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ABSTRACT
◥

Background: Lung cancer kills more people than any other

cancer in the United States. In addition to environmental factors,

lung cancer has genetic risk factors as well, though the genetic

etiology is still not well understood. We have performed whole

exome sequencing on 262 individuals from 28 extended families

with a family history of lung cancer.

Methods: Parametric genetic linkage analysis was performed

on these samples using two distinct analyses—the lung cancer

only (LCO) analysis, where only patients with lung cancer were

coded as affected, and the all aggregated cancers (AAC) analysis,

where other cancers seen in the pedigree were coded as affected.

Results: The AAC analysis yielded a genome-wide significant

result at rs61943670 in POLR3B at 12q23.3. POLR3B has been

implicated somatically in lung cancer, but this germline finding is

novel and is a significant expression quantitative trait locus in

lung tissue. Interesting genome-wide suggestive haplotypes were

also found within individual families, particularly near SSPO at

7p36.1 in one family and a large linked haplotype spanning

4q21.3-28.3 in a different family. The 4q haplotype contains

potential causal rare variants in DSPP at 4q22.1 and PTPN13 at

4q21.3.

Conclusions: Regions on 12q, 7p, and 4q are linked to

increased cancer risk in highly aggregated lung cancer families,

12q across families and 7p and 4q within a single family. POLR3B,

SSPO, DSPP, and PTPN13 are currently the best candidate genes.

Impact: Functional work on these genes is planned for future

studies and if confirmed would lead to potential biomarkers for

risk in cancer.

Introduction
Lung cancer remains the deadliest cancer in the United States.

In 2019, more Americans will die of lung cancer than breast, colon,

and prostate cancers combined (https://www.cancer.org/cancer/

non-small-cell-lung-cancer/about/key-statistics.html). Lung cancer

is caused by a variety of environmental factors; tobacco

smoking (1–4) is responsible for 85% to 90% of all lung

cancers (5, 6).

Tobacco smoking does not account for all cases of lung cancer,

however. Approximately 10% to 15% of lung cancers develop in

nonsmokers. Passive smoking only accounts for about 16% to 24%

of lung cancer cases in nonsmokers. Even as governments have passed

stringent laws against tobacco use forminors and in public spaces, lung

cancer frequency in nonsmokers appears to be increasing (7).

There is significant genetic predisposition to lung cancer risk.

Tokuhata and Lilienfeld observed familial aggregation of lung cancer

in 1963 (8, 9). They found relatives of patients with lung cancer have a

higher risk of developing lung cancer compared with relatives of

controls. Further studies confirmed that nonsmoking relatives of

patients with lung cancer have a higher risk of lung cancer, possibly

as high as 2% to 3% (10–12). Segregation analyses support a codom-

inant Mendelian inheritance of a rare autosomal gene that interacts

with smoking (13–15).

Genome-wide association studies (GWAS) became popular in the

early 2000s with the advent of commercially produced SNP micro-

arrays. GWAS are designed to identify risk variants that are common

and have low penetrance and a moderate/small effect on lung cancer

risk. GWAS have identified multiple lung cancer risk variants, includ-

ing the neuronal acetylcholine receptor cluster subunit genes,

CHRNA3, CHRNA5, and CHRNB4, at 15q25 (16–18).

Linkage analyses are an alternative approach to GWAS that use

family-based data to trace the cosegregation of a phenotype and a given

variant throughout the generations. Linkage studies are better at

identifying rare, highly penetrant risk variants that have a large effect

on phenotype risk. Variants that are rare in the general population will

be enriched in a family that carries it. Further, linkage studies can take

advantage of long, linked haplotypes that exist within individual
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families. The individuals in population studies are unrelated; countless

meioses through thousands of generations have broken apart the

haplotypes into only variants with the strongest linkage disequilibrium

(LD) between them. In family studies, haplotypes are determined by

the haplotypes of the founders of each family. Family studies rarely

extend beyond five or six generations, so there are only a limited

number of recombinations that can break apart the haplotypes result-

ing in a longer haplotype across chromosomal regions. The longer

haplotype in turn increases power to find ungenotyped causal variants

along the haplotype. Linkage studies have been used to identify

potential risk loci in families with a history of lung cancer, including

at 6q23-25 (19), among others (20).

The Genetic Epidemiology of Lung Cancer Consortium has col-

lected highly aggregated lung cancer families for over 20 years at eight

sites across the United States. Here, we present the genetic linkage

analysis on whole exome sequence (WES) data from 262 patients from

28 extended families with a strong history of familial lung cancer.

Materials and Methods
Patient recruitment

We recruited probands with a strong familial history of lung cancer,

defined as four or more related persons with lung cancer. Samples of

blood, saliva, and archival tissue were collected for all participants.

Cancer status was verified throughmedical records, pathology reports,

and death certificates for 80% of the lung cancer affecteds. For the 20%

missing relevant documentation, at least three family members cor-

roborated cancer diagnoses, with higher weight given to the testimony

of first-degree relatives. Previous studies have reported family member

reports of cancer diagnoses have a high accuracy rate (21, 22). Further

data regarding age at onset and smoking statistics were also collected

when possible. This study adhered to the tenets of the Declaration of

Helsinki, and all participants providedwritten-informed consent. This

study was approved by the Institutional Review Boards of the National

Human Genome Research Institute and all other participating

institutions.

Sequencing and quality control

We chose 270 people from the 28 most highly informative

families for WES. Informative families were determined by several

factors, primarily the number of lung cancer affecteds in the family,

the number of lung cancer affecteds with available biospecimens or

whose offspring had available biospecimens, and the total other

informative (linking) individuals with biospecimens in the pedi-

gree. Sequencing was performed at Washington University in St.

Louis, MO, and the National Intramural Sequencing Center

(NISC) in Bethesda, MD. Data from both sites were jointly

realigned, recalled, and cleaned together using Genome Analysis

Tool Kit, following their best practices (23, 24), including removing

variants with depth (DP) > 10, genotype quality (GQ) > 10, and

GQ/DP > 0.5.

The software package PLINK (25) was used for further QC as

follows. All variants that were monomorphic or not genotyped in at

least 80% of the data set were removed. Identity-by-descent calcula-

tions were performed to ensure familial relationships were correct; this

resulted in the removal of three individuals. Variants that showed a

Mendelian error in a single family were removed in the offending

family. Variants that displayed Mendelian errors in more than one

family were removed from all families. Another five individuals were

removed since they were married into the family but had no children

and provided no information to the pedigree. This resulted in 262

sequenced individuals that passed QC, 60 of which were lung cancer

cases.

We added 266ungenotyped individuals thatwere needed to connect

disjointed affecteds in pedigrees. These individuals were known to

exist from family history, but for various reasons were unwilling or

unable to participate in the study. Genotypes for all variants were set to

missing for these individuals. In some cases, the phenotype data on

these ungenotyped individuals were known such as individuals with

lung cancer who died prior to biosamples being taken. We sampled

from surviving, usually unaffected relatives such as children and

parents to reconstruct the affected individuals' genotypes in the linkage

analysis via the Elston–Stewart algorithm, which calculates the like-

lihood of the pedigree across all possible genotypes for ungenotyped

individuals incorporating the genotypes of their relatives in this

likelihood (26).

The final dataset contained 262 sequenced subjects (60 sequenced

lung cancer cases) and 266 unsequenced subjects (81 unsequenced

lung cancer cases) for a total of 528 subjects (135 lung cancer cases).

The average age of the participants was 58.13 with an SD of 17.52.

Note that 52.27% of the participants were female. There were a total

of 397,781 single-nucleotide variants (SNV) and indels across 22

autosomes.

Founder allele frequency estimation

All individuals included were European-Americans. Founder allele

frequencies were estimated from the data set using an EM algorithm in

sib-pair (https://genepi.qimr.edu.au/staff/davidD/Sib-pair/Documents/

sib-pair.html). Estimating allele frequencies directly from the data set in

homogeneous populations has been shown to effectively control type I

error rates and power (27–29).

Parametric linkage analysis

Parametric linkage analysis was performed under two distinct

affection classification schemes. Under the first scheme, henceforth

referred to as lung cancer only (LCO) analysis, all individuals

affected with lung cancer were coded as affected, all other indivi-

duals were then coded as unknown. This allowed for the high degree

of uncertainty between smoking and lung cancer risk as well as

jointly allowing for smoking status; 80% of affected individuals in

the pedigrees smoked. It also allowed for the possibility that

individuals who are presently unaffected may be carriers of the

disease allele who will develop lung cancer later in life. Linkage

analysis was carried out using TwoPointLods (http://www-genepi.

med.utah.edu/~alun/software/), assuming an autosomal-dominant

mode of inheritance and 1% disease allele frequency. Penetrance

was set at 80% for carriers and 1% for noncarriers as used in

previous analysis (20). LOD scores were then added across families

for a cumulative LOD score at each variant, and heterogeneity LOD

(HLOD) scores were calculated at each variant. HLODs consider

potential heterogeneity across the different families by incorporat-

ing a measure of the proportion of families that are linked to the

variant to the LOD score (30, 31).

The data were reanalyzed under a second affection classification

scheme, termed the all aggregated cancers (AAC) analysis, using the

identical parameters from the LCO analysis. We decided to use this

additional analysis after observingmultiple other cancers in thesehighly

aggregated lung cancer families. The specific cancers varied from family

to family, but themost commonwere breast, prostate, skin, and bladder

(Table 1). Inherited version of one cancer type can lead to an increased

risk in other cancers; this is true of Lynch syndrome. Lynch syndrome

sufferers have a significantly increased genetic risk of colorectal cancer,

Increased Cancer Risk on Chromosomes 12, 7, and 4
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inherited autosomal dominantly (32, 33), but also have an increased risk

of other cancer types including pancreatic cancer (34), ovarian, gastric,

and possibly breast, among others (35). We hypothesize something

similar with the AAC analysis, where the risk variant significantly

increases the risk of lung cancer within families but also increases the

risk of additional cancers. Anyone with either lung cancer or another

cancer that had an affected parent to ensure it was inherited within the

same pedigreewas coded as affected; all other individuals were coded as

unknown. This resulted in the addition of 30 nonlung cancer indivi-

duals with a different type of cancer. All parameters used in the LCO

analysis were identical in the AAC analysis.

Annotation

All variants were annotated via wANNOVAR (36–38), a web-based

version of the functional software ANNOVAR, which provided anno-

tation for all sequenced variants such as rsID, allele frequencies from

both 1000Genomes and ExAC, and whether a variant was exonic/

intronic/intergenic. It also collates functional predictions from pop-

ular prediction algorithms like CADD (39), SIFT (40), and Poly-

Phen2 (41). REVEL (42) was also used for functional annotation,

whereas RegulomeDB (43) was used for regulatory sites. RegulomeDB

is an integrated database that collates data from multiple sources

including all ENCODE transcription factor (TF) data and data from

NCBI Sequence Read Archive.

Lung eQTL analyses

The top significant SNVs in regions showing genome-wide and

suggestive signals were investigated for expression quantitative trait

loci (eQTL) in lung tissues. eQTLs are variants that are responsible for

at least part of a gene's mRNA expression. The lung tissues were from

409 subjects who underwent lung surgery at the Institut universitaire

de cardiologie et de pneumologie de Qu�ebec—Universit�e Laval, Que-

bec City, Canada. Details about phenotyping, genotyping, and gene

expression profiling were previously described (44, 45). Probe sets

located 1Mb up- and downstream of selected SNVswere tested for cis-

eQTL effects. The genetic associations between SNVs and gene

expression were assessed using quantitative trait association analyses

as implemented in PLINK.

Results
LCO analysis

No genome-wide significant results were observed; 110 genome-

wide suggestive results were identified (Supplementary Fig. S1; Sup-

plementary Table S1). Significant is defined as (H)LOD score >¼ 3.3,

whereas suggestive is defined as (H)LOD score > ¼ 1.9 (46). The

highest HLOD score, 2.7, was found at intronic SNV rs28675295 in the

SKOR1 gene at 15q23. SNVs in SKOR1had four of the top seven overall

HLOD scores ranging from 2.3 to 2.7; rs7170185 was nonsynonymous

exonic and predicted damaging by SIFT. Suggestive variants were

found on 18 autosomes.

The highest individual family LOD scores were in Family 102

(Supplementary Table S2; Supplementary Fig. S2A), a five-

generational pedigree with 26 individuals, 6 of whom are lung cancer

cases. The family had three suggestive variants; two of the suggestive

variants were an exonic SNV and an intronic deletion both located in

the SSPO gene at 7q36.1 (Fig. 1A). The other variant was an intronic

SNV at 10p11.22 in ARHGAP12 (Fig. 1B). Four additional variants

were close to suggestive with LOD¼ 1.8; two exonic (rs10262505 and

rs2079335) and one intronic SNVs were in SSPO and an intronic

deletion in KIF5B at 10p11.22.

Although no other family had any suggestive variants, we observed

long linked haplotypes within some families. Long haplotypes are

expected within a single family, where the haplotypes are determined

solely by the family founders and have only a few generations to break

apart haplotypes. Thus, if a disease variant exists, one expects to see

linkage to other variants around the causal variant that are on the same

long haplotype. We observed a long haplotype at 4q21.3-28.3 in Family

105 (Fig. 2) with little to no negative signal beneath it. Family 105 is a

four-generation pedigree with 17 individuals containing 6 cases/4 geno-

typed cases. This haplotype consisted of approximately 70 variants with

LOD scores from 1.0 to 1.4 (Supplementary Table S3). Three

rare, nonsynonymous exonic variants are particularly interesting—

rs148827799 in DSPP at 4q22.1, rs115836094 in PTPN13 at 4q21.3, and

rs748116911 in COL25A1 at 4q25. These variants are extremely rare and

do not appear in the 1000Genomes European population. rs148827799

does not appear in the ExAC non-Finnish Europeans; rs115836094 and

rs748116911 appear with respective frequencies of 0.00003 and 0.00002.

rs148827799 and rs748116911 are predicted damaging by PolyPhen2,

CADD, andMetaLR. For each of these three extremely rare variants, the

minor allele appears within Family 105 five times, in four cases and one

unknown individual. It does not appear in any other individual in any

family. The cases are two pairs of cousins. The unknown individual is a

niece of twoof the cousins, andshe isonly 45 and still at risk of developing

lung cancer later in life. The two ungenotyped cases also become obligate

carriers of the rare variant by virtue of having children with the variant

and the fact that the variant is extremely unlikely to have come from

either of the married-in unaffected parents.

AAC analysis

rs61943670 was the only variant to reach genome-wide significance

with an HLOD¼ 3.3. It is located at 12q23.3 and is an intronic variant

in POLR3B, a subunit of RNA polymerase III. It has anMAF of 0.22 in

1000Genomes Europeans. RegulomeDB found it likely to affect TF

binding. This variant was found to be a significant lung eQTL (P ¼

4.19E-07, Supplementary Fig. S3A) affecting the expression of

POLR3B. rs61943670 does not have a particularly high LOD score in

any one family; it has LOD scores over 0.2 in 10 families. There are

other suggestive signals around this variant, which decreases its

chances of being a false positive (Fig. 3B). Six families, which had

Table 1. List of cancers present in 28 sequenced strongly familial

lung cancer families.

Cancer type Number of cases

Lung 135

Breast 6

Skin 5

Prostate 4

Bladder 3

Cervix 2

Leukemia 1

Bone 1

Colon 1

Lip 1

Lymphosarcoma 1

Pancreas 1

Pharynx 1

Stomach 1

Throat 1

Unknown 1

Note: Table displaying the different cancer cases within the data set.

Musolf et al.
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additional cancers besides lung cancer, had increased LOD scores at

this variant when compared with the LCO analysis, with those

increases ranging from 0.1 to 0.4 (Supplementary Table S4).

There were 204 genome-wide suggestive variants, covering all

autosomes except 18. The 6q24.3-27 region had the most suggestive

variants with 17, including 8 of the top 20 overall HLOD scores. The

most strongly linked variant in this region, rs1062067, had anHLOD¼

2.8 (Table 2), is in a noncoding RNA, and was also significant in the

lung eQTL analysis (P ¼ 1.16E-17) with probes mapping to

LOC100507557 (Supplementary Fig. S3B). Another variant, rs2251666

at 16p13.3 was also strongly linked with an HLOD ¼ 3.0. It is in an

intron ofUBN1 andwas found to be a significant eQTL (P¼ 3.83E-08)

in the lung, controlling expression not of UBN1, but the nearby gene

SMIM22 (Supplementary Fig. S3C). A comparison of the top three

variants in both the LCO and AAC analyses can be found in Supple-

mentary Table S4. The top 10 overall variants can be found in Table 2,

and all genome-wide significant and suggestive variants can be found

in Supplementary Table S5.

Family 102 had seven genome-wide suggestive LOD scores (Supple-

mentary Fig. S2B; Supplementary Table S2), all which were previously

identified in the LCO analysis. Five variants were found in SSPO at

7p36.1 (Fig. 4A) with MAFs ranging from 0.046 to 0.049. Three of the

variants were synonymous exonic, and one was a single-nucleotide

deletion. One intronic SNV in ARHGAP12 and one single-nucleotide

intronic deletion KIF5Bwere identified at 10p11.22 (Fig. 4B). The AAC

analysis resulted in the addition of one case with leukemia to family 102

that shared the same haplotypes as the other cases and resulted in the

power boost at 7p36.1 and 10p11.22. There were three additional SNVs

that were located within SSPO with LOD score above 1.4 in this family.

No other families contained any suggestive LOD scores. Ten

families had no additional cancers; their LOD scores remained iden-

tical from the LCO analysis, including the 4q21.3-28.3 haplotype from

Family 105.

Discussion
This study identified a genome-wide significant variant at 12q23.3

in highly aggregated lung cancer families when including other cancers

reported among family members. The significant variant, rs61943670,

is an intronic variant located in POLR3B, subunit B of RNA

Figure 1.

Individual LOD scores for Family 102 for the LCO analysis.A, The individual LOD scores for Family 102 for chromosome 7. B, The individual LOD scores for Family 102

for chromosome 10. The line at 1.9 represents the genome-wide suggestive threshold as recommended by Lander and Kruglyak.

Increased Cancer Risk on Chromosomes 12, 7, and 4
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polymerase III. RegulomeDB found it likely that this variant affects TF

binding, and it was found to be a significant eQTL in the lung. Somatic

mutations in POLR3B have been implicated in lung cancer; it was

found to be differentially methylated in stage I lung adenocarcino-

ma (47), and recurrent mutations in POLR3B were identified in

pulmonary carcinoid tumors (48). This is the first time that POLR3B

has been implicated as a germline risk variant for lung cancer.

Functional studies revealed a truncated form of POLR3B represses

the transcriptional activities of p53 and AP-1 and may play a role in

tumorigenesis (49). Biologically, POLR3B makes sense as a possible

susceptibility gene for cancer.

rs61943670 is intronic and not particularly rare in Europeans

(MAF ¼ 0.22). The variant does not exhibit a large effect on any one

family with LOD scores ranging from 0.2 to 0.5. If the variant is causal,

it likely exhibits a small/moderate effect on cancer risk, possibly

through being a TF-binding site and affecting POLR3B transcription.

It does not seem to cluster in individuals with early onset lung cancer

(defined as having lung cancer before age 50); it is prevalent in

individuals that developed lung cancer in their 50s and 60s. It is also

possible that is variant is not causal, but simply in LD with a more

penetrant rare variant along the haplotype that was not sequenced in

this WES study. We also note that since the variant was identified as

significant only under the AAC analysis, it may be a risk factor in

familial cancers in general as well as a potential risk modifier of

common cancer predisposition syndromes.

Two of the highly suggestive variants were significant eQTLs in

the lung. rs1062067 is on 6q24.3 located in LOC100507557, a

noncoding RNA gene. Its function is unknown, but noncoding

RNAs in general have been found to be important in both lung

cancer (50) and other cancers (51, 52). rs2251667 on 16p13.3 is in

an intron of UBN1 and controls expression of SMIM22. UBN1 is

involved in cellular senescence and is a potential tumor suppres-

sor (53), whereas SMIM22 is differentially expressed in prostate

cancer (54).

Lung cancer is almost certainly heterogeneous, so it is likely that the

individual families are also harboring unique risk variants, possibly of

large effect. Only Family 102 had family-specific genome-wide sug-

gestive variants, one at 7p26.1 and another at 10p11.22. The signals

Figure 2.

Individual LOD scores for Family 105 for the LCO analysis. The genome-wide individual LOD scores for Family 105 (A) and the chromosome 4 individual LOD scores

for Family 105 (B) showing a closer look at the linked haplotype at 4q21.3-28.3. The line at 1.9 represents the genome-wide suggestive threshold as recommended by

Lander and Kruglyak.

Musolf et al.
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appeared in the LCO analysis and were boosted in the AAC analysis by

a single leukemia case that shared the same haplotypes as the lung

cancer cases.

The 7p36.1 signal was particularly interesting because it was

localized to a single gene, SSPO. The SSPO signal consists of seven

variants in the gene with LOD scores from 1.34 to 2.17. SSPO encodes

Figure 3.

The HLOD scores across all 28 families for the AAC analysis. The genome-wide HLOD scores (A) and the HLOD scores for chromosome 12 (B). The lines at 3.3 and 1.9

represent the respective genome-wide significant and suggestive thresholds as recommended by Lander and Kruglyak.

Table 2. Top 10 HLOD scores from the AAC analysis.

CHR POS TYPE rsID CLOD HLOD ALPHA FUNC GENE

12 106751805 SNV rs61943670 3.3 3.3 1.0 intron POLR3B

20 31660489 SNV rs11700200 3.2 3.2 1.0 intron BPIFB3

20 31671599 SNV rs13036385 3.1 3.1 1.0 nonsyn exon BPIFB4

9 5233558 DEL N/A 3.0 3.0 1.0 intron INSL4

16 4923091 SNV rs2251666 3.0 3.0 1.0 intron UBN1

20 31671209 SNV rs4339026 2.9 2.9 1.0 nonsyn exon BPIFB4

3 10258762 SNV rs2302860 2.8 2.8 1.0 intron IRAK2

20 31678534 SNV rs2070326 2.8 2.8 1.0 syn exon BPIFB4

6 146207563 SNV rs1062067 2.8 2.8 1.0 ncRNA LOC100507557

3 10261294 SNV rs3895947 2.8 2.8 1.0 intron IRAK2

Note: HLOD scores for TopTenVariants in theAACanalysis. Headers are as follows: CHR, chromosome; POS, position of the variant in basepairs (hg 19); TYPE, Type of

variant: either SNV or deletion (DEL); rsID, rsID of the variant (if applicable); CLOD, cumulative LOD score of the variant across all 28 families; HLOD, heterogeneity

LOD score of the variant across all 28 families; ALPHA, Alpha value of variant used in HLOD score calculation; FUNC, functional description of the variant,

nonsynonymous exonic (nonsyn exon), synonymous exonic (syn exon), noncoding RNA (ncRNA), or intronic (intron); GENE, gene location of the variant.

Increased Cancer Risk on Chromosomes 12, 7, and 4

AACRJournals.org Cancer Epidemiol Biomarkers Prev; 29(2) February 2020 439

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://a

a
c
rjo

u
rn

a
ls

.o
rg

/c
e
b
p
/a

rtic
le

-p
d
f/2

9
/2

/4
3
4
/2

2
8
6
2
9
6
/4

3
4
.p

d
f b

y
 g

u
e
s
t o

n
 2

7
 A

u
g
u
s
t 2

0
2
2



the protein SCO-Spondin, which is involved in the modulation of

neuronal aggregation. It is upregulated in brain tissue harboring

metastases (55), and somatic mutations are associated with aggressive

thyroid microcarcinomas (56). This is the first time that germline

mutations have been linked to any type of familial cancers. The exonic

variants are synonymous, though possibly affecting TF binding, and

the deletion was intronic and only a single nucleotide. All SNVs were

moderately rare with MAF ¼ 0.046–0.049 in 1000Genomes Eur-

opeans. It is possible these variants are not causal and that an

unsequenced or failed variant is in fact the true causal variant and

these variants are simply located on the same haplotype. Targeted

sequencing of SSPO would capture some of these unsequenced var-

iants, and subsequent linkage analysis could reveal any more linked

variants in the gene. It is clear, however, that even if the causal variant

was not found, the SSPO gene is linked to lung cancer risk in this family

and should be the focus of further study.

The second suggestive signal in Family 102 was localized to ARH-

GAP12 and KIF5B at 10p11.22. ARHGAP12 was implicated in early

onset colorectal cancer in Finns (57). KIF5B is a driver of lung cancer

adenocarcinoma through a fusion with the RET gene (58), though this

is not a germline mutation.

Family 105 had an interesting long, linked haplotype from

4q21.3-28.3. Family 105 contained only lung cancer affecteds, so

the AAC analysis did not change its results. The haplotype has little

to no negative signal underneath it, which is characteristic of a true

linked haplotype and not a false positive. The haplotype encom-

passes several nonsynonymous variants; three SNVs were interest-

ing because they were exceedingly rare; they were not present in

1000 Genomes Europeans and had an MAF < 0.00004 in ExAC. The

variants only appeared in cases within the family, one unknown

individual with the potential to develop lung cancer, and the two

ungenotyped cases must be obligate carriers of the variants. Two of

the variants are in good candidate genes, DSPP and PTPN13. DSPP

is an extracellular matrix glycophosphoprotein that silences tumor-

igenic activities in oral cancer (59) and predicts the transition from

oral epithelial dysplasia to oral squamous carcinoma (60) is

expressed in prostate cancer (61). Loss of the closely related

glycophosphoprotein DMP1 results in lung cancer tumorigene-

sis (62). PTPN13 is a protein tyrosine phosphatase that is a known

tumor-suppressor gene in lung cancer (63).

The strength of this study was its family-based nature, which was

designed to find potential, possible rare, risk variants for lung cancer

Figure 4.

Individual LOD scores for Family 102 for theAACanalysis. The individual LODscores for Family 102 for chromosome7 (A) and the individual LOD scores for Family 102

for chromosome 10 (B). The line at 1.9 represents the genome-wide suggestive threshold as recommended by Lander and Kruglyak.
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and other aggregated cancers in these pedigrees. The linkage analysis

also allowed for the utilization of long linked haplotypes within

families. We were able to identify one common variant of small/

moderate effect across all families and several interesting individual

family-specific variants. These individual family-based variants could

not have been found in a population-based study and the long, linked

haplotype at 4q led to the potential rare causal variants inPTPN13 and/

or DSPP. The study is not without weakness, as this study only used

WES data and thus could have missed linked noncoding variants.

Targeted sequencing is planned to address this issue. We note that

although we found significant evidence of linkage across all families

under the AAC analysis, we did not find any significant linkage under

the LCO analysis. This is most likely due to lack of power under the

LCO analysis; 19 of the 28 families had only one or two sequenced lung

cancer–affected individuals and the genotypes of other affected indi-

viduals were imputed from their descendants' genotypes. A larger

number of families and updates to the affection status of individuals in

these families will certainly add to the power of this study.

In conclusion, this study identified a significant linkage signal at

12q23.3 centered on POLR3B for general cancer risk in highly

aggregated lung cancer families. The risk is cumulative and mod-

erate; the variant is a significant lung eQTL, likely TF binding site,

and potentially causal. We also identified highly suggestive variants

that were significant eQTLs in the lung at 6q24.3 and 16p13.3,

and interesting family-wise signals were identified on 7p and 4q.

Targeted sequencing is planned for 12q, 7p, and 4q for better

coverage of the noncoding regions. Functional analysis, including

knock-outs and knock-ins, is planned on POLR3B and family

candidate genes SSPO in Family 102 and DSPP and PTPN13 in

Family 105 and potentially the other eQTLs. These genes were

prioritized because they were either genome-wide significant

(POLR3B), had multiple individual family scores that were sugges-

tive (SSPO), or were very rare variants located along a linked

haplotype that only appeared in cases within that family (PTPN13

and DSPP). Finally, ongoing follow-up of potential risk allele

carriers to identify newly affected individuals in these high-risk

families is likely to increase our ability to identify causal variants in

the future.
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