
ARTICLE
doi:10.1038/nature11143

Whole-genome analysis informs breast
cancer response to aromatase inhibition
Matthew J. Ellis1,2,3*, Li Ding4,5*, Dong Shen4,5

*, Jingqin Luo3,6, Vera J. Suman7, John W. Wallis4,5, Brian A. Van Tine1,
Jeremy Hoog1, Reece J. Goiffon8,9,10, Theodore C. Goldstein11, Sam Ng11, Li Lin1, Robert Crowder1, Jacqueline Snider1,
Karla Ballman7, Jason Weber1,8,12, Ken Chen13, Daniel C. Koboldt4,5, Cyriac Kandoth4,5, William S. Schierding4,5,
Joshua F. McMichael4,5, Christopher A. Miller4,5, Charles Lu4,5, Christopher C. Harris4,5, Michael D. McLellan4,5,
Michael C. Wendl4,5, Katherine DeSchryver1, D. Craig Allred3,14, Laura Esserman15, Gary Unzeitig16, Julie Margenthaler2,
G.V.Babiera13, P.KellyMarcom17, J.M.Guenther18,MarilynLeitch19, KellyHunt13, JohnOlson17, YuTao6, ChristopherA.Maher1,4,
Lucinda L. Fulton4,5, Robert S. Fulton4,5, Michelle Harrison4,5, Ben Oberkfell4,5, Feiyu Du4,5, Ryan Demeter4,5,
Tammi L. Vickery4,5, Adnan Elhammali8,9,10, Helen Piwnica-Worms8,12,20,21, Sandra McDonald2,22, Mark Watson6,14,22,
David J. Dooling4,5, David Ota23, Li-Wei Chang3,14, Ron Bose2,3, Timothy J. Ley1,2,4, David Piwnica-Worms8,9,10,12,24,
Joshua M. Stuart11, Richard K. Wilson2,4,5 & Elaine R. Mardis2,4,5

To correlate the variable clinical features of oestrogen-receptor-positive breast cancer with somatic alterations, we
studied pretreatment tumour biopsies accrued from patients in two studies of neoadjuvant aromatase inhibitor therapy
bymassively parallel sequencing and analysis. Eighteen significantlymutated geneswere identified, including five genes
(RUNX1, CBFB,MYH9,MLL3 and SF3B1) previously linked to haematopoietic disorders. MutantMAP3K1was associated
with luminal A status, low-grade histology and low proliferation rates, whereas mutant TP53 was associated with the
opposite pattern. Moreover, mutant GATA3 correlated with suppression of proliferation upon aromatase inhibitor
treatment. Pathway analysis demonstrated that mutations in MAP2K4, a MAP3K1 substrate, produced similar
perturbations as MAP3K1 loss. Distinct phenotypes in oestrogen-receptor-positive breast cancer are associated with
specific patterns of somatic mutations that map into cellular pathways linked to tumour biology, but most recurrent
mutations are relatively infrequent. Prospective clinical trials based on these findings will require comprehensive
genome sequencing.

Oestrogen-receptor-positive breast cancer exhibits highly variable
prognosis, histological growth patterns and treatment outcomes.
Neoadjuvant aromatase inhibitor treatment trials provide anopportunity
to document oestrogen-receptor-positive breast cancer phenotypes in a
setting where sample acquisition is easy, prospective consent for geno-
mic analysis can be obtained and responsiveness to oestrogen depriva-
tion therapy is documented1.We therefore conductedmassively parallel
sequencing (MPS) on 77 samples accrued from two neoadjuvant
aromatase inhibitor clinical trials2,3. Forty-six cases underwent
whole-genome sequencing (WGS) and 31 cases underwent exome
sequencing, followed by extensive analysis for somatic alterations
and their associationwith aromatase inhibitor response. Case selection
for discovery was based on the levels of the tumour proliferation
marker Ki67 in the surgical specimen, because high cellular prolifera-
tion despite aromatase inhibitor treatment identifies poor prognosis
tumours exhibiting oestrogen-independent growth4 (Supplementary
Fig. 1). Twenty-nine samples had Ki67 levels above 10% (‘aromatase-
inhibitor-resistant tumours’, median Ki67 21%, range 10.3–80%) and

48 were at or below 10% (‘aromatase-inhibitor-sensitive tumours’,
median Ki67 1.2%, range 0–8%). Cases were also classified as luminal
A or B by gene expression profiling3.We subsequently examined inter-
actions between Ki67 biomarker change, histological categories,
intrinsic subtype and mutation status in selected recurrently mutated
genes in 310 cases overall. Pathway analysis was applied to contrast
the signalling perturbations in aromatase-inhibitor-sensitive versus
aromatase-inhibitor-resistant tumours.

Results
The mutation landscape of luminal-type breast cancer
Using paired-end MPS, 46 tumour and normal genomes were
sequenced to at least 30-fold and 25-fold haploid coverage, respectively,
with diploid coverage of at least 95% based on concordance with SNP
array data (Supplementary Table 1). Candidate somatic events were
identified usingmultiple algorithms5,6, andwere then verified by hybrid-
ization capture-based validation that targeted all putative somatic single-
nucleotide variants (SNVs) and small insertions/deletions (indels) that

*These authors contributed equally to this work.

1Department of Internal Medicine, Division of Oncology, Washington University, St Louis, Missouri, USA. 2Siteman Cancer Center, Washington University, St Louis, Missouri 63110, USA. 3Breast Cancer

Program, Washington University, St Louis, Missouri 63110, USA. 4The Genome Institute, Washington University, St Louis, Missouri 63108, USA. 5Department of Genetics, Washington University, St Louis,

Missouri 63108, USA. 6Division of Biostatistics, Washington University, St Louis, Missouri 63110, USA. 7ACOSOG Statistical Center, Mayo Clinic, Rochester, Minnesota 55905, USA. 8BRIGHT Institute,

Washington University School of Medicine, St Louis, Missouri 63110, USA. 9Molecular Imaging Center, Washington University, St Louis, Missouri 63110, USA. 10Malinckrodt Institute of Radiology,

WashingtonUniversity, St Louis, Missouri 63110, USA. 11Department of Biomolecular Engineering, University of California, Santa Cruz, California 95064, USA. 12Department of Cell Biology andPhysiology,

WashingtonUniversity, St Louis,Missouri 63110,USA. 13M.D. AndersonCancerCenter,Houston, Texas 77030,USA. 14Department of Pathology and Immunology,WashingtonUniversity, St Louis,Missouri

63110,USA. 15HelenDiller CancerCenter, University ofCalifornia, SanFrancisco,California94143,USA. 16DoctorsHospital of Laredo, Laredo, Texas78045,USA. 17DukeUniversityCancerCenter, Durham,

North Carolina 27705, USA. 18Good Samaritan Hospital, Cincinnati, Ohio 45406, USA. 19Simmons Cancer Center, University of Texas Southwestern, Dallas, Texas 75390, USA. 20Department of Internal

Medicine, Washington University, St Louis, Missouri 63110, USA. 21Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA. 22ACOSOG Central Specimen Bank, Washington University, St

Louis, Missouri 63110, USA. 23ACOSOG Operations Center, Duke University, Durham, North Carolina 27705, USA. 24Department of Developmental Biology, Washington University, St Louis, Missouri

63110, USA.

2 1 J U N E 2 0 1 2 | V O L 4 8 6 | N A T U R E | 3 5 3

Macmillan Publishers Limited. All rights reserved©2012

www.nature.com/doifinder/10.1038/nature11143


overlap coding exons, splice sites and RNA genes (tier 1), high-
confidence SNVs and indels in non-coding conserved or regulatory
regions (tier 2), as well as non-repetitive regions of the human genome
(tier 3). In addition, somatic structural variants andgermline structural
variants that potentially affect coding sequences (Supplementary
Information) were assessed. Digital sequencing data from captured
target DNAs from the 46 tumour and normal pairs (Supplementary
Table 2 and Supplementary Information) confirmed 81,858mutations
(point mutations and indels) and 773 somatic structural variants. The
average numbers of somatic mutations and structural variants were
1,780 (range 44–11,619) and 16.8 (range 0–178) per case, respectively
(Supplementary Table 3). Tier 1 point mutations and small indels
predicted for all 46 cases also were validated using both 454 and
Illumina sequencing (Supplementary Information). BRC25was a clear
outlier with only 44 validated tiers 1–3 mutations, all at low allele
frequencies (ranging from 5% to 26.8%). This sample probably had
low tumour content despite histopathology assessment, but the data
are included to avoid bias.
The overallmutation ratewas 1.18 validatedmutations permegabase

(Mb) (tier 1: 1.05; tier 2: 1.14; tier 3: 1.20). The mutation rate for tier 1
was higher than that observed for acute myeloid leukaemia (0.18–
0.23)6,7, but lower than that reported for hepatocellular carcinoma
(1.85)8, malignant melanoma (6.65)9 and lung cancers (3.05–8.93)10,11

(Supplementary Table 4). The backgroundmutation rate (BMR) across
the 21 aromatase-inhibitor-resistant tumours was 1.62 per Mb, nearly
twice that of the 25 aromatase-inhibitor-sensitive tumours at 0.824 per
Mb (P5 0.02, one-sided t-test). A trend for more somatic structural
variations in the aromatase-inhibitor-resistant groupwas alsoobserved,
as the validated somatic structural variation frequency in the 21
aromatase-inhibitor-resistant tumour genomes was 21.69 versus an
average of 12.76 in 25 aromatase-inhibitor-sensitive tumours
(P5 0.16, one-sided t-test) (Fig. 1). If ten TP53 mutated cases were
excluded, the backgroundmutation rate still tended to be higher in the
aromatase-inhibitor-resistant group (P5 0.08). To demonstrate that a
single-tumour core biopsy produced representative genomic data,
whole-genome sequencing of two pre-treatment biopsies was con-
ducted for 5 of the 46 cases. The frequency of mutations in the paired

specimens showed high concordance in all cases (correlation co-
efficiency ranged from 0.74 to 0.95) (Supplementary Fig. 2) and a
somatic mutation was infrequently detected in only one of the two
samples (4.65% overall).

Significantly mutated genes in luminal breast cancer
The discovery effort was extended by studying 31 additional cases by
exome sequencing, producing an additional 1,371 tier 1 mutations. In
total the 77 cases yielded 3,355 tier 1 somatic mutations, including
3,208 point mutations, 1 dinucleotide mutation and 146 indels,
ranging from 1 to 28 nucleotides. The point mutations included 733
silent, 2,145 missense, 178 nonsense, 6 read-through, 69 splice-site
mutations and 77 in RNA genes (Supplementary Table 5). Of 2,145
missense mutations, 1,551 were predicted to be deleterious by SIFT12

and/or PolyPhen13. The MuSiC package45 was applied to determine
the significance of the difference between observed versus expected
mutation events in each gene, on the basis of the background
mutation rate. This identified 18 significantly mutated genes with a
convolution false discovery rate (FDR), 0.26 (Table 1 and Sup-
plementary Table 6). The list contains genes previously identified as
mutated in breast cancer (PIK3CA14, TP5315, GATA312, CDH113,
RB116,MLL317,MAP3K118 and CDKN1B19) as well as genes not previ-
ously observed in clinical breast cancer samples, including TBX3,
RUNX1, LDLRAP1, STNM2, MYH9, AGTR2, STMN2, SF3B1 and
CBFB.
Thirteen mutations (3 nonsense, 6 frame-shift indels, 2 in-frame

deletions and 2 missense) were identified in MAP3K1 (Table 1 and
Fig. 2), a serine/threonine kinase that activates the ERK and JNK kinase
pathways through phosphorylation ofMAP2K1 andMAP2K4 (ref. 20).
Of interest, a missense (S184L) and a splice-region mutation (e213
probably affecting splicing) inMAP2K4were observed in two tumours
with noMAP3K1mutation (Fig. 2). Single nonsynonymous mutations
in MAP3K12, MAP3K4, MAP4K3, MAP4K4, MAPK15 and MAPK3

were also detected (Supplementary Table 5). TBX3 harboured three
small indels (one insertion and two deletions). TBX3 affects expansion
of breast cancer stem-like cells through regulation of FGFR21. Two
truncating mutations in the tumour suppressor CDKN1B were
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Figure 1 | Genome-wide somaticmutations. Circos plots44 indicate validated
somatic mutations comprising tier 1 point mutations and indels, genome-wide
copy number alterations, and structural rearrangements in six representative
genomes. Three on-treatment Ki67 less than or at 10% (top panel: BRC15,

BRC17 and BRC22) and three on-treatment Ki67 greater than 10% (bottom
panel: BRC44, BRC47 and BRC50) cases are shown. Significantly mutated
genes are highlighted in red. No purity-based copy number corrections were
used for plotting copy number.
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identified19. Four missense RUNX1 mutations were observed, with
three in the RUNT domain clustered within the 8 amino acid putative
ATP-binding site (R166Q, G168E and R169K). RUNX1 is a transcrip-
tion factor affected bymutation and translocation in theM2 subtype of
acutemyeloid leukaemia22 and is implicated in tethering the oestrogen
receptor to promoters independently of oestrogen response elements23.
Two mutations (N104S and N140*) were also identified in CBFB, the
binding partner of RUNX1. Additional mutations included 3 missense
(2 K700E and 1 K666Q), in SF3B1, a splicing factor implicated in
myelodysplasia24 and chronic lymphocytic leukaemia25. One missense
mutation, one nonsense mutation and two indels were found in the
MYH9 gene, involved in hereditary macrothrombocytopenia26 as well
as being observed in an ALK translocation in anaplastic large cell
lymphoma27.
We also identified three significantly mutated genes (LDLRAP1,

AGTR2 and STMN2) not previously implicated in cancer. A missense
and a nonsense mutation were observed in LDLRAP1, a gene asso-
ciated with familial hypercholesterolaemia28. AGTR2, angiotensin II
receptor type 2, harboured two missense mutations (V184I and
R251H). Angiotensin signalling and oestrogen receptor intersect in
models of tissue fibrosis29. STMN2, a gene activated by JNK family
kinases30,31 and therefore regulated by MAP3K1 and MAP2K4,
harboured one frameshift deletion and one missense mutation.
Three deletions and one point mutation (Supplementary Fig. 3) were
identified in a large, infrequently spliced non-coding (lnc) RNA gene,
MALAT1 (metastasis associated lung adenocarcinoma transcript 1),

that regulates alternative splicing by modulating the phosphorylation
of SR splicing factor32. Translocations and pointmutations ofMALAT1

have been reported in sarcoma33 and colorectal cancer cell lines34. Five
additional MALAT1 mutations were found in the recurrent screening
set (Supplementary Table 5d). The locations of these mutations
clustered in a region of species homology (F1 and 2 domains) that
couldmediate interactions with SRSF1 (ref. 32, Supplementary Fig. 4).
Non-codingmutation clusters were found inATR,GPR126 andNRG3
(Supplementary Information and Supplementary Table 7).

Correlating mutations with clinical data
To study clinical correlations, mutation recurrence screening was
conducted on an additional 240 cases (Supplementary Table 8 and
Supplementary Fig. 1). By combining WGS, exome and recurrence
screening data, we determined the mutation frequency in PIK3CA to
be 41.3% (131 of 317 tumours) (Supplementary Table 5a–d and
Supplementary Fig. 3). TP53 was mutated in 51 of 317 tumours
(16.1%) (Supplementary Table 5a–d and Supplementary Fig. 3).
Additionally, 52 nonsynonymousMAP3K1mutations in 39 tumours
and 10 mutations in its substrateMAP2K4 were observed, represent-
ing a combined case frequency of 15.5% (Supplementary Table 5a–d
and Fig. 3). Of note, 52 of the 62 non-silentmutations inMAP3K1 and
MAP2K4 were scattered indels or other protein-truncating events
strongly suggesting functional inactivation. In addition, 13 tumours
harboured two non-silentMAP3K1mutations, indicative of bi-allelic
loss and reinforcing the conclusion that this gene is a tumour sup-
pressor. Twenty nine tumours harboured a total of 30 mutations in
GATA3, consisting of 25 truncation events, one in-frame insertion,
and 4 missense mutations including 3 recurrent mutations at M294K
(Supplementary Table 5a–d and Supplementary Fig. 3). BRC8
harboured a chromosome 10 deletion that includes GATA3. CDH1
mutation data were available for 169 samples and, as expected, its
mutation status was strongly associated with lobular breast cancer13

(Table 2a). We applied a permutation-based approach in MuSiC45 to
ascertain relationships between mutated genes. Negative correlations
were found between mutations in gene pairs such as GATA3 and
PIK3CA (P5 0.0026), CDH1 and GATA3 (P5 0.015), and CDH1

and TP53 (P5 0.022).MAP3K1 andMAP2K4mutations were mutu-
ally exclusive, albeit without reaching statistical significance (P5 0.3).
In contrast, a positive correlation between MAP3K1/MAP2K4 and
PIK3CA mutations was highly significant (P5 0.0002) (Supplemen-
tary Table 9).
Two independent mutation data sets, designated ‘Set 1’ (discovery

cohort) and ‘Set 2’ (validation cohort), from these clinical trial samples
were analysed separately and then in combination, with a false discovery
rate (FDR)-corrected P value to gauge the overall strength and
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Figure 2 | MAP3K1 andMAP2K4mutations observed in 317 samples.
Somatic status of all mutations was obtained by Sanger sequencing of PCR
products or Illumina sequencing of targeted capture products. The locations of
conserved protein domains are highlighted. Each nonsynonymous

substitution, splice site mutation or indel is designated with a circle at the
representative protein position with colour to indicate translation effects of the
mutation. Asterisk, nonsense mutations that cause truncation of the open
reading frame.

Table 1 | Significantlymutatedgenes identified in46wholegenomes
and 31 exomes sequenced in luminal breast cancer patients

Gene Total MS NS Indel SS P value FDR

MAP3K1 13 2 3 8 0 0 0
PIK3CA 45 44 0 1 0 0 0
TP53 18 13 1 1 1 0 0
GATA3 8 1 0 4 3 1.15 310219 7.41 310216

CDH1 8 1 1 5 1 3.07 310215 1.59 310211

TBX3 3 0 0 3 0 2.5831026 0.011
ATR 6 6 0 0 0 3.7331026 0.014
RUNX1 4 4 0 0 0 6.5931026 0.021
ENSG00000212670* 2 2 0 0 0 2.3131025 0.066
RB1 4 2 1 0 1 2.7631025 0.071
LDLRAP1 2 1 1 0 0 4.2731025 0.092
STMN2 2 1 0 1 0 4.1531025 0.092
MYH9 4 1 1 2 0 8.9631025 0.178
MLL3 5 1 1 3 0 1.04 31024 0.191
CDKN1B 2 0 1 1 0 1.39 31024 0.240
AGTR2 2 2 0 0 0 1.71 31024 0.256
SF3B1 3 3 0 0 0 1.79 31024 0.256
CBFB 2 1 1 0 0 1.70 31024 0.256

*ENSG00000212670 is not in RefSeq release 50.

MS, Missense; NS, nonsense; SS, splice site.
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consistency of genotype–phenotype relationships (Table 2a, b and
Supplementary Fig. 1). TP53 mutations in both data sets correlated
with significantly higher Ki67 levels, both at baseline (P5 0.0003) and
at surgery (P5 0.001). Furthermore, TP53 mutations were signifi-
cantly enriched in luminal B tumours (P5 0.04) and in higher histo-
logical grade tumours (P5 0.02). In contrast, MAP3K1 mutations
were more frequent in luminal A tumours (P5 0.02), in grade 1
tumours (P5 0.005) and in tumours with lower Ki67 at baseline
(P5 0.001) with consistent findings across both data sets. GATA3
mutation did not influence baseline Ki67 levels but was enriched in
samples exhibiting greater percentage Ki67 decline (P5 0.01). This
finding requires further verification because it was significant in Set
1 (uncorrected P value 0.003) but was a marginal finding in Set 2
(P5 0.08). However, it suggests GATA3 mutation may be a positive
predictive marker for aromatase inhibitor response.

Structural variation and DNA repair mechanisms
Analysis of copy number alterations (CNAs) revealed arm-level gains
for 1q, 5p, 8q, 16p, 17q, 20p and 20q and arm-level losses for 1p, 8p,
16q, and 17p in the 46WGS tumour genomes (Supplementary Fig. 5).
A total of 773 structural variants (579 deletions, 189 translocations
and 5 inversions) identified by WGS were validated as somatic in 46
breast cancer genomes by capture validation. No recurrent transloca-
tions were detected but six in-frame fusion genes were validated by
reverse transcription followed by PCR (Supplementary Information
and Supplementary Tables 10–13). Seven tumours hadmultiple com-
plex translocations with breakpoints suggestive of a catastrophic
mitotic event (‘chromothripsis’; Supplementary Table 11). Analysis
of the structural variant genomic breakpoints shows the spectra of
putative chromothripsis-related events are the same as seen for other
somatic events, with the majority of structural variants arising from
non-homologous end-joining. We classified somatic (mitotic) and
germline (meiotic) structural variants into four groups: variable
number tandem repeat (VNTR), non-allelic homologous recombina-
tion (NAHR), microhomology-mediated end joining (MMEJ), and
non-homologous end joining (NHEJ), according to criteria described
in Supplementary Information. The fraction of each classification is
shown for germline and somatic (mitotic) events (Supplementary
Table 14). There were significantly more somatic NHEJ events in
tumour genomes than the other three types (P, 2.23 10216).

Pathways relevant to aromatase inhibitor response
Pathscan35 analysis (Supplementary Table 15 and Supplementary
Information) indicated that somatic mutations detected in the 77
discovery cases affect a number of pathways, including caspase

cascade/apoptosis, ErbB signalling, Akt/PI3K/mTOR signalling,
TP53/RB signalling and MAPK/JNK pathways (Fig. 4a). To discern
the pathways relevant to aromatase inhibitor sensitivity, we con-
ducted separate pathway analyses for aromatase-inhibitor-sensitive
versus aromatase-inhibitor-resistant tumours. Whereas the majority
of top altered pathways (FDR# 0.15) in each group are shared,
several pathways were enriched in the aromatase-inhibitor-resistant
group, including the TP53 signalling pathway, DNA replication, and
mismatch repair. Specifically, 38% of the aromatase-inhibitor-
resistant group (11 of 29 tumours) have mutations in the TP53
pathway with three having double or triple hits involving TP53,
ATR, APAF1 or THBS1. In contrast, only 16.6% (8 of 48 tumours)
of the Ki67 low group had mutations in the TP53 signalling pathway,
each with only a single hit in genes TP53, ATR, CCNE2 or IGF1.
(Supplementary Table 16).
GeneGo pathway analysis of MetaCore interacting network objects

was used to identify genes in the 77 luminal breast cancers with low-
frequency mutations that cluster into pathway maps. Eight networks
assembled from significant maps encompassed mutations from 71
(92%) of the tumours (Fig. 4b). Many of the network objects shared
pathways with significantly mutated genes such as TP53, MAP3K1,
PIK3CA and CDH1. GeneGo analysis also revealed that several genes
with low-frequency mutations were actually subunits of complexes,
resulting in higher mutation rates for that object, for example, the
condensin complex (4mutations in 4 genes) and theMRN complex (4
mutations in 3 genes). Several pathways without multiple significantly
mutated genes, such as the apoptotic cascade, calcium/phospholipase
signalling and G-protein-coupled receptors, were significantly affected
by low-frequency mutations. Grouping tumours by significantly
mutated genes and pathway mutation status showed that whereas 55
(71%) of the tumours contained significantly mutated genes in signifi-
cantpathways, an additional 16 (21%) contained onlynon-significantly
mutated genes in these pathways. Thus, tumours without a given sig-
nificantlymutated gene often had othermutations in the same relevant
pathway (Fig. 4b, Supplementary Fig. 6, Supplementary Table 17 and
Supplementary Information).
We also applied PARADIGM36 to infer pathway-informed gene

activities using gene expression and copy-number data to identify
several ‘hubs’ of activity (Supplementary Fig. 7, Supplementary Fig. 8
and Supplementary Information). As expected,ESR1 and FOXA1were
among the hubs activated cohort-wide while other hubs exhibited high
but differential changes in aromatase-inhibitor-resistant tumours
including MYC, FOXM1 and MYB (Supplementary Fig. 8). The con-
cordance among the 104 MetaCore maps from GeneGo analysis
described above is significant, with 75 (72%) matching one of the
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PARADIGM subnetworks at the 0.05 significance level after multiple
test correction (P, 4.43 1026; Bonferroni-adjusted hypergeometric
test) (Supplementary Fig. 9). We identified significant subnetworks
associatedwithKi67 biomarker status (Supplementary Fig. 10 and Sup-
plementary Information) involving transcription factors controlling
large regulons.
The PARADIGM-inferred pathway signatures were further used to

derive a map of the genetic mechanisms that may underlie treatment
response. A subnetwork was constructed in which interactions were
retained only if they connected two features with higher than average
absolute association with Ki67 biomarker status (Supplementary Figs
10 and 11 and Supplementary Information). Consistent with the
PathScan results, among the largest of the hubs in the identified
network were a central DNA damage hub with the second highest
connectivity (55 regulatory interactions; 1% of the network) andTP53
with the14thhighest connectivity (26 connections; 0.5%of thenetwork).
Additional highly connected hubs identified in order of connectivity
were MYC with 79 connections (1.4%), FYN with 45 (0.8%), MAPK3

with 43, JUN with 40, HDAC1 with 40, SHC1 with 39, and HIF1A/
ARNT complex with 39 (Supplementary Fig. 11).
To identify higher-level connections between mutations and

clinical features, we compared the samples on the basis of pathway-
derived signatures. For each clinical attribute and each significantly
mutated gene, we dichotomized the discovery samples into a positive
and a negative group to derive pathway signatures that discriminated
between the groups (see details in Supplementary Information). We
then computed all pair-wise Pearson correlations between pathway
signatures and clustered the resulting correlations (Fig. 5). The entire
process was repeated using validated mutations and signatures
derived from the validation set (Supplementary Fig. 12). In line with
expectation, PIK3CA, MAP3K1, MAP2K4, and low risk preoperative
endocrine prognostic index (PEPI) scores (PEPI is an index of
recurrence risk post neoadjuvant aromatase inhibitor therapy4)
cluster with the luminal A subtypes and with each other, and are
supported by the validation set analysis. The luminal B-like signatures
included TP53, RB1, RUNX1 and MALAT1, which also associated
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with other poor outcome features such as high baseline and surgical
Ki67 levels, high grade histology and high PEPI scores. The TP53 and
MALAT1 associations in the discovery set also were supported by the
validation set analysis.

Druggable gene analysis
We defined mutations in druggable tyrosine kinase domains includ-
ing in ERBB2 (a V777L and a 755–759LRENT in-frame deletion
homologous to gefitinib-sensitizingEGFRmutations in lung cancer37),
as well as inDDR1 (A829V, R611C), DDR2 (E583D), CSF1R (D735H,
M875L), and PDGFRA (E924K). In addition, pleckstrin homology
domain mutations were observed in AKT1 (C77F) and AKT2 (S11F)
and a kinase domain mutation was identified in RPS6KB1 (S375F)
(Supplementary Table 18).

Discussion
The low frequency of many significantly mutated genes presents an
enormous challenge for correlative analysis, but several statistically
significant patterns were identified, including the relationship between
MAP3K1 mutation, luminal A subtype, low tumour grade and low
Ki67 proliferation index. On this basis, for patients with MAP3K1

mutant luminal tumours, neoadjuvant aromatase inhibitor could pro-
vide a favourable option. In contrast, tumours with TP53 mutations,
which are mostly aromatase inhibitor resistant, would be more appro-
priately treated with other modalities. MAP3K1 activates the ERK
family, thus, loss of ERK signalling could explain the indolent nature
of MAP3K1-deficient tumours20. However, MAP3K1 also activates
JNK through MAP2K4, which also can be mutated38. Loss of JNK
signalling produces a defect in apoptosis in response to stress, which
would hypothetically explain why these mutations accumulate39,40.
PIK3CA harboured the most mutations (41.3%) but was neither asso-
ciated with clinical nor Ki67 response, confirming our earlier report41.
However, the positive association between MAP3K1/MAP2K4 muta-
tions and PIK3CAmutation at both the mutation and pathway levels
suggests cooperativity (Fig. 4a).
The finding of multiple significantly mutated genes linked previ-

ously to benign andmalignant haematopoietic disorders suggests that
breast cancer, like leukaemia, can be viewed as a stem-cell disorder
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Figure 5 | Pathway signatures reveal connections between mutations and
clinical outcomes. PARADIGM-based pathway signatures were derived for
tumour feature dichotomies including mutation driven gene signatures
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preoperative endocrine prognostic index (PEPI) score (PEPI5 0 favourable
versus PEPI .0 unfavourable), PAM50 (50-gene intrinsic breast cancer
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Ki67 levels ($ 10% versus, 10%) and overall PEPI score (higher than mean
unfavourable versus lower than mean favourable). Pearson correlations were
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Table 2 | Correlations between mutations and clinical features

a Luminal subtype and histology grade

Gene Expression/histo-pathology variable Mutation frequency* Set1 P{ Set2 P{ Whole set FDR P{

TP53 Luminal subtype A 9.3% (13/140) 0.001 0.46 0.041
Luminal subtype B 21.5% (38/177)

TP53 Histological grade I 4.5% (3/66) 0.05 0.067 0.02
Histological grade II/III 19.2% (48/250)

MAP3K1 Luminal subtype A 20.0% (28/140) 0.018 0.028 0.005
Luminal subtype B 6.2% (11/177)

MAP3K1 Histological grade I 25.8% (17/66) 0.061 0.011 0.005
Histological grade II/III 8.8% (22/250)

CDH1 Histological type ductal 5.9% (10/169) 0.411 2.8 310211 3.9 310210

Histological type lobular 50.0% (20/40)

b Mutation and Ki67 index

Gene Ki67 variable Wild type meanI Mutant meanI Set1 P" Set2 P" Whole set FDR P{

TP53 Baseline 13.1 25.1 3.7 31025 0.012 0.0003
Surgery 1.4 4 0.0002 0.014 0.001
% change 289.2 284.3 0.09 0.28 0.24

MAP3K1 Baseline 15.8 8.1 0.049 0.001 0.002
Surgery 1.86 0.75 0.11 0.1 0.05
% change 288.3 290.5 0.49 0.65 0.55

GATA3 Baseline 14.8 11.5 0.13 0.95 0.56
Surgery 1.95 0.38 0.001 0.23 0.012
% change 286.8 296.9 0.003 0.08 0.012

*Mutation percentage (mutant cases/total cases in a category), counts are based on all cases (Set 1 and Set 2 combined).

{Unadjusted P value from Fisher’s exact test or Chi-square test as appropriate.

{Benjamini–Hochberg false discovery rate (FDR)-adjusted P value using all cases (Set1 and Set2 combined).

1Only 77 cases in Set1 had CDH1 sequencing results.

IGeometric means are based on all cases (Set1 and Set2 combined).

"Unadjusted P value from Wilcoxon rank sum test.
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that produces indolent or aggressive tumours that display varying
phenotypes depending on differentiation blocks generated by differ-
ent mutation repertoires42. Whereas only MLL3 showed statistical
significance in the analysis of 46 WGS cases, multiple mutations in
genes related to histone modification and chromatin remodelling are
worth noting (Supplementary Table 19). An array of coding muta-
tions and structural variations was discovered in methyltransferases
(MLL2, MLL3, MLL4 and MLL5), demethyltransferases (KDM6A,
KDM4A, KDM5B and KDM5C), and acetyltransferases (MYST1,
MYST3 and MYST4). Furthermore, our analysis identified several
adenine-thymine (AT)-rich interactive domain-containing protein
genes (ARID1A,ARID2,ARID3B andARID4B) that harbouredmuta-
tions and large deletions, reinforcing the role of members from the
SNF/SWI family in breast cancer.
Pathway analysis enables the evaluation of mutations with low

recurrence frequencywhere statistical comparisons are conventionally
underpowered. For example, the eight samples with MAP2K4 muta-
tions were sufficient to derive a reliable pathway-based gene signature
in PARADIGM that aligns withMAP3K1. This approach also pointed
to a putative connection between MALAT1 and the TP53 pathway.
Finally, we provide evidence that transcriptional associations to Ki67
response reside in a connectednetworkunder the control of several key
‘hub’ genes including MYC, FYN and MAP kinases, among others.
Targeting these hubs in resistant tumours could produce therapeutic
advances. In conclusion, the genomic information derived from
unbiased sequencing is a logical new starting point for clinical invest-
igation, where the mutation status of an individual patient is deter-
mined in advance and treatment decisions are driven by therapeutic
hypotheses that stem from knowledge of the genomic sequence and its
possible consequences. However, the accrual of large numbers of
patients and the use of comprehensive sequencing and gene expression
approaches will be required because of the extreme genomic hetero-
geneity documented by this investigation.

METHODS SUMMARY
Clinical trial samples were accessed from the preoperative letrozole phase 2 study
(NCT00084396)2 that investigated the effect of letrozole for 16 to 24weeks on

surgical outcomes and from the American College of Surgeons Oncology Group
(ACOSOG) Z1031 study (NCT00265759)3 that compared anastrozole with
exemestane or letrozole for 16 to 18weeks before surgery (REMARK flow charts,
Supplementary Fig. 1). Baseline snap-frozen biopsy samples with greater than

70% tumour content (by nuclei) underwentDNAextraction andwere pairedwith
a peripheral blood DNA sample. Two formalin-fixed biopsies were obtained at
baseline and at surgery, and were used to conduct oestrogen receptor and Ki67

immunohistochemistry as previously published4. Paired end Illumina reads from
tumours and normal samples were aligned to NCBI build36 using BWA. Somatic
point mutations were identified using SomaticSniper43, and indels were identified
by combining results from a modified version of the Samtools indel caller (http://

samtools.sourceforge.net/), GATK and Pindel. Structural variations were
identified using BreakDancer5 and SquareDancer (unpublished). All putative
somatic events found in 46 cases were validated by targeted custom capture arrays

(Nimblegen)/Illumina sequencing and all tier 1 mutations for 46 WGS cases also
were validated using PCR/454 sequencing. All statistical analyses, including
significantly mutated gene, mutation relation and clinical correlation were done
using the MuSiC package45 and/or by standard statistical tests (Supplementary

Information). Pathway analysis was performed with PathScan, GeneGoMetacore
(http://www.genego.com/metacore.php) and PARADIGM. A complete descrip-
tion of the materials and methods used to generate this data set and results is

provided in the Supplementary Methods section.
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