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Abstract. The present study reports on the frequency and the 

spectrum of genetic variants causative of monogenic diabetes 

in russian children with non-type 1 diabetes mellitus. The 

present study included 60 unrelated russian children with 

non-type 1 diabetes mellitus diagnosed before the age of 

18 years. Genetic variants were screened using whole-exome 

sequencing (WeS) in a panel of 35 genes causative of 

maturity onset diabetes of the young (ModY) and transient 

or permanent neonatal diabetes. Verification of the WeS 

results was performed using Pcr-direct sequencing. a total 

of 38 genetic variants were identified in 33 out of 60 patients 
(55%). The majority of patients (27/33, 81.8%) had variants in 

ModY-related genes: GCK (n=19), HNF1A (n=2), PAX4 (n=1), 

ABCC8 (n=1), KCNJ11 (n=1), GCK+HNF1A (n=1), GCK+BLK 

(n=1) and GCK+BLK+WFS1 (n=1). a total of 6 patients (6/33, 

18.2%) had variants in ModY-unrelated genes: GATA6 (n=1), 

WFS1 (n=3), EIF2AK3 (n=1) and SLC19A2 (n=1). a total of 

15 out of 38 variants were novel, including GCK, HNF1A, 

BLK, WFS1, EIF2AK3 and SLC19A2. To summarize, the 

present study demonstrates a high frequency and a wide 

spectrum of genetic variants causative of monogenic diabetes 

in russian children with non-type 1 diabetes mellitus. The 

spectrum includes previously known and novel variants in 

ModY-related and unrelated genes, with multiple variants in a 

number of patients. The prevalence of GCK variants indicates 

that diagnostics of monogenic diabetes in russian children 

may begin with testing for ModY2. However, the remaining 

variants are present at low frequencies in 9 different genes, 

altogether amounting to ~50% of the cases and highlighting 

the efficiency of using WES in non‑GCK-ModY cases.

Introduction

Monogenic diabetes accounts for 1-6% of pediatric diabetes 

patients with the highest incidence among patients manifesting 

non-type 1 diabetes mellitus in childhood or adolescence (1).

a large, clinically heterogeneous group of dominantly 

inherited disorders linked to primary β-cell dysfunction is 

classified as maturity onset diabetes in the young (MODY). To 
date, 13 genes causative of 13 types of ModY are known (2). 

ModY is typically diagnosed before 25 years of age; it is 

non-insulin dependent and its symptoms are usually mild. 

However, due to the variety of clinical forms caused by a wide 

spectrum of mutations in ModY-related genes, different treat-

ment strategies are used: From appropriate diet and physical 

activity to oral and/or insulin therapy.

Whole‑exome sequencing in Russian children with 

non‑type 1 diabetes mellitus reveals a wide spectrum of 

genetic variants in MODY‑related and unrelated genes
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Monogenic diabetes also includes a number of non-ModY 

transient or permanent neonatal forms occurring under 

6 months of age. More than 20 genes are known to be related 

to congenital neonatal diabetes (3). depending on the gene 

involved, neonatal diabetes may follow patterns of dominant 

or recessive inheritance and may be isolated or associated 

with a variety of syndromic features (4). However, due to a 

very early onset of diabetes, hyperglycemia is often diagnosed 

prior to other syndromic features. The treatment strategy for 

non‑MODY neonatal diabetes depends on the specific genetic 
defect causing the diabetic phenotype.

Molecular genetic testing is highly recommended for 

patients suspected of monogenic diabetes as it allows 

tailoring treatments to specific etiological mechanisms. Up 
until recently, search for diabetes-related mutations was 

usually performed by Sanger sequencing and was therefore 

limited to only a few genes, leaving a considerable propor-

tion of cases without a known cause. Moreover, a number 

of studies have demonstrated that frequencies of certain 

monogenic diabetes subtypes vary strongly among different 

populations (5), challenging the development of unified 

recommendations for the target gene choice. An efficient 
technology to detect previously known and to reveal novel 

mutations related to monogenic diabetes is next-generation 

sequencing. This technique allows for a rapid analysis of an 

unlimited number of genes and may provide valuable knowl-

edge on the genetic variants causative of monogenic diabetes 

in different populations.

Here, using targeted whole-exome sequencing (WeS), 

we studied the frequency and the spectrum of genetic vari-

ants causative of monogenic diabetes in a cohort of russian 

children with non-type 1 diabetes mellitus.

Materials and methods

Study group. a total of 60 unrelated patients with diabetes and 

impaired glucose tolerance (pre-diabetes) were prospectively 

included in the study. all the patients were of russian ethnicity 

and resided in northwest russia. in accordance with the 

guidelines of the american diabetes association (6), the diag-

noses were based on plasma glucose criteria, either the fasting 

plasma glucose (FPG) and/or the 2-h plasma glucose (2-h PG) 

value after a 75-g oral glucose tolerance test (oGTT) and/or 

the Hba1c criteria. all the patients had an onset of diabetes 

before the age of 18 years and a detectable c-peptide secretion 

(or a detectable insulin level in the absence of insulin therapy) 

and were negative for insulin-, islet-cell-, tyrosinphosphatase 

ia2-, and glutamate decarboxylase-autoantibodies. The 

exclusion criterion was the presence of the already confirmed 
syndrome associated with impaired glucose metabolism 

(such as Prader-Willi syndrome). in 59 cases, family history 

was available, and in 41 of them, it was positive for diabetes. 

all the patients were referred to the study by their medical 

supervisors.

Sample preparation and whole‑exome sequencing. Genomic 

dna was extracted from whole blood by Magna Pure 

System (roche) using the standard protocol. exome dna 

libraries were prepared from 100 ng dna using TruSeq® 

exome Sample Preparation kit (illumina, inc.), following 

the manufacturer's instructions. libraries were sequenced 

on illumina HiSeq 2500 in 2x100 Pe mode. an average of 

63.6 million sequencing reads were obtained for each sample, 

yielding ~50x mean coverage of cdS regions and an average 

of 89% of cdS bases covered at least 10x.

Bioinformatic analysis. Bioinformatic analysis of the WeS 

data was done using a pipeline based on bwa v.0.7.12-r1044 

aligner, Picard tools v.2.0.1, and Genome analysis Tool kit 

(GaTK) v.3.5 software with all the necessary preprocessing 

steps required by the GaTK Best Practices workflow 

(https://software.broadinstitute.org/gatk/best-practices/) (7,8). 

Target enrichment metrics were collected using the Picard 

calculateHsMetrics tool. Variant calling was done using 

GaTK Haplotypecaller in the cohort genotyping mode with 

250 samples included into the cohort (samples with a similar 

ethnical background from St. Petersburg State university 

Biobank were used for cohort padding). Variants were filtered 
using variant quality score recalibration (VQSr) and anno-

tated with Snpeff and SnpSift tools (version 4.2). additional 

annotations included the following information: rsid of 

known variants from dbSnP (build 146), allele frequency (aF) 

from large sequencing consortia-1000 Genomes (9), exome 

aggregation consortium (exac) (10), and eSP6500 (11); 

and pathogenicity predictions by Polyphen-2 (12), SiFT (13), 

ProVean (14) obtained from dbnSFP database (15) and by 

Human Splicing Finder (16) and ddiG (17). For additional 

prediction of protein stability changes caused by missence 

mutations with uncertain significance, I‑Mutant 2.0 (18) was 
used. Variant ranking was done using a custom scoring metric. 

reference minor allele presence in target genes was analyzed 

using rMa Hunter (19).

To check the possible presence of copy-number vari-

ants (cnVs), we analyzed the sequencing coverage across 

all targeted exons of interest. To this end, we calculated 

coverage for each interval using GaTK, and then normalized 

the coverage matrix across samples and intervals. We then 

used z-score value of the normalized coverage to assess the 

statistical significance of the results.

Verification of the WES results and family analysis. Verification 
of the WeS results in probands and subsequent family 

analyses were performed by PCR‑direct sequencing. Specific 
primers were designed for verification of each case. The PCR 
products were purified with 5M NH4Ac and 96% ethanol and 
then with 70% ethanol, dried at 60˚C, and dissolved in 10 µl 
of deionized water. After purification, the PCR products were 
sequenced using an aBi PriSM BigdyeTerminator 3.1 kit 

reagent (applied Biosystems). Then, a capillary electrophoresis 

was performed in a Ga3130xl Genetic analyzer (applied 

Biosystems). Sequences were analyzed using the Sequence 

Scanner software (applied Biosystems).

Analysis of the GCK promoter for c.‑71G>C genetic variant. 

a single-base substitution c.-71G>c in the GCK promoter 

is known to be linked to ModY2 phenotype (20). However, 

WeS did not allow for analysis of the GCK promoter for 

c.-71G>c. For this reason, the GCK promoter was analyzed 

for c.-71G>c genetic variant by Pcr-direct sequencing as 

described above with the use of Hae iii endonuclease and the 
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following primers: F-5'-Gca TGG caG cTc Taa TGa caG 

G-3' and r-5'-caT ccT aGc cTG cTT ccc TGG-3'.

Results

Genetic variants causative of monogenic diabetes in Russian 

children with non‑type 1 diabetes mellitus. using whole-exome 

sequencing followed by PCR‑direct sequencing, we identified 
the frequency and the spectrum of genetic variants causative 

of monogenic diabetes in 60 russian children with non-type 

1 diabetes mellitus. Genetic variants were screened for a total 

of 35 genes: 13 genes causative of ModY [HNF4A (ModY1), 

GCK (ModY2), HNF1A (ModY3), PDX1 (ModY4), 

HNF1B (ModY5), NEUROD1 (ModY6), KLF11 (ModY7), 

CEL (ModY8), PAX4 (ModY9), INS (ModY10), BLK 

(ModY11), ABCC8 (ModY12), and KCNJ11 (ModY13)] 

and 22 genes causative of transient or permanent neonatal 

diabetes, including the ones related to specific syndromes 

(EIF2AK3, RFX6, WFS1, ZFP57, FOXP3, AKT2, PPARG, 

APPL1, PTF1A, GATA4, GATA6, GLIS3, IER3IP1, LMNA, 

NEUROG3, PAX6, PLAGL1, SLC19A2, SLC2A2, SH2B1, 

SERPINB4, and MADD).

overall, 33 out of 60 patients (55%) had genetic variants 

in the target genes (Table i; 21-40). For 12 patients, parents 

were available for genetic testing and origins of genetic 

variants were determined. in 11 cases, genetic variants had 

been inherited from the parents, and in one case, a de novo 

genetic variant was confirmed. Of 33 patients, 27 (81.8%) had 
genetic variants in ModY-related genes. The majority of these 

patients (19 out of 27) had genetic variants in GCK (ModY2). 

The spectrum of GCK genetic variants included 13 missense 

mutations, 3 nonsense mutations, 1 in-frame and 3 frameshift 

deletions, and 1 single-base substitution in the promoter. in 

two GCK mutation-positive patients, two genetic variants were 

present: Missense mutation along with a single-base substitu-

tion in the promoter (patient #27) and missense mutation along 

with a nonsense mutation (patient #78). The spectrum of the 

identified GCK genetic variants is shown in Fig. 1. Missense 

mutations in HNF1A (ModY3) were registered in two 

patients. The other ModY-related genetic variants included 

three cases of missense mutations: in PAX4 (ModY 9), in 

ABCC8 (ModY12), and in KCNJ11 (ModY 13).

The presence of genetic variants in different target genes 

was detected in three patients. in one of them, a GCK in-frame 

deletion was accompanied by an HNF1A missense mutation 

(patient #226). in another one, two missense mutations were 

present: in GCK and in BLK (patient #529). in the third patient 

(#662), a splicing defect in GCK and missense mutations in 

BLK and WFS1 were present.

Genetic variants causative of non-ModY monogenic 

diabetes were found in 6 out of 33 mutation-positive patients 

(18.2%). These included a nonsense mutation in GATA6, 

three cases of missense mutations in WFS1, one case of a 

homozygous EIF2AK3 nonsense mutation (patient #411), 

and one case of missense mutation and a frameshift deletion 

present in SLC19A2 (c.164delc and c.161c>a) (patient #432). 

The EIF2AK3 nonsense mutations had been inherited from 

consanguineous parents who were heterozygous carriers of the 

same mutation. The SLC19A2 mutations also appeared to have 

been inherited from the parents: c.164delc from the mother 

and c.161c>a from the father, indicating that both SLC19A2 

alleles in patient #432 were affected.

considering that monogenic diabetes may be associated 

with deletions and duplications, we analyzed the possible pres-

ence of cnVs in the target genes. We found no evidence for 

cnVs in the target genes in either sample. However, it should 

be noted that the limitations of WeS technology do not allow 

for confident detection of small‑scale CNVs.

Relationship between genetic variants and diabetic pheno‑

types. We analyzed the relationship of the detected genetic 

variants to the patients' diabetic phenotypes. among the 38 

detected genetic variants, 23 had been previously reported 

as linked to monogenic diabetes and 15 were novel ones 

(Table i). according to the american college of Medical 

Genetics and Genomics (acMG) guidelines (41), most of the 

detected genetic variants (18 previously reported and 6 novel 

ones) were classified as pathogenic or likely pathogenic and 
thus were considered as causative of the diabetic phenotypes 

in the studied patients. However, the relationship of the 

detected KCNJ11 missense mutation to the diabetic pheno-

type was not apparent, because earlier it had been shown to 

be associated with hyperinsulinism (35), which was not present 

in patient #134.

Three previously reported and 9 novel genetic variants 

were classified as those of uncertain significance, and two 
genetic variants were likely benign (Table i). These variants 

included 12 missense mutations; for them, we performed an 

additional in silico analysis using i-Mutant 2.0 (18) (Table ii). 

in all but one case, the in silico modeling attested to a decrease 

of protein stability, thus suggesting the pathogenic effect of the 

checked genetic variants. of special interest were two novel 

WFS1 genetic variants, initially classified as likely benign. 
Patient #266 inherited the genetic variant from a non-diabetic 

mother, while patient #408 inherited the genetic variant from 

a mother with diabetes. Homozygous mutations in WFS1 

lead to the development of Wolfram syndrome, an autosomal 

recessive disorder characterized by a list of clinical signs 

including a bilateral progressive optic atrophy, deafness, and 

diabetes mellitus (42). Heterozygous carriers of WFS1 muta-

tions have been reported to have risk of early-onset diabetes 

mellitus (43). The latter cannot be excluded in our patients. 

However, an intriguing point is that the WFS1 genetic variant 

in patient #408, who inherited it from a diabetic mother, 

appeared to not decrease the protein stability according to 

i-Mutant, which makes its pathogenicity questionable.

Clinical picture in patients with multiple genetic variants. 

Finally, we analyzed the clinical picture in patients with 

more than one genetic variant in one or different target genes 

(Table iii). a simultaneous presence of two GCK genetic vari-

ants in patient #27 raised the question of their location in one 

or both alleles. The parents were not available for analysis. The 

clinical picture was mild and typical for ModY2. it contrasted 

with the severe one usually reported in patients with both GCK 

alleles affected (44,45), suggesting that, in patient #27, both 

genetic variants were present in the same allele and thus had 

no accumulative effect. in patient #78, who was also a carrier 

of two GCK genetic variants, the clinical picture was typical 

for ModY2. as both genetic variants were inherited from 
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the mother, we concluded that only one allele was affected. 

Moreover, only nonsense mutation c.199G>T seemed to 

be clinically significant, because the resulting stop-codon 

terminates translation before the c.766G>c site. The clinical 

picture in patient #226, who had genetic variants in GCK 

and HNF1A, was more typical for ModY2 than for ModY3: 

Table I. Genetic variants identified in Russian children with non‑type 1 diabetes mellitus.

Patient  nucleotide change Mutation Mutation Pathogenicity according

number Gene  (protein change) type origin to acMG (refs.)

  59 GCK c.772G>T (p.Gly258cys) Missense  unknown likely pathogenic (21)

  62 GCK c.930_931delGG (p.asp311fs) Frameshift unknown Pathogenic (22)

  83 GСK c.930_931delGG (p.asp311fs) Frameshift unknown Pathogenic (22)

  95 GCK c.130G>a (p.Gly44Ser) Missense Father likely pathogenic (23)

167 GCK c.128G>a (p.arg43His) Missense Mother likely pathogenic (24)

197 GCK c.233T>c (p.leu77Pro) Missense Father likely pathogenic (25)

426 GCK c.683c>T (p.Thr228Met) Missense unknown likely pathogenic (26)

460 GCK c.682a>G (p.Thr228ala) Missense Mother likely pathogenic (21)

580 GCK c.775G>a (p.ala259Thr) Missense unknown likely pathogenic (27)

663 GCK c.1079c>a (p.Ser360*) nonsense unknown Pathogenic (28)

665 GCK c.660c>a (p.cys220*) nonsense unknown Pathogenic (24)

176 GCK c.1349c>T (p.ala450Val) Missense unknown likely pathogenic (29)

661 GCK c.1349c>T (p.ala450Val) Missense unknown likely pathogenic (29)

118 GCK c.117_119delaaG (p.lys39del) in-frame unknown uncertain significance Novel
   deletion   

119 GCK c.1346_1347delcG (p.ala449fs) Frameshift unknown Pathogenic novel

434 GCK c.868G>c (p.Glu290Gln) Missense Mother uncertain significance Novel
578 GCK c.1253G>c (p.Ser418Thr) Missense unknown Pathogenic novel

  27 GCK c.754T>c (p.cys252arg) Missense unknown likely pathogenic (30)

  c.-71G>c Promoter unknown likely pathogenic (20)

  78 GCK c.199G>T (p.Glu67*) nonsense Mother Pathogenic novel

  c.766G>c (p.Glu256lys) Missense Mother likely pathogenic (31)

153 HNF1A c.709a>G (p.asn237asp) Missense unknown uncertain significance (32)
422  HNF1A c.485T>G (p.leu162arg) Missense unknown uncertain significance Novel
215 PAX4 c.574c>a (p.arg192Ser) Missense unknown uncertain significance (33)
114 ABCC8 c.4139G>a (p.arg1380His) Missense unknown likely pathogenic (34)

134 KCNJ11 c.406c>a (p.arg136Ser) Missense unknown uncertain significance (35)
  68 GATA6 c.1477c>T (p.arg493*) nonsense de novo Pathogenic (36)

266 WFS1 c.2452c>T (p.arg818cys) Missense Mother likely benign (37)

408 WFS1 c.2327a>T (p.Glu776Val) Missense Mother likely benign (38)

133 WFS1 c.1124G>a (p.arg375His) Missense unknown uncertain significance Novel
411 EIF2AK3 c.1912c>T (p.arg638*) nonsense From Pathogenic novel

 EIF2AK3 c.1912c>T (p.arg638*) nonsense parents  

432 SLC19A2 c.164delc (p.Pro55fs) Frameshift Mother Pathogenic novel

 SLC19A2 c.161c>a (p.Thr54asn) Missense Father uncertain significance Novel
226 GCK c.543_545delcGT (p.Val182del) in-frame unknown uncertain significance Novel
   deletion 

 HNF1A c.92G>a (p.Gly31asp) Missense unknown likely pathogenic (39)

529 BLK c.939G>c  (p.Glu313asp) Missense unknown uncertain significance Novel
 GCK c.919c>T  (p.leu307Phe) Missense unknown uncertain significance Novel
662 GCK c.1019+2T>a Splicing unknown Pathogenic novel

   defect

 BLK c.1148G>a (p.arg383Gln) Missense unknown uncertain significance Novel
 WFS1 c.1957c>T (p.arg653cys) Missense unknown likely pathogenic (40)

acMG, american college of Medical Genetics and Genomics.
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He had mild fasting and postprandial hyperglycemia, had 

no glucosuria, and was successfully being treated by a diet. 

Patient #411 had a homozygous EIF2AK3 nonsense mutation, 

inherited from consanguineous parents and associated with 

Wolcott-rallison syndrome, which, in turn, has been reported 

to be the most common genetic cause of permanent neonatal 

diabetes in consanguineous families (46). Patient #432 had 

two novel genetic variants affecting both SLC19A2 alleles. 

Homozygous mutations in SLC19A2 cause rogers syndrome: 

Thiamine-responsive megaloblastic anaemia associated with 

diabetes mellitus and deafness (47). among other clinical 

signs are congenital heart defects, retinal degeneration, keto-

nuria, dwarfism, and neurological symptomatology (42). Of 
note, patient #432 had only diabetes mellitus, retinal degen-

eration, ketonuria, and neurological symptomatology and thus 

did not manifest a typical clinical picture. Both patients #529 

and #662 had typical clinical signs of GCK-ModY rather than 

BLK-ModY, suggesting an absence of strong accumulation of 

the pathogenic effect of the detected genetic variants.

Discussion

in 1974, Tattersall reported on three families suffering from 

mild non-insulin dependent diabetes with Mendelian domi-

nant inheritance (48). The disease was diagnosed in children 

and young adults and was later defined as maturity‑onset type 
diabetes of young people (ModY) (49). The discovery of 

mutations in the genes encoding HnF4a (50), HnF1a (51), 

HnF1B (52), iPF (PdX1) (53), and GcK (54,55) as the causes 

of ModY provided evidence for genetic heterogeneity of 

familial diabetes. To date, ModY-causing mutations are 

identified in a total of 13 genes, and mutations in more than 
20 genes are known to be associated with neonatal hyper-

glycemia (56). Because of such a variety of genetic causes, 

many cases of monogenic diabetes remain without a genetic 

diagnosis, and its frequency remains underestimated.

The development of high throughput sequencing became 

a milestone in the search for diabetes-related mutations. 

allowing for simultaneous testing of an unlimited number 

of genes (i.e. of all known genetic etiology in monogenic 

diabetes), the method increased the mutation detection rate 

significantly (57). In our study, we detected genetic variants 
causative of monogenic diabetes and hyperglycemia-related 

syndromes in 33 out of 60 children (55%) with non-type 1 

diabetes mellitus. This frequency is considerably higher than 

that detected by Sanger sequencing, which is usually restricted 

to the analysis of several MODY‑related genes and confirms 
approximately 15% of the cases tested for ModY (58). The 

higher mutation detection rate in our study is achieved by 

increasing the number of genes tested and a thorough clinical 

selection of patients with possible monogenic diabetes. in this 

regard, one more advantage of WeS should be mentioned: 

dna sequencing data may be easily stored for further analysis 

of newly discovered candidate genes.

ethnic differences play an important role in determining 

the epidemiology of monogenic diabetes, especially of ModY. 

large population studies in european caucasians showed a 

general trend of increased HNF1A-ModY frequency in 

northern europe, while GCK-ModY is prevalent in Southern 

european populations (5). Here, we report GCK-ModY in 

19 and HNF1A-ModY in only 2 out of 27 ModY-positive 

russian patients. These mutation rates appeared to be closer 

to those in Southern european populations than to those in 

Northern Europe residents. Our finding may indicate the popu-

lation‑specific frequency MODY types in Russian patients. 
The recently shown high prevalence of GCK-ModY cases 

among russian patients with diabetes in pregnancy supports 

this suggestion (59). However, it should be also considered that 

our study was performed on children who developed diabetes 

before the age of 18 years. in the previous observations, it was 

noticed that the relative proportion of GCK-ModY is higher 

in cases ascertained through pediatric clinics, in contrast to 

HNF1A‑ModY, which predominates in cases from adult 

clinics (58,60). Thus, considering this information, our results 

are in good accordance with those reported in Spain, italy, 

France, Germany, and the czech republic, where mostly 

Figure 1. The spectrum of genetic variants in the GCK gene identified in Russian children with non‑type 1 diabetes mellitus. Exons and variants are numbered 
according to the canonical transcript (enST00000403799.8). novel variants are highlighted in red. The lower panel indicates the distribution of known 

pathogenic and likely pathogenic coding variants in GCK according to clinVar (v. 2019-06-18). P, pathogenic; lP, likely pathogenic.
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pediatric cases were tested (25,61). The prevalence of GCK 

variants (57.6%) in our study suggests that genetic analysis 

in russian children with suspected monogenic diabetes may 

start with testing for ModY2, which may not necessarily be 

performed by WeS. However, other cases amount to 42.4% and 

are linked to 9 different genes, which attests to the efficiency 
of using WeS for the search of genetic causes of diabetes in 

non-GCK-ModY cases.

our results show that the spectrum of monogenic 

diabetes-related genetic variants in russian children includes 

missense and nonsense mutations, in-frame and frameshift 

deletions, and a promoter mutation. Generally, these data do not 

contrast with results obtained in other populations, which also 

demonstrated a wide spectrum of mutations (62-64). among 

genetic variants detected in our study, 60.5% had already been 

reported in diabetic patients and 39.5% were novel ones. on 

the one hand, these results point towards a significant recur-
rent variation within monogenic-diabetes-related genes. on 

the other hand, they suggest that, in spite of the multitude 

of monogenic diabetes studies, many variants still remain 

unidentified. Identification of novel genetic variants as well as 
accumulating data on previously known causes of monogenic 

diabetes is of high importance, both for fundamental under-

standing of the disease pathogenesis and for clinical practice.

interpretation of genetic variants, especially novel ones, 

may be challenging. in this study, only 63.2% of the detected 

genetic variants (18 previously reported and 6 novel ones) were 

unambiguously considered as causative of the diabetes in the 

studied patients. The remaining 36.8% variants, including 

9 novel ones, were initially classified as those of uncertain 
significance (n=12) or likely benign (n=2). Additional in silico 

predictions performed for missense mutations among these 

variants indicate that, with the exception of one variant, 

they all likely have an adverse effect on protein stability. 

considering these results and the patients' phenotypes, the 

assumption that the abovementioned variants may be causative 

of monogenic diabetes can be made. importantly, the detected 

genetic variants are absent in non-diabetic russian population 

resided in northwest russia (65). However, to make a strong 

conclusion on the pathogenic effect of each novel variant, 

more data are required, including functional characterization 

and reports of a specific genetic variant in multiple patients 
with similar phenotypes. The latter highlights the importance 

of our results for future studies of monogenic diabetes-related 

genetic variants.

noteworthy, our analysis of the clinical picture in the 

patients simultaneously having BLK+GCK (patient #529 

and #662) and GCK+HNF1A (patient #226) genetic variants 

suggests no accumulation of adverse effect: all these patients 

had a typical ModY2 phenotype. The most plausible expla-

nation for this is the specific age of development of different 
ModY types. Patients suffering from GCK-ModY have an 

impaired glucose metabolism since birth (66). in contrast, 

carriers of HNF1A genetic variants may develop diabetes by 

the age of 35 years or even by the age of 55 years, although 

most of them have diabetes before 25 years of age (67). in 

the study by lópez-Garrido et al (68), the co-inheritance of 

GCK and HNF1A genetic variants was reported in two patients 

and was associated with a typical ModY3 phenotype in an 

adult patient and only impaired fasting glucose in a younger 

patient with the same genotype. in addition, HNF1A genetic 

variant detected in patient #226 in this study (c.92G>a) was 

previously reported in a diabetic proband and his non-diabetic 

sister of 43 years of age (69). Similarly, affected carriers of 

BLK genetic variants usually develop diabetes at the middle 

age (70). Thus, it is likely that patients #529, #662, and #226, 

who were all involved in our study before the age of 4 years, 

have not developed the clinical picture of HNF1A-ModY 

and BLK-ModY yet. The possibility of a late manifestation 

of HNF1A-ModY and BLK-ModY in the children who 

Table ii. In silico prediction of increase/decrease in the protein stability caused by missense mutations with uncertain significance 
and by benign missense mutations.

Patient   Genetic variant Pathogenicity according Protein stability predicted

number Gene  (amino acid change) to acMG by i-Mutant

434 GCK c.868G>C (p.Glu290Gln) Uncertain significance Decrease
153 HNF1A c.709A>G (p.Asn237Asp) Uncertain significance Decrease
422  HNF1A c.485T>G (p.Leu162Arg) Uncertain significance Decrease
215 PAX4 c.574C>A (p.Arg192Ser) Uncertain significance Decrease
134 KCNJ11 c.406C>A (p.Arg136Ser) Uncertain significance Decrease
266 WFS1 c.2452c>T (p.arg818cys) likely benign decrease

408 WFS1 c.2327a>T (p.Glu776Val) likely benign increase

133 WFS1 c.1124G>A (p.Arg375His) Uncertain significance Decrease
432 SLC19A2 c.161C>A (p.Thr54Asn) Uncertain significance Decrease
529 BLK c.939G>C (p.Glu313Asp) Uncertain significance Decrease
 GCK c.919C>T (p.Leu307Phe) Uncertain significance Decrease
662 BLK c.1148G>A (p.Arg383Gln) Uncertain significance Decrease

aSMG, american college of Medical Genetics and Genomics.
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already have GCK-ModY strongly suggests the necessity of 

their strict medical supervision in order to timely modify their 

therapy. additional studies, including functional ones, on the 

pathogenicity of the novel BLK genetic variants detected in 

patients #529 and #662 will also facilitate the development of 

the most effective treatment strategies for them.

To summarize, our data show a high rate of genetic vari-

ants causative of monogenic diabetes in russian children 

with non-type 1 diabetes mellitus. The use of a WeS-based 

panel allowed us to identify a variety of previously known 

and novel genetic variants in ModY-related and unrelated 

genes, including multiple variants in a number of patients. 

The revealed variety is characterized by a prevalence of GCK 

genetic variants (ModY2) and also includes variants in HNF1A, 

PAX4, KCNJ11, BLK, ABCC8, GATA6, WFS1, EIF2AK3, and 

SLC19A2. These results, on the one hand, suggest that genetic 

analysis for monogenic diabetes in russian children may start 

with testing for GCK variants, which may not necessarily be 

performed by WeS. on the other hand, non-GCK variants 

are linked to 9 different genes, which attests to the efficiency 
of using WeS while searching for genetic causes of diabetes 

in non-GCK-ModY cases. notably, the detection of genetic 

variants in the genes linked to specific syndromes with reces-

sive inheritance-WFS1, EIF2AK3, and SLC19A2-is essential 

for appropriate genetic counseling and family planning. our 

study highlights the importance of using WeS for mono-

genic diabetes testing and provides new information on the 

diabetes-related genetic variants in the russian population.
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Table iii. clinical characteristics of the patients with multiple genetic variants in monogenic diabetes-related genes.

 Gene      

Patient nucleotide change age at diagnosis diabetic c-peptide  Hba1c SdS 

number amino acid change months ketoacidosis ng/ml % BMi Treatment

27 GCK 3 no 0.7 6 -0.63 diet

  c.754T>c (p.cys252arg)      

 GCK      

 c.-71G>c      

78 GCK 39 no 0.63 6.4 +0.83 diet

  c.199G>T (p.Glu67*)      

 GCK      

 c.766G>c (p.Glu256lys)      

226 GCK 36 no 1.1 6 -1.69 diet

 c.543_545delcGT  (p.Val182del)      

 HNF1A      

  c.92G>a (p.Gly31asp)      

411 EIF2AK3 3 Ketonuria 0.2 9.2 -0.72 insulin

 c.1912c>T (p.arg638*)      

 EIF2AK3      

 c.1912c>T (p.arg638*)      

432 SLC19A2 48 Ketonuria 1.1 5.3 -1.0 insulin for 

 c.164delc (p.Pro55fs)      a few days/

 SLC19A2      diet

 c.161c>a (p.Thr54asn)      

529 BLK 10  no 0.43 6.7 -0.46 diet

 c.939G>c (p.Glu313asp)      

 GCK      

 c.919c>T (p.leu307Phe)      

662 GCK 22 no 1.1 6.82 -1.32 diet

 c.1019+2T>a      

 BLK      

 c.1148G>a (p.arg383Gln)      

 WFS1      

 c.1957c>T (p.arg653cys)      

SdS BMi reference range: -1.5/+1.5; SdS, standard deviation score.
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