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As a fish unique to Yunnan Province in China, Sinocyclocheilus grahami 

hosts abundant potential probiotic resources in its intestinal tract. However, 

the genomic characteristics of the probiotic potential bacteria in its intestine 

and their effects on S. grahami have not yet been established. In this study, 

we  investigated the functional genomics and host response of a strain, 

Lactobacillus salivarius S01, isolated from the intestine of S. grahami (bred 

in captivity). The results revealed that the total length of the genome was 

1,737,623 bp (GC content, 33.09%), comprised of 1895 genes, including 22 

rRNA operons and 78 transfer RNA genes. Three clusters of antibacterial 

substances related genes were identified using antiSMASH and BAGEL4 

database predictions. In addition, manual examination confirmed the presence 

of functional genes related to stress resistance, adhesion, immunity, and other 

genes responsible for probiotic potential in the genome of L. salivarius S01. 

Subsequently, the probiotic effect of L. salivarius S01 was investigated in vivo by 

feeding S. grahami a diet with bacterial supplementation. The results showed 

that potential probiotic supplementation increased the activity of antioxidant 

enzymes (SOD, CAT, and POD) in the hepar and reduced oxidative damage 

(MDA). Furthermore, the gut microbial community and diversity of S. grahami 

from different treatment groups were compared using high-throughput 

sequencing. The diversity index of the gut microbial community in the group 

supplemented with potential probiotics was higher than that in the control 

group, indicating that supplementation with potential probiotics increased 

gut microbial diversity. At the phylum level, the abundance of Proteobacteria 

decreased with potential probiotic supplementation, while the abundance 

of Firmicutes, Actinobacteriota, and Bacteroidota increased. At the genus 

level, there was a decrease in the abundance of the pathogenic bacterium 

Aeromonas and an increase in the abundance of the potential probiotic 

bacterium Bifidobacterium. The results of this study suggest that L. salivarius 
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S01 is a promising potential probiotic candidate that provides multiple benefits 

for the microbiome of S. grahami.

KEYWORDS
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Introduction

Sinocyclocheilus grahami, belonging to the family Cyprinidae, 
subfamily Barbinae, and genus Sinocyclocheilus, is unique to 
Dianchi Lake in Yunnan. Known as one of the “four famous fish,” 
S. grahami is fished, consumed, and considered an important 
economic fish (Yin et  al., 2021). However, because of the 
destruction of its habitat and invasion by exotic species, S. grahami 
was listed as a Grade II protected animal in 1989, and further as 
an endangered animal in 1998. In 2007, to save the species from 
extinction, the artificial reproduction of S. grahami was achieved 
for the first time. After four generations of manual selection and 
breeding, a high-quality new national variety (“S. grahami, Bayou 
No. 1”) was certified in 2018 (Yin et  al., 2021). Nevertheless, 
during the process of artificial breeding, antibiotics were 
commonly used to treat diseases in specimens, including gill and 
skin inflammation (Yang et al., 2007).

In aquaculture, antibiotics are often used as additives to treat 
and prevent diseases, because they can inhibit the reproduction of 
bacteria (Vaseeharan and Thaya, 2014). However, antibiotic 
overuse has led to the emergence of multidrug-resistant 
pathogens, damaging the environment, and posing a risk to public 
safety and health. Previous studies have shown that superbugs 
resistant to multiple antibiotics can be transmitted among animals 
and humans through contaminated food and water (Davies and 
Davies 2010). For instance, contamination with Vibrio 
parahaemolyticus was observed in 95 (38.0%) of 250 aquatic 
product samples from Guangdong, China, among which 90.53% 
of the strains showed streptomycin resistance (Xie et al., 2017). In 
January 2020, the Ministry of Agriculture and Rural Affairs of 
China issued a comprehensive ban on the addition of antibiotics 
to animal feed to address issues related to drug residues and 
antibiotic resistance (Zhou et al., 2021). Therefore, the excavation 
of a safe and effective alternative to antibiotics, including 
probiotics, is urgently needed.

Many mechanisms have been proposed to explain the positive 
effects of probiotics, including stimulating the immune system, 
helping the host to resist the invasion of external harmful 
substances and disease-curing organisms, and aiding with 
digestion (Macfarlane and Macfarlane, 1997; Dong et al., 2018; 
Sun et al., 2021). For instance, Bacillus cereus NY5 can antagonize 
Streptococcus lactis by modulating specific and non-specific 
immunity in tilapia (Ke et al., 2022). Lactobacillus rhamnosus GG 
normalizes gut dysmotility induced by environmental pollutants 

(oxytetracycline, arsenic, polychlorinated biphenyls and 
chlorpyrifos) via affecting serotonin level in zebrafish larvae 
(Wang et al., 2022). Bifidobacteria are proved to be capable of 
relieving colitis symptoms in both in vivo and in vitro experiments 
through following potential mechanisms (e.g., enhancing the 
hosts’ antioxidant activity, decreasing myeloperoxidase activity, 
and reactive oxygen species, et. al; Yao et al., 2021). Moreover, in 
contrast with traditional antibiotics, probiotics fight bacterial 
diseases and treat inflammation without increasing resistance, 
through their antimicrobial, antioxidant, anti-inflammatory, and 
immunomodulatory action (Vanderhoof and Young, 1998; Abd 
El-Ghany et al., 2022; Yang et al., 2022). Also, probiotics used as a 
water supplement can improve water quality by affecting the 
microbial communities of the environment and reducing 
metabolic waste in the water system (Talpur et al., 2013). These 
characteristics have led to the widespread use of probiotics in 
animal farming, particularly in aquaculture. In aquaculture, 
probiotics can regulate and rebuild the microecological balance of 
the gut, enhance immunity against diverse pathogens, and 
improve the conversion rate of feed energy and growth 
performance (Merrifield et al., 2010; Akhter et al., 2015; Hoseinifar 
et al., 2018; Chauhan and Singh, 2019; Ringø, 2020). For instance, 
Lactobacillus salivarius can inhibit the growth of Vibrio spp. within 
pike-perch larvae, as well as improve ossification and survival 
rates (Ljubobratovic et al., 2020). However, while different sources 
of probiotics have shown consistent and favorable results in higher 
vertebrates, the effects on the gut of fish are variable. Meanwhile, 
the use of host-associated probiotics as feed additives has a 
positive effect on fish farming, as reported by Tarkhani et  al. 
(2020). Therefore, probiotic bacteria isolated from the host gut 
show greater potential to replace antibiotics than 
non-specific probiotics.

In recent years, increasing evidence has shown that the gut 
microbiota plays a key role in maintaining health and controlling 
disease, regulating many important physiological functions of the 
host (Tran et  al., 2018; Tang et  al., 2021). Lactic acid bacteria 
(LAB) and their metabolic derivatives can improve the gut 
microbiota and enhance the host’s immunity against external 
harmful substances and pathogenic bacteria (Wang et al., 2021). 
For instance, feeding crucian carp Lactococcus lactis was effective 
as a treatment for intestinal inflammation and mucosal barrier 
function damage caused by Aeromonas hydrophila (Dong et al., 
2018). Lactobacillus rhamnosus recovered the growth of zebrafish 
larvae under perfluorobutanesulfonate exposure via its antioxidant 
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properties, reshaping the gut microbiota, and enhancing the 
production of bile acids (Sun et  al., 2021). Previous studies 
reported that the gut microorganisms and antioxidant system have 
synergistic effects against harmful external substances in animals 
(Uchiyama et  al., 2022). Interestingly, LAB was reported to 
be involved in the activation of antioxidizing systems in animals, 
promoting their adaptation to external changes (Han et al., 2022). 
However, the effect of LAB on S. grahami is not reported. This 
study is the first to investigate the intestinal microbial changes in 
S. grahami after feeding with host-associated LAB.

Lactobacillus salivarius, is a host-associated bacterium 
previously isolated from the gut of S. grahami (Xin et al., 2022). 
We have isolated and obtained five potential probiotics with high 
antibacterial activity (i.e., two Bacillus subtilis, two Lactobacillus sake 
and one L. salivarius) from the gut of S. graham. Particularly, the 
bacteriocin LSP01 produced by L. salivarius 01 exhibited the best 
antibacterial activity against A. hydrophila. L. salivarius inhibits the 
growth of pathogens by disrupting cellular activity and inducing 
pore size formation in A. hydrophila cells. Therefore, in this study, 
L. salivarius 01 was used to explore the probiotic potential. The 
whole genome was sequenced to evaluate the safety and potential 
properties of the strain at the genetic level. In addition, the effect of 
L. salivarius on the antioxidant capacity of the hepar and intestinal 
microbial populations of S. grahami was assessed using feeding 
experiments. As a result, L. salivarius was confirmed as a safe and 
effective potential probiotic that can increase the antioxidant 
capacity and improve the gut microbiota of S. grahami.

Materials and methods

Bacterial strains and culture conditions

Lactobacillus salivarius S01 is a host-associated potential 
probiotic isolated from the gut of S. grahami (bred in captivity) 
and preserved in Engineering Research Center for Replacement 
Technology of Feed Antibiotics of Yunnan College (Xin et al., 
2022). For routine use, the strains were grown and subcultured in 
MRS broth at 37°C for 24 h.

Whole genome sequencing

The total genomic DNA of L. salivarius S01 was extracted using 
the sodium dodecyl sulfate (SDS) method combined with a 
purification column. Total genomic DNA was sequenced using an 
ONT PromethION sequencer (Oxford Nanopore Technologies, 
Oxford, UK). For filtering, low-quality and short-length reads were 
discarded from the raw reads. The reads were assembled using 
Unicycler V0.4.9 software (Wick et al., 2017). The annotation of the 
assembled genome of L. salivarius S01 was performed using Prokka 
V1.12 software (Seemann, 2014). RepeatMasker V4.1.0 software 
was used to predict repeat sequences in the genome of L. salivarius 
S01. The prediction of pseudogenes of L. salivarius S01 was 

performed using Pseudofinder software. MinCED V0.4.2 software 
was used to predict the sequence of Clustered Regularly Interspaced 
Palindromic Repeats (CRISPRs) on the chromosome of L. salivarius 
S01. Genomic islands in the genome of L. salivarius S01 were 
predicted by IslandViewer 4 (http://www.pathogenomics.sfu.ca/
islandviewer/). The prophage in the genome of L. salivarius S01 was 
predicted using PhiSpy (https://github.com/linsalrob/PhiSpy).

The predicted gene sequences were compared using several 
functional databases, including Cluster of Orthologous Groups 
(COG; Tatusov et al., 2000), Kyoto Encyclopedia of Genes and 
Genomes (KEGG; Kanehisa et al., 2004), Swiss-Prot, and RefSeq, 
using BLAST+ (2.5.0+). The gene function annotation results were 
obtained, followed by gene function annotation analysis, such as 
COG and KEGG metabolic pathway enrichment analysis and 
gene ontology (GO) function enrichment analysis. Finally, the 
secondary metabolism gene cluster was analyzed using 
antiSMASH (v5.2.0), while the bacteriocin synthesis gene cluster 
of the strain was analyzed using BAGEL4 (Blin et al., 2019).

The presence of antimicrobial resistance genes was compared 
using the comprehensive antibiotic resistance database (CARD) 
(McArthur et al., 2013). The CARD database is constructed as the 
Antibiotic Resistance Ontology (ARO) taxonomic unit to correlate 
information on antibiotic modules and their targets, gene 
variants, etc.

Antibiotic sensitivity

Standard disc diffusion was performed for antibiotic 
susceptibility testing according to the Clinical and Laboratory 
Standards Institute (CLSI; Keter et al., 2022). L. salivarius S01 were 
cultured on MRS broth for 24 h to determine the antibiotic 
sensitivity of selected strains to antibiotic (i.e., tetracycline, 
erythromycin, penicillin, ampicillin, and chloramphenicol). The 
experiment was repeated three times independently.

Tolerance To gastrointestinal conditions

An in vitro artificially simulated gastrointestinal juices model 
was applied, following the previously reported methods, with 
minor modifications (Li et al., 2020). The simulated gastric juice 
was prepared by adding 10 g/l pepsin (Solarbio, Beijing, China) to 
16.4 ml of sterile 0.1 mol/l HCL, filtered through a membrane with 
0.22 μm pore, and adjusted to pH 2.0, 3.0, and 4.0 using sterile 
1 mol/l NaOH. The simulated intestinal juice was prepared by 
adding 10.0 g/l trypsin (Solarbio, Beijing, China) and 6.8 g of 
KH2PO4 to 500 ml of sterile ddH2O. The pH was adjusted to pH 
6.8 using 1 mol/l NaOH and filtered through a membrane with 
0.22 μm pore. One milliliter of L. salivarius S01 (approximately 
107–108) suspension was inoculated into 5 ml of simulated gastric 
juice at pH 2.0, 3.0, and 4.0, and incubated for 3 h at 37°C. One 
milliliter of L. salivarius S01 (approximately 107–108) suspension 
was also inoculated into 5 ml of simulated intestinal juice for 4 h. 
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Then, the bacterial solutions were cultured on MRS agar for 24 h 
to determine the tolerance of selected strains to simulated 
gastrointestinal juice: Survival rate (%) = lg N1 / lg N2 × 100%, 
where N2 is the total viable counts of the selected strains at 0 h and 
N1 is the total viable counts after exposure to the simulated 
gastrointestinal juice for different time periods.

Fish husbandry and experimental 
methods

The S. grahami specimens used for the experiments were 
donated by Yiliang jianzhiyuan Food Co., Ltd. (Kunming, 
Yunnan). After one week of quarantine, a total of 60 healthy, 
non-injured, and undeformed S. grahami fingerlings (8.0 ± 1.5-mm 
long) were randomly assigned to six continuously aerated 300-L 
aquariums, equipped with temperature and oxygen supply 
control devices.

The experiment was comprised of two groups: the control group 
(n = 3, 10/cylinder), named as LSC, which was fed basal feed (Satura, 
Kunming, China), and the treatment group (n = 3, 10/cylinder), 
named as LSM, which was fed the basal diet supplemented with 
L. salivarius (approximately 1 × 107 CFU/g). All samples (60) were 
treated. L. salivarius S01 was inoculated in MRS broth with 1% pitch 
rate and incubated at 37°C for 24 h. Afterwards, bacterial cultures 
were centrifuged at 4,000 × g for 10 min, supernatant was discarded, 
and cell pellet was resuspended in PBS solution. L. salivarius S01 was 
mixed with the diet and homogenized, and pelleted using oscillating 
granulator (Daxiang, Guangzhou, China) with 125 μm mesh. At last, 
mixed diet was dried at room temperature in a ventilated room. 
Dried pellets for plate-coating inspection. L. salivarius S01 
(approximately 1 × 107 CFU/g) was measured by viable bacteria. The 
specimens were fed a quantity of 3% of their body weight twice a day 
for 28 consecutive days. The light–dark cycle ratio was 14 h: 10 h, 
and all water quality standards, including temperature (18 ± 0.5°C), 
pH (8.0 ± 0.5), and DO (8.5 ± 0.12 ppm), were monitored daily. Half 
of the water in the tank was replaced each day to ensure the best 
growth conditions for the fish. The experimental animals were 
processed in accordance with the recommendations from the Guide 
for the Care and Use of Laboratory Animals. The experimental 
protocol was approved by the Ethics Committee of Research of 
Kunming University of Science and Technology.

Sampling for analysis

At the end of the feeding experiment and after fasting for 24 h, 
three fish were randomly selected from the control and 
experimental groups, respectively, and the tissue samples were 
collected. The hepar of S. grahami were collected by dissection, 
then triturated in pre-cooled homogenization medium (0.01 M 
Tris–HCl, 0.001 M EDTA-Na2, and 0.01 M sucrose, pH 7.4). 
S. grahami hepar were collected by autopsy and ground in 
pre-chilled homogenizing medium (0.01 M Tris–HCl, 0.001 M 

EDTA-Na2, and 0.01 M sucrose, pH 7.4), and centrifuged (4,000 × g 
for 10 min at 4°C). The resulting supernatant was collected and 
stored at −80°C for subsequent analysis of hepatic antioxidant 
enzyme activity. Gut samples from the same fish were collected, 
placed in Eppendorf tubes, and stored at −80°C.

Hepatic antioxidant enzyme activity 
assay

The supernatant was incubated with the enzyme-substrate and 
read at the indicated wavelength using a UV-8000ST 
spectrophotometer (Shanghai Yuanxi Instruments Co., Ltd.). The 
enzyme activity assay was performed in triplicate. The catalase 
(CAT; E.C.1.11.1.6), superoxide dismutase (SOD; E.C.1.15.1.1), and 
peroxidase (POD; E.C.1.11.1.7) activities and malondialdehyde 
(MDA) levels were determined. Commercial assay kits were 
purchased from Nanjing Jiancheng Institute of Bioengineering 
(Nanjing, China), and all enzyme activity assays were measured, 
according to the kit instructions. CAT activity was measured using 
the CAT Activity Assay Kit (cat. no. A007-1-1). CAT can catalyze the 
decomposition of hydrogen peroxide, and ammonium molybdate 
can quickly prevent the decomposition of hydrogen peroxide. The 
remaining hydrogen peroxide can quickly combine with ammonium 
molybdate to form a pale-yellow complex that can be measured at 
405 nm. SOD activity was measured using a total superoxide 
dismutase (T-SOD) detection kit at 550 nm (hydroxylamine method; 
cat. no. A001-1-2). The change in POD activity was measured using 
a peroxidase assay kit at 420 nm (cat. no. A084-1-1). The MDA levels 
were measured using the Malondialdehyde Assay Kit at 532 nm 
(TBA method) (cat. no. A003-1-1).

Gut microbiota analysis

The fish gut samples were sent to Shanghai Majorbio 
Bio-pharm Technology Co., Ltd. for sequencing. The sequencing 
primers were primer 338F (ACTCCTACGGGAGGCAGCAG) and 
primer 806R (GGACTACHVGGGTWTCTAAT) for amplifying 
the V3-V4 region of 16S rRNA gene. Sequence analysis was 
performed using QIIME 1.7 and FLASH 1.2. QIIME 1.7 was used 
to remove low-quality fragments from the original reads, and 
FLASH 1.2 was used to complete read merging. Operational 
taxonomic units (OTUs) were clustered using Uparse based on the 
threshold of the similarity being above 97%. The RDP classifier 
algorithm was used to compare the 97% similar OTU representative 
sequences with the SILVA database for taxonomic analysis.

Statistical analysis

Gut microbial data validated by multiple comparisons (Knight 
et al., 2018). Student’s t-test (two-tailed test) was used to identify 
significant differences between two groups in phylum and genus 
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level. Multiple testing adjustment of the data by Benjamini-
Hochberg (BH).

All experiments were performed in triplicate, and the results 
were presented as the mean ± standard deviation (SD). 
Independent samples t-test (two-tailed test) was used to evaluate 
between-group variance. One-way ANOVA plus least significant 
difference (LSD) method was employed to analyze multi-group 
significance. p-values <0.05 were considered significant.

Results

Draft genome sequencing, assembly, and 
mapping

A genome circle map drawn by integrating the predicted 
genome information annotation is shown in Figure  1. The 
innermost circle shows the coding regions (CDS) and non-coding 
RNA regions (rRNA and tRNA) of the genome. The whole 
genome sequencing results showed that the genome size of 
L. salivarius S01 was 1,737,623 bp with a GC content of 33.09%. A 
total of 1753 coding DNA sequences (CDSs), 22 rRNA operons 
(including 7 23S rRNA, 7 16S rRNA, 8 5S rRNA), and 78 transfer 
RNA (tRNA) genes were found in the genome of L. salivarius S01. 
In addition, one CRISPR sequence and four gene islands 
were predicted.

The CDSs on the chromosome of L. salivarius S01 were 
annotated using the COG database, and the results are shown in 
Supplementary Figure S1. One thousand and five genes were 
annotated into 21 functional categories through the COG 
database. The major COGs were translation/ribosomal structure 
and biogenesis (167), amino acid transport and metabolism (106), 
carbohydrate transport and metabolism (88), replication/
recombination/repair (78), and cell wall/membrane/envelope 
biogenesis (72). Furthermore, GO analysis revealed that 470 genes 
were classified into biological processes, 991 genes were classified 
into cellular components, and 1,037 genes were associated with 
molecular functions (Figure S1). One thousand and hundred 
ninety genes involved in KEGG metabolic pathway analysis were 
classified into five major categories: Metabolism class (866), 
followed by Genetic Information Processing (183), Environmental 
Information Processing (112), Organismal Systems (15), and 
Cellular Processes (14; Supplementary Figure S2).

Genomic characterization of probiotic 
traits

Genes for the following probiotic features were examined: 
tolerance to stress conditions, aid in adhesion and colonization, 
antioxidative stress immunity, and protective repair of DNA and 
proteins. The genomic analysis detected 21 genes encoding proteins 
that may be related to the tolerance of digestive enzymes, bile salts, 
and acidic environments. Furthermore, genes related to immune 

response against oxidative stress, and protein and DNA molecular 
repair protection were also present in the genome (Table 1).

Genomic characterization of 
antibacterial substances production

Three gene clusters related to antibacterial substances 
synthesis were predicted in the L. salivarius S01 genome (Figure 3). 
The antiSMASH database predicted the existence of a polyketide 
synthase (T3PKS) synthesis gene cluster in the genome. Based on 
BAGEL4 platform, the results showed that the genome contained 
two bacteriocin synthesis gene clusters, as predicted: Enterolysin 
A as the core gene, including one immune gene and multiple 
transporter genes, and sakacin_G_skgA1 (class II bacteriocin) as 
the core gene, including a bacteriocin immune protein gene and a 
replication initiation protein gene.

Resistance genotypes and phenotypes

The predicted results of antibiotic resistance genes are shown 
in Table 2. The identities of tet (L) and ErmC were 98.03 and 
93.85%, respectively; The identities of Escherichia coli EF-Tu 
mutants conferring resistance to kirromycin and Staphylococcus 
aureus rpoB mutants conferring resistance to rifampicin were 73.03 
and 72.14%, respectively; The identities of other antibiotic 
resistance genes was less than 70%.

Antibiotic sensitivity tests showed that Lactobacillus salivarius 
S01 had good antibiotic sensitivity (Table 3). L. salivarius S01 were 
sensitive to some antibiotics (penicillin, ampicillin, and 
chloramphenicol); L. salivarius S01 were intermediate sensitive to 
tetracycline. L. salivarius S01 were resistant to erythromycin.

Survival under simulated gastrointestinal 
conditions

The simulated intestinal and gastric juices tolerance of 
L. salivarius S01 at pH 2.0, 3.0, and 4.0 are shown in Table 4. The 
results showed that, under simulated gastric juice treatment, the 
survival rate of the selected strains gradually decreased at lower 
pH, but maintained a high survival rate (> 79.84%) at all pH 
conditions. Under the simulated intestinal juice treatment, the 
survival rate of the strain was 94.04%, indicating that the strain 
adapted well to intestinal conditions.

Hepatic antioxidant enzyme activities 
altered By L. salivarius supplementation

As shown in Table 5, the levels of hepatic SOD, CAT, and POD 
in the experimental group fed with L. salivarius S01 were 
significantly higher than those in the control group (p < 0.05). 
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Compared with the control, the SOD, CAT, and POD enzyme 
activity of LSM increased significantly to 25.87 ± 2.21 U/g (1.5-
fold), 124.15 ± 3.91 U/g (1.8-fold), and 577.67 ± 40.22 U/g (2.0-
fold), respectively (p < 0.05). The MDA levels were significantly 
decreased by 43.04% in LSM groups compared with control 
groups (p < 0.05).

Effects of L. salivarius S01 On fish gut 
microbiota

After eliminating low-quality reads from the raw sequences 
of six intestinal bacterial samples of S. grahami, a total of 
563,372 high-quality reads were obtained. These were then 
clustered into 572 OTUs based on the 97% 16S rRNA 
sequence similarity.

Alpha diversity indices were used to evaluate the richness 
and diversity of the gut microbiota in the experimental and 
control groups, as shown in Figure  4. Some difference was 

observed among the indices reflecting community richness 
(including Chao1 and Ace) and the indices reflecting 
community diversity (including Shannon and Simpson) 
between the two groups.

The beta diversity of the samples was analyzed using principal 
component analysis (PCoA) and non-metric multidimensional 
scaling analysis (NMDS). The PCoA and NMDS results showed 
that the six samples were clearly divided into two clusters, 
consistent with the grouping (Figure  5). The reliability of the 
model was reflected by the stress value, equal to 0.0  in 
NMDS. These results demonstrated that while the bacterial 
supplementation did not change the richness of the gut microbiota, 
the community data was significantly altered compared with the 
control group. At the phylum level, the two groups of gut microbes 
were mainly composed of Proteobacteria, Firmicutes, 
Actinobacteriota, and Bacteroidota, among others (Figure  6). 
Multiple testing adjustment of the gut microbial data by 
Benjamini-Hochberg (BH) method. The corrected p-values for all 
the phylum level are 0.4206. In the control group, Proteobacteria 

FIGURE 1

Circular genome map of L. salivarius S01.
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was the most dominant bacterial phylum, accounting for 93.86% 
of all OTUs, followed by Firmicutes, Actinobacteriota, and 

Bacteroidota, accounting for 3.91, 1.55, and 0.56%, respectively. 
Compared with the control, the order of the proportion of 

FIGURE 2

Distribution of genes across COG functional categories in the genome of L. salivarius S01.

TABLE 1 Probiotic-related genes present in L. salivarius S01.

Gene Putative function Locus tag

Stress resistance genes

dnaJ Temperature tolerance M9Y03_02835

htpX Temperature tolerance M9Y03_01245

dnaK Temperature tolerance M9Y03_02830

nhaC_1 Acid resistantce M9Y03_04420

nhaC_2 M9Y03_04070

DNA and protein protection and repair

clpb Persistence capacity in vivo M9Y03_04110

clpp M9Y03_05525

msrB Persistence capacity in vivo M9Y03_00160

Adhesion ability

dnaK Mucin binding M9Y03_02830

gndA Promotes adherence to epithelial cells M9Y03_03165

eno Collagen binding M9Y03_05500

Immunomodulation

dnaK Protection against osmotic shock M9Y03_02830

trxA NADPH-depended oxidoreductase activity M9Y03_06945

trxB NADPH-depended oxidoreductase activity M9Y03_08055
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FIGURE 3

Prediction of antimicrobial-associated protein structures in the genome of L. salivarius S01. (A) Synthetic gene cluster of polyketide synthase 
(T3PKS; based on antiSMASH database prediction). (B) Two bacteriocin (region_1: Enterolysin_A and region_2: Sakacin_G) synthesis gene clusters 
(predicted based on the BAGEL4 database).

TABLE 2 Antimicrobial resistance genes present in L. salivarius S01.

Best_Hit_ARO Best_Identities Drug Class

tet(L) 98.03% tetracycline antibiotic

ErmC 93.85% macrolide antibiotic; 

lincosamide antibiotic; 

streptogramin antibiotic

Escherichia coli EF-Tu 

mutants conferring 

resistance to kirromycin

73.03% elfamycin antibiotic

Staphylococcus aureus 

rpoB mutants conferring 

resistance to rifampicin

72.14% rifamycin antibiotic

dominant bacteria in the experimental group did not change. 
However, in the experimental group, the proportion of 
Proteobacteria decreased to 63.78% of the control group, 
accounting for 59.86%, and the proportion of Firmicutes increased 
to 8.1-fold that of the control group, accounting for 31.64%. 
Compared with the control group, the proportions of the 
Actinobacteriota and Bacteroidota phyla increased to varying 
degrees, accounting for 3.95 and 3.82% of the bacterial microbiota, 
respectively.

At the genus level, we mapped the top 10 dominant bacterial 
genera (Figure  7). Multiple testing adjustment of the gut 
microbial data by Benjamini-Hochberg (BH) method. The 
corrected p-values for the top 10 dominant bacterial genera are 
0.4269. Among them, the proportion of Aeromonas varied 
between the control and experimental group. The proportion 
varied from 58.23 to 6.72%. The differences of the other nine 
genera between the control and experimental groups were not 
significant. Burkholderia-Caballeronia-Paraburkholderia, 
Blautia, Ralstonia, Bifidobacterium, and Subdoligranulum 
increased by 10.75-, 6.30-, 12.32-, 4.72-, and 6.45-fold, 
respectively, while Candidatus_Bacilloplasma and Acinetobacter 

TABLE 3 Antibiotic sensitivity of L. salivarius S01 strains to resistance 
phenotypes.

Disk content 
(μg)

Antibiotic 
sensitivity

Tetracycline 30 I

Erythromycin 15 R

Penicillin 10 S

Ampicillin 30 S

chloramphenicol 30 S

“S”: Susceptible; “I”: Intermediate; “R”: Resistant.
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increased from a negligible amount to 2.82 and 2.68%, 
respectively. Among them, the microbiota proportion of 
unclassified Enterobacteriaceae and Gammaproteobacteria 
decreased from 25.74 and 2.10% to a negligible amount. These 
results indicate that after treatment with L. salivarius S01, the 
proportion of dominant bacteria in the gut microbiota was 
decreased, while the overall microbiota diversity increased.

Association of gut bacteria genus with 
hepatic antioxidant enzyme

To determine the gut bacteria genus involved in the antioxidant 
capacity observed in the host, we performed correlation analysis 
between gut bacterial genus and hepatic antioxidant enzyme 
activity (Figure  8). Shewanella and unclassified_f__
Enterobacteriaceae were positively associated with the MDA 
contents of the hepar. Bifidobacterium, Burkholderia-Caballeronia-
Paraburkholderia, Ralstonia, Ruminococcus, Rikenellaceae_RC9_
gut_group, Acinetobacter, Faecalibacterium, and Eubacterium_
hallii_group were positively associated with the CAT contents of the 
hepar. Burkholderia-Caballeronia-Paraburkholderia and Ralstonia 
were negatively associated with the MDA contents of the hepar. 
Aeromonas and Shewanella were negatively associated with the 
CAT contents of the hepar. Unclassified_f__Enterobacteriaceae and 

unclassified_c__Gammaproteobacteria were negatively associated 
with the POD contents of the hepar.

Discussion

Microecological preparations can improve the immunity of 
the host, and other beneficial characteristics, such as a lack of drug 
resistance, and no toxic side effects (Mingmongkolchai and 
Panbangred, 2018). At present, probiotic microecological 
preparations are widely used in aquaculture (Gopi et al., 2022; Zhu 
et al., 2022). However, there is no standard for the selection of 
probiotics for use in microecological preparations. Host-associated 
probiotics isolated from the hosts may be have reportedly the most 
beneficial effects (Giri et al., 2014; Hao et al., 2017; Sharifuzzaman 
et  al., 2018; Zuo et  al., 2019). In this study, L. salivarius S01, 
originally isolated from the gut of S. grahami, was used as a feed 
additive in S. grahami. According to our previous study, a 
bacteriocin produced by L. salivarius S01 exhibited excellent 
inhibition effects against 12 common pathogens (both fish- and 
food-derived; Xin et  al., 2022). This phenomenon was also 
confirmed by the prediction results of the antiSMASH secondary 
metabolite gene cluster and the BAGEL4 bacteriocin synthesis 
gene cluster prediction. The synthetic gene cluster of T3PKS was 
identified in the antiSMASH database. T3PKS expressed by the 
gene cluster can assist in the production of polyketides. Polyketides 
are a class of substances with broad antibacterial, anticancer, 
antioxidant, antiparasitic and anti-inflammatory activities 
(Bandgar et al., 2010; Mao et al., 2016; Patil et al., 2016; Vogel et al., 
2008). Two bacteriocin gene clusters, Enterolysin_A and 
sakacin_G_skgA1, were detected in the BAGEL4 database. 
Enterolysin_A gene cluster encodes a cell wall degrading 
bacteriocin, a class III bacteriocin (Dos Santos et al., 2021; Nilsen 
et al., 2003). The sakacin G bacteriocin encoded by the sakacin_G_
skgA1 gene cluster can lyse sensitive cells, leading to the leakage 
of enzymes and DNA, thereby inducing apoptosis in bacteria 
(Todorov et al., 2011). In addition, biochemical experiments and 
genomic analysis showed that Lactobacillus salivarius S01 had 
good antibiotic sensitivity. Therefore, L. salivarius S01 show great 
potential for use in the control of pathogens in aquaculture.

L. salivarius exhibits good resistance to acid and bile salt, 
adjusting the gut microecological balance by changing the ratio of 
symbiotic LAB and other bacteria, as well as reducing the gut pH 
(Chaves et al., 2017; Messaoudi et al., 2013). Meanwhile, L. salivarius 
has immunomodulatory, anti-inflammatory, and anti-infectious 
properties (Langa et al., 2012), it also can stimulate Caco-2 cells to 
inhibit IL-8 production, as well as promote the recovery of gut 
epithelial cells (Arribas et al., 2012). The tolerance of L. salivarius to 
acidic conditions plays a key role in its colonization of the intestine, 
thereby ensuring its probiotic potential. In this study, the results of 
the in vitro assay in a simulated gastrointestinal juices environment 
demonstrated that L. salivarius S01 was able to tolerate the extreme 
conditions of low pH and proteases. Meanwhile, genes associated 
with probiotic potential, such as environment resistance, adhesion 

TABLE 4 Survival of L. salivarius S01 in simulated gastric and intestinal 
juices environments.

Classification Mean of viable
count (lg CFU/

mL) ± SD

Survival
(%)

Time of exposure
(h)

0 3 4

Simulated gastric 

juice (pH = 2.0)

7.54 ± 0.04 6.02 ± 0.29 —— 79.84

Simulated gastric 

juice (pH = 3.0)

6.24 ± 0.29 —— 82.76

Simulated gastric 

juice (pH = 4.0)

6.56 ± 0.21 —— 87.00

Simulated intestinal 

juice

8.24 ± 0.12 —— 7.75 ± 0.05 94.05

TABLE 5 Effect of L. salivarius S01 on the activity of antioxidant 
enzymes (SOD, CAT, and POD) and the MDA levels in the S. grahami 
hepar.

LSC LSM

SOD (U/g) 17.68 ± 1.70a 25.87 ± 2.21b

CAT (U/g) 68.21 ± 4.52a 124.15 ± 3.91b

POD (U/g) 289.83 ± 31.79a 577.67 ± 40.22b

MDA (nmol/mL) 61.90 ± 2.92a 35.26 ± 11.71b

Values marked with superscripts with different letters are significantly different (P < 0.05).
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A B C D

FIGURE 4

Alpha diversity of gut microbiota. (A) Shannon index. (B) Simpson index. (C) Ace index. (D) Chao1 index. *p < 0.05.

A B

FIGURE 5

Beta diversity of gut microbiota. (A) Principal coordinates analysis (PCoA). (B) Non-metric multidimensional scaling (NMDS).

capacity, protective repair of DNA and proteins, and antioxidant 
immunity, were identified in the genome. Furthermore, previous 
studies reported that the antioxidant capacity of animals is 
important because the body tends to generate reactive oxygen 
species (ROS) through normal cellular metabolism and in response 
to factors such as environmental changes and diet (Sagada et al., 
2021). Hepatic antioxidant capacity (e.g., SOD, CAT, and POD) is 
a way of verifying the health condition and nutritional status of fish, 
which can regulate the balance between oxidants like ROS and 
antioxidants to avoid oxidative stress (Birben et al., 2012). Also, 
MDA is an important product of lipid peroxidation, and the level 
of MDA is a measure of the degree of oxidative damage 
(Silambarasan et al., 2019). In this study, diet supplemented with 
L. salivarius S01 significantly increased the antioxidant enzyme 

activity (SOD, CAT, and POD) of S. graham. Meanwhile, the 
significantly reduced malondialdehyde levels also confirmed the 
enhanced repair of oxidative damage by the probiotic-induced 
antioxidant enzyme activity. Thus, L. salivarius S01 was able to enter 
the intestine and enhance host immunity, which is necessary for 
probiotics to exert their beneficial effects.

The gut is home to the densest microbial populations of 
organisms, and plays an important role in many physiological 
functions, such as host metabolism and nutrition (Devillard 
et al., 2007). Higher gut microbial diversity provides the host 
with a higher tolerance to pathogens (Harrison et al., 2019). 
In this study, the Shannon, Chao1, and Ace indices of the gut 
microbiome of S. graham were all found to increase after 
feeding a diet supplemented with L. salivarius, indicating that 
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L. salivarius can promote the gut microbial diversity and 
richness of the host, consistent with the alterations caused by 

other LAB as dietary supplements on the host gut microbiota 
(Ljubobratovic et  al., 2017; Lukic et  al., 2020). Moreover, 

A B

FIGURE 6

Composition of the phylum of the gut microbiota in S. grahami. (A) Relative abundance of the first five phyla. (B) Comparative differences at the 
phylum level of the gut microbiota. *p < 0.05.

A

B

FIGURE 7

Composition of the genus of the gut microbiota in S. grahami. (A) Relative abundance of the first 17 genera. (B) Comparative differences at the 
genus level of the gut microbiota. *p < 0.05.

https://doi.org/10.3389/fmicb.2022.1014970
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Xin et al. 10.3389/fmicb.2022.1014970

Frontiers in Microbiology 12 frontiersin.org

FIGURE 8

Heatmap of correlation coefficient between gut microbiota 
and antioxidant enzymes activity. “+” indicates a positive 
correlation (p  < 0.05) and “-” indicates a negative correlation 
(p  < 0.05).

previous studies have reported that changes in gut microbiota 
may be a cause of changes in host immunity (Messaoudi et al., 
2013; Chaves et al., 2017; Foysal and Gupta, 2022). In this 
study, it is important to analyze the changes of specific 
microbiota in the gut microbiota. At the phylum level, 
we found that the abundance of the most dominant phylum 
Proteobacteria decreased after feeding a diet supplemented 
with L. salivarius. Elevated proportions of proteobacteria in 
the gut of aquatic animals increase the risk of bacterial 
infections caused by Eriocheir sinensis and Litopenaeus 
vannamei (Ding et al., 2017; Wang et al., 2019). The relative 
abundance of Firmicutes, Actinobacteria, and Bacteroidetes 
increased to different degrees after feeding L. salivarius 
compared with the control group. Firmicutes can promote the 
decomposition of fiber and enable the host to obtain nutrition 
from fibrous feed (Brulc Jennifer et al., 2009). The main role 
of Bacteroidetes is to degrade carbohydrates (Spence et al., 
2006), and the ratio of Bacteroidetes to Firmicutes in the 
animal’s gut reflects the organism’s ability to absorb nutrients. 
In addition, the main bacteria (including Bacillus, 
Lactobacillus, and Lactococcus) in the Firmicutes phylum can 
convert carbohydrates into lactic acid, creating acidic 
environments, thereby inhibiting pathogens, and protecting 
the gut (Messaoudi et al., 2013; Chaves et al., 2017; Foysal and 
Gupta, 2022). Actinobacteria can produce a variety of 
compounds, including antibiotics, enzymes, enzyme 
inhibitors, signalling molecules, and immunomodulators 
(Ul-Hassan and Wellington, 2009). As such, a higher 
abundance of Actinobacteria in the fish gut can improve food 
digestion and growth performance in S. grahami. 
Furthermore, the abundance of potential pathogens 
Aeromonas in the gut tract of the S. grahami was found to 
be reduced, while the abundance of the potential beneficial 

microorganisms Bifidobacterium increased, after feeding with 
L. salivarius S01 supplements. Aeromonas is a common 
zoonotic pathogen found in fish that can cause systemic 
sepsis and local infections (Pereira et  al., 2022). On the 
contrary, Bifidobacterium is an important indicator of good 
health, with nutritional, anti-tumor, and anti-aging potential, 
and plays an important role in regulating the balance of gut 
microbiota and promoting normal gut development (Di 
Pierro et al., 2020). Unfortunately, corrected p-values show a 
certain probability of false positive gut microbial results. In 
addition, correlation analysis showed that Aeromonas was 
negatively correlated with antioxidant capacity in S. grahami, 
while Bifidobacterium was positively correlated with 
antioxidant capacity. Higher levels of hepatic antioxidant 
enzyme activity and changes in certain gut microorganisms 
suggested that L. salivarius S01 supplements may reduce the 
probability of disease by enhancing the immunity of 
S. grahami against the invasion of external harmful 
substances. Based on genome-wide data of L. salivarius S01 
and the bioinformatic analysis of the gut microbiota of 
S. grahami, the mechanisms by which L. salivarius S01 
promotes host health have been elucidated. These results 
indicate that L. salivarius can be used as a potential probiotic 
and an antimicrobial food additive to replace chemical drugs 
and antibiotics in aquaculture, promoting host health and 
fostering the development of greener aquaculture practices. 
However, this study still has some drawbacks, but there are 
also worthwhile points to be considered.

Conclusion

The results presented in this study demonstrated that the 
antibacterial activity of L. salivarius S01, previously isolated 
from the gut tract of S. grahami (Xin et  al., 2022),  
may originate from the antibacterial substances produced  
by the bacteria, such as T3PKS, Enterolysin_A, and 
sakacin_G. Biological. Also, L. salivarius S01 showed a  
better antibiotic sensitivity. Function and genetics analysis 
related to potential probiotics showed that L. salivarius S01 
could cope with the pressure of the natural environment, 
which may contribute to its colonization in the gut tract. 
Moreover, diet supplementation with L. salivarius S01 
significantly altered the gut microbial diversity and hepatic 
antioxidant enzyme activities of S. grahami. Using L. salivarius 
S01 as a diet additive markedly reduced the abundance of 
potential pathogens and increased the abundance of potential 
beneficial microorganisms in the gut of S. grahami. 
Furthermore, supplementation was also found to increase the 
activity of antioxidant enzymes in the hepar and reduce the 
incidence of oxidative damage in the host. In summary, this 
study provides both a theoretical and experimental basis for 
the application of L. salivarius S01 as potential probiotics 
in aquaculture.
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