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Translating whole-exome sequencing (WES) for prospective 
clinical use may have an impact on the care of patients with 
cancer; however, multiple innovations are necessary for clinical 
implementation. These include rapid and robust WES of DNA 
derived from formalin-fixed, paraffin-embedded tumor tissue, 
analytical output similar to data from frozen samples and 
clinical interpretation of WES data for prospective use. Here, 
we describe a prospective clinical WES platform for archival 
formalin-fixed, paraffin-embedded tumor samples. The platform 
employs computational methods for effective clinical analysis 
and interpretation of WES data. When applied retrospectively to 
511 exomes, the interpretative framework revealed a ‘long tail’ 
of somatic alterations in clinically important genes. Prospective 
application of this approach identified clinically relevant 
alterations in 15 out of 16 patients. In one patient, previously 
undetected findings guided clinical trial enrollment, leading to an 
objective clinical response. Overall, this methodology may inform 
the widespread implementation of precision cancer medicine.

Massively parallel sequencing approaches such as WES have elu-
cidated the landscape of genetic alterations in many tumor types 
and revealed biological insights relevant to clinical contexts1. The 
increased practical availability and decreased cost of tumor genomic 
profiling has generated opportunities to test the ‘precision medicine’ 
hypothesis in clinical oncology2. In principle, knowledge of altera-
tions in the coding regions of all genes may inform immediate treat-
ment choices and further therapeutic discovery efforts3.

Most prospective clinical genotyping efforts have used ‘hotspot’ 
genotyping4–6 or targeted sequencing panels of clinically relevant 

genes using either fresh frozen or formalin-fixed, paraffin-embedded 
(FFPE) tissue7–9. Pilot studies that apply research-grade massively 
parallel sequencing technology in focused clinical settings have 
also been reported7,10–12, although production-scale efforts have 
not been demonstrated. Multiple challenges to widespread clinical 
WES implementation remain. One challenge involves rapidly gener-
ating high-quality WES data from archival FFPE tumor material13. 
Another involves clinically interpreting WES data for prospective use 
that maximizes clinical and biological exploration. A third involves 
developing a system to interrogate plausibly actionable variants of 
uncertain significance. Overcoming these challenges should allow 
rigorous assessment of the value of WES to guide clinical decision 
making and inform selected experimental follow-up.

Here, we describe an approach to generate high-quality WES data 
from archival tumor material and validate WES data from FFPE tumor 
samples with corresponding WES data from frozen samples. We also 
present a heuristic algorithm that interprets the resulting data for clinical  
oncologists and establish the clinical applicability of this interpretation 
algorithm in a retrospective cohort of 511 cases. Prospective application 
of this platform in patients with a range of tumor types indicates that 
this approach can be used for both biological discovery and clinical trial 
enrollment. This approach may therefore facilitate widespread applica-
tion of WES for precision cancer medicine studies.

RESULTS
WES of FFPE samples
To produce WES data for clinical use, robust sequencing data must 
frequently be generated from small quantities of archival FFPE tissue. 
To test this, we extracted DNA from 99 FFPE samples using the FFPE 
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extraction protocol (Supplementary Table 1 and Online Methods).  
A comparison of standard WES metrics14 with 768 non-FFPE samples 
(394 whole blood, 367 frozen, 7 cell line) sequenced in parallel demon-
strated no significant differences independent of input DNA quantity  
(P > 0.05, Mann-Whitney U-test; Fig. 1a–c and Supplementary Table 1).  
Our lowest successful WES attempts were achieved with 13.6 ng and  
16 ng DNA derived from non-FFPE and FFPE tissue, respectively.

Moreover, improvements in process design (Online Methods) com-
bined with the ‘with-bead’ approach14 yielded a time to exome data 
delivery of 17.4 ± 2.2 d (median ± s.d.; 25th and 75th percentiles  
14.3 and 18.6, respectively) for FFPE samples received as DNA 
and 20.1 ± 2.4 d (median ± s.d.; 25th and 75th percentiles 17.5 
and 21.2, respectively) for samples received as FFPE tissue blocks 
(Supplementary Table 2). This turnaround time is compatible with 
several clinical oncology applications.

We next assessed WES data using even smaller amounts of input 
DNA. Here, we achieved >80% of targeted nucleotides from the hybrid 
selection reaction, even when we used only 1 ng of input DNA; we 
saw equivalent results with DNA derived from FFPE and non-FFPE 
tissue. However, to meet our metrics of ≥80% targets with at least  
20× coverage and ≥100× mean target coverage across the exome, a dis-
proportionate amount of additional sequencing was required owing to 
an increase in the fraction of duplicate molecules in the library.

FFPE and fresh frozen samples yield comparable WES results
Next, we sought to compare WES data generated from FFPE and 
frozen material. We assessed WES data from 11 lung adenocarci-
nomas for which tumor and adjacent normal tissue were available 
from matched FFPE (aged ≤5 years, Supplementary Table 3 and 
Supplementary Figs. 1 and 2) and frozen (Fig. 2a) samples. First, 
we applied our standard mutation detection pipeline on the tumor-
normal pairs (Online Methods) and considered the concordance of 
mutation calls observed in FFPE tumors that we observed in fro-
zen tumors and vice versa. We did not expect identical data, given 
tumor heterogeneity15 and low allelic fraction nucleotide transition 
artifacts induced by the FFPE fixation process16–18. Moreover, the 
mean target coverage achieved for the FFPE tumor and adjacent tis-
sue samples was 1.5–2 times that for the corresponding fresh frozen 
samples (Supplementary Fig. 3); as a result, we had increased power 
to detect mutations in FFPE samples compared to the fresh frozen 
samples19. Therefore, we considered the subset of observed exonic 
mutations in FFPE tumor cases where the depth of coverage afforded 

sufficient power (>95%) to detect the mutation in two or more reads 
in the matched frozen tumor case and vice versa. For sufficiently 
powered sites, 91.5% (2,923/3,194, 95% confidence interval (CI) ± 
0.97) of mutations in FFPE samples were validated in patient-matched 
frozen samples. Similarly, 91.0% (3,399/3,735, 95% CI ± 0.92) fro-
zen mutations were validated in sufficiently powered FFPE samples  
(P = 0.47) (Fig. 2a–c and Supplementary Table 4). Because the mean 
target coverage in the FFPE cases was higher than in their fresh frozen 
counterparts, we then obtained a random subset of reads from each 
case such that all sites had a maximum coverage of 90× (‘downsam-
pling’19) and repeated the cross-validation exercise. In this scenario, 
our validation rates for FFPE to fresh frozen and fresh frozen to FFPE 
for sufficiently powered sites were 92.6% (2,811/3,036, 95% CI ± 0.93) 
and 91.5% (3,340/3,651, 95% CI ± 0.90), respectively (Supplementary 
Fig. 4a,b and Supplementary Table 4).

In both FFPE and fresh frozen cases from each patient, we observed 
mutations for which there was insufficient power to detect that muta-
tion in the validation cohort after downsampling (Supplementary 
Fig. 4c and Supplementary Table 4). Demonstrative examples of 
mutations in FFPE samples that could not be validated in fresh frozen 
counterparts are provided in Supplementary Figure 5a–c. Overall, 
these results suggested that the ability to detect base mutations that 
were sufficiently powered was equivalent regardless of whether frozen 
or FFPE tissue–derived genomic DNA was used for WES.

We also examined the chromosomal copy number patterns evi-
dent in WES data from frozen and FFPE tumor DNA in the 11 
lung adenocarcinomas. In one representative patient, copy ratios 
for matching exons in FFPE and frozen sample data correlated  
(r2 = 0.89, P < 0.0001, Pearson’s correlation; Fig. 2d,e). This correla-
tion held across all 11 cases, representing 1,338,859 exons (r2 = 0.79, 
P < 0.0001, Pearson’s correlation; Fig. 2f). Thus, WES data obtained 
from FFPE tumor DNA are comparable to fresh frozen sample WES 
data and may equally be used to measure global chromosome copy 
number information.

Clinical analysis and interpretation of WES data
Having demonstrated robust WES using FFPE tumor–derived DNA, we  
next sought to integrate this methodology into a broader framework 
for clinical interpretation of somatic alterations. We reasoned that a 
heuristic (rule-based) approach that incorporated prior clinical and 
scientific knowledge might offer a useful set of organizing principles. 
By using primary literature, manual curation and expert opinion,  
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Figure 1 FFPE and frozen sample sequencing metrics. (a–c) The percentage of target bases covered at 20× (a), percentage of selected bases (b) 
and percentage of zero-coverage targets (c) in FFPE (n = 99) and non-FFPE (n = 768) tissue. Additional quality control metrics for all 867 cases are 
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systematically queried ClinicalTrials.gov, a centralized registry of pub-
licly and privately supported clinical studies worldwide, for oncology 
clinical trials linked to TARGET genes. The number of clinical trials 
including a TARGET gene in the title, the strictest means of identify-
ing clinical trials with a genomic emphasis, grew steadily between 
2005 and 2012 (Fig. 3g).

WES and clinically actionable events across cancers
To pilot prospective sequencing and clinical interpretation, we per-
formed WES and PHIAL in 16 patients with a range of advanced 
cancers (Fig. 4a). WES data for 3 of these 16 patients predated the 
WES protocol described herein but were included to assess PHIAL 
output. WES data from all patients in the rapid sequencing protocol 
met our quality control parameters irrespective of tissue processing 
type (Supplementary Table 7). By completion of the pilot period, 
time from sample receipt through data delivery was 16 d.

For these 16 patients, PHIAL revealed 29 unique TARGET genes 
in the ‘Investigate Clinical Relevance’ category (median 2, range 0–5).  
Although, by definition, alterations in TARGET genes may have impli-
cations for clinical decision making, their actual clinical relevance 
requires case-by-case evaluation in real time. To facilitate this, we manu-
ally curated every alteration ranked as Investigate Clinical Relevance 
by PHIAL to include up-to-date knowledge from databases, literature 
and computational algorithms. We generated a standardized, structured 
annotation for each alteration (Supplementary Note) and assigned a 
level of evidence to each potential clinical action based on that altera-
tion. These levels of evidence (Supplementary Table 8) included pre-
dictive, prognostic and diagnostic categories and encompassed validated 
indications, preclinical evidence and analytical associations.
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Figure 2 FFPE and frozen sample  
data yield comparable alteration  
data. (a) FFPE and frozen tissue  
were extracted from identical  
tumor samples and analyzed for  
cross-validation of mutations where  
there was sufficient power to detect the mutation in the validation sample.  
(b,c) Validation rates for FFPE to frozen (b) and frozen to FFPE (c) binned by allelic  
fractions demonstrate similar validation and false positive rates between the two groups.  
(d,e) Copy number profiles derived from exomes of the same tumor in either FFPE or frozen  
tissue (d) yielded comparable results (r2 = 0.89; P < 0.001, Pearson’s correlation) (e).  
(f) When comparing the FFPE and frozen segment means for all exons across 11 patients,  
the r2 = 0.79 (P < 0.001, Pearson’s correlation). CR, copy ratio.

we generated a database of tumor alterations relevant for genomics-
driven therapy (TARGET), a database of genes that may have thera-
peutic, prognostic and diagnostic implications for patients with cancer 
(Fig. 3b, Supplementary Table 5 and Online Methods). We integrated 
the resulting 121 TARGET genes with existing open-source resources 
to create a series of rules that (i) sort each somatic variant by clinical 
and biological relevance, (ii) link TARGET genes with additional bio-
logically significant pathways and gene sets and (iii) demote variants 
of uncertain significance. Thus, the resulting analytical algorithm used 
precision heuristics for interpreting the alteration landscape (PHIAL) 
(Fig. 3a–d and Online Methods). Beyond annotating variants, PHIAL 
applies rules that rank variants on the basis of clinical and biological 
relevance to computationally sort a patient’s somatic variants.

We assessed the functionality of PHIAL using 511 patient cases 
from six prior WES studies20–25. Analysis tools (Online Methods) 
yielded 258,226 somatic alterations in protein-coding genes, of which 
135,903 were nonsynonymous. Of these, PHIAL identified 1,842 
somatic alterations in genes linked to clinical actions (TARGET genes) 
for 80% (408/511) of the patients (Fig. 3e). Additional descriptive sta-
tistics regarding altered genes per patient, stratified by inclusion in 
databases explored in PHIAL, are available in Supplementary Table 6.  
PHIAL identified known and highly recurrent actionable findings 
across this patient cohort. It also revealed a long tail of TARGET gene 
alterations present in small patient subsets that did not reach statisti-
cal significance in the individual cohort studies but may have immedi-
ate clinical ramifications for individual patients (Fig. 3f). Specifically, 
39% (201/511) of the cases had alterations in at least one TARGET 
gene that was somatically altered in <2% of the overall cohort. This 
finding was reminiscent of similar long-tail alteration distributions 
observed for driver genes in cancer1.

As a major near-term goal of precision cancer medicine is to use 
genetic information to inform clinical trial enrollment, we also  
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Following curation and assignment of levels of evidence, we identi-
fied 41 clinically relevant alterations in 15 out of 16 patients. These 
included standard-of-care findings, such as an EGFRL858R mutation 
in lung adenocarcinoma linked to epidermal growth factor receptor 
(EGFR) inhibitors (predictive for US Food and Drug Administration 
(FDA)-approved therapies, level A), and PIK3CA alterations that are 
entry criteria for clinical trials (predictive for therapies in clinical 
trials, level A). 46.3% (19/41) of these alterations were based on pre-
clinical evidence for the association of the alteration with response 
or resistance to FDA-approved therapies or therapies in clinical trials 
(level D) (Fig. 4b and Supplementary Table 9).

We identified multiple unexpected clinically relevant findings in 
genes not well characterized for the corresponding tumor type. For 
instance, we observed CRKL amplification in a patient with metastatic 
urothelial carcinoma (Supplementary Fig. 6); this alteration has been 
predicted to confer resistance to EGFR inhibitors26 and sensitivity 

to Src inhibitors27 in preclinical studies but had not previously been 
described in urothelial carcinoma. To accommodate new TARGET 
genes emerging with future findings, we have made TARGET publically  
available online (http://www.broadinstitute.org/cancer/cga/target)  
and encourage community contributions.

The use of WES in clinical decision making
We used the prospective WES framework for clinical decision 
making in one demonstrative case. A patient with metastatic lung 
adenocarcinoma underwent standard clinical genetic testing that 
revealed wild-type EGFR, KRAS (codon 12 and 13) and ALK status. 
Mass spectrometry testing of 471 alterations in 41 genes5 revealed 
an STK11 frameshift deletion. We started the patient on carboplatin,  
paclitaxel and bevacizumab (Fig. 5a). In parallel, we applied the 
clinical WES platform on the FFPE metastatic tumor sample and 
germline peripheral blood. PHIAL nominated a KRASA146V mutation  
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The crystal structure of JAK3 demonstrates that the arginine at 
residue 870 directly coordinates the phosphate group of the pri-
mary activating tyrosine phosphorylation site (pTyr981)35 (Fig. 5e).  
This interaction is expected to pull JAK3 into the active confor-
mation. Indeed, residue 870 is conserved as an arginine or lysine 
in virtually all JAKs. Given the functional importance of this 
residue, we hypothesized that this alteration could, in princi-
ple, be activating. Thus, we categorized this alteration as level E  
(Supplementary Table 9).

We used a Ba/F3 system to examine the activity of JAK3R870W as 
compared to wild-type JAK3 and a known activating mutation in 
JAK3, A572V36. Ba/F3 cells are mouse hematopoietic cells dependent 
on interleukin-3 (IL-3) for survival. Expression of some oncopro-
teins substitutes for IL-3 signaling, allowing for the growth of Ba/F3 
cells in the absence of IL-3. This system has been used extensively 
to characterize activating mutants of JAK3 in prior studies36. Ba/F3 
cells expressing JAK3R870W did not achieve IL-3–independent growth 
following complete IL-3 withdrawal, in contrast to cells expressing a 
known JAK3 activating mutation (JAK3A572V) or those growing in the 
presence of IL-3 (Fig. 5f). This suggested that JAK3R870W is unlikely 
to be an activating mutation and that JAK3 inhibitors are unlikely to 
benefit this patient.
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Figure 4 Clinically relevant findings from individual patients. (a) PHIAL results for 14 patients with 
a spectrum of malignancies, highlighting nominated clinically actionable alterations in 13 of 14 
patients. Asterisks denote patient sequencing data that predated the rapid WES protocol. (b) Using 
the level of evidence schematic (Supplementary Table 8), all nominated alterations for patients in 
this study were manually curated and assigned a level of evidence (Supplementary Table 7).

as clinically relevant, along with alterations in STK11 (identical 
to other testing) and ATM (Fig. 5a and Supplementary Table 9). 
KRASA146V is a known activating mutation, although it is possibly 
less potent than the codon 12 and 13 mutations28. Although activat-
ing KRAS mutations are found in 15–30% of all patients with non–
small-cell lung cancer (NSCLC) and commonly in conjunction with 
STK11 loss29, this specific KRAS alteration has not been reported in 
NSCLC20,30–32. We confirmed KRAS146V using the same FFPE tumor 
sample in a clinical lab (Online Methods) and then returned the data 
to the patient’s oncologist. After rapidly progressing on combination 
chemotherapy (Fig. 5b), the patient was enrolled in a phase 1 clinical 
trial of a cyclin-dependent kinase 4 (CDK4) inhibitor (LY2835219) 
on the basis of preclinical data (level D) implicating a synthetic 
lethal relationship between activated KRAS and CDK4 (ref. 33). The 
patient achieved stable disease (per response evaluation criteria in 
solid tumors (RECIST) 1.1 criteria; 7.9% reduction in tumor volume 
compared to baseline) and was on therapy for 16 weeks (Fig. 5b,c). 
Of note, this was the patient’s best and only clinical response to any 
cancer-directed therapy.

To maximize the potential of clinical WES, we also implemented 
a procedure to generate experimental evidence for selected level E 
(inferential association) alterations. An exemplary case involved WES 
in a patient with metastatic castration-resistant prostate cancer that 
harbored an R870W missense mutation in the gene encoding Janus 
kinase 3 (JAK3) (Fig. 5d). Activating mutations in JAK3 have been 
described in hematological malignancies34, and JAK3 inhibitors are 
available clinically, including the FDA-approved agent tofacitinib. 
JAK3R870W has not been previously identified in cancer, and the func-
tion of this mutation is unknown.
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DISCUSSION
This study demonstrates that rapid WES can be applied to FFPE 
clinical samples and that robust WES analysis and interpretation can 
prospectively inform clinical trial enrollment. This approach incorpo-
rates new algorithms to identify clinically relevant alterations among 
numerous somatic events. Furthermore, real-time curation of nomi-
nated alterations assigns levels of evidence to the corresponding clini-
cal actions for that alteration in that tumor type. In a proof-of-concept 
application, we identified at least one clinically relevant alteration in 
15 of 16 patients and showed how such findings can lead to clinical 
trial enrollment and biological discovery.

Targeted sequencing of clinically relevant gene panels (contain-
ing hundreds of genes) have recently become possible from FFPE 
tumor samples7 and are increasingly used clinically. However, there 
are numerous advantages to clinical WES over targeted sequencing. 
First, as the spectrum of clinically actionable alterations grows2, 
targeted sequencing of particular genes is likely to be incomplete: 
the rapid pace of drug development linked to a growing number of 
clinically relevant genes will probably outpace the ability to alter tar-
geted sequencing approaches in real time, while, as the same time, 
performing clinical WES becomes more facile and cost efficient. The 
completeness of clinical WES also enables longitudinal queries if new 
clinical trials open for previously unrecognized cancer genes not acted 
on therapeutically during the initial evaluation.

Furthermore, we expect the volume of inferentially actionable or 
unknown-significance alterations will rise as more patient exomes 
emerge clinically. Clinical WES allows the generation of deeply anno-
tated genomic data (linked to outcomes and responses) that could 

be mined to inform TARGET entries. We recognize that the pace 
of cancer discovery will necessitate continual TARGET updates to 
ensure its relevance, and we encourage input from the clinical and sci-
entific community to expand and update its content for all to benefit. 
Methods to aggregate such data in a systems biology approach37 are 
being developed to foster functional and clinical follow-up38,39.

There are ways to improve upon the framework. Efforts to further 
minimize the input DNA requirement and predict which samples 
yield successful WES will improve production-level sequencing. This 
process will be enhanced by pathology review of clinical samples to 
enrich tumor DNA selection. Improvements in exome-derived copy 
number algorithms will better distinguish homozygous from hetero-
zygous deletions in stromally admixed tumor samples. Integration of 
additional profiling technologies (for example, transcriptome profil-
ing) will provide increasingly complex views of an individual’s cancer 
and incorporate other changes (for example, epigenetic) that may 
have clinical relevance. In parallel, efforts to demonstrate the utility of 
massively parallel sequencing platforms in larger prospective clinical 
settings are underway.

PHIAL is heuristic based; a probabilistic model that assesses altera-
tion clonality with preclinical data may better inform the functional 
impact of WES findings for individual patients. Even with predictive 
models, sequencing will frequently identify previously uncharacter-
ized alterations in known genes. Furthermore, relevant information 
about known genomic alterations is constantly changing, and the 
availability of new therapies and clinical trials is in rapid flux. Because 
of this, alteration interpretation presently requires real-time manual 
curation, which requires dedicated and skilled resources that would 
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Figure 5 Clinical sequencing informs clinical trial  
enrollment and experimental discovery. (a) The PHIAL  
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therapy allowing subsequent clinical trial enrollment.  
(b) The patient’s time-to-relapse data for the three  
treatment regimens received. (c) Computed tomography  
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tumor reduction was 7.9%. (d) For another patient,  
PHIAL nominated a JAK3 missense mutation, and given  
its location in the kinase domain near alterations  
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inferential evidence (level E) for being clinically actionable.  
(e) The crystal structure of JAK3 highlighting the arginine at residue 870 which directly coordinates the phosphate group of the primary activating 
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benefit from crowdsourcing efforts such as those we are establishing 
with TARGET and PHIAL.

Finally, rapid experimental validation of level E alterations to 
understand their clinical relevance will require large-scale innova-
tions of scale to accelerate functional follow-up. Our experimental 
efforts described here establish a priority biological evaluation sys-
tem for one type of functional assessment. A flexible experimental 
follow-up system to comprehensively assess any alteration will need 
to be developed.

With the ‘start-to-finish’ approach for clinical WES described here, 
it may be possible to implement these methods widely and facili-
tate routine WES in clinical oncology. Once implemented, this will 
enable the prospective study of patients in trials to determine whether 
large-scale genomic profiling improves patient care and, ultimately, 
outcomes.

METHODS
Methods and any associated references are available in the online 
version of the paper.

Accession codes. WES BAM files for exome sequencing data from this 
study are deposited in dbGaP with accession codes phs000488.v1.p1 for 
lung adenocarcinoma cases and phs000694.v1.p1  for clinical cases.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Patient samples. Tumor and germline samples used for this study were 
obtained under approved protocols from the Dana-Farber/Harvard Cancer 
Center Institutional Review Board, the Peter MacCallum Cancer Center 
Ethics Committee and the Massachusetts Institute of Technology Committee 
on the Use of Humans as Experimental Subjects. Written informed con-
sent was obtained from all subjects. Patient characteristics are described in 
Supplementary Table 7.

Rapid formalin-fixed, paraffin-embedded sequencing. Using industrial 
best practices in workflow design and a value-add approach, the standard 
exome workflow was modified to minimize touch points, handoffs and wasted 
 process steps. Next, optimizations were made to the library construction and 
in-solution hybridization protocols to enable a 17-h hybridization reaction, 
55 h shorter than the standard 72-h hybridization reaction.

FFPE DNA extraction. Paraffin is removed from FFPE sections and cores using 
CitriSolv (Fisher Scientific) followed by ethanol washes, and then tissue is 
lysed overnight at 56 °C. Samples are then incubated at 90 °C to remove DNA 
crosslinks, and extraction is performed using Qiagen’s QIAamp DNA FFPE 
Tissue Kit.

Library construction. This was performed as previously described14 with the 
following modifications: initial genomic DNA input into shearing was reduced 
from 3 µg to 10–100 ng in 50 µL of solution. For adaptor ligation, Illumina 
paired-end adapters were replaced with palindromic forked adapters, pur-
chased from Integrated DNA Technologies, with unique 8-base molecular 
barcode sequences included in the adaptor sequence to facilitate downstream 
pooling. With the exception of the palindromic forked adapters, the reagents 
used for end repair, A-base addition, adaptor ligation and library enrichment 
PCR were purchased from KAPA Biosciences in 96-reaction kits. In addition, 
during the postenrichment solid phase reversible immobilization (SPRI) bead 
cleanup, elution volume was reduced to 20 µL to maximize library concen-
tration, and a vortexing step was added to maximize the amount of template 
eluted from the beads. Any libraries with concentrations below 40 ng/µl, as 
measured by a PicoGreen assay automated on an Agilent Bravo, were consid-
ered failures and reworked from the start of the protocol.

In-solution hybrid selection. In-solution hybrid selection was also performed as 
previously described14 with the following modifications to the hybridization 
reaction. Before hybridization, any libraries with concentrations >60 ng/µL, as 
determined by PicoGreen, were normalized to 60 ng/µL, and 8.3 µL of library 
was combined with blocking agent, bait and hybridization buffer. Any libraries 
with concentrations between 50 and 60 ng/µL were normalized to 50 ng/µL, 
and 10.3 µL of library was combined with blocking agent, bait and hybridiza-
tion buffer. Any libraries with concentrations between 40 and 50 ng/µL were 
normalized to 40 ng/µL, and 12.3 µL of library was combined with blocking 
agent, bait and hybridization buffer. Regardless of library concentration range, 
the same volume of blocking agent and bait previously described14 were used, 
and hybridization buffer volume was adjusted to equal the combined volume of 
library, blocking agent and bait. Finally, the hybridization reaction was reduced 
to 17 h with no changes to the downstream capture protocol.

Preparation of libraries for cluster amplification and sequencing. After postcap-
ture enrichment, libraries were quantified using PicoGreen (automated assay 
on the Agilent Bravo), normalized to equal concentration on the PerkinElmer 
MiniJanus and pooled by equal volume on the Agilent Bravo. Library pools 
were then quantified using quantitative PCR (kit purchased from KAPA 
Biosystems) with probes specific to the ends of the adapters; this assay was 
automated using Agilent’s Bravo liquid handling platform. Based on qPCR 
quantification, libraries were normalized to 2 nM and then denatured using 
0.2 N NaOH on the PerkinElmer MiniJanus. After denaturation, libraries were 
diluted to 20 pM using hybridization buffer purchased from Illumina.

Cluster amplification and sequencing. Cluster amplification of denatured tem-
plates was performed according to the manufacturer’s protocol (Illumina) 
HiSeq v3 cluster chemistry and flowcells, as well as Illumina’s Multiplexing 

Sequencing Primer Kit. Flowcells were sequenced using HiSeq 2000 v3 
Sequencing-by-Synthesis Kits and then analyzed using RTA v.1.12.4.2 or later. 
Each pool of whole-exome libraries was run on paired 76-bp runs, and 8-base 
index sequencing read was performed to read molecular indices across the 
number of lanes needed to meet coverage for all libraries in the pool.

DNA assembly and quality control. Sequence data processing. Exome 
sequence data processing was performed using established pipelines at the 
Broad Institute. A BAM file was produced with the Picard pipeline (http://
picard.sourceforge.net/), which aligns the tumor and normal sequences to 
the hg19 human genome build using Illumina sequencing reads. The BAM 
was uploaded into the Firehose pipeline (http://www.broadinstitute.org/
cancer/cga/Firehose/), which manages input and output files to be executed 
by GenePattern40. Whole-exome sequencing BAM files for data from this 
study were deposited in dbGAP (phs000488 for lung adenocarcinoma cases; 
phs000694 number pending for clinical cases).

Sequencing quality control. Quality control modules within Firehose were 
applied to all sequencing data for comparison of the origin for tumor and 
normal genotypes and to confirm fingerprinting concordance. Cross-
 contamination of samples was estimated using ContEst41 to confirm that nei-
ther tumor nor germline sample had >3% contamination. Single nucleotide 
polymorphism fingerprints from each lane of a tumor and normal pair were 
cross-checked to confirm concordance, and nonmatching lanes were removed 
from analysis.

Somatic alteration identification and annotation. The MuTect algorithm19 
was applied to identify somatic single-nucleotide variants in targeted exons. 
Indelocator (http://www.broadinstitute.org/cancer/cga/indelocator/) was 
applied to identify small insertions or deletions. Annotation of identified 
variants was done using Oncotator (http://www.broadinstitute.org/cancer/
cga/oncotator/). Rearrangments were identified using dRanger (http://www.
broadinstitute.org/cancer/cga/breakpointer/)42. Copy ratios were calculated 
for each hybrid capture bait by dividing the tumor coverage by the median cov-
erage obtained in a set of reference normal samples43. The resulting copy ratios 
were segmented using the circular binary segmentation algorithm44. Genes 
in copy ratio regions with segment means of greater than 2 were evaluated for 
focal amplifications given the potential clinical significance of a large focal 
event. Genes in regions with segment means of less than –1 were evaluated 
for hemizygous or homozygous deletions, as either broad or focal deletions 
may involve genes with clinical relevance. RefSeq45 was used to identify the 
genes that reside in the chromosomal coordinates demarcated by the segment 
start and end points.

Cross-validation of formalin-fixed, paraffin-embedded and fresh frozen 
mutation data. FFPE sections were received as 15-µm slices (9 per sample), 
from 2007 to 2009. All FFPE samples were sequenced as described above 
with 100 ng of input DNA. Frozen tumor samples were sequenced according 
to established methods14. All downstream computational analysis methods 
for assembly, alignment, mutation and copy number alteration identification 
were identical to the pipelines described above. For the downsampling experi-
ment, MuTect was rerun on all the cases with the ‘downsample-to-coverage’ 
parameter set to 90. Mutations in intronic regions were excluded. For cross-
validation of mutations, validation power was defined as the probability to 
observe at least two alternative allele reads in the validation sample (given the 
allelic fraction, coverage in validation sample at that site and the assumption 
that the mutation should be present there).

Clinical gene database (TARGET). The TARGET (tumor alterations relevant 
for genomics-driven therapy) database included genes that, when altered 
somatically in cancers, met one of three criteria: (i) alterations in the gene 
predicted resistance and/or sensitivity to specific therapies, (ii) alterations in 
the gene had prognostic significance in a cancer type or (iii) alterations in the 
gene had diagnostic significance in a cancer type.

To build this database, we performed a systematic review of the primary lit-
erature, manually curated specific genes based on clinician input and consulted 
expert opinion. This resulted in a list of 121 genes that met at least one of the 
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three criteria required for entry into the TARGET database (Supplementary 
Table 5, accessible at http://www.broadinstitute.org/cancer/cga/target).

Somatic heuristic algorithm for interpretation (PHIAL). Each somatic vari-
ant was scored individually using a series of rules and then was considered in 
aggregate to determine relationships between alterations in the same patient 
(for example, linked pathways). First, variants in TARGET are ranked highest, 
with scoring modifications for known mutational hotspots (for example, BRAF 
V600E), missense mutations in protein kinase regions and copy number altera-
tions with directionality known to have clinical impact (for example, PTEN 
deletion). To assign maximum granularity between alterations, additional rules 
assign priority on the basis of presence of recurrent alterations in the Cancer 
Gene Census46, presence in the pathway of concurrently altered actionable 
genes in the same sample using curated cancer pathways from MSigDB47, pres-
ence in known cancer pathways, gene sets or modules identified by MSigDB 
and finally presence in COSMIC30. All code for PHIAL was implemented 
using the R statistical package language and is available online (http://www.
broadinstitute.org/cancer/cga/phial/).

Visual representation. A decision support tool built around the results was 
developed to allow curation team members and clinicians to engage the data 
with web-based resources integrated directly into the patient’s results. The 
tool is built to convey effective clinical review with the minimum manual 
steps so that such a process can be scaled rapidly. The report structure was 
implemented using the Nozzle R package48. All clinically actionable relevant 
somatic variants were linked to search criteria in ClinicalTrials.gov.

Curation. Somatic alterations nominated by PHIAL as ‘investigate clinical 
relevance’ were assigned for curation by a team of oncology and genomics 
experts charged with answering a series of structured questions pertaining 
to each nominated variant to facilitate final review (Supplementary Fig. 6).  
A curated alteration required review of published data to determine which 
level of evidence could be assigned to a clinical action for the alteration 
(Supplementary Table 8).

Clinical trial data analyses. ClinicalTrials.gov (http://clinicaltrials.gov/) was 
accessed on 19 February 2013, and the search entry ‘cancer’ was used to extract 
all cancer-related clinical trials in the database. Duplicated trial entries and 
trials designated as ‘Terminated’ or ‘Withdrawn’ were excluded. Provided 
trial start-date dates (by year) were used to select all trials that were initiated 
between 2005 and 2012, and trial titles were queried using string matching in 
R for those that specifically mention TARGET genes in the title of the trial.

CLIA validation. KRAS146V was confirmed using the same FFPE tumor sam-
ple in a clinical lab that met Clinical Laboratory Improvement Amendments 
(CLIA) standards (Knight Diagnostic Laboratories, Oregon) before being 
returned to the patient’s oncologist.

Ba/F3 experimental methods. Cell culture. HEK 293T cells were maintained 
in DMEM (Gibco) with 10% (vol/vol) FBS (Gibco). Ba/F3 cells (gift from  
A. Lane at Dana-Farber Cancer Institute) were maintained in RPMI 1640 
(Gibco) with 10% FBS and 10 ng/mL mouse interleukin-3 (IL-3; Prospec).

Retroviral infections. The wild-type JAK3 cDNA cloned in the pDONR223 
vector was obtained from The Broad Institute RNAi Consortium. JAK3 muta-
tions were generated by site-directed mutagenesis using the QuikChange 
Lightning Mutagenesis Kit (Stratagene) and verified by full sequencing of the 
JAK3 cDNA insert. WT and mutant cDNAs were recombined into a Gateway 
adapted murine stem cell virus (MSCV)-puromycin vector (gift from A. Yoda 
at Dana-Farber Cancer Institute) using the Gateway LR Clonase kit. Ecotropic 

viruses were produced by cotransfection of MSCV constructs with pCL-Eco 
vector (Imgenex) in HEK 293T cells. Ba/F3 cells were plated in 6-well plates at 
a 30% confluency and spin-infected at 800g for 90 min at 33 °C in the presence 
of 8 µg/mL polybrene (hexadimethrine bromide; Sigma). The same infection  
protocol was repeated 24 h later. Upon completion, the viral supernatant 
was removed and fresh medium added. Twenty-four hours after the medium 
change, Ba/F3 cells were subjected to a 3-d puromycin selection (2 µg/mL) 
in the presence of IL-3. Expression of ectopic JAK3 protein was verified by 
immunoblot analysis using a primary antibody against phospho-JAK3 (1:500 
dilution; Cell Signaling #5031).

IL-3 Depletion. Ba/F3 cells and Ba/F3 cells expressing WT and mutant forms 
of JAK3 were seeded in 25-cm2 vented-cap flasks at 20,000 cells/ml in a total 
volume of 5 ml in the absence of IL-3 to select IL-3–independent cells. Cells 
were grown in the absence of IL-3 over several weeks. In parallel, Ba/F3 cells 
were maintained in 10 ng/ml IL-3 throughout as a positive control. Cell counts 
were recorded every 4 d using ViCell counter and split as needed.

Statistical analyses. Statistical analysis of raw sequencing metrics. All analy-
ses of raw sequencing metrics were performed using the R statistical pack-
age. Sample size was established by incorporating all available FFPE samples 
sequenced under the FFPE sequencing protocol by the time of analysis 
freeze (n = 99). Significance between two means (FFPE and non-FFPE sam-
ples for the sequencing metrics) was calculated with the two-tailed Mann-
Whitney U-test, given the non-normal distribution of values. P < 0.05 was  
considered significant.

Statistical analysis of formalin-fixed, paraffin-embedded and frozen tissue. 
Two-tailed Fisher’s exact test was used to test the statistical significance of 
the contingency table represented by tissue type (FFPE or frozen) and vali-
dation status. Pearson’s correlation was performed on log2(target copy ratio) 
segment mean data for FFPE and frozen exon targets, and significance was 
calculated using Pearson’s product moment correlation coefficient. Sample 
size for exons from all 11 cases (n = 1,338,859) greatly exceeded the minimum 
sample size needed to determine a linear correlation coefficient of 0.8 with 
power of 0.8 and significance level of 0.05. The variance estimate among FFPE 
(0.054) and frozen (0.049) copy number signal data was similar. Whole-exome 
sequencing data for lung adenocarcinoma cases were deposited in dbGaP 
(phs000488.v1.p1).
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