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Abstract

Purpose: Neuroblastoma displays important clinical and

genetic heterogeneity, with emergence of newmutations at tumor

progression.

Experimental Design: To study clonal evolution during treat-

ment and follow-up, an innovative method based on circulating

cell-free DNA (cfDNA) analysis by whole-exome sequencing

(WES) paired with target sequencing was realized in sequential

liquid biopsy samples of 19 neuroblastoma patients.

Results: WES of the primary tumor and cfDNA at diagnosis

showed overlap of single-nucleotide variants (SNV) and copy

number alterations, with 41% and 93% of all detected altera-

tions common to the primary neuroblastoma and cfDNA.

CfDNA WES at a second time point indicated a mean of 22

new SNVs for patients with progressive disease. Relapse-specific

alterations included genes of the MAPK pathway and targeted

the protein kinase A signaling pathway. Deep coverage target

sequencing of intermediate time points during treatment and

follow-up identified distinct subclones. For 17 seemingly

relapse-specific SNVs detected by cfDNA WES at relapse but

not tumor or cfDNA WES at diagnosis, deep coverage target

sequencing detected these alterations in minor subclones, with

relapse-emerging SNVs targeting genes of neuritogenesis and

cell cycle. Furthermore a persisting, resistant clone with con-

comitant disappearance of other clones was identified by a

mutation in the ubiquitin protein ligase HERC2.

Conclusions: Modelization of mutated allele fractions in

cfDNA indicated distinct patterns of clonal evolution, with

either a minor, treatment-resistant clone expanding to a major

clone at relapse, or minor clones collaborating toward tumor

progression. Identification of treatment-resistant clones will

enable development of more efficient treatment strategies.

Clin Cancer Res; 24(4); 939–49. �2017 AACR.

Introduction

Analysis of circulating tumor DNA (ctDNA), a fraction of cell-

free DNA (cfDNA), is a revolutionary tool for the study of tumor-

specific genetic alterations in patients with cancer. Extracted from

blood, it can be used as a surrogate marker for molecular diag-

nosis, and for estimation of tumor burden (1–3). These techni-

ques enable an access of tumor molecular information when a

biopsy is impossible and render sequential molecular analyses

possible. Shift of mutational patterns over time has been dem-

onstrated in particular in leukemia, but in most solid tumors,

sequential analysis of tumor tissue is not possible due to the

limited number of accessible tumor tissue time points (4–8).

Neuroblastoma, the most frequent extracranial solid tumor of

early childhood, is characterized by both clinical and genetic

heterogeneity with few recurrent biomarkers. Amplification of

theMYCN oncogene is observed in 20% of cases and is associated

with poor prognosis. Other copy number alterations (CNA) occur

over more extensive chromosome regions, with the segmental

chromosome alterations being associated with a poor outcome

(9). Few recurrent mutations have been described, the most

frequent targeting ALK (10%–12%), genes involved in chromatin

remodeling (ATRX, ARID1A), or TERT rearrangements.
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Both spatial and temporal genetic heterogeneity play an impor-

tant role in neuroblastoma. Spatial heterogeneity has been

describedwithin a tumor, andbetween a tumor and itsmetastasis,

for genetic features such asMYCN, or other CNAs (10). Temporal

heterogeneity has also been observed with an accumulation of

new CNAs, and mutations including ALK and RAS-MAPK muta-

tions at the time of progression (11–13). However, more exten-

sive studies of these phenomena are hampered by the scarcity of

paired diagnosis–relapse samples, highlighting the importance of

surrogate markers.

In neuroblastoma, several studies have indicated the presence

of ctDNA in blood, enabling the detection of MYCN or ALK

alterations (14–16). The overall copy number profile can also

be determined in cfDNA using different technologies such as

commercially available platforms or low coverage whole-genome

sequencing (WGS; refs. 10, 17, 18).

The characterization of both CNA and a full mutational

spectrum, of importance when analyzing mechanisms of

tumor progression or treatment resistance, would be possible

by whole-exome sequencing (WES) of cfDNA. Although a

few limited studies have demonstrated its feasibility, the

proposed protocols have not been applied to larger scale

studies (19–21).

We now demonstrate for the first time the feasibility of WES

cfDNA based on a modification of standard WES protocols

enabling sequencing of extremely low amounts of cfDNA,

enabling both CNA and SNV analysis in sequential neuroblasto-

ma cfDNA samples. Deep coverage target sequencing was per-

formed for validation and for analysis of intermediate time points

(Fig. 1).

Materials and Methods

Patients and samples

Patients with neuroblastoma were included in this study if

samples for WES of the primary tumor and plasma obtained at

diagnosis were both available (n ¼ 19 patients; Table 1; Supple-

mentary Table S1). For 2 patients, plasma samples obtained at

diagnosis were available, 9 had plasma collected at diagnosis and

relapse, and 9 had 2 to 6 plasma collected during treatment and

follow-up (Supplementary Fig. S1).

Patients were treated in French centers of the SFCE (Soci�et�e

Française de lutte contre les Cancers et les leuc�emies de l'Enfant et

de l'adolescent) according to the relevant protocols (Supplemen-

tary Information S1). Written informed consent was obtained

from parents/guardians according to national law. Samples were

collected following inclusion of patients in the national PHRC

IC2007-09 study, and this study was authorized by the ethics

Figure 1.

Overview of study design. A WES was realized on primary tumor and cfDNA obtained at diagnosis as well as on cfDNA from a second time point (relapse

or after treatment). Sequencing results allowed SNVs and CNA characterization. SNVs were studied at intermediate time points by deep coverage targeted

sequencing. Deep coverage targeted sequencing was also performed on primary tumor samples to search for mutations at a subclonal level.

Translational Relevance

In cancer with genetic heterogeneity, the identification of

clones resistant to upfront treatment will lead to new thera-

peutic strategies targeting these resistant clones. We present a

new approach based on whole-exome sequencing (WES)

techniques of cell-free DNA (cfDNA) samples in neuroblas-

tomapatients, enabling for thefirst time sequential analyses of

mutational profiles in these patients. We now show how the

study of cfDNAbyWES can contribute to the understanding of

clonal evolution in this malignancy, indicating the emergence

of subclonal events present at diagnosis to clonal events at

disease progression. The modelization of clonal evolution

highlights mechanisms of treatment resistance and of escape.

The identification of treatment-resistant clones will enable

adaptation of treatment strategies.

Chicard et al.

Clin Cancer Res; 24(4) February 15, 2018 Clinical Cancer Research940
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committees "Comit�e de Protection des Personnes Sud-Est IV,"

references L07–95/L12–171, and "Comit�e de Protection des

Personnes Ile de France," reference 0811728.

Sample collection and processing

For each case, DNA was extracted from a single tumor sample

obtained at diagnosis according to standard procedures. Plasma

samples were obtained at diagnosis or during treatment and

follow-up (1–6 samples/patient; Supplementary Table S2) by

blood sampling directly on standard EDTA tubes and prepared

by centrifugation at 2,000 rpm for 10minutes followed by careful

aliquoting and freezing at �80�C within 1 to 24 hours after

collection.

cfDNA purification and quantification

cfDNA was extracted from 100 mL to 3.3 mL of plasma using

QIAamp Circulating Nucleic Acid Kit (Qiagen) with the Qia-

vac24s system, according to themanufacturers' recommendation.

cfDNA concentration was measured by Qubit fluorometric assay

(Invitrogen) with dsDNA HS (High Sensitivity) Assay Kit. The

total cfDNA concentration per mL of plasma was calculated. Its

qualitywas defined bybioanalyzer agilent 2100 (Agilent) analysis

using theHighSensitivityDNAchipwith cfDNAquality expressed

as the 200-bp fragment fraction. For 11 plasma samples obtained

at diagnosis, cfDNA copy number analysis using Oncoscan has

been reported previously (10).

WGS/WES of primary tumors

Primary tumors and paired germline genomic DNA were

whole-genome/exome sequenced. For 4 patients, WGS of germ-

line, tumor at diagnosis, and tumor at relapse DNA using an

Illumina HiSeq 2500, with 100-bp paired-end reads has been

reported previously (11). For the other patients, WES was per-

formed following either an Agilent SureSelect Human All Exon v5

or a Roche Nimblegen SeqCap EZ Exome V3.

Library construction and exome capture of cfDNA

cfDNA libraries were constructed without fragmentation (to

account for the mean cfDNA fragment size of 160 bp) using Kapa

Library Preparation Kit Illumina platforms (Kapa Biosystems)

with Indexed Adapters included in SeqCap EZ Human Exome Kit

v3.0 (Nimblegen Roche Sequencing). The manufacturer's proto-

col was modified with a ligation of 16 hours at 20�C using an

adapter:insert molar ratio of 10:1; 10 mL of Pre–LM-PCR oligo

1&2 (5 mmol/L) on 9 cycles of precaptured LM-PCR and 99 mL of

SeqCapEZPurificationBeads (1.8�)were used for clean-upof the

amplified sample library. Library quantification and quality were

determined as above.

For exome capture, SeqCap EZ Exome Enrichment Kit v3.0

(Nimblegen Roche Sequencing) was used according to the man-

ufacturer's protocol.WESwas performed on germline, tumor, and

plasma samples from 19 patients using Illumina Hi-seq2500

leading to paired-ends 100 � 100 bp. Eight samples were multi-

plexed for the exome capture and put on 3 lines of high-output

flow cell (expected coverage:100�).

For custom deep coverage targeted capture sequencing, a panel

was designed encompassing 1,211 SNVs, corresponding to all

SNVs observed in WES sequencing. Libraries of cfDNA were

constructed using a double capture procedure. Target sequencing

was performed on all plasma samples and tumor samples

whenever available (PE 150 � 150 bp). Twelve samples were

multiplexed for the capture and sequenced with MiSeq V3

reagents (expected coverage: 1,000�).

Bioinformatics pipeline

Following alignment with Bowtie2 (22) allowing up to 4% of

mismatches, bam files were cleaned according to the Genome

Analysis Toolkit recommendations (23). Targeted bam files were

cleaned up without removing duplicates.

WES variant calling was performed using 3 variant callers:

GenomeAnalysisTK-3.5UnifiedGenotyper, HaplotypeCaller, and

Samtools-0.1.18 (24). Annovar-v2013-07-29 with cosmic-v64,

dbsnp-v137, and RefSeq were used for annotations, and func-

tional prediction was performed using Polyphen2, LRT, Muta-

tionTaster, and Sift (25–28). SNVs with a quality <30, a depth of

coverage <20 in tumor or plasma samples, or <2 reads supporting

the variant were filtered out. Only SNVs within exons of

coding genes or splice sites were kept. Then, variants reported in

more than 1% of the population in the 1000 genomes

(1000gAprl_2012) or Exome Sequencing Project (ESP6500) were

discarded to filter out polymorphisms. Finally, synonymous

variants were filtered out except those with a COSMIC ID. Variant

calling comparison between germline and somatic DNAs allowed

us to focus only on tumor-specific SNVs. Only nongermline SNVs

supported by >2 reads and a position coverage >20� were taken

into account as tumor-specific alterations.

CNAs were analyzed using VarScan.v2.3.5 (29) and DNAcopy-

1.42.0 (30) orHMMCopy (31). Estimation of tumor cellularity in

analyzed samples (primary tumor or cfDNA) was performed

using Sequenza (32).

For the definition of clones, mutated allele fractions (MAF)

with similar values were taken into account, while correcting for

the copy number status, all similar MAFs (�5%) with values

corrected for copy number status defining a clone, as described

previously (33). Clonal evolution graphs were generated with

Fishplot-0.3 (34). Serial dilutions copy number profiles were

generated using CNVkit, and the visualization of log ratio seg-

ments was done using matplotlib plotting library (35, 36).

Variants were considered confirmed if observed by two inde-

pendent sequencing techniques of WES and deep coverage tar-

geted sequencing.

The sequencing data have been deposited at the European

Genome-phenomeArchive (EGA) under study accession number:

EGAS00001002705.

Results

Optimization of library construction for WES cfDNA analysis

and bioinformatics pipeline

We have developed an experimental and bioinformatics pipe-

line to enableWES of cfDNA. Library construction was performed

with low cfDNA input (mean, 63 ng; range, 7–100 ng). An

additional step of amplification was omitted to reduce false

positive rates and further improved quality of sequencing data

(37, 38). The step of dual size selection only retained the cfDNA

and excluded genomic DNA in case of lymphocyte degradation

(Supplementary Fig. S2). These libraries could then be subjected

directly to whole-exome or target capture experiments. This

optimization enabled a good rate of on-target reads (mean,

82%; range, 69%–88%) and a low percentage of duplicates

(mean, 32%; range, 13%–63%) for a WES at 100� coverage

(Supplementary Fig. S3), thus enabling a detection of MAF at

Chicard et al.
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5%. The bioinformatics analytic process was established to filter

out all germline events based on comparison of primary tumor

and cfDNA sequencing results with the germline sequencing

results, retaining only somatic alterations for further analysis.

To estimate the sensitivity of cfDNA WES and deep coverage

target sequencing, patient cfDNA from one case (Case 14) har-

boring both significant CNAs and SNVs, and containing a high

amount of ctDNA (>90%)was serially diluted with cfDNA from a

healthy donor, and dilutions were submitted to both WES and

deep coverage capture sequencing. No significant difference of

MAFsdetected by the two independent techniques for a given SNV

was observed, confirming these SNVs and ruling out sequencing

errors. Application of the bioinformatics pipeline enabled to

establish a threshold for SNV detection of 5% MAFs by WES and

1% by deep coverage target sequencing of cfDNA, below which

SNVs were not distinguishable from the background (Supple-

mentary Fig. S4). Furthermore, apart fromMYCN amplification, a

threshold for detection of CNAs was determined around a pro-

portion of 20% of patient cfDNA in the healthy donor cfDNA

(Supplementary Fig. S4).

Comparison between primary tumor and cfDNA at diagnosis

For 19 neuroblastoma patients, WES or WGS data of the

primary tumor obtained at diagnosis were available. These data

were compared withWES cfDNA analysis at the time of diagnosis.

Analysis based on the Sequenza tool (32) revealed a mean

of 73% of tumor cells in the primary tumor sample (range,

15%–98%), and a mean of 60% of ctDNA in the cfDNA fraction

(range, 3%–99%; Supplementary Fig. S5). Calling of SNVs

could be performed on all diagnostic cfDNA samples, whereas

CNAs could not be determined in 1 case (Case 12) due to a

ctDNA fraction below the threshold enabling detection of copy

number changes.

Following filtering on germline DNA to filter out any consti-

tutional alterations or germline polymorphisms, a total of 861

somatic SNVs were detected by WES analysis in cfDNA, with 353

common to the primary tumor and cfDNA, 97 specific to the

primary tumor, and 411 specific to cfDNA (Supplementary Table

S3). Overall, a mean of 19 SNVs (range, 9–69) per case common

to primary neuroblastoma and cfDNA was observed (Fig. 2A).

SNVs observed recurrently at diagnosis in both primary tumor

and cfDNA by WES concerned among others the genes ALK

(2 cases; Fig. 3D), genes of theMAPK pathway (3 cases), ARHGAP

genes (4 cases), NOTCH (1 case), MLL genes (4 cases). SNVs of

genes described to play a role in neuroblastoma oncogenesis or

other tumors are highlighted in Table 1, and all detected SNVs are

listed in Supplementary Table S3. No correlation of MAFs was

observed between the solid tumor and cfDNA (R2
¼ 0.017;

Supplementary Fig. S6A). Amean of 6 SNVs per case were specific

to primary neuroblastoma and 22 specific to the cfDNA, respec-

tively, including among others genes of the MAPK pathway.

Furthermore, of a total of 162 CNAs, 151 CNAs were common

to analyses of primary neuroblastoma and cfDNA (Table 1; Figs.

2B and 3A), with only 3 and 8 specific to either. Concerning the

Figure 2.

Venn diagram of alterations detected in primary tumors and cfDNA (SNV and CNA). Alterations detected in primary tumor WES are in blue, in cfDNA

WES at diagnosis in green, in cfDNA WES after treatment in gray, and in cfDNA WES at relapse in red. A, Mean number of SNVs detected by WES/WGS

(range: number in square brackets). At diagnosis, the majority of tumor SNVs are detected in cfDNA. When cfDNA WES was realized at a second time point

without evidence of disease, a decrease of SNVs was observed. When cfDNA WES was realized at a second time point corresponding to relapse,

an increase of number of mutations was observed. B, Total number of CNAs detected by WES/WGS. At diagnosis, solid tumor and cfDNA share the majority

of CNA. At a second time point without evidence of disease, CNAs are not detected. At the time of relapse, the majority of alterations detected at diagnosis

are conserved, and few new alterations were observed (only cases with interpretable CNA profiles were counted).
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known recurrent CNA of neuroblastoma, MYCN amplification,

1p deletion, 11q deletion, and 17q gain were observed in both

primary neuroblastoma and cfDNA in 10, 12, 6, and 12 of 19

cases, respectively, with concordant breakpoints. Alterations seen

only in cfDNA but not in the primary were 1p deletion and 17q

gain in 1 case each. No discrepancies were observed between CNA

determined in cfDNA byWES as compared with an analysis using

OncoScan for 11 cases reported previously (10).

Amplification of MDM2 and PTPRB are observed for two

cases (Case 1 and 17) in primary neuroblastoma and cfDNA.

One case (Case 1) demonstrated a focal gain of chromosome

15q harboring the IGF1R gene detected only in cfDNA (Fig. 3B),

as confirmed by two independent technics (OncoScan and

qPCR; ref. 10).

Analysis of a second time point cfDNA

cfDNAWES was then performed at a second time point (Fig. 1;

Supplementary Table S2). For 8 patients, this corresponded to

complete or partial remission (CR/PR), whereas for 9 other

patients, this corresponded to disease progression or relapse (PD)

as documented by clinical and/or radiological evaluations. At the

second time point, a significantly higher fraction of ctDNA in the

overall cfDNA was observed in patients with PD: for CR/PR

patients (8 cases), the mean fraction of ctDNA in the overall

cfDNA fractionwas 33% (range, 0%–40%), versus amean of 67%

(range, 43%–89%) for PD patients (Supplementary Fig. S5;

P¼ 0.002898). Calling of SNVs could be performed on all second

time point cfDNA samples, whereas CNAs could only be deter-

mined in 5 cases.

For patients inCR/PR (8 cases), a total of 64 SNVswere detected

at the second time point. Among these, a total of 45 SNVs, with a

mean of 6 SNVs (range, 2–12) per case, were common to primary

neuroblastoma and the diagnostic ctDNA time point (Fig. 2A).

For patients in CR/PR at the second time point, the majority of

SNVs disappeared, including an ALKmutation (Case 4; Fig. 3D):

Of a total of 323 SNVs seen in cfDNA at diagnosis, only 61 SNVs

were seen at the second time point. Only in 3 cases was one

new SNV observed at this second ctDNA time point (ZNF814,

ILDR2, RREB1).

For patients in PD (9 cases), a total of 392 SNVswere detected at

the second time point. Among these, 182 were common to SNVs

seen in cfDNAatdiagnosis, including aALKmutation (Case 11). A

total of 90 SNVs common toboth the primary neuroblastoma and

the diagnostic ctDNA time point were detected, with amean of 10

SNVsper case (range, 3–21; Fig. 2A). A total of 198newSNVs,with

a mean of 22 new SNVs per case (range, 0–55) were observed at

this second cfDNA time point. Among the new, seemingly

relapse/progression–specific SNVs, several SNVs shown previous-

ly to play a role in cancer were detected targeting genes such as

KRAS (Case 11 relapse; c.G38A; p.G13D; Fig. 3E), ADCY7 (Case

13; c.T2834C;p.V945A), or NCOR1 (Case 15; c.C4367T;p.

A1456V). Pathways targeted by these new seemingly relapse-

specific SNVs concerned genes of the MAPK pathways and tar-

geted protein kinase A signaling [Ingenuity Pathways Analysis

Figure 3.

Genetic alterations observed in primary neuroblastoma and cfDNA by WES. A, Comparison of copy number profiles of primary neuroblastoma compared

with cfDNA (Case 10). Identical CNAs are observed between the solid tumor and the cfDNA WES at diagnosis. Each chromosome (3, 5, and 16 in figure)

presents the same breakpoints in tumor and cfDNA. B, A gain in chromosome 15 was detected only in cfDNA, containing the gene IGF1R (Case 1; chr15:

99200000-99600000). C, An amplification of CDK4 was detected in the cfDNA at relapse only (Case 15; chr12: 58068384-58638722). Relapse tumor was

not available. D, IGV representation of double mutation of ALK presents at diagnosis on tumor (30%–17%) and cfDNA (17%–2%), disappearing during treatment

(Case 4; G>T-G>C, p.F1174L, chr2: 29443695). E, IGV representation of a KRAS mutation, which emerged at relapse at a subclonal level in tumor (3%) and

at clonal level in cfDNA (28%; Case 11; C>T p.G13D, chr12: 25398281).
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(IPA)]. In addition, in5 interpretable cases, a total of 16newCNAs

were observed (Fig. 2B), including CDK4 amplification (Case

15, Fig. 3C) or CDK6 amplification associated with BCL11A

deletion (Case 16).

Deep coverage capture sequencing of cfDNA at intermediate

time points

A panel was then designed encompassing all SNVs observed in

any of the primary tumors or cfDNA samples studied byWES, and

also taking into account SNVs observed in a relapse tumor for the

4 cases where sequencing data from the relapse tumor were

available (n ¼ 1,211; ref. 11), to enable deep coverage capture

sequencing of all intermediate time points. In cases with con-

firmed SNVs, for a given SNV, MAFs observed either by cfDNA

WES or by deep coverage capture sequencing did not show a

statistically significant difference (P ¼ 0.897, t test) and good

positive correlation (R2
¼ 0.899; Supplementary Fig. S6B), indi-

cating the concordance of the two technics.

Capture sequencing enabled to analyze cfDNA samples

obtained at diagnosis and at the second time point for all patients,

as well as intermediate time points in 9 patients (Fig. 1) aiming at

a high coverage to search for subclonal events. Among the SNVs

seen at relapse but not at diagnosis, targeted high coverage

sequencing was employed to determine whether they were pres-

ent in a subclone at diagnosis or not. Interestingly for 17 seem-

ingly relapse-specific SNVs detected by cfDNAWES at relapse but

not by tumor or cfDNA WES at diagnosis, higher coverage target

analysis of primary tumor or cfDNA from diagnosis showed the

presence of these alterations in a minor subclone (MAF mean,

0.84%; range, 0.33%–2.91%), indicating that these minor sub-

clonal populations at diagnosis emerged to major clones during

tumor progression and suggesting clonal evolution in 5 of 9 cases

with PD (Supplementary Fig. S7). Genes targeted by the altera-

tions in the emerging clones included 10 genes involved in

neuritogenesis and 5 in cell cycle and connective tissue develop-

ment (IPA network analysis; Supplementary Table S1).

Modelization of clonal evolution based on MAFs

Deep coverage capture sequencing also enabled to analyze

intermediate time points in 9 patients (Cases 1–9; Supplementary

Table S2), aiming at a high coverage to search for subclonal events

during treatment or follow-up (Fig. 1). For these 9 cases, theMAFs

of SNVs detected in cfDNA were followed in a series of 2 to 6

intermediate plasma samples. For each case, the MAFs corre-

sponded to the clinical disease status. For one case, a decrease

of MAFs concurred with disease remission (Case 9; Fig. 4A). For

another case (Case 6; Fig. 4B), a decrease of the MAFs was

observed during first-line chemotherapy, but an increase of the

MAFs was observed corresponding to disease progression (Sup-

plementary Fig. S8A).

Among these 9 cases, the MAFs of all SNVs observed at all time

points were used to develop more detailed models of clonal

evolution in neuroblastoma in patients with PD (2 patients).

Cloneswere definedon thebasis ofMAFswith values corrected for

copynumber status, and the evolutionof cloneswas inferred from

MAFs evolving in a similar fashion. This enabled to emit hypoth-

eses with regards to the clonal composition of the tumor at

different time points.

In one case with intermediate metastatic progression, then

stable disease, a persisting, resistant clone with concomitant

disappearance of other clones, was identified by a mutation in

HERC2, a gene coding for a ubiquitin protein ligase (Case

1; Fig. 5A). In another case, two minor clones previously detected

at the time of diagnosis emerged with an increase of MAFs from

10% to 20% and 1% to 5%, involving the genes ADRM1, BMPR2,

CELSR1 (Case 6, Figs. 4B and 5B; Supplementary Fig. S8B).

In conclusion, this novel technology enabled to followMAFs in

sequential cfDNA samples from neuroblastoma patients and

indicated different mutational evolutionary patterns. In patients

with response to treatment, as expected, evidence of tumor-

specific genetic alterations disappeared in cfDNA. On the other

hand, in case of persistent disease or relapse, tumor cell–specific

alterations could be detected and intermediate analyses revealed

either resistance of preexisting or emergence of new clones.

Discussion

Recently, cfDNA has emerged for the analysis of ctDNA, as this

surrogate marker can detect tumor cell–specific alterations in a

noninvasive setting. The majority of ctDNA studies are based on

tools such as digital droplet PCR or targeted sequencing, requiring

prior characterization of the biomarkers to be studied (2, 3, 15).

However, clonal evolution has been shown to play an important

role in many solid cancers, and new clones will not be detected

when basing analysis on a comparison with the primary tumors

(12, 39, 40), suggesting that WES will be more adapted in

particular for cancers with few recurrent biomarkers such as

neuroblastoma, despite its lower sensitivity.

Neuroblastoma has been shown to shed important amounts of

ctDNA in particular in metastatic cases and high-risk disease and

thus represents a relevantmodel for further ctDNAanalysis. In this

study, the ctDNA fraction of the overall cfDNA could be calculated

by Sequenza (32), confirming a high proportion of ctDNA in the

cfDNA fraction (mean, 60%; range, 3%–99%; Supplementary

Table S1),whereas for healthy adults, in general, cfDNAquantities

of approximately 10 ng/mL of plasma are observed; in high-risk

neuroblastoma patients at diagnosis, high amounts of cfDNA

(mean, 1,034 ng/mL of plasma; range, 26–13,533) were docu-

mented, further confirming the observation of an important

shredding of ctDNA into the bloodstream by high-risk neuro-

blastoma at diagnosis (10, 16). Further studies on larger serieswill

enable to stablish whether the amount of ctDNA is linked to the

overall disease burden, the degree of necrosis, or both. Impor-

tantly, an increase of the ctDNA fraction in the overall cfDNAwas

observed at the time of disease progression, versus a decrease with

tumor response, suggesting that the ctDNA fraction of cfDNA in

general is predictive of the underlying disease status.

WES analysis could be applied successfully to cfDNA samples,

enabling calling of SNVs in 36 of 36 and calling of CNAs in 23 of

36 samples. For a given SNV, there was no correlation between the

observed MAF in the primary neuroblastoma versus the plasma

obtained at the same time point. This might be explained by

differences of tumor content between the tumor sample and the

ctDNA fraction in the total cfDNAor by spatial heterogeneity with

specific SNVs detected in each sample on the other hand. A wide

range of MAFs was observed in a given sample, which can be

explained by subclonal events on the one hand, or the possibility

of differential shredding of ctDNA from different cells.

The WES analysis of primary tumor and cfDNA identified an

overlap of only 41% of SNVs at diagnosis, whereas an overlap of

93% was observed for CNAs. This suggests a greater intratumor

variability for SNVs andhighlights the potential of cfDNAanalysis

Whole-Exome Sequencing of cfDNA in Neuroblastoma
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when exploration of the whole spectrum of tumor-specific altera-

tions is of importance, for instance, in the setting of precision

medicine. Multiple samples from distinct tumor sites, or tumor

and metastatic sites, might give further insight into such hetero-

geneity. In case of primary tumor-specific alterations, these altera-

tions might correspond to clones that might release less ctDNA,

which according to one hypothesis could correspond to less

aggressive cells. On the other hand, ctDNA-specific alterations

might correspond to more aggressive clones or to those originat-

ing from metastatic sites (20, 41, 42). The overall ctDNA MAFs

corresponded to the clinical disease status, indicating that ctDNA

SNVsmight serve as a surrogate marker for disease burden and/or

minimal residual disease (43, 44). Furthermore, the emergence of

new SNVs coincided with disease progression. As plasma samples

in this study were not obtained within a specific systematic

surveillance program, we cannot conclude whether cfDNA WES

might have served as an early marker for progression. This

important question will be addressed in prospective studies.

The study of SNVs and comparison of SNVs between diagnosis

and relapse allows the identification of pathways involved in

neuroblastoma progression, including MAPK genes, as described

previously, and with one pathway specific to relapse involving

protein kinase A signaling (45). Furthermore, SNVs that emerged

from a subclonal level at diagnosis to a clonal level at relapse

preferentially affected pathways of neuritogenesis (Supplemen-

tary Table S1; ref. 46).

To study whether seemingly relapse-specific alterations were

already present at the time of diagnosis, but in a minor sub-

clone not detected by standard coverage WES, the depth of

coverage was increased. This enabled the detection of 17 SNVs,

which were initially deemed relapse-specific but which are

already present in a minor subclone at diagnosis, underlining

Figure 4.

Evolution of MAFs in sequential cfDNA

samples. Using both WES and target

sequencing, evolution of MAFs

correlates with disease status. MAFs

detected by WES in the primary tumor

and in cfDNA at diagnosis and second

time points, andMAFs detected by deep

coverage target sequencing in

intermediate time points, are indicated.

The estimated cfDNA quantity permL of

plasma is indicated below the graphs.

A, Example of decrease of MAFs during

treatment (Case 9). All MAFs decrease

during the first chemotherapy and all

mutations disappeared after the

chemotherapy. B, Example of

resurgence of MAFs (Case 6), which will

be followedby a relapse. At diagnosis, 15

SNVs were detected with MAFs

identified by cfDNAWES and confirmed

by deep coverage target sequencing. All

SNVs become undetectable during the

first chemotherapy but increase during

follow-up, coinciding with metastatic

progression, but with different

proportions of increase. A resurgence of

SNVs coinciding with disease

progression is observed. For a majority

of SNVs, the MAFs at relapse are lower

than at diagnosis, decreasing by a factor

of 2 (ARGHAP18: 39.75%; 0.51%; 0.00%;

17.43%; CSMD1: 33.56%; 0.19%; 0.50%;

11.43%; ITGB1: 35.16%; 0.34%; 1.04%;

16.99%; ITIH2: 35.93%; 0.62%; 2.31%;

16.87%). However, for other genes, an

increase of MAFs can be observed, by a

factor of 2 or 3: ADRM1: 8.66; 0.30%;

1.47%; 19.89%; BMPR2: 4.88%; 0.11%;

0.31%; 14.83%; CELSR1: 1.29%; 0.00%;

1.01%; 5.94%). Genes presenting a similar

dynamic can be grouped together,

enabling to infer different cell clones

(Supplementary Fig. S8).
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the importance of high depth of coverage when searching for

subclones. Aiming for a depth of coverage of 1,000�, MAFs

>1%were retained as significant. However, increasing the depth

of coverage in the current experimental procedure was also

associated with PCR duplicates. These duplicates were filtered

out during the bioinformatics analysis pipeline, but it cannot

be excluded that some identical reads not corresponding to

PCR duplicates are also falsely removed. Thus, this protocol

could be further improved using a UMI (unique molecular

identifiers) prior to library construction to separate real PCR

duplicates from alignment duplicates (47).

Altogether, the study of SNVs and analysis of MAFs of a given

SNV over time enables the study of clonal evolution and to

develop different models of tumor evolution (Figs. 4 and 5;

ref. 33). In one model, among different clones derived from the

primary clone, one subclone at diagnosis resists to chemotherapy

and takes precedence, becoming a major clone at relapse. Indeed,

a clone resistant to treatment was identified by the presence of a

mutation in a ubiquitin ligase gene. In another model, subclones

derived from the primary clone, which remains major, become

resistant and collaborate with the primary clone for a relapse.

Indeed, it can be hypothesized that these emerging clones might

contribute to tumor progression by collaboration with other

nonemerging clones (48).

In conclusion, the study of clonal evolution based on cfDNA

WEShighlightsmechanismsof treatment resistance andof escape.

These techniques are of high clinical potential in the context of

precision medicine and sequential analysis of molecular targets,

enabling adaptation of treatment strategies depending on clonal

composition. Indeed, biomarker-based clinical trials take into

account a molecular profile obtained at a given time point. The

evolution of predictive biomarkers over time, which might occur

under selective pressure, such as targeted therapies, might now be

further evaluated on the basis of noninvasive ctDNA analysis and

thus beuseful for identificationof drug-resistant clones andwill in

the future lead to further sequential adaptation of biomarker-

based treatment approaches.
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which remains major. After
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