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Abstract

Background: Chronic obstructive pulmonary disease (COPD) is characterized by an irreversible airflow limitation in

response to inhalation of noxious stimuli, such as cigarette smoke. However, only 15–20 % smokers manifest COPD,

suggesting a role for genetic predisposition. Although genome-wide association studies have identified common

genetic variants that are associated with susceptibility to COPD, effect sizes of the identified variants are modest, as

is the total heritability accounted for by these variants. In this study, an extreme phenotype exome sequencing

study was combined with in vitro modeling to identify COPD candidate genes.

Results: We performed whole exome sequencing of 62 highly susceptible smokers and 30 exceptionally resistant

smokers to identify rare variants that may contribute to disease risk or resistance to COPD. This was a cross-sectional

case-control study without therapeutic intervention or longitudinal follow-up information. We identified candidate

genes based on rare variant analyses and evaluated exonic variants to pinpoint individual genes whose function was

computationally established to be significantly different between susceptible and resistant smokers. Top scoring

candidate genes from these analyses were further filtered by requiring that each gene be expressed in human

bronchial epithelial cells (HBECs). A total of 81 candidate genes were thus selected for in vitro functional testing

in cigarette smoke extract (CSE)-exposed HBECs. Using small interfering RNA (siRNA)-mediated gene silencing

experiments, we showed that silencing of several candidate genes augmented CSE-induced cytotoxicity in vitro.

Conclusions: Our integrative analysis through both genetic and functional approaches identified two candidate

genes (TACC2 and MYO1E) that augment cigarette smoke (CS)-induced cytotoxicity and, potentially, COPD

susceptibility.
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Background
Chronic obstructive pulmonary disease (COPD), charac-

terized by a permanent airflow limitation, is a growing

public health threat and a leading cause of disability and

mortality worldwide [1, 2]. Although cigarette smoking

is a major risk factor [3], evidence suggests that genetic

factors modulate smoking-induced COPD [4]. For

example, alpha1 antitrypsin deficiency (A1ATD), caused

by a homozygous missense mutation of SERPINA1 (PiZ;

Glu342Lys) or compound heterozygosity of the PiZ and

PiS variants, contributes to lung function decline among

smokers [5, 6]. However, A1ATD accounts for only 2–3 %

of COPD cases [7]. Genome-wide association study

(GWAS) and fine-mapping studies have revealed common

(>5 % minor allele frequency) single nucleotide polymor-

phisms (SNPs) that are associated with COPD in a num-

ber of candidate genes, including CHRNA3/5, FAM13A,

and HHIP [8–11]. However, the effect sizes for these asso-

ciated common variants are small relative to those of SER-

PINA1-mediated A1ATD and COPD. Sequencing studies

of COPD hold the promise of identifying rare variants

with large effects on disease susceptibility.

Recent developments in DNA sequencing technologies

have dramatically reduced the cost of acquiring genetic

data. In particular, whole exome sequencing (WES) has

become a valuable tool for studying both rare and com-

mon diseases [12]. WES allows interrogation of the entire

coding portion of the human genome at a fraction of the

cost of whole-genome sequencing. In a recent study, WES

led to the identification of a non-synonymous SNP in the

gene CCDC38 that was associated with resistance to

cigarette smoke (CS)-related airflow obstruction, assessed

by sequencing heavy smokers with normal lung function

[13]. Therefore, to identify potential causal variants for

both COPD and CS resistance, we conducted WES of 62

smokers with very advanced COPD and 30 resistant

smokers. We sought to sample from the extremes of the

phenotypic distribution, under the assumption that this

would enrich sampling of rare causal variants with large

effect sizes [14]. The COPD group was thus selected to

contain the youngest, lightest smoking, and most severely

diseased individuals from available cohorts; the resistant

group was selected to contain the oldest, heaviest smok-

ing, and healthiest individuals (i.e., no comorbidities) with

normal lung function. The primary analytical approach

was aimed at identifying rare variants (and the associated

genes) contributing to these two phenotypes. Additionally,

we employed approaches focusing on the collective impact

of multiple weakly deleterious variants (both common and

rare). Candidate genes were further filtered using gene ex-

pression analysis to retain a total of 81 genes, which were

functionally tested in CS-exposed, immortalized human

bronchial epithelial cells (HBECs) using a gene knock-

down approach (Fig. 1). This systematic multi-layered ap-

proach may help remove false-positives and prioritize true

COPD (or CS-induced damage resistance) genes. HBECs

were chosen as an in vitro screening model because air-

way epithelial cells are the primary target of CS exposure.

CS exposure induces inflammation, DNA damage, and

autophagy that causes lung epithelial cells to undergo vari-

ous cell fates, including cell death, cellular senescence,

and/or transformation [15]. Although there is no sine qua

non cellular phenotype of lung epithelial cells in COPD,

the lungs of patients with COPD exhibit a significant

Fig. 1 Identifying candidate COPD genes through genomic and functional approaches. WES in 62 highly susceptible smokers and 30 exceptionally

resistant smokers were conducted to identify exonic variants that may contribute to disease risk or resistance to CS. Top scoring candidate genes from

the rare variant and gene set analyses were further filtered by requiring that the gene be expressed in primary HBECs, and 81 candidate genes were

selected for in vitro functional testing in CSE-exposed HBECs. Using siRNA-mediated gene silencing experiments, we identified candidate genes whose

knockdown augmented CSE-induced cytotoxicity, protected CSE-induced cytotoxicity, or alone-reduced cell viability
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increase in apoptotic cells [16, 17]. We thus chose in vitro

cell viability as an endpoint.

Results
VAAST analysis

We performed WES on 62 susceptible smokers with

COPD and 30 resistant smokers with normal spirometries

in the absence of significant comorbidities (Table 1). All

individuals were of self-reported non-Hispanic white eth-

nicity. We used the Variant Annotation, Analysis, and

Search Tool (VAAST) program to prioritize candidate

genes (Additional file 1) [18, 19]. Given allele frequency

and amino acid substitution severity, VAAST prioritizes

genes based on their disease-causing likelihood. We per-

formed VAAST analysis under different settings, including

different modes of inheritance, penetrance models, and

individual sets. From the VAAST output, several hundred

genes had a p value <0.05 under each analysis set-up

(Table 2). We did not use a more stringent cutoff or a false

discovery ratio (FDR) correction for the p value because

these candidate genes would be further prioritized in the

downstream analyses and validated by an in vitro assay.

Some of the top-ranking candidate genes from the

VAAST analysis contain rare deleterious mutations in

multiple susceptible individuals. For example, the gene

TACC2 was ranked 6th with complete penetrance and

22nd with 5 % prevalence in our VAAST analysis of the

susceptible group under a recessive inheritance model.

One of the susceptible individuals carries a nonsense

stop-gain mutation (chr10: 123842508) in TACC2 (a glu-

tamine mutated to a stop codon). Six additional suscep-

tible individuals carry novel mutations at different

positions of this gene, making TACC2 a promising can-

didate. Using Sanger sequencing, we validated all non-

sense and non-synonymous TACC2 variants where the

DNA samples were available, for a total of seven variants

in eight COPD samples, including four novel variants

(Additional file 7: Table S1). The 100 % validation rate

for the seven variants suggests that the variant calls are

of high quality.

Gene functional deficit score-based TTest and FCBF

analysis

To determine the collective impact of all variants,

including common and weakly deleterious variants, a

gene functional deficit score was calculated for all genes.

Of our set of 15,594 variant-affected genes in at least

one individual in either the susceptible smokers or the

resistant smokers, 848 genes attained p values of <0.05

(TTest set); 194 genes attained a p value <0.01 for the t

test comparing resistant individuals to susceptible indi-

viduals (TTest tab in Additional file 2). However, none

of the p values were significant after Bonferroni correc-

tion for multiple comparisons. To account for lack of

variability and small numbers of samples in the score

distributions, we further reduced the reference gene set

by keeping only those affected in at least 10 individuals

in both resistant and susceptible cohorts (8877 genes

affected in at least 20 individuals). This reduction did

not produce any genes with significant corrected p

values either. This result suggests that either more

individuals are necessary for improved resolution of

the study or that the resistant and susceptible pheno-

types are the result of additive or epistatic interaction

of altered function of multiple genes.

Next, we performed fast correlation-based filter solu-

tion (FCBF) attribute analysis and the FCBF selection

resulted in a set of 368 relevant genes (FCBF set) (of

these, 59 attained an [average merit − standard error] > 0;

FCBF tab in Additional file 2). Of the entire set, 62 %

(229) and 38 % (139) of the genes had higher average

scores in susceptible and resistant individuals respectively

(FCBF tab in Additional file 2). The large proportion of

genes showing higher scores in resistant individuals sug-

gests that COPD resistance may be a separate variation-

conferred phenotype, as opposed to solely reflecting the

absence of COPD-predisposition variants.

To determine if the FCBF genes are often found

together in biological interaction and regulation net-

works, we used the induced network modules analysis

in ConsensusPathDB [20], an integrative database for

gene interaction networks. The vast majority of FCBF

genes (336 of 368, 91.3 %) were mappable in Consen-

susPathDB (FCBF tab in Additional file 2). The

induced network modules analysis connects FCBF

genes/proteins (seed network nodes) into modules

using knowledge of different types of interactions

(network edges) between these seeds and other inter-

mediate network nodes, such as other genes, chemical

ligands, and proteins. A single network is composed

of one module or several disconnected modules. In

our analysis, we considered binary interactions only,

including protein-protein interactions, genetic interac-

tions, biochemical reactions, and gene regulatory

interactions. The first step in the analysis induced

Table 1 Demographic data of resistant smokers and COPD

subjects

Resistant smokers COPD p value

Gender (M/F) 7/23 34/28 <0.01*

Age 65.7 ± 5.3 57.7 ± 7.0 <0.0001#

Pack year 62.2 ± 20.6 45.7 ± 19.0 0.0003#

FEV1/FVC% 76.9 ± 5.9 29.5 ± 9.5 <0.0001#

% predicted FEV 103.9 ± 11.4 25.8 ± 11.4 <0.0001#

% predicted DLCO N/A 32.8 ± 16.5 N/A

*Fisher exact test
#t test
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three modules containing 160 (44 % of our set of 368)

interacting seeds (Z-score of intermediate nodes ≥ 20; net-

work1 FCBF tab in Additional file 2). The largest module

contained 96 % (154) of the seeds and 50 intermediate

nodes; the remaining two modules contained a total of six

seeds and two intermediates. Removing low confidence

interactions (IntScore <0.5) [21] maintained 138 (38 %)

seeds (network2 FCBF tab in Additional file 2; one module

of 37 intermediate nodes and 126 seeds, plus five smaller

networks encompassing the remaining 12 seeds and 2 in-

termediates). Building a network of solely high-confidence

(IntScore >0.95) protein-protein and biochemical interac-

tions forms a module of 111 (30 %) connected seeds (net-

work 3 FCBF tab in Additional file 2; 24 intermediate

nodes, 96 seeds in a single network, plus six smaller

modules with 15 seeds and 3 intermediates). Finally,

leaving only high-confidence protein-protein interac-

tions retains 43 (12 %) interacting seeds (network 4

FCBF tab in Additional file 2; 12 intermediates and 20

seeds in a single module, plus nine smaller modules of

23 seeds and 7 intermediates, total). Eliminating all

intermediates resulted in a high-confidence module of 8-

seed proteins (network 5 FCBF tab in Additional file 2).

Mutagenesis of interacting proteins without a link to a

common phenotype is an unlikely event. Thus, these

results suggest that, in the absence of otherwise unifying

features of tested individuals, a disruption of an as yet

undescribed molecular pathway may be involved in gener-

ating the COPD phenotype.

Candidate gene filtering using RNA-Seq in vitro analysis

Both bronchial and alveolar epithelial cells are the primary

target of CS exposure. To determine the abundance of

gene expression in primary human bronchial epithelial

cells (pHBECs), we conducted RNA-Seq using pHBEC

cultures isolated from five nonsmoking donors. We found

that 96.2 % of all genes are expressed within a tenfold dif-

ference among the five donors. Therefore, we prioritized

the candidate genes expressing at an average fragments

per kilobase of transcript per million mapped reads

(FPKM) of 1.0 or more (50.4 % of 32,457 transcripts) in

pHBECs, assuming that transcripts with an FPKM value

below 1.0 have low expression [22] (Additional file 3).

Three sets of candidate genes were screened for their

expression levels: genes from the (1) VAAST analysis

(Additional file 1) and the (2) gene functional deficit score

analysis using the t test (TTest tab in Additional file 2)

and (3) FCBF (FCBF tab in Additional file 2). For the

VAAST analysis, we first filtered candidate genes using the

following criteria: (1) present in both dominant and reces-

sive analyses under the 5 % background allele frequency

setting (i.e., present in analyses 1 and 5 or in analyses 2

and 6 in Table 2) and (2) having a gene ranking <300 in at

least one of the analyses. These selection criteria resulted

in 363 candidate genes from VAAST analysis. For the

TTest and FCBF analyses, we included all candidate genes.

Among the three sets of candidate genes, 363, 498, and

199 genes have an average FPKM value larger than 1.0,

including 932 unique genes. To generate a set of candidate

genes for in vitro functional analysis, we further examined

the biological relevance of these candidate genes based on

current knowledge of COPD. In the end, we selected a

total of 81 of the highest scoring candidate genes for

siRNA screening from (1) VAAST analysis (n = 42) and (2)

FCBF and/or t test analysis (n = 45). Six genes overlapped

between the VAAST and FCBF or t test analyses

(Additional file 4). All variants with annotations within

the 81 candidate genes are listed in Additional file 5.

To confirm these genes are relevant to COPD, we per-

formed Gene Ontology (GO) term and pathway enrich-

ment analysis on the 81 candidate genes. Among the 81

genes, a number of GO terms showed significant enrich-

ment (Additional file 6). The top genes are associated

with cell death, which supports our hypothesis that the

COPD susceptible genes are associated with cell viability

and response to cigarette smoke extract (CSE) toxicity.

In addition, using the induced network modules analysis

in ConsensusPathDB, 48 out of the 81 genes are con-

nected in a network when allowing intermediate nodes,

supporting their involvement in a common pathway

Table 2 The number of candidate genes under different VAAST analysis categories

VAAST analysis category Analysis Candidate genes

Inheritance Parameters Samples

Dominant 5 % background allele frequency Resistant vs. susceptible background 1 534

Susceptible vs. resistant background 2 757

Complete penetrance Resistant vs. susceptible background 3 343

Susceptible vs. resistant background 4 366

Recessive 5 % background allele frequency Resistant vs. susceptible background 5 532

Susceptible vs. resistant background 6 759

Complete penetrance Resistant vs. susceptible background 7 195

Susceptible vs. resistant background 8 269
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(data not shown). Note that since the candidate genes

were selected from the computationally identified gene

set using expert knowledge, this enrichment in relevant

GO terms does not indicate discovery but rather con-

firms our findings.

siRNA screening in vitro analysis

To determine whether the selected candidate genes (n =

81) are important for cell survival against cigarette

smoke exposure, we examined the effects of 2 % CSE on

cell viability in cultured HBECs (HBEC2) in which the

individual gene expression had been suppressed using

siRNA (Additional file 4). According to the gene silencing-

CSE interaction analysis, we identified two candidate genes

whose gene silencing augmented CSE-induced cytotoxicity

(TACC2 and MYO1E) and one candidate gene whose gene

silencing protected against CSE-induced cytotoxicity

(SLC7A1) (Tables 3 and 4). Among the candidate genes,

suppression of TACC2 expression induced the most pro-

nounced effect of CSE on cell viability (Table 3 and Add-

itional file 4). We confirmed the effects of siRNA

transfection on CSE-induced cytotoxicity (Fig. 2a) and gene

silencing by RT-PCR (Fig. 2b). We also performed flow cy-

tometric analysis with Annexin V and propidum iodide

staining to characterize the CSE-induced cytotoxicity in

HBEC2 cells transfected with TACC2 siRNA. The percent-

age of early and late apoptotic cells in response to CSE was

significantly increased by TACC2 knockdown (52.2 ±

11.6 %) as compared to scrambled controls (8.1 ± 1.7 %)

(Fig. 2c). Furthermore, TACC2 knockdown activated

caspase-3 in CSE-exposed HBEC2 (Fig. 2d). These data

suggest that the effects of CSE on cytotoxicity of TACC2

knockdown cells may largely be due to apoptosis.

We also identified three candidate genes whose sup-

pression alone (in the absence of CSE) significantly

reduced cell viability (PLCH2, KIAA1919, and MRPS34)

(Table 5). These results demonstrate that WES can iden-

tify candidate genes whose gene silencing significantly

alters spontaneous or CSE-induced cytotoxicity.

Discussion

We conducted a WES study using an extreme phenotype

design (susceptible vs. resistant smokers) to prioritize

candidate genes that potentially modify COPD susceptibil-

ity. Among the prioritized candidate genes expressed in

pHBECs, we identified two genes (TACC2 and MYO1E)

that exhibited a strong interaction of gene (siRNA trans-

fection) with environment (CS exposure) on cytotoxicity

in vitro.

Missing heritability is a well-recognized phenomenon

in GWAS of complex phenotypes [23, 24]. Potential

explanations for missing heritability include epistatic

interactions (GxG) and gene-environment interactions

(GxE), as well as experimental limitations, e.g. discarding

informative variants due to stringent GWAS significance

thresholds and insufficient linkage disequilibrium be-

tween typed and “causal” variants. Rare disease-causing

variants may also be responsible for a substantial pro-

portion of the missing heritability [25–27].

To identify candidate genes from the WES dataset, we

used two complementary approaches that focused on

either rare variants with presumably large effect sizes

(VAAST analyses) or on multiple weakly deleterious var-

iants causing molecular function changes (gene func-

tional deficit score-based TTest and FCBF analyses). We

used these diverse approaches because the genetic model

for our phenotypes of interest is largely unknown. For

example, if COPD is caused by the accumulation of mul-

tiple mutations that weakly alter the function of several

genes in a certain molecular pathway, the VAAST

approach is unlikely to identify the underlying causes

and the gene deficit analysis is more appropriate. Unfor-

tunately, the hypothesis of multiple interacting muta-

tions giving rise to a phenotype is very challenging to

test with both in vitro and in vivo models, as simultan-

eous evaluation of multiple mutations is necessary.

Nevertheless, we expect that mapping these candidate

genes will identify crucial molecular pathways respon-

sible for the development of the resistance and COPD

phenotypes.

The current state of the art, as described in the scientific

literature, confirms some genes identified by our analysis:

of the complete set of FCBF genes, 32 were found by a

computational parsing of articles identified by the MeSH

term “pulmonary disease, chronic obstructive”—the expli-

cit term referring to COPD; another 20 genes were

Table 3 Top five candidate genes whose gene silencing

augmented CSE-induced cytotoxicity

Gene ID Interaction (AD/CB) Z-score p value BH FDR

1 TACC2* 0.196 −6.090 0.0000 0.0010

2 MYO1E* 0.614 −2.924 0.0017 0.0020

3 NPLOC4 0.727 −2.070 0.0192 0.0030

4 FUT2 0.763 −1.796 0.0363 0.0040

5 PEX26 0.797 −1.537 0.0622 0.0050

*p value < BH FDR

Table 4 Top five candidate genes whose gene silencing

protected against CSE-induced cytotoxicity

Gene ID Interaction (AD/CB) Z-score p value BH FDR

1 SLC7A1* 1.334 2.959 0.0015 0.0016

2 INO80 1.213 1.882 0.0300 0.0032

3 AXIN1 1.190 1.878 0.0302 0.0048

4 EREG 1.189 1.673 0.0471 0.0065

5 MAP3K10 1.177 1.519 0.0644 0.0081

*p value < BH FDR
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identified by searching for COPD related keywords

(chronic obstructive lung disease, chronic obstructive air-

way disease, chronic airflow limitation, chronic obstructive

respiratory disease, chronic bronchitis, COAD, COPD)

(FCBF tab in Additional file 2). These results suggest that

the selected gene set contains a substantial number of

known COPD genes and is possibly enriched in yet unde-

scribed COPD and/or COPD-resistance associated genes.

With this knowledge, we will be able to examine the role

of gene-gene interaction and weak functionally deleterious

mutations in the future as larger sample sizes for genetic

studies are acquired and more sophisticated genome-

editing technologies are employed in functional studies.

A total of 81 candidate COPD genes selected from our

analysis were functionally tested using an in vitro gene

knockdown model combined with exposure to CSE. We

chose the 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetra-

zolium bromide (MTT) assay as a measure of cell viabil-

ity because it is more sensitive in detecting CSE effects

(such as cell growth inhibition) than the trypan blue

exclusion or LDH release assay (unpublished data).

Fig. 2 Effects of TACC2 siRNA transfection on CSE-induced

cytotoxicity and TACC2 mRNA levels. a Forty-eight hours after

transfection with either siRNA targeting TACC2 (TACC2 siRNA) or

the scrambled siRNA (scrambled control) as control, HBEC2 cells were

incubated in the absence (no CSE) or presence of 2 % CSE (CSE) for

24 h. Cell viability was determined using the MTT assay at 24 h. Data

are expressed as mean ± SEM for three independent experiments with

triplicated samples (*p < 0.05; **p < 0.01). b Steady-state levels of TACC2

mRNA were measured by RT-PCR and presented as relative fold

difference compared with CDKN1B in HBEC2 cells after 48 h with either

TACC2 siRNA or scrambled control. Data are expressed as mean ± SEM

from two independent experiments with triplicated samples

(**p < 0.01). c HBEC2 cells were treated as in a. Cell death was analyzed

by Annexin V and propidium iodide (PI) staining 24 h after 2 % CSE

exposure. The percentage of Annexin V positive cells/total cell number

was expressed as percentage apoptosis. Data are expressed as mean ±

SEM for three independent experiments (**p < 0.01). Representative

flow cytometry data are shown. d HBEC2 cells were treated as in a.

Immunoblot analysis of active caspase-3 was performed 24 h after 2 %

CSE exposure. Immunoblotting data are representative of

three experiments

Table 5 Top five candidate genes whose gene silencing alone

reduced cell viability

Gene ID Ratio (C/A) Z-score p value BH FDR

1 PLCH2* 0.490 −3.359 0.00039 0.00109

2 KIAA1919* 0.492 −3.342 0.00041 0.00217

3 MRPS34* 0.528 −3.030 0.00122 0.00326

4 EPPK1 0.607 −2.365 0.00901 0.00435

5 NAT10 0.612 −2.281 0.01127 0.00544

*p value < BH FDR

Bruse et al. Human Genomics  (2016) 10:1 Page 6 of 12



Notably, in addition to cigarette smoking, premature

growth of the lung is also thought to be a risk factor for

COPD [28]. Therefore, when analyzing the siRNA

screening data, we considered two experimental states:

(1) gene-environment interaction (both gene silencing

and CSE exposure) and (2) siRNA-induced cytotoxicity

(gene silencing alone). From the interaction analysis, we

identified two candidate genes (TACC2 and MYO1E)

whose knockdown increased CSE-induced cytotoxicity.

Both genes were identified in susceptible smokers.

TACC2 gene knockdown most dramatically augmented

CSE-induced cytotoxicity. TACC2, a member of the

transforming acidic coiled-coil-containing protein family,

is involved in the regulation of centrosome and micro-

tubule dynamics during cell cycling [29] but is not

necessary for cell growth and mouse fertility and devel-

opment [30]. The TACC2 functions suggest that it may

modulate both resistance (through a gain-of-function

mutation) and susceptibility (through a loss-of-function

mutation) to smoking-induced COPD. In fact, a recent

human study identified a common TACC2 variant as sig-

nificantly associated with the resistant smoker phenotype

[13]. MYO1E encodes a non-muscle class I myosin

involved in cytoskeleton dynamics; homozygous non-

synonymous SNPs in MYO1E are associated with familial

focal segmental glomerulosclerosis [31]. A recent in vitro

study demonstrated that genetic deletion of MYO1E aug-

ments LPS-induced chemokine (C-C motif) ligand 2

secretion in inflammatory cells [32]. The effects of CS on

the lungs of Myo1e−/−mice are unknown, but CS exposure

may enhance lung inflammation and possibly COPD in

Myo1e−/−mice.

We also identified three candidate genes (PLCH2,

KIAA1919, and MRPS34), which significantly augmented

cytotoxicity by siRNA knockdown alone. PLCH2 is a

member of the phospholipase C superfamily of enzymes

that regulate phosphoinositide turnover. Plch2−/− mice

exhibit no obvious phenotype. However, effects on lung

development have not been investigated [33]. KIAA1919

and MRPS34 encode a sodium-dependent glucose trans-

porter [34] and mitochondrial ribosomal protein S34

[35], respectively. Future studies will be needed to deter-

mine whether these genes are involved in the develop-

ment of respiratory systems using in vivo animal models.

Our in vitro siRNA screening further revealed a candi-

date gene whose knockdown protected against CSE-

induced cytotoxicity (SLC7A1). SLC7A1 was initially

selected from the VAAST analysis of susceptible smokers.

Since most rare disease-causing variants represent loss-of-

function mutations, and SLC7A1 was identified in suscep-

tible smokers, we might expect knockdown of this gene to

augment CSE-induced cytotoxicity. However, the opposite

effect was observed in the siRNA screening. It may be that

the specific mutations identified by the VAAST analysis

were rare gain-of-function mutations. Further experi-

ments examining the precise mutations are needed.

There are several limitations of this siRNA screening

approach, including inability to model gain-of-function

mutations or to assess epistasis, possible off-target

effects, and considerable variability among the individual

siRNA effects on gene silencing (e.g., 2 vs. 20 % of the

scrambled control). Further studies using primary mur-

ine tracheobronchial cells are required to validate our

in vitro findings. There are also other limitations when

using a simplistic siRNA/cell viability assay to assess

candidate genes. For example, inflammatory and endo-

thelial cells were not evaluated, though both are import-

ant in disease progression [36, 37]. A number of genes

are known to have high expression in inflammatory cells,

such as alveolar macrophages and pulmonary endothelial

cells, but not in airway epithelial cells [38, 39]. Based on

our requirement that genes be expressed in HBECs, we

may have excluded genes that may be important in

COPD through mechanisms involving inflammatory

cells. In future studies, we will include candidate genes

expressed in inflammatory cells, such as alveolar macro-

phages or lymphocytes. Also note that knocking down

genes is a rather blunt method. Recapitulating precise

mutations of interest using genome-editing technologies,

followed by in vitro functional studies, is likely much

more precise and a future goal of ours.

Conclusions

In this study, we identified candidate COPD genes

that augment spontaneous or CSE-induced cytotox-

icity through genomic, transcriptomic analyses, and

in vitro siRNA screening. In the future, we will deter-

mine the effects of candidate gene deletion on the

development of spontaneous and/or CS-induced

COPD in animal models.

Methods

Study subjects

Samples were collected from a cross-sectional case-

control study design, with no therapeutic intervention or

longitudinal follow-up information. All research involving

human subjects was approved by the authors’ institutional

review board (University of Iowa, New Mexico VA

Healthcare System (NMVAHCS), Lovelace Respiratory

Research Institute (LRRI) protocols: #200612711, e#11-

631, and #20031684, respectively). Informed consent was

obtained from all study subjects. Blood or whole lung tis-

sue samples were obtained from very advanced COPD

patients (n = 62) and resistant smokers (n = 30) enrolled in

the University of Iowa, NMVAHCS, LRRI, or the Lung

Tissue Research Consortium (LTRC). Advanced stage

COPD was defined as stages 3 or 4 COPD using the

GOLD executive summary 2007 (forced expiratory
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volume in 1 s [FEV1]/forced vital capacity [FVC] <0.70

and percentage of predicted FEV1 <50) [40], except for

three smokers who have more than 50 % predicted FEV1

but very low percentage of predicted diffusing capacity for

carbon monoxide (DLCO) (<30). We define exceptionally

resistant smokers as individuals who smoke at least 35

pack years, are >60 years of age, have normal spirometries,

and absence of significant comorbidities, such as non-

dermal malignancy or coronary artery disease. All study

subjects were of self-reported non-Hispanic white ethni-

city. We have excluded subjects with severe lung inflam-

mation due to chronic infection, immunosuppression due

to HIV infection, and known genetic diseases involving

the lung (such as cystic fibrosis or A1ATD).

DNA extraction

DNA extraction was performed using the QIAamp

Gentra Puregene Blood and Tissue kit according to

manufacturer’s instructions (Qiagen, Hilden, Germany).

For isolation of DNA from lung tissues, cell lysis solu-

tion was added to 50 mg of minced lung tissues and

then followed by addition of proteinase K and incubated

for 3 h at 55 °C. For isolation of DNA from blood sam-

ples, 10 mL of whole blood was resuspended in Pure-

gene Red Blood Cell Lysis Solution to lyse red blood

cells; this was followed by incubation at room

temperature for 5 min. Cell lysis solution was added to

the white blood cell pellet and vortexed vigorously for

10 s. To the completely digested tissue and blood lysates,

we added RNase A solution and protein precipitation

solution according to manufacturer’s instructions. The

supernatant from the previous step was added to a tube

containing isopropanol and mixed by inverting gently 50

times; 70 % ethanol was added and inverted several

times to wash the DNA. After final centrifugation and

removal of supernatant, the tubes were air-dried to

remove residual ethanol for 5–10 min. DNA hydration

solution was added and vortexed for 5 s and followed by

incubation at 65 °C for 1 h to dissolve the DNA. Concen-

tration and purity of the collected DNA were determined

using the NanoDrop ND-1000 spectrophotometer.

Whole exome data acquisition, processing, and variant

discovery

The whole exome sequencing library was constructed

using the SureSelectXT Human All Exon V4+UTRs kit

(Agilent, Santa Clara, CA) and sequenced using an Illu-

mina HiSeq 2000 system. The sequencing was performed

to achieve high-quality variant identification: overall ~60

million reads were sequenced for each individual, and an

average read depth of at least 50× was achieved for all

samples.

The variant discovery followed the Genome Analysis

Toolkit (GATK) Best Practices recommendations [41].

Briefly, raw sequences were aligned to the human refer-

ence genome (version hg 19) using Burrows-Wheeler

Aligner (BWA) [42]. The resulting raw alignments (in

binary sequence alignment/map format) were processed

by Picard (http://broadinstitute.github.io/picard) to re-

move PCR duplicates, followed by local realignment

around indels and base quality score recalibration using

GATK IndelRealigner and BaseRecalibrator respectively

[43]. Variant discovery was performed using GATK Uni-

fiedGenotyper using the joint calling function on all

samples. Raw variants quality scored were recalibrated

using GATK VariantRecalibrator and ApplyRecalibration

was used to generate a Variant Quality Score logarithm

of odds (VQSLOD). Finally, variants were filtered using

the following criteria: (1) VQSLOD ≥2 and (2) read

depth (DP) ≥6 in at least 80 % of samples. In addition,

any individual genotype with DP < 6 or GQ < 30 was

considered a no-call in the final dataset. The final data-

set along with annotation by ANNOVAR [44] are avail-

able as a supplemental file on our website under

Published Data (https://xinglab.genetics.rutgers.edu/Pub-

lishedData/COPD/AllVariants.zip).

VAAST Analysis

The variant data were analyzed using the Variant Anno-

tation, Analysis, and Search Tool (VAAST 2.0) package

[18]. The variants were annotated for their functional

impact using Variant Annotation Tool (VAT) in the

VAAST package. Then annotated variants in all suscep-

tible individuals and all resistant individuals were com-

bined into two condenser files using Variant Selection

Tool (VST). The susceptible and resistant condenser

files were analyzed using VAAST to prioritize candidate

genes under both dominant and recessive modes of

inheritance, allowing locus heterogeneity. We performed

the analysis either assuming complete penetrance of a

variant or allowing 5 % prevalence of a variant in the

control population. Complete penetrance means that no

individual in the background population can carry a

certain disease-causing variant, while allowing 5 %

prevalence means we estimate the expected disease allele

frequency within the background population to be 5 %

or lower.

The background population used for the analysis of

COPD samples were composed of variants from the 10

Gen dataset [45], 1057 genomes from the 1000 Genome

Project Phase I [46], 184 Danish exomes [47], 54 whole

genomes from the Complete Genomics Diversity Panel

[48], and resistant smoker sample exomes. The back-

ground files used for resistant smoker analysis are com-

posed of all the genomes or exomes mentioned above

(except the resistant smoker sample exomes) and COPD

susceptible sample exomes. We did not include 6500
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NHLBI exomes in the COPD sample background

because COPD subjects are present in this data set [12].

VAAST candidate-gene prioritization was performed

and variants in each gene were scored as a group. A rank

list of candidate genes was generated based on their

disease-causing probability. The significance level was

assessed with individual permutation tests. VAAST ana-

lysis parameters used: “-m lrt -lh y –significance 1e-4 -d

1e5 [-r 0.05|-pnt c] -iht [d|r]”.

Gene functional deficit score-based TTest and FCBF analysis

For the 92 individuals in our cohort, we extracted the set

of ANNOVAR annotated exonic variants [44]. We

mapped the RefSeq messenger RNA (mRNA) IDs identi-

fied by ANNOVAR to UniProt proteins. If a variant

mapped to different RefSeq IDs, all affected UniProt IDs

were included into the affected set. However, for each

variant only the primary isoform of the protein was con-

sidered. For each non-synonymous variant, we computed

the raw SNAP (screening for non-acceptable polymor-

phisms) score (range −100 to 100, any score ≥0 is classi-

fied as neutral/no functional change, and non-neutral

otherwise) [49]. For each gene in every individual, we

computed a gene functional deficit score as a sum over all

gene-specific variant scores. An individual variant score

was computed for each: (1) InDel or Stop loss/gain, score

= 1, (2) SNAP identified non-neutral non-synonymous

variant, score = SNAP score/100, (3) SNAP identified neu-

tral variant score = 0.055, and (4) synonymous variant,

score = 0.05. Further, individual variant scores of heterozy-

gous variants were multiplied by a factor of 0.25 to

approximately modulate the effects of heterozygosity.

Gene scores computed in this fashion are 0 only for genes

that have no variants at all. However, further comparison

between gene scores for different genes is not possible,

as the score is highly dependent on gene length and

overall tolerance for variability (e.g., longer genes with

more variable regions will tend to score higher while

remaining relatively functional biochemically). Note

that higher gene scores of statistically significant genes

in resistant individuals in our study may indicate genes

relevant for a resistance phenotype. We compared the

distribution of gene scores for resistant smokers vs. the

COPD-affected individuals using the t test metric. We also

applied to the entire set of genes in leave one out cross-

validation (92-fold) the fast correlation-based filter solution

(FCBF) feature selection algorithm [50]. The symmetrical

uncertainty attribute set evaluation in leave one out

cross-validation (WEKA implementation [51], parame-

ters = weka.attributeSelection.SymmetricalUncertAttrib

uteSetEval -s “weka.attributeSelection.FCBFSearch -D

false -T −1.7976931348623157E308 -N −1”) was also

combined to select a set of genes responsible for the

observed phenotype as a group, as opposed to a set

of genes individually contributing to the phenotype.

The feature set evaluation algorithm [50] evaluates

the worth of a set of attributes by measuring its sym-

metrical uncertainty with respect to another set of

attributes. Performance of a particular attribute set

was measured here by training J48 tree classifier [52]

(parameters: weka.classifiers.meta.AttributeSelectedClas-

sifier -E “weka.attributeSelection.SymmetricalUncertAttri-

buteSetEval ” -S “weka.attributeSelection.FCBFSearch -D

false -T −1.7976931348623157E308 -N −1” -W weka.clas-

sifiers.trees.J48 – -C 0.25 -M 2).

Sanger sequencing validation of variant calls

Sanger sequencing was used to validate the seven variants

in TACC2 genes found from the WES. Primer pairs used

to amplify PCR products harboring individual variants

were designed using Primer3 (http://biotools.umass

med.edu/bioapps/primer3_www.cgi). The detail informa-

tion of primers used for sequencing, including the

sequences, PCR product sizes, and annealing tempera-

tures, are listed (Additional file 7: Table S1). PCR with

those primer pairs was performed in 25-μl reaction with

OneTaq DNA polymerase (New England Biolabs, Ipswich,

MA). Half of the amount of each reaction was used for gel

electrophoresis to confirm the presence of a single ampli-

con with the expected fragment size. After the confirm-

ation, the remaining PCR product was purified by using

Illustra ExoProStar according to the manufacturer’s proto-

col (GE Healthcare Life Sciences, Buckinghamshire, UK).

The purified PCR products were then used for Sanger se-

quencing (GenScript, Piscataway, NJ).

Cell culture

Primary HBECs (pHBECs) from human lung tissues

were isolated from five nonsmoking donors and were

cultured in conventional systems under a protocol

approved by the LRRI Institutional Review Board as pre-

viously described [53]. HBEC2 cells (immortalized

HBECs) were originally generated by Ramirez, et al. [54]

and maintained as previously described [55]. Experi-

ments were performed in 12-well Costar tissue culture

plates at a starting cell density of 15 × 103/cm2. Cell

counts were performed by an electric particle counter

(Beckman Coulter, Indianapolis, IN).

Preparation of cigarette smoke extract (CSE)

One hundred millimeter research cigarettes (3R4F) were

purchased from the University of Kentucky. CSE were

prepared as previously described [56].

RNA-Seq

Total RNA was extracted using trizol from pHBEC cul-

tures of five non-smokers without COPD as previously

described [53]. Sequence libraries were constructed
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using the Illumina TruSeq RNA prep kit (San Diego,

CA). Multiplex sequencing was performed using the

Illumina HiSeq 2000 system. We generated between 30

and 35 million 2 × 50 pair-end reads per sample. The

raw sequences were aligned to the NCBI human genome

reference build 37 using BWA, and the expression level

of each transcript was determined using Tophat [57].

Gene expressions of approximately 32,500 gene tran-

scripts, including multiple transcript variants, were ana-

lyzed (as the fragments per kilobase of transcript per

million mapped reads (FPKM)). In total, 96.2 % of the

gene transcripts have less than tenfold variability (the

interquartile range of log10 expression equal to or less

than 1.0). To control the quality of our computation of

interquartile range, we have excluded all gene transcripts

with 2 or more zero FPKM values among the five

subjects.

Cell viability

Cell viability was determined by measuring the reduction

of 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium

bromide (MTT) as previously described [55]. The MTT

absorbance was read at 570 nm.

RNA interference

Small interfering RNA (siRNA) for selected genes and

the scrambled (control) siRNA were purchased from Ap-

plied Biosystems (Carlsbad, CA). Transfection of siRNA

was performed using INTERFERin (Polyplus-tranfection

Inc, New York, NY) according to the manufacturer’s

instructions. The targeted sequences for the selected

genes are available (Additional file 8: Table S2). Twenty-

four hours after plating, cells were transfected with the

individual siRNA or the scrambled control for 48 h. The

transfected cells were exposed to 2 % CSE for 24 h in

the absence or presence of CSE as determined by the

MTT assay.

Flow cytometry

To detect apoptosis, flow cytometry using Annexin V-

FITC (BD Biosciences, Franklin Lakes, NJ) and propi-

dium iodide (Sigma, St Louis, MO) was performed as

previously described [58]. Early or late apoptosis was

defined by Annexin V+/PI– or Annexin V+/PI+ stain-

ing, respectively.

Immunoblotting

Immunoblot analysis was performed for active caspase-3

as previously described [59]. Equivalent loading was veri-

fied by stripping the blot and reprobing with antibodies

to β-actin.

Statistical analysis

The MTT absorption values from triplicated samples per

group were averaged for the following four groups: (A)

CSE-unexposed scrambled control cells, (B) CSE-

exposed scrambled control cells, (C) CSE-unexposed

siRNA-transfected cells, and (D) CSE-exposed siRNA-

transfected cells. Every 2–10 genes per independent

experiment were tested by siRNA transfection with a

scrambled control. The interaction of CSE and siRNA

effects on cell viability is quantified by the multiplicative

interaction ratio of averaged MTT absorption values

([D/C] divided by [B/A]). This ratio is expected to be

low or high if the targeted gene is protective or permis-

sive for CSE-induced cytotoxicity. The mean and robust

estimate of the standard deviation (nonparametric

pseudo SD = interquartile range divided by 1.35) of these

interactions are used to compute a Z-score. A one-side

p value for each gene (by one-sample Z-test) was applied

to detect both tails of genes. The effects of siRNA alone

were also quantified by the ratio of C/A and further ana-

lyzed to detect other candidate genes among the 45 genes,

whose siRNA reduced the MTT value compared with the

scrambled control. The Benjamini and Hochberg (BH)

false discovery rate (FDR) procedure is applied to the

sorted list of p values (smallest to largest) using the for-

mula BH (j) = αj/n, where α = 0.05 and j is the index num-

ber of the list of p values and n is the total number of

candidate genes. The p values, p (j), and the correspond-

ing genes are considered significant for all genes whose p

(j) ≤ BH (j).

Additional files

Additional file 1: COPD candidate genes prioritized by the VAAST

analysis. Results from different VAAST run settings (Table 1) are shown in

seperated tabs. The tab list and the column definition are shown in the

tab "TableList". (XLSX 665 kb)

Additional file 2: COPD candidate genes prioritized by the Gene

Functional Deficit Score-based TTest and FCBF Analysis.

Results from Gene Functional Deficit Score-based t test, FCBF analysis, and

induced network modules analysis are shown in different tabs. (XLSX 384

kb)

Additional file 3: The abundance of gene expression in primary

human epithelial cell cultures using RNA-Seq. Expression level (FPKM)

of 32,457 transcripts from five nonsmoking donors and the average

expression level are shown. (XLSX 4.16 mb)

Additional file 4: siRNA screening in vitro analysis for 81 COPD

candidate genes. For the 81 candidate genes, the detailed gene

information, selection method, and annotation are shown in the tab

"Gene Selection Methods". The siRNA knockdown results in three trials

are shown in the tab "siRNA summary". (XLSX 92.6 kb)

Additional file 5: Annotated variants for the 81 COPD candidate

genes. Whole exome sequencing variants identified in the 81 COPD

candidate genes in the 62 susceptible smokers with COPD (tab

"Susceptible") and 30 resistant smokers (tab "Resistant"). The variant list is

in VCF format and annotated with ANNOVAR, except the first column

which lists the gene id. (XLSX 1.23 mb)
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Additional file 6: Gene Ontology term enrichment analysis on the

81 candidate genes. (XLSX 19.0 kb)

Additional file 7: Table S1. The information of Sanger sequencing

validation for seven exonic variants of TACC2. (DOCX 13.8 kb)

Additional file 8: Table S2. Table S2 siRNA sequences targeting 81

COPD candidate genes. (DOCX 28.9 kb)
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