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Abstract
Ischemic stroke represents a significant societal burden across the globe. Rare high penetrant monogenic variants and less 
pathogenic common single nucleotide polymorphisms (SNPs) have been described as being associated with risk of diseases. 
Genetic studies in Saudi Arabian patients offer a greater opportunity to detect rare high penetrant mutations enriched in these 
consanguineous populations. We performed whole exome sequencing on 387 ischemic stroke subjects from Saudi Arabian 
hospital networks with up to 20,230 controls from the Saudi Human Genome Project and performed gene burden analyses of 
variants in 177 a priori loci derived from knowledge-driven curation of monogenic and genome-wide association studies of 
stroke. Using gene-burden analyses, we observed significant associations in numerous loci under autosomal dominant and/
or recessive modelling. Stroke subjects with modified Rankin Scale (mRSs) above 3 were found to carry greater cumulative 
polygenic risk score (PRS) from rare variants in stroke genes (standardized PRS mean > 0) compared to the population aver-
age (standardized PRS mean = 0). However, patients with mRS of 3 or lower had lower cumulative genetic risk from rare 
variants in stroke genes (OR (95%CI) = 1.79 (1.29–2.49), p = 0.0005), with the means of standardized PRS at or lower than 
0. In conclusion, gene burden testing in Saudi stroke populations reveals a number of statistically significant signals under 
different disease inheritance models. However, interestingly, stroke subjects with mRS of 3 or lower had lower cumulative 
genetic risk from rare variants in stroke genes and therefore, determining the potential mRS cutoffs to use for clinical sig-
nificance may allow risk stratification of this population.
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Introduction

Stroke is a major cause of morbidity and is the second lead-
ing cause of death worldwide. Over 13 million people have 
a stroke each year and around 5.5 million people will die as 
a result (Virani et al. 2021). Incidence, type of stroke and 
mortality rates vary markedly between countries and ances-
tral groups. Ischemic strokes are the most common type of 
stroke, and typically involve a disruption of blood flow to 
the brain parenchyma which causes brain cell death from a 
lack of oxygen. It may result from a number of processes 
including small vessel occlusions (SVOs) and large-artery 
atherosclerosis (Adams et al. 1993). More young people are 
affected with ischemic stroke in low- and middle-income 
countries than higher income countries (Lehman and Full-
erton 2013; Lehman et al. 2018). Initial twin and family 
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studies, primarily using linkage analysis, contributed to the 
initial knowledge of heritability studies in stroke (Flossmann 
et al. 2004). While such approaches found causal variants 
in various genes for monogenic stroke disorders, they had 
limited value in finding common variants impacting poly-
genic risk (Ekkert et al. 2021; Li et al. 2021). Genome-Wide 
Association Studies (GWAS) utilizing genome-wide geno-
typing arrays and/or whole exome sequencing (WES) have 
been successful in elucidating rare and common variants in 
various stroke subtypes (Li et al. 2021; Dichgans et al. 2021; 
Kumar et al. 2021).

Polygenic risk scores (PRS) utilizing cumulative, 
weighted risk scores for multiple genetic variants, with spe-
cific diseases/phenotypes, typically integrate known clinical 
risk covariates. They have been used with varying success in 
common diseases with multifactorial disease risk, including 
those with common and rare genetic underpinnings. Malik 
and colleagues combined stroke PRS data with Framing-
ham risk scores and observed a significant association with 
ischemic stroke risk, although the prognostic value of the 
PRS was not substantially different from that of conven-
tional clinical risk factors (Malik et al. 2014). However, 
more recent studies have shown utility with the use of PRSs 
in stroke-related phenotypes (Hachiya et al. 2020).

Saudi Arabia has seen an unprecedented adverse rise 
in modifiable risk factors for vascular disease over the 
last 30–40 years including poor diet, smoking and seden-
tary lifestyle, resulting in increases in dyslipidemia, type 
2 diabetes, and hypertension which further exacerbate 
stroke and other vascular disease progression (Alhaz-
zani et al. 2021). There are wide incidence differences 
across reported Saudi stroke studies ranging from ~ 16 
to 58 cases per 100,000 person years (Alhazzani et al. 
2018; Al Rajeh & Awada 2002). Such differences may be 
due to an interplay of study ascertainment biases as well 
as from significant primary and secondary health care 
delivery differences between private and public payer 
systems in Saudi Arabia, leading to a higher likelihood 
of undiagnosed diseases (Alqahtani et al. 2020). Recent 
studies indicate that the incidence of stroke is increasing 
rapidly with ischemic stroke being the dominant sub-
type affecting the Saudi populations (Alhazzani et al. 
2018; Alqahtani et al. 2020; Al Rajeh & Awada 2002; 
Alqahtani et al. 2020).

Performing genetic studies in Saudi Arabian populations 
offers a unique opportunity for the discovery of novel genetic 
variants impacting disease risk due to a high rate of consan-
guinity amongst tribal pedigrees that make up the majority 
of the national population (Kari et al. 2014; Alkuraya 2012). 
We performed whole exome sequencing on 387 Saudi sub-
jects with clinically diagnosed ischemic stroke. We focused 
on the analyses of exonic sequence data from a panel of 
177 gene regions derived from highly curated stroke studies 

and utilized approximately 20,230 controls from the Saudi 
Human Genome Project. We then assessed the association 
of rare variants, primarily with ischemic stroke, and also 
evaluated PRSs within our study population.

Methods

Study participants’ samples and data

During 2019–2020, samples and data from 387 subjects 
(inpatients and outpatients) who had been diagnosed with 
ischemic stroke and attending the following Neurology Clin-
ics were collected for inclusion in this study: King Fahd 
Hospital of the University (KFHU), Al Khobar; King Fahd 
Hospital, Al Hafof; and Al Wajh Hospital, Dammam. Par-
ticipants ranged in age from 19 to 81. The phenotype data 
of all subjects were reviewed by a neurology consultant to 
ascertain and verify the diagnoses and the phenotype uni-
formity among sites as well as eligibility according to the 
study criteria. Table 1 outlines the demographic and clinical 
characteristics of the 387 ischemic stroke subjects included 
in this study. The subtypes of ischemic stroke were deter-
mined according to the Trial of Org 10,172 in Acute Stroke 

Table 1  Saudi Ischemic Stroke Study Participants Clinical Character-
istics. Clinical characteristics data collated from 387 ischemic stroke 
subjects diagnosed at neurology clinics at the following three Saudi 
Hospitals: King Fahd Hospital University (KFHU), Al-Khobar, and 
King Fahd Hospital, Alhafof and Al Wajh Hospital, Dammam. *Trial 
of Org 10,172 in Acute Stroke Treatment (TOAST) classification

Parameter

Total number of patients 387
Age (Mean ± SD) 56.5 ± 15.8
Age at diagnosis (Mean ± SD) 55.6 ± 15.7
Male sex N (%) 223 (57.6)
Hospital
AL-WAJAH, Dammam, n = (%) 94 (24.3)
King Fahd Hospital, Al Hafof, n = (%) 107 (27.6)
KFHU, Alkhobar, n = (%) 186 (48.1)
TOAST* classification
Large artery atherosclerosis, n = (%) 78 (20.2)
Cardio aortic embolism, n = (%) 56 (14.5)
Small artery occlusion, n = (%) 253 (65.4)
Modified Rankin Scale (mRS)
0 N (%) 51 (13.2)
1 N (%) 44 (11.4)
2 N (%) 219 (56.6)
3 N (%) 38 (9.8)
4 N (%) 17 (4.4)
5 N (%) 12 (3.1)
6 N (%) 6 (1.6)
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Treatment (TOAST) classification (Adams et al. 1993). The 
functional outcome of stroke patients was determined using 
modified Rankin Scale (mRS) at admission and at one-
month post stroke follow-up.

DNA extraction and sequencing

Peripheral blood samples were collected into EDTA tubes 
and stored in − 20 °C freezers at the research laboratories 
at the College of Medicine, Imam Abdulrahman bin Faisal 
University. Genomic DNA extraction from all samples was 
performed using Gentra Puregene Blood kits (Qiagen, USA) 
according to the manufacturer’s protocol. Whole exome 
sequencing libraries were generated using the SureSelect 
Human All Exon Kit v5 (Agilent, CA, USA) and sequenced 
on a HiSeq instrument (Illumina, CA, USA) using a standard 
paired-end sequencing protocol for SureSelectXT Library 
Prep and Target Enrichment System Version B.2 (Illumina, 
CA, USA).

Read alignment, variant calling, and QC

Reads in the FASTQ files were aligned to the standard 
human genome reference (GRCh37) using Illumina’s 
Dynamic Read Analysis dor GENNomics (DRAGEN) 
Genomic Pipeline. Resultant BAM files were position-sorted 
and duplicate reads marked. Single-sample genomic variant 
call files (gVCF) were generated by the DRAGEN Germline 
Pipeline, and joint calling of all samples in the study cohort 
was performed by DRAGEN Joint Genotyping (Illumina, 
CA, USA).

Principal components analysis (PCA) and Kinship

The KING algorithm was used for relatedness inference 
based on the genotype of exome SNPs (minor allele fre-
quency [MAF] > 0.01). Estimated kinship coefficient and 
number of SNPs with zero shared alleles (identity by state 
[IBS]0) between a pair of individuals were plotted. Parent-
offspring, sibling pairs, and unrelated pairs were visual-
ized on the scatterplot to distinguish any separate clusters. 
Ancestry and Kinship Toolkit (AKT) was used to calculate 
PCAs and plot the results using 1000 genome project data. 
The study participant samples demonstrated a genetically 
matched background consistent with typical Saudi popula-
tions including African admixture, which is known to be evi-
dent in Saudi tribes primarily from East Africa (Fernandes 
et al. 2019).

Variant annotation, filtering and prioritization

Variants were annotated with a program for annotating and 
predicting the effects of single nucleotide polymorphisms 

(SnpEff,v5.0) to predict the effects of the variants. Rare vari-
ants were defined as minor allele frequency (MAF) < 1% 
in The Genome Aggregation Database (gnomAD) (v2.1.1). 
Intronic, synonymous, 3′ and 5′ UTR, upstream and down-
stream variants were identified and excluded from the 
analysis. The remaining rare variants were considered to be 
potentially deleterious variants. Genetic variants classified 
in ClinVar as “Likely pathogenic” or “Pathogenic,” and in 
Human Gene Mutation Database (HGMD) as disease-caus-
ing mutations (DM) for stroke were collected and curated 
together with research literature to serve as the knowledge-
base for variant prioritization and classification (Stenson 
et al. 2003).

Use of a comprehensive stroke gene panel

Numerous reports have identified genes associated with 
stroke by using data from monogenic and genome-wide 
association studies (GWAS). We used a comprehensive col-
lation of genes with associations for monogenic causes of 
stroke which has been used in many clinical and research 
studies (Ilinca et al. 2019). Malek et al. in a large multi-
ancestry GWAS of up to 67,162 stroke cases and 454,450 
controls discovered 22 new stroke risk loci and validated 10 
known stroke loci, bringing the total to 32 loci which are 
encompassed in the panel (Malik et al. 2018).

Gene burden testing

The open-source software package Test Rare vAriants 
with Public Data (TRAPD) was used to perform a gene-
based burden testing against public control databases. The 
software allows for adaptable filtering on various quality 
and frequency fields to ensure a well-controlled burden 
test. Gene burden test on our ischemic stroke WES cohort 
datasets was performed against whole exome or whole 
genome sequencing data available from approximately 
20,230 individuals from the Saudi Human Genome Project 
(https:// shgp. kacst. edu. sa).

Polygenetic risk score generation

Rare, impactful variants (listed in Supplementary 
Table S1) identified in stroke genes were included to cal-
culate polygenetic risk scores (PRS) for stroke for each 
individual study subject to represent the cumulative risk 
of carrying one or more of these rare variants. (Malik 
et al. 2018). PRSice-2 software was employed to calcu-
late PRS by setting an equal effect size (beta = 1) for each 
variant (Choi and O’Reilly 2019). The resulting PRS was 
standardized for association tests with clinical variables 
such as age of diagnosis, mRS, and classifications of 
stroke. It is acknowledged that there may be an under- or 

https://shgp.kacst.edu.sa
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over-estimation of the effect size of these rare variants. 
However, when there is an actual effect, the association, 
albeit with less accurate estimates, could be detected. The 
validity of this approach was evident in the initial effort to 
estimate the combined effect of multiple genetic variants 
before a more sophisticated statistical approach was devel-
oped (Zheng et al. 2008). In addition, as the rare variant 
PRS was calculated using PRSice-2, it was restricted to 
the specific set of rare variants that were identified with-
out consideration of other common variants based on LD 
patterns.

Results

Principal component analysis

The common variants of the whole exome sequencing data 
from the stroke study participants show expected cluster-
ing when compared to the world’s major populations using 
a standard principal component analysis pipeline (Fig. 1). 
This population stratification data was used to mitigate 
false attributions in the association analyses components.

Gene burden testing

We were able to utilize exonic data from 177 genes from the 
initial set of 214 stroke loci panel (48) after removal of mito-
chondrial genes; non-exonic regions such as 9p.21 and non-
coding RNAs, and genes that had poor quality control and 
quality assurance filtering data in the Saudi Genome Project 
control dataset including ATP7A, FLNA, GLA, GPR143, 
PGAM4, and F9. Focusing on the a priori 177 loci derived 
from the stroke panel, we identified rare putative impact-
ful variants within the cohort (Supplementary Table S1). 
The equivalent analysis was performed using the TRAPD 
burden testing pipeline and we observed that our cohort 
of 387 ischemic stroke subjects was significantly enriched 
for impactful alleles in several loci on the a priori stroke 
panel, compared to the control populations of approximately 
20,230 Saudi population-based controls derived from the 
Saudi Genome Project.

The top 20 most significant signals for gene burden analy-
ses under a dominant model (p < 1 ×  10–5) and 14 signals 
with p < 0.05) under a recessive model are shown on Table 2 
with FDR correction and a full list of association signals 
under both dominant and recessive models are shown for all 
177 genes (Supplementary Table S2). Table 2 (top) shows 
the top 20 genes with p < 1 ×  10−5 under a dominant model 
(F13A1, NF1, ACAD9, NOTCH3, MYLK, SH3PXD2A, 
TSC2, ADAMTS13, COL4A2, APP, FOXC1, COL1A1, 
TGFBR2, PDE4D, MYH7, DPM1, PGM1, FCGR2C, 
ZFHX3, PDE3A). Table 2 (top) shows the 14 most signifi-
cant signals at p < 0.05 under a recessive model (PDE4D, 
KCNQ1, TREX1, CYP11B1, F5, HTRA1, CACNA1A, 
ZCCHC14, NBEAL2, FGA, PCNT, DPM1, LOC100505841, 
and SH3PXD2A). Three genes, SH3PXD2A, PDE4D, and 
DPM1, were significant under both the dominant and reces-
sive models. Twenty-eight of the genic 32 GWAS loci 
contained among the 177 genes on the stroke panel were 
available for analysis and 12 showed gene burden associa-
tions at p < 0.05 under either dominant or recessive models 
(ZCCHC14, FGA, LOC100505841, SH3PXD2A, PRPF8, 
PDE3A, ZFHX3, SH2B3, TM4SF4, HDAC9–TWIST1, 
SMARCA4, and FOXF2). 

Associations of polygenic risk with clinical variables

The overall distribution of polygenic risk score (PRS) rep-
resenting the overall genetic burden from rare, impactful 
variants in stroke genes among all 387 ischemic stroke 
study participants subjected to whole exome sequencing 
deviated from normality and was right-skewed (Fig. 2) with 
median [IQR] of 8.61 [6.59,10.53], minimum of 1.53, and 
maximum of 18.75. PRS was not associated with age of 
diagnosis, ischemia diagnosis, and classification of stroke 
such as large artery atherosclerosis, cardio aortic embolism, 

Fig. 1  Principal component analysis (PCA) of common SNP geno-
types with 1000 genome projects (1KGP) populations reference 
panel. The x- and y-axes denote the value of two components of 
PCA (PC1, PC2), with each dot in the figure representing one indi-
vidual. The color for individuals from 1000 genome projects, Euro-
peans (EUR), East Asians (EAS), Admixed Americans (AMR), South 
Asians (SAS), and Africans (AFR) are red, blue, green, purple, and 
orange, respectively. The color for individuals belonging to the Stroke 
Disease study group is illustrated in black
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and small artery occlusion (Table 3). However, a significant 
association of PRS and mRS, which measures the degree 
of disability post-stroke, was identified (regression coeffi-
cient (95%CI) = 0.15 (0.03–0.27), p = 0.02). PRS was found 
to increase the risk of developing greater disability post-
stroke event (mRS > 3), when compared to patients with 
lower mRS (mRS ≤ 3) (OR (95%CI) = 1.79 (1.29–2.49), 
p = 0.0005) (Table 3).

Stroke subjects with mRSs above 3 were found to 
carry greater cumulative genetic risk from rare variants 
in stroke genes (standardized PRS mean > 0) compared to 

the population average (standardized PRS mean = 0). How-
ever, patients with mRS of 3 or lower had lower cumula-
tive genetic risk from rare variants in stroke genes, with the 
means of standardized PRS at or lower than 0 (Fig. 3).

Discussion

In this study, WES was performed on 387 individuals diag-
nosed with ischemic stroke. We initially focused on known, 
or putative, pathogenic exonic variants evident in 177 genes 

Table 2   (Top) 20 most significant dominant model signals and (bottom) p < 0.05 Recessive model signals from TRAPD gene burden testing in 
Saudi Ischemic Stroke subjects compared in up to 20,230 individuals from Saudi Human Genome Project

Gene Heterozygote cases Homozygote cases Heterozygote controls Homozygote controls P: dominant model P: recessive
model

F13A1 10 0 6 0 3.13E − 11 1
NF1 11 0 12 2 4.84E − 10 1
ACAD9 9 0 11 0 1.52E − 08 1
NOTCH3 42 2 411 18 1.77E − 08 0.405288
MYLK 31 0 231 13 3.60E − 08 0.170765
SH3PXD2A 21 1 126 5 5.16E − 08 0.042198
TSC2 48 0 499 15 5.68E − 08 0.791086
ADAMTS13 26 0 182 10 1.54E − 07 0.106345
COL4A2 27 1 217 9 2.70E − 07 0.435679
APP 12 0 44 2 1.19E − 06 1
FOXC1 6 1 4 6 1.36E − 06 0.234242
COL1A1 21 0 146 3 1.39E − 06 1
TGFBR2 5 0 2 0 1.41E − 06 1
PDE4D 23 6 253 11 1.58E − 06 2.20E − 06
MYH7 7 0 11 0 2.16E − 06 1
DPM1 4 1 3 0 3.64E − 06 0.037399
PGM1 9 0 25 1 3.88E − 06 0.073402
FCGR2C 8 1 26 2 6.40E − 06 0.108062
ZFHX3
PDE3A

105
14

4
0

1791
76

80
3

7.23E − 06
8.31E − 06

0.308726
0.17355

Gene Heterozygote Cases Homozygote Cases Heterozygote Controls Homozygote Controls P: Dominant model P: Recessive
model

PDE4D 23 6 253 11 1.58E − 06 2.20E − 06
KCNQ1 16 1 486 15 0.746853 5.99E − 05
TREX1 7 0 126 11 0.293476 0.000408
CYP11B1 19 0 209 5 0.001179 0.001053
F5 25 1 314 8 0.000606 0.001374
HTRA1 2 2 42 0 0.092068 0.001395
CACNA1A 20 2 217 14 0.000202 0.009701
ZCCHC14 11 2 204 7 0.077487 0.013894
NBEAL2 72 2 1840 118 0.623318 0.015113
FGA 15 1 253 6 0.053339 0.016894
PCNT 79 6 1374 88 0.000112 0.029154
DPM1 4 1 3 0 3.64E − 06 0.037399
LOC100505841 3 1 39 0 0.075819 0.037399
SH3PXD2A 21 1 126 5 5.16E − 08 0.042198
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prioritized from a comprehensive panel of loci associated 
with monogenic causes of stroke as well as recent GWAS 
statistically significant signals (Ilinca et al. 2019). This panel 
has been used in exome sequencing interpretation of indi-
viduals from multi-incident stroke families to generate and 
assess putative pathogenic variants amongst the probands 
and wider family members (Ilinca et al. 2020). It has also 
been utilized in cerebral small vessel disease (CSVD) 
which revealed putative pathogenic variants in multiple 
loci (Monkare et al. 2022). Using the TRAPD gene burden 
testing pipeline, filtered on our list of 177 genes, we found 
significant enrichment for pathogenic or likely pathogenic 

stroke variants in numerous genes in our cohort using data-
sets from the Saudi Genome Project as controls.

A number of the top signals in our study are outlined 
below. The coagulation factor XIII A chain (F13A1) gene 
encodes the coagulation factor that is the last component 
activated in the blood coagulation cascade. Factor XIII 
deficiency is typically classified into two categories: type 
I deficiency, characterized by the lack of both the A and B 
subunits; and type II deficiency, characterized by the lack 
of the A subunit alone. These defects can result in defec-
tive wound healing and a tendency for lifelong bleeding. A 
review of common variants association analyses of F13A1 
with stroke phenotypes has shown mixed findings. However, 
a large Women’s Health Initiative (WHI) study of 2,045 of 
post-menopausal women, significant risk was observed for 
both ischemic stroke and for combined ischemic and hem-
orrhagic between two common F13A1 variants and with 
hormone replacement therapy (Huang et al. 2012). A Dutch 
study also showed significant associations between common 
variants in F13A1 with ischemic stroke in young women 
with the effect more pronounced with oral contraception use 
(Pruissen et al. 2008).

Neurofibromin 1 (NF1) gene encodes a negative regula-
tor of the Ras signal transduction pathway and a number of 
NF1 mutations have been linked to neurofibromatosis type 
1 which is commonly associated with malignant tumors and 
cardiovascular or cerebrovascular complications (Napolitano 
et al. 2022). Neurofibromatosis type 1 also increases the 
risk of vasculopathies and arterial wall weakness and can 

Fig. 2  Distribution of rare variant Polygenic Risk Score (PRS) 
among 387 Saudi Ischemic Stroke subjects. PRS statistics: 
Mean ± SD = 8.7 ± 3.0; Median[IQR] = 8.6 [6.6,10.5]; Min = 1.53; 
Max = 18.6

Table 3  Association of clinical phenotypes with polygenic risk score 
(PRS) constructed with rare impactful variants in stroke genes. The 
PRS was standardized to mean at 0 and SD of 1

Continuous phenotype Regression coefficient 
(95%CI)

p-value

Age of Diagnosis 1.15 (− 0.43–2.72) 0.15
Modified Rankin Scale (mRS) 0.15 (0.03–0.27) 0.02
Dichotomized phenotype OR (95%CI) p-value
High mRS (4/5/6, N = 35) vs low 

mRS (0/1, N = 95)
1.56 (1.09–2.23) 0.015

High mRS (4/5/6, N = 35) vs lower 
mRS (0/1/2/3, N = 351)

1.79 (1.29–2.49) 0.0005

Diagnosis (= ischemia) 1.14 (0.89–1.47) 0.31
Large artery atherosclerosis 1.00 (0.75–1.34) 0.98
Cardio aortic embolism 0.87 (0.71–1.07) 0.2
Small artery occlusion 1.15 (–0.43–2.72) 0.15

Fig. 3  Box-whisker plot of standardized Stroke Polygenic risk score 
in a Saudi Stroke Cohort by Modified Rankin Scale (mRS) groups. 
The standardized Polygenic Risk Score (PRS) is illustrated on the 
y-axis with the Modified Rankin Scale (mRS) groups shown on the 
x-axis
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lead to complications such as hemorrhagic stroke, ischemic 
stroke, and multi-domain cognitive impairment (Napolitano 
et al. 2022).

Acyl-CoA dehydrogenase family member 9 (ACAD9) 
encodes a member of the acyl-CoA dehydrogenase family, a 
family of proteins that are localized in the mitochondria and 
are involved in beta-oxidation of fatty acyl-CoA. Mutations 
in this gene cause acyl-CoA dehydrogenase family member 
type 9 deficiency which often results in intellectual disabil-
ity and neurologic dysfunction. A homozygous variant in 
ACAD9 was identified in the proband of a Swedish family 
where family members reported stroke with intracerebral 
bleeding and progressive muscle and heart failure (Ilinca 
et al. 2020). A case report of a death of a teenager with 
ACAD9 deficiency with Reye-like episode and cerebellar 
stroke has also been reported (Huang et al. 2012).

Phosphodiesterase 4D (PDE4D) encodes up to 9 differ-
ent isoforms whose functional proteins degrade the second 
messenger Cyclic adenosine monophosphate (cAMP), a 
key signal transduction molecule in multiple cell types, 
including vascular cells (Munshi & Kaul 2008). Numerous 
case–control studies have been performed to assess the asso-
ciation between PDE4D variants and ischemic stroke risk 
among different ancestral populations. In particular, the so-
called “SNP83” (rs966221) association with has been robust 
in many of these studies (Munshi & Kaul 2008; Xu et al. 
2010). PDE4D is associated with inflammation and reduced 
PDE4D is thought to increase the risk of atrial fibrillation, 
which in turn increases stroke risk (Jørgensen et al. 2015). 
Several studies have shown a robust association of PDE4D 
variants with ischemic stroke in young individuals (Yue 
et al. 2019).

Potassium voltage-gated channel subfamily Q member 1 
(KCNQ1) encodes a voltage-gated potassium channel protein 
which is required for the repolarization phase of the cardiac 
action potential and forms multimers with KCNE1, KCNE3 
and potassium channel proteins. Mutations in KCNQ1 are 
associated with familial atrial fibrillation and hereditary long 
QT syndrome 1 which can impact stroke risk (Jørgensen 
et al. 2015; Lavy et al. 1974). An increased genetic burden 
of rare deleterious KCNQ1 variants in Polish subjects with 
large-vessel ischemic stroke were identified using second-
generation sequencing (Janicki et al. 2019).

Three prime repair exonuclease 1 (TREX1) encodes a 
nuclear protein with 3′ exonuclease activity and play a 
role in DNA repair and serve as a proofreading function 
for DNA polymerase. Mutations in this gene result in dis-
eases of the immune system including Aicardi-Goutieres 
syndrome and other autoimmune-type diseases which can 
put subjects at a higher risk of ischemic stroke. Uemura 
2023 investigating the prevalence of Mendelian stroke 
genes mutations in monogenic cerebral small vessel stroke 
patients aged 55 years or younger from a Japanese stroke 

registry identified a TREX1 pathogenic genetic variants in 
one stroke subject (Uemura et al. 2023). A large Mende-
lian Stroke Consortium also identified pathogenic clinical 
variants in TREX1 (Grami et al. 2020).

The distribution of the polygenic risk score analyses 
showed that the stroke subjects in this Saudi cohort each, 
on average, carry over 8 rare, impactful variants. PRS 
analyses performed on a weighted cumulative risk from 
rare, impactful variants among ischemic stroke partici-
pants with high Modified Rankin Scale (mRS), i.e., 4, 5, 
6 versus mRS 0, 1, 2, 3 showed a significant association 
(OR (95%CI) = 1.79 (1.29–2.49), p = 0.0005). Determining 
the potential mRS cutoffs to use for clinical significance 
within a highly consanguineous population like that in 
Saudi Arabia may yield translational value, such as risk 
stratification, especially with the additional of common 
and rare variants to the PRS from ongoing stroke genome-
wide studies.

In Saudi Arabia, undetected or untreated vas-
cular disease is a significant health and financial 
 burden,(Walli-Attaei et al. 2020a, b; Bindawas & Vennu 
2016). There is a compelling need for implementation 
of primary and secondary stroke prevention strategies in 
Saudi Arabia due to an increasing incidence rate with the 
mortality rate projected to almost double by 2030 (Rob-
ert et al. 2018; Bindawas & Vennu 2016). In this study 
using gene-burden analyses in 387 Saudi Arabian ischemic 
stroke subjects and 20,230 controls from the Saudi Human 
Genome Project, we observed significant associations in 
dozens of loci under autosomal dominant and/or reces-
sive modelling. Stroke subjects with Modified Rankin 
Scale (mRSs) above 3 were observed to have a greater 
cumulative PRS from rare variants in stroke genes when 
compared to the population average. Interestingly, stroke 
subjects with mRS of 3 or lower had lower cumulative 
genetic risk from rare variants in stroke genes (Alokley 
and Albakr 2022). Determining the potential mRS cutoffs 
to use for clinical significance may allow risk stratification 
of this population.
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