7) 11.4 (3.7)a 8.4 (3.8)a, b

Boston naming 11.7 (2.2) 9.4 (2.8)a 7.5 (3.4)a, b

Word list learning 18.9 (4.4) 12.6 (4.4)a 8.5 (4.3)a, b

Word list recall 6.8 (1.9) 3.1 (2.0)a 1.1 (1.4)a, b

Word list recognition 9.3 (1.0) 6.8 (2.3)a 4.5 (2.8)a, b

Constructional praxis 10.3 (1.1) 9.5 (1.8)a 8.3 (2.3)a, b

Constructional recall 7.0 (2.8) 3.2 (2.9)a 1.5(2.0)a, b

Values are given as mean (standard deviation) except gender and CDR.
aSignificant compared to CN (p,0.05);
a, bSignificant compared to MCI (p,0.05).
CN= cognitively normal; MCI =mild cognitive impairment; AD=Alzheimer’s
disease; CDR=Clinical dementia rating; CDR SOB= sum of boxes of the clinical
dementia rating; MMSE =mini mental status examination.
doi:10.1371/journal.pone.0053922.t002

Figure 2. Small-world index of functional brain networks in CN,
MCI, and AD. s = Small-world index; CN = cognitively normal;
MCI =mild cognitive impairment; AD=Alzheimer’s disease. *p,0.05
for CN vs. MCI (significant at density of 14%,15%); {p,0.05 for AD vs.
MCI (significant at 15% and 18%).
doi:10.1371/journal.pone.0053922.g002
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temporal areas [60,61], with relatively intact other neighbor

regions. In contrast, AD patients have more diffused hypometab-

olism involving the lateral temporo-parietal and frontal cortices

[59,62] as well as the regions impaired in MCI stage. As the local

clustering (Cp,) of network is based on correlation between adjacent

brain regions, MCI with scattered and focal impairment pattern

shows a more decreased level of local clustering than AD with

more diffuse impairment. This implies that hypometabolism

extends to wider brain regions as AD progresses, which

subsequently results in higher interregional correlation and

restoration of clustering coefficient in more advanced stage. To

investigate whether such trend is observed even within the AD

group, we conducted additional analyses dividing overall AD into

very mild (less severe) and mild (more severe) subgroups according

to CDR rating. The subgroup analyses revealed that very mild AD

had more decreased local clustering than mild AD, supporting the

idea that the progression pattern of local clustering impairment

from MCI to AD also exists within AD group. Overall, this early

disruption and later restoration of clustering coefficient in MCI

and early AD implies that this parameter should be used only for

the understanding functional relationship between adjacent brain

regions, but not for understanding the degree of functional or

cognitive impairment by AD pathological process.

In terms of path length, there is no apparent difference of path

length (Lp) between CN, MCI and AD at most density levels. AD

group, however, showed slightly longer trends for path length,

compared to MCI, even with significant differences at a few

densities (13%, 23%, 25%, and 26%). Through subgroup analyses

for AD, we also found that mild AD patients had significantly

longer path length than very mild patients. Taking these findings

together, path length seems to gradually increase with the advance

of AD pathological process. This is also in accordance with

previous reports which indicated that long-distant inter-regional

functional connections were relatively spared in MCI, before

impairment in AD [33,37,63]. In addition, increased path length

may be associated with the alteration of long cortico-cortical white

Figure 3. AD- and MCI- related alterations in small-world parameters. A. The clustering coefficients (Cp) from cognitively normal (CN, black
dotted line), mild cognitive impairment (MCI, blue line) and Alzheimer’s disease (AD, red line). *p,0.05 for CN vs. MCI (significant at density of
19%,40%).; {p,0.05 for CN vs. AD (significant at 19%,26%, and 32%,40%); {p,0.05 for MCI vs. AD (significant at 11%,12%, 17%,19% and
22%,23%). B. The Lp from CN, MCI and AD. *p,0.05 for MCI vs. AD (significant at 13%, 23%, and 25%,26%). C. The Cp from AD with clinical
dementia rating (CDR) 0.5 (AD_very mild, orange line), and AD with CDR 1.0 (AD_mild, purple line). *p,0.05 for AD_very mild vs. AD_mild (significant
at 18%,38%). D. The Lp from AD_very mild and AD_mild. *p,0.05 for AD_very mild vs. AD_mild (significant at 11%,39%).
doi:10.1371/journal.pone.0053922.g003
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matter tracts by AD process [6,64], because structural connectivity

could place physical constraints on functional interactions between

nodes [65]. When a long axonal tract directly connecting two

distant regions is impaired by AD pathology, information has to be

transferred only in a roundabout way through several steps of

synapses resulting in a longer path length between the nodes.

As mentioned in the introduction, specific alteration patterns of

local clustering and path length reported by earlier functional

brain network studies for AD were controversial, and it is hard to

find a certain solid trend from the findings: local clustering in the

AD network was either unchanged [27,28] or reduced [29,30].

Path length between nodes in the AD network was either

unchanged [30], or altered into a longer path length [27,29] or

shorter path length [28]. These conflicting results may be

attributed to different AD clinical stages of study subjects, given

the progressive nature of AD involvement. However, direct

comparison between previous reports and our results are difficult

because most previous studies did not clearly define the clinical

stages of the AD group. The mini mental status examination

(MMSE) score of subjects included in previous studies ranged

widely (e.g., 12 to 29). They appear to include heterogeneous

clinical stages, i.e., very mild to moderate. One recent small world

brain network study focused on homogeneous moderate AD

patients and reported clear increases in both local clustering and

path length [66], very similar to our findings in relatively more

advanced AD (mild AD). Studies using structural MRI or diffusion

tensor imaging also consistently demonstrated that AD brain

network had longer path length and higher clustering with

neighbors, compared to the network of CN [50,52,67].

Altered Local Properties of MCI and AD Whole-brain
Functional Networks
MCI and AD showed significantly decreased normalized

betweenness centrality in several hubs of association cortex

compared to CN. The IFGtrang_L and PCUN_L regions, in

particular, showed decreased centrality in both MCI and AD.

Additional seed ROI-based analyses demonstrated that areas with

which IFGtrang_L and PCUN_L ROI had reduced connectivity

were more extensive in AD than in MCI (Figure 5 and 6), implying

a progressive pattern of network alteration during the AD process.

Beside the two regions, there were several additional regions which

showed decreased centrality in the MCI or AD network. MCI

network showed an additional centrality decrease in the bilateral

parahippocampal gyrus, possibly related to episodic memory

impairments. AD network showed an additional centrality

decrease in the frontal and the temporal regions, possibly related

to the impairments of multiple cognitive domains of AD dementia

state. These findings indicate that the precuneus, inferior frontal

gyrus, insular, parahippocampal gyrus, and middle temporal gyrus

are less effective as hubs in MCI and AD than in CN network.

These regions generally correspond to the parts of the DMN

known to show reduced functional connectivity in MCI or AD

[9,10,68,69]. Moreover, the DMN or cortical hubs observed in

young adults were anatomically similar to the cortical areas with

amyloid deposition in AD patients [70,71]. Functional impairment

of hubs within DMN in MCI and AD patients suggests that

cognitive impairments in these individuals may be related to the

failure of efficient information transfer among the brain regions

given that the hubs serve to integrate diverse informational sources

and local networks [70,72].

Methodological Considerations
It should be noted that we used a fixed density method rather

than the correlation coefficient threshold. As He and colleagues

noted, applying the same threshold of correlation coefficients to

the matrices of individual groups would result in networks with

different edge numbers [52]. A resultant network difference would

not simply reflect the true discrepancy of the topological network

structures between study groups. Using fixed density threshold

ensures the graphs from three diagnostic groups to have the same

number of edges. However, fixed density threshold strategy may

also influence the results, as it would allow the ROI pairs which

have weaker correlation (e.g., AD network) to have an edge in the

binary matrix. To account for this issue, we calculated the same

network parameters repeatedly with a range of correlation

coefficient thresholds (0.10# r #0.70 with increments of 0.05).

Group-comparison results were largely similar to those based on

fixed density threshold strategy. This supports the validity of the

Figure 4. AD- and MCI -related alterations in hub regions. Hubs were visualized using the BrainNet viewer (NKLCNL, Beijing Normal
University). Purple circle indicates the regions where both Alzheimer’s disease (AD) and mild cognitive impairment (MCI) networks showed decreased
betweenness centrality compared with cognitively normal (CN). Red circle indicates the regions where AD network additionally showed decreased
betweenness centrality compared with CN. Blue circle indicates the regions where MCI network additionally showed decreased betweenness
centraility compared with CN. Abbreviations for the regions are expanded in Table 1. L = left; R = right.
doi:10.1371/journal.pone.0053922.g004
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fixed density method in comparing pure global topology of

network without losing much of the biological meaning.

Limitations and Future Questions
There are several limitations and future directions to be

addressed. First, a cross-sectional design was used in the current

study. Based on the present findings, the diagnostic or prognostic

value of network parameters needs to be further explored

longitudinally. Second, our findings from the functional brain

network study showed close overlap with those from some previous

structural network studies. The integration of multimodal imaging

study could provide the relationship between functional and

anatomical brain networks (e.g., how the functional brain network

changes are associated with underlying anatomical change in MCI

and AD). Third, we constructed a network using 90 nodes.

Although the small-world property was robust and results

remained largely similar regardless of the parcellation method

[28,73], network definition by different parcellation (e.g., higher-

resolution) might lead to different implications. Finally, unweight-

ed and binary matrix was used in the study. To capture important

information from functional brain network as a complex system,

more advanced network analysis approach will be needed in the

future.

Conclusion
We compared the characteristics of whole-brain functional

network among CN, MCI, and AD through graph theoretical

analysis for brain glucose metabolism. Our results for global

functional network properties indicated that although the overall

small-world property is preserved in MCI and AD, individual

parameters of the network are altered with unique patterns of

changes: The functional integration reflected in path length

appears to progressively decrease by AD process. On the other

hand, functional relatedness between neighboring brain regions

reflected in local clustering coefficient seems not gradually

impaired, but the most severely altered in MCI stage and

gradually re-increased in clinical AD stages. In addition, the

results on functional impairment of hubs regionally associated with

DMN in MCI and AD suggested that cognitive impairments of

these individuals may be related the failure of efficient information

Figure 5. Connectivity associated with left IFGtriang seed and connectivity reductions in CN, MCI, and AD. A. Correlation coefficients
map (R-map) showing connectivity associated with left IFGtriang seed in CN. B. R-map showing connectivity associated with left IFGtriang seed in
MCI. C. R-map showing connectivity associated with left IFGtriang seed in AD. D. Z-statistics map showing reduced connectivity with left IFGtriang
seed in MCI compared to CN. E. Z-statistics map showing reduced connectivity left IFGtriang seed in AD compared to CN (p,0.05, FDR-corrected).
IFGtriang= triangular part of inferior frontal gyrus; CN= cognitively normal; MCI =mild cognitive impairment; AD=Alzheimer’s disease; L = left;
R = right.
doi:10.1371/journal.pone.0053922.g005
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transfer among brain regions given that the hubs serve to integrate

diverse brain informational sources.

Supporting Information
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control; MCI=mild cognitive impairment; AD=Alzheimer’s
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