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 ABSTRACT  Cholangiocarcinoma (CCA) is a hepatobiliary malignancy exhibiting high incidence in 

countries with endemic liver-fl uke infection. We analyzed 489 CCAs from 10 coun-

tries, combining whole-genome (71 cases), targeted/exome, copy-number, gene expression, and DNA 

methylation information. Integrative clustering defi ned 4 CCA clusters—fl uke-positive CCAs (clusters 

1/2) are enriched in  ERBB2  amplifi cations and  TP53  mutations; conversely, fl uke-negative CCAs (clusters 

3/4) exhibit high copy-number alterations and  PD-1 / PD-L2  expression, or epigenetic mutations ( IDH1/2, 

BAP1 ) and  FGFR / PRKA -related gene rearrangements. Whole-genome analysis highlighted  FGFR2  3′

untranslated region deletion as a mechanism of  FGFR2  upregulation. Integration of noncoding promoter 

mutations with protein–DNA binding profi les demonstrates pervasive modulation of H3K27me3-associ-

ated sites in CCA. Clusters 1 and 4 exhibit distinct DNA hypermethylation patterns targeting either CpG 

islands or shores—mutation signature and subclonality analysis suggests that these refl ect different 

mutational pathways. Our results exemplify how genetics, epigenetics, and environmental carcinogens 

can interplay across different geographies to generate distinct molecular subtypes of cancer. 

  SIGNIFICANCE:  Integrated whole-genome and epigenomic analysis of CCA on an international scale 

identifi es new CCA driver genes, noncoding promoter mutations, and structural variants. CCA molecu-

lar landscapes differ radically by etiology, underscoring how distinct cancer subtypes in the same 

organ may arise through different extrinsic and intrinsic carcinogenic processes.  Cancer Discov; 7(10); 

1116–35. ©2017 AACR.        
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INTRODUCTION

Cholangiocarcinoma (CCA) is the second most common 
hepatobiliary malignancy, accounting for 10% to 20% of pri-
mary liver cancers (1). The highest rates of CCA are in South 
East Asia (Northeast Thailand, Cambodia, and Laos), where 
>8,000 cases are diagnosed annually due to infection by liver 
flukes such as Opisthorchis viverrini and Clonorchis sinensis (2). 
CCA is considered relatively rare in Western countries (<6 
per 100,000 population) where risk factors such as primary 
sclerosing cholangitis, hepatolithiasis, and choledochal cysts 
predominate (3). However, the incidence of intrahepatic CCA 
in the United States appears to be increasing (1).

Current 5-year survival rates for CCA after surgery and 
chemotherapy remain poor (<20%, ref. 4), and clinical trials 
evaluating targeted therapies in unselected CCA populations 
have shown minimal benefits (5). Existing CCA classifica-
tion systems are primarily based on either anatomic location 
(intrahepatic, perihilar, and distal) or pathologic features 
(cirrhosis, viral hepatitis, and primary sclerosing cholangi-
tis), which do not provide insights into mechanisms of CCA 
tumorigenesis, nor potential targets for therapy. Although 
previous exome-sequencing studies by our group and others 
have revealed a complex CCA mutational landscape (6–8), no 
study to date has compared fluke-positive and fluke-negative 
CCAs at the whole-genome level, nor fully explored the extent 
and contribution of structural variants and noncoding regu-
latory mutations to CCA pathogenesis. Little is also known 
about epigenetic differences between fluke-positive and fluke-
negative CCAs.

Here, on behalf of the International Cancer Genome Con-
sortium, we report an integrated genomic, epigenomic, and 
transcriptomic analysis of CCA involving nearly 500 CCAs 
from 10 countries. Comprehensive integrative clustering 
revealed 4 CCA clusters likely driven by distinct etiologies, 
with separate genetic, epigenetic, and clinical features. Our 
analysis uncovered new driver genes (RASA1, STK11, MAP2K4, 
and SF3B1) and structural variants [FGFR2 3′ untranslated 
region (UTR) deletion]. Within the noncoding genome, we 
observed a significant enrichment of promoter mutations 
in genes regulated by epigenetic modulation, uncovered 
through a novel analysis framework incorporating experi-
mentally derived protein–DNA binding affinities and path-
way information. Strikingly, we found that 2 of the CCA 
clusters displayed distinct patterns of DNA hypermethyla-
tion enriched at different genomic regions (CpG islands vs. 
shores), demonstrating for the first time the existence of dis-
tinct DNA methylation subgroups of CCA. We propose that 
tumors from these two subtypes may have arisen through dis-
tinct mechanisms of carcinogenesis, driven by either extrinsic 
carcinogenic agents or intrinsic genetic insults.

RESULTS

CCA Whole-Genome Sequencing and  
Integrative Clustering

Whole-genome sequencing (WGS) was performed on 71 
CCA tumors and nonmalignant matched tissues, including 
both fluke-associated (Fluke-Pos, 22 O. viverrini, and 1 C. cin-
ensis samples) and non–fluke-associated cases (Fluke-Neg, 48 

samples). Of these, 27 samples have been previously analyzed 
at the exome level (Supplementary Table S1A and S1B; refs. 
6–8). Sequencing was performed to an average depth of 64.2× 
(median 65.1×; Supplementary Table S1C). We called somatic 
mutations [single-nucleotide variants (sSNV) and short 
insertion-deletions (indel)] using both the Genome Analysis 
Toolkit and MuTect (Supplementary Methods). Orthogonal 
validation resequencing on 97 randomly selected sSNVs and 
85 indels using either Ion Torrent or Sanger technologies 
determined accuracy rates to be 99% for sSNVs and 87% for 
indels. In total, we detected 1,309,932 somatic mutations 
across the 71 tumors, with 4,541 nonsilent sSNVs and 1,251 
nonsilent indels in protein-coding genes. On average, each 
CCA had 82 nonsilent somatic mutations per tumor (median 
47), consisting of 64 nonsilent somatic sSNVs (median 41) 
and 18 indels (median 6). These mutation counts are compa-
rable with those previously observed in genomes from pan-
creatic cancer (74 sSNVs and 5 indels per tumor; ref. 9), liver 
cancer with biliary phenotype (79 sSNVs and 24 indels per 
tumor; ref. 10), and hepatocellular carcinoma (70 sSNVs and 
6 indels per tumor; ref. 11). Three CCAs exhibited exception-
ally high mutation levels (average 5.91 sSNVs/Mb and 24.17 
indels/Mb, vs. 1.39 and 3.72 for other CCAs)—these tumors 
exhibited mutational signatures of microsatellite instability 
(MSI), and 2 of these cases exhibited PolE mutations. Exclud-
ing these 3 hypermutated cases, Fluke-Pos CCAs exhibited 
significantly more somatic mutations compared with Fluke-
Neg CCAs (median 4,700 vs. 3,143 per tumor, P < 0.05, Wil-
coxon rank-sum test).

Previous studies by our group have suggested that genomic 
alterations in CCA may differ according to causative etiology 
(6–8). However, definitive exploration of these differences has 
been missing, due to limitations in sample sizes and genes 
analyzed, reliance on a single genomic platform (exome), and 
lack of whole-genome information. To address these limita-
tions, we assembled a cohort of 489 CCAs (Supplementary 
Table S1A and S1B), including 133 Fluke-Pos (132 O. viverrini 
and 1 C. cinensis samples) and 356 Fluke-Neg cases. Samples 
were analyzed using four different genomic platforms based 
on sample availability. Besides WGS (71 cases), these included 
exome sequencing of 200 cases (previously published; ref. 8), 
high-depth targeted sequencing of 188 cases, SNP array copy-
number profiling of 175 cases, array-based DNA methylation 
profiling of 138 cases, and array-based expression profiling 
of 118 cases. To confirm the applicability of merging differ-
ent data types, we used statistical models to confirm that 
our mutation calls were not biased by differences in sequenc-
ing platforms, and directly confirmed mutation concordance 
by analyzing those samples sequenced on overlapping plat-
forms (Supplementary Methods). Using iClusterPlus, we per-
formed integrative clustering combining data from somatic 
mutations, somatic copy-number alterations (sCNA), mRNA 
expression, and DNA methylation on 94 CCAs where all four 
data types were available. Randomized subsampling cluster-
ing confirmed the robustness of these integrative clusters 
(Supplementary Fig. S1A). To support the reliability of our 
conclusions, reanalysis using an expanded set of integrative 
clustered samples (121 samples), including samples with one 
or more missing platforms while retaining a cluster predic-
tion accuracy of 90%, yielded similar results and associations 
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(Supplementary Fig. S1B; Supplementary Methods). We also 
found that although the most discriminatory clustering was 
achieved by using all available genomic information, cluster-
ing by individual modalities recapitulated some of the inte-
grative clusters, for sCNA, expression, and methylation data 
(Supplementary Fig. S1C; see later section on DNA meth-
ylation). Importantly, integrative clustering performed on 
samples stratified by anatomic location reproduced the origi-
nal clusters within each anatomic site (≥88% concordance; 
Supplementary Fig. S1D), demonstrating that the molecular 
clusters are not simply recapitulating anatomic variation.

Integrative clustering revealed 4 distinct clusters character-
ized by different clinical features and genomic alterations 
(Fig. 1A). Cluster 1 comprised mostly Fluke-Pos tumors, 
with hypermethylation of promoter CpG islands (aberrantly 
methylated above normal level; Supplementary Methods), 
enrichment of ARID1A and BRCA1/2 mutations (P < 0.01 
and P < 0.05, respectively, Fisher exact test), high levels of 
nonsynonymous mutations (P < 0.001, Wilcoxon rank-sum 
test; Supplementary Fig. S2A), and high levels of mutations 
in gene promoters with histone 3 lysine 27 trimethylation 
(H3K27me3) predicted to alter transcription factor binding 
(see later section on somatic promoter mutations). Clus-
ter 2 was characterized by a mix of Fluke-Pos and Fluke-
Neg tumors, with upregulated CTNNB1, WNT5B, and AKT1 
expression (P < 0.05, Wilcoxon rank-sum test, Supplementary 
Fig. S2B) and downregulation of genes involving EIF trans-
lation initiation factors (Supplementary Table S2A). Most 
notably, clusters 1 and 2 were also significantly enriched in 
TP53 mutations and ERBB2 amplifications (P < 0.001 and P < 
0.01, respectively, Fisher exact test) and elevated ERBB2 gene 
expression (P < 0.05, Wilcoxon rank-sum test; Fig. 1A and 
Supplementary Fig. S2C).

In contrast to clusters 1 and 2, clusters 3 and 4 com-
prised mostly Fluke-Neg tumors. Cluster 3 displayed the 
highest level of sCNAs, including enrichment of amplifi-
cations at chromosome arms 2p and 2q (q < 0.05, Fisher 
exact test; Supplementary Table S2B). Analysis of immune 
populations by ESTIMATE revealed that both clusters 2 
and 3 displayed immune cell infiltration (Supplementary 
Fig. S2D), but only cluster 3 exhibited specific upregulation 
of immune checkpoint genes (PD-1, PD-L2, and BTLA; Fig. 
1B and Supplementary Fig. S2E) and pathways related to 
antigen cross-presentation, CD28 co-stimulation, and T-cell 
signal transduction (Supplementary Table S2A). Cluster 4 
was characterized by BAP1, IDH1/2 mutations, FGFR altera-
tions (all P < 0.01, Fisher exact test), and upregulated FGFR 
family and PI3K pathway signatures (Fig. 1A and Supple-
mentary Table S2A). Similar to cluster 1, cluster 4 tumors 
also exhibited DNA hypermethylation—however, rather than 
hypermethylation at CpG islands, cluster 4 hypermethyla-
tion was at CpG promoter shores (see later section on DNA 
methylation).

We sought to relate the CCA clusters to anatomic and clini-
cal features. Clusters 1 and 2 were enriched in extrahepatic 
(consisting of perihilar and distal) tumors, whereas clus-
ters 3 and 4 were composed almost entirely of intrahepatic 
tumors (P < 0.001, Fisher exact test). This was observed in 
both Fluke-Neg and Fluke-Pos tumors, and persisted after 
adjusting for fluke status (P < 0.001, multivariate regression; 

also confirmed in expanded clusters). Other CCA risk factors, 
such as hepatitis B virus (HBV), hepatitis C virus (HCV), and 
primary sclerosing cholangitis (PSC), were present in our 
cohort at frequencies of 10.4%, 2.9%, and 1.0%, respectively. 
Both HBV and PSC were associated with intrahepatic CCA (P 
< 0.05, Fisher exact test; ref. 12).

We further investigated the prevalence of driver genes 
according to anatomic location (among 459 samples with 
sequencing and anatomic location information). BAP1 and 
KRAS were more frequently mutated in intrahepatic cases (q 
< 0.1, Fisher exact test). This was observed in both Fluke-Neg 
and Fluke-Pos tumors and persisted even after adjusting for 
fluke status (q < 0.1, multivariate regression). No additional 
genes were identified as differentially mutated when the extra-
hepatic CCAs were analyzed as perihilar and distal CCAs.

Clinically, patients in clusters 3 and 4 had significantly bet-
ter overall survival relative to the other 2 clusters (P < 0.001, 
log-rank test; Fig. 1C). As fluke infection was also associated 
with poorer survival (P < 0.001, log-rank test; Supplementary 
Fig. S2F), we performed multivariate analysis and confirmed 
that this cluster-associated survival difference persisted even 
after accounting for fluke association, anatomic location, 
and clinical staging (P < 0.05, Cox proportional hazards 
model; Supplementary Table S2C). To validate this finding, 
we assembled a separate validation cohort comprising newly 
classified samples from the expanded integrative clustering 
and a recently published set of CCA samples (Supplementary 
Methods; ref. 13). A survival analysis on this independent val-
idation cohort reaffirmed the same survival trends, on both 
univariate (P < 0.05, log-rank test; Supplementary Fig. S2F) 
and multivariate analysis (P < 0.05, Cox proportional hazards 
model; Supplementary Table S2C). This result demonstrates 
that molecular clusters can provide additional prognostic 
information in a manner independent of fluke status and 
anatomic location. Figure 1D summarizes the salient features 
of each CCA cluster.

New CCA Driver Genes and  
Structural Rearrangements

Driver gene mutation analysis across 459 CCAs (130 Fluke-
Pos and 329 Fluke-Neg cases) revealed 32 significantly mutated 
genes (SMG; q < 0.1 by both MutSigCV and IntOGen; Supple-
mentary Table S3A–S3D and Fig. 2A). Our analysis revealed 4 
potentially new CCA driver genes not highlighted in previous 
CCA publications (6–8, 13–17): RASA1, STK11, MAP2K4, and 
SF3B1. Of these, RASA1, STK11, and MAP2K4 are related to 
RAS/MAPK signaling (Fig. 2B and C and Supplementary 
Table S3B). RASA1, encoding a p120 RAS GTPase-activating 
protein, was predicted to be inactivated in 4.1% of cases (10 
frameshift, 4 nonsense; Fig. 2D). These inactivating muta-
tions, along with observed focal RASA1 copy-number losses, 
were associated with decreased RASA1 expression (Fig. 2E). 
In CCA cell lines, shRNA-mediated knockdown of RASA1 
resulted in significantly enhanced migration and invasion, 
supporting a tumor-suppressor role for RASA1 in CCA (Fig. 
2F). STK11, a serine/threonine protein kinase, was mutated 
in 5% of cases, with most STK11 mutations also predicted to 
be inactivating (7 nonsense, 9 frameshift; Fig. 2G). SF3B1, an 
RNA splicing factor, was mutated in 4.6% of cases, at muta-
tion hotspots (23% at codon 625 and 14% at codon 700) 
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Figure 1.  Integrative clustering defines 4 molecular subtypes of CCA. A, Heat map showing 4 clusters identified by iClusterPlus based on cluster-
ing of mutation, copy-number, gene expression, and methylation data. Top rows indicate clinical characteristics, risk factors, geographic region, and 
sequencing platform. MSI status was defined by indel counts (≥6 indels) in simple repeat sequences. Bottom rows indicate selected genetic alterations. 
B, High expression of PD-1, PD-L2, and BTLA in cluster 3 relative to other clusters. Brown dots indicate MSI cases. Pink dots indicate cases with DNA 
polymerase epsilon (POLE) proofreading deficiency. C, Survival analysis showing improved survival in cluster 3 and 4 CCAs compared with other clusters. 
Multivariate analysis confirmed this difference even after accounting for fluke association, anatomic location, and clinical staging. D, Representative 
genetic, epigenetic, and gene expression features of CCA clusters.
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Figure 2. Significantly mutated genes in CCAs. A, Significantly mutated genes in Fluke-Pos and Fluke-Neg CCAs. Genes in purple are mutated in both 
Fluke-Pos and Fluke-Neg CCAs. Novel significantly mutated genes are highlighted in red. B, Alterations in Kinase-RAS/RAF pathway components across 
Fluke-Pos and Fluke-Neg CCAs. CCAs with FGFR/PRKACB rearrangements are also highlighted (arrows). C, Matrix of genes (rows) and tumors (columns) show-
ing occurrence of 32 somatic mutated genes. The bar chart at right shows frequencies of affected cases in Fluke-Pos and Fluke-Neg tumors. Asterisks indicate 
genes with significant differences between Fluke-Pos and Fluke-Neg CCAs. P values were computed using the Fisher exact test. (continued on next page)
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 previously observed in uveal melanoma and breast cancer 
(Fig. 2H; refs. 18, 19). This latter finding may implicate a 
role for RNA splicing dysregulation in CCA tumorigenesis. 
MAP2K4 is a member of the mitogen-activated protein kinase 
and has been shown to activate p38 mitogen-activated protein 
kinase and JUN N-terminal kinase. We observed MAP2K4 
focal homozygous deletions in 2 Fluke-Pos cases (Supplemen-
tary Fig. S3A–S3C), and MAP2K4 mutations in another 10 
cases (2.2%). Half of these were predicted to be inactivating 
(frameshift, nonsense, splice-site mutations), consistent with 
a tumor suppressor role for MAP2K4 in CCA.

ERBB2 was amplified in 3.9% to 8.5% of CCAs (Supplemen-
tary Table S3E). ERBB2 amplifications were more frequent 
in Fluke-Pos cases (10.4% in Fluke-Pos vs. 2.7% in Fluke-Neg 
CCA, P < 0.01, Fisher exact test) with elevated ERBB2 gene 
expression in Fluke-Pos compared with Fluke-Neg tumors in 
these cases (Supplementary Fig. S2C; Supplementary Table 
S3E for validation samples). On average, ERBB2-amplified 
samples exhibited 14 ERBB2 copies [copy numbers deter-
mined by ASCAT (SNParray) or Quandico (sequencing data)], 

and gene set enrichment analysis (GSEA) confirmed upregu-
lation of ERBB2-related gene sets among ERBB2-amplified 
samples (q < 0.2; Supplementary Table S3F). We indepen-
dently validated the presence of ERBB2 amplification in 
selected cases by FISH (Supplementary Fig. S3D). Other 
pathways upregulated in ERBB2-amplified samples included 
biological oxidation, metabolism cytochrome P450, peroxi-
some proliferator-activated receptor signaling, and check-
point signaling (q < 0.2). In addition to ERBB2 amplifications, 
we also detected activating ERBB2 mutations (S310F/Y, 
G292R, T862A, D769H, L869R, V842I, and G660D) in 9 
cases (2%). Notably, previous studies in cell lines have shown 
that high ERBB2-expressing CCAs may be more sensitive 
to ERBB2-inhibitor treatment compared with low ERBB2-
expressing cases, suggesting that tumors with high ERBB2 
expression may be candidates for anti-ERBB2/HER2 therapy 
(20). Amplification of other selected oncogenes included MYC 
(n = 12), MDM2 (n = 9), EGFR (n = 11), and CCND1 (n = 7), 
whereas deletions included CDKN2A (n = 17), UTY (n = 17), 
and KDM5D (n = 16; Supplementary Table S3G).
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Availability of WGS data also allowed us to investigate the 
role of structural variations (SV) in CCA. Using CREST, we 
identified approximately 93 somatic SVs per tumor (median 
69; range 0–395), with a 91% (61/67) true positive rate by PCR. 
Most of the SVs were intrachromosomal (65%) and associated 
with cancer-related genes (ARID1A and CDKN2A/B), retro-
transposon-associated genes (TTC28), and fragile sites (1q21.3; 
Supplementary Table S4). SV burden varied significantly 
across the 4 CCA clusters (P < 0.05, Kruskal–Wallis test), with 
Fluke-Neg tumors in cluster 4 associated with low burden  
(P < 0.05, 1-sided Wilcoxon rank-sum test). TP53, FBXW7, and 
SMAD4 were significantly associated with increased SV burden 
(q < 0.1, Wilcoxon rank-sum test; Supplementary Fig. S4A).

FGFR2 fusion genes, previously reported in CCA (21), 
are thought to deregulate FGFR2 signaling through the 
hijacking of 3′ fusion partners with dimerization motifs (21, 
22). However, whether rearrangements affecting other FGFR 
members (besides FGFR2) exist in CCA, or if other categories 
of FGFR2 rearrangements (besides in-frame gene fusions) can 

contribute to CCA development, remains unclear. Analysis 
of the WGS data, followed by subsequent validation at the 
gene transcript level, revealed 5 in-frame gene fusions with 
intact tyrosine kinase domains—4 involving FGFR2 (FGFR2–
STK26, FGFR2–TBC1D1, FGFR2–WAC, and FGFR2–BICC1; Fig. 
3A) and 1 involving FGFR3 (FGFR3–TACC3; Fig. 3B). To our 
knowledge, this is the first report of FGFR3 fusions in CCA. 
FGFR3–TACC3 fusions have been previously reported in blad-
der cancer, glioblastoma, and lung cancer (23, 24) and shown 
to be oncogenic.

Besides FGFR in-frame fusions, we also identified recurrent 
truncating events translocating FGFR2, without its 3′UTR, to 
intergenic regions (Fig. 3C). FGFR2-truncated CCAs exhib-
ited high expression levels compared with FGFR2 transcripts 
with intact 3′UTRs (P < 0.01, Wilcoxon rank-sum test). In 
vitro, luciferase reporter experiments confirmed diminished 
expression in constructs containing FGFR2 3′UTRs compared 
with control reporters (Fig. 3D). FGFR2 3′UTR loss may thus 
represent a new and additional mechanism for enhancing 

Figure 3.  FGFR and PRKA gene rearrangements in CCAs. A, Identification of FGFR2–STK26, FGFR2–WAC, and FGFR2–TBC1D1 and FGFR2–BICC1 
rearrangements in CCAs. All fusions were validated by RT-PCR and sequence chromatograms are shown. FGFR2–STK26, FGFR2–WAC, and FGFR2–TBC1D1 
were validated in this study, whereas FGFR2–BICC1 was validated in ref. 8. TM, transmembrane domain. B, Identification of an FGFR3–TACC3 gene fusion. 
Transcript validation was performed confirming a 7-bp insertion (red dotted lines). C, Recurrent loss of 3′ UTRs in FGFR2 due to rearrangements with 
intergenic regions. D, Relative luciferase activity between empty luciferase vector (LUC) and FGFR2 3′ UTR in HEK293T and H69 immortalized cholangio-
cyte cell lines. Data are presented in mean ± SD. Three individual experiments were performed. E, FGFR2 gene expression levels between FGFR2–wild-type 
CCAs and CCAs exhibiting different categories of FGFR2 alterations, as shown by the color chart. F, Identification of LINC00261–PRKACB and ATP1B1–
PRKACB fusions. Both fusions were validated by RT-PCR and sequence chromatograms.

Figure 2. (Continued) D, Distribution of somatic mutations in RASA1. E, RASA1 expression in tumors without RASA1 alterations (wild-type) compared 
with tumors with RASA1 deletions and inactivating mutations (nonsense mutations or frameshift indels). F, RASA1 shRNA silencing inhibits CCA migra-
tion and invasion in vitro. Expression levels (mRNA and protein) of RASA1 in M213 (left) and HUCCT1 (right) cells transduced with 2 independent shRNAs 
(RASA1 shRNA#1 and RASA1 shRNA#2) targeting different regions of RASA1 were assessed by qPCR and Western blotting analysis (first and second 
panels, respectively). Migration and invasion of RASA1 knockdown cells were assessed by transwell assays. Mean ± SEM of three independent experiments 
were analyzed. G and H, Distribution of somatic mutations in STK11 (G) and SF3B1 (H). The red box indicates mutations in previously described SF3B1 
hotspots.
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FGFR2 expression in CCA, similar to mechanisms reported 
for PD-L1 (25).

FGFR2 rearrangements were observed exclusively in cluster 
4 (P < 0.001, Fisher exact test; Fig. 1A). In CCAs lacking FGFR 
rearrangements, we further identified other genomic altera-
tions involving FGFR2, including indels (n = 3), SNVs (n = 10), 
and copy gains (n = 1)—several of these alterations have been 
previously shown to be activating (26, 27). Collectively, CCAs 
with altered FGFR2 genes (point mutations, indels, copy gain, 
and rearrangements) were significantly enriched in cluster 4 
(P < 0.01, Fisher exact test) and also expressed significantly 
higher FGFR2 levels than FGFR2–wild-type tumors (Figs. 1A, 
2B, and 3E).

In addition to FGFR fusions, WGS analysis also identified 
rearrangements affecting the catalytic subunit B of cAMP-
dependent protein kinase A (PRKACB), including ATP1B1–
PRKACB and LINC00261–PRKACB (Fig. 3F). Both PRKACB 
rearrangements retained the PRKACB pseudokinase domain, 
and thus may increase PKA activity and activate downstream 
MAPK signaling (8).

Long interspersed nuclear element-1 (LINE-1 or L1) 
repeats are autonomous retrotransposons collectively occu-
pying approximately 17% of the human genome. Recent stud-
ies have shown that certain L1 elements are active in cancer, 
displaying somatic retrotransposition and potentially con-
tributing to genomic instability and tumorigenesis (28–30). 
In the CCA WGS samples, we observed frequent somatic 
L1 retrotranspositions, particularly originating from an L1 
element in intron 1 of the TTC28 gene (52 events in 20/71 
tumors, 28.2%; Supplementary Fig. S4B). PCR testing vali-
dated 98% (46/47) of these retrotransposition events (Sup-
plementary Table S4). CCAs with L1 retrotransposition were 
associated with Fluke-Pos tumors (P < 0.01, Fisher exact test) 
and increased SV burden (P < 0.05, Wilcoxon rank-sum test), 
suggesting a relationship between genomic instability and 
L1 endonuclease activity. Further analysis revealed that these 
intragenic insertions were not overtly associated with cancer-
related genes, such as tumor suppressors.

CCA Somatic Promoter Mutations

Somatic mutations in noncoding regulatory regions have 
been proposed to play crucial roles in carcinogenesis (31). 
However, systematic approaches for identifying such muta-
tions are lacking and their effects in CCA remain poorly 
understood. To date, only TERT promoter mutations have 
been observed in CCA (8), and in our WGS cohort, only 2 CCAs 
(2.8%) harbored TERT-promoter mutations (chr5:1295228). 

Besides TERT, no other recurrent noncoding promoter-region 
mutations were observed in the WGS cohort.

Even when integrating mutations over regulatory regions 
or gene promoters, the low recurrence rate of most non-
coding mutations may lead to a lack of statistical power 
to identify potential drivers in the promoters of individual 
genes. We hypothesized that the effects of noncoding pro-
moter mutations might instead be detectable at the gene-set 
level. To test this hypothesis, we developed a novel method, 
FIREFLY (FInding Regulatory mutations in gEne sets with 
FunctionaL dYsregulation; Fig. 4A), which identifies gene sets 
dysregulated by somatic promoter mutations that alter tran-
scription factor (TF) binding. Compared with approaches 
used in previous cancer genome studies (32, 33), FIREFLY 
differs in three important respects. First, it uses experimen-
tally determined high-throughput TF-DNA binding data for 
486 TFs representing a broad range of TF families (34, 35), 
as opposed to position weight matrices (PWM; ref. 36), to 
predict mutation-associated changes in TF binding affinity. 
Second, FIREFLY condenses the large numbers of highly non-
recurrent noncoding mutations into biologically meaningful 
gene sets, shortlisting those sets with an overrepresentation 
of mutations, as assessed by multiple statistical tests. Third, 
it orthogonally validates the transcriptional consequences of 
the binding-change predictions using expression data from 
primary tumors.

To identify sets of genes that had dysregulated transcrip-
tion in the aggregate due to promoter mutations, we applied 
FIREFLY to 70 WGS samples (1 hypermutated sample was 
excluded), representing 6,639 somatically mutated gene pro-
moters. Based on binding-change predictions, FIREFLY iden-
tified 138 sets of genes that were enriched for binding-change 
mutations in promoters (q < 0.1, Fisher exact test with 
Benjamini–Hochberg false discovery rate). FIREFLY’s second 
statistical test then compared the number of binding-change 
mutations in these sets with an expected null distribution 
determined from synthetically mutated data, created using 
the tumor-specific mutation rates for each type of mutation 
in its trinucleotide context. Nineteen sets passed the second 
test (q < 0.1). Finally, FIREFLY orthogonally assessed the 
transcriptional impact of the binding-change predictions, by 
testing whether tumors with increasing numbers of binding-
change mutations for a given gene set also exhibit greater 
transcriptional dysregulation in that set (q < 0.1, by Gene Set 
Analysis; ref. 37). Four of the 19 sets were validated by this 
test (Fig. 4B and C and Supplementary Fig. S5A for example 
nonsignificant gene sets). This was significantly greater than 

Figure 4.  FIREFLY analysis of pathways systematically dysregulated by somatic promoter mutations that alter transcription factor binding. A, Changes 
in TF-DNA binding estimated from protein binding microarray (PBM) data for 486 mammalian TFs. Changes in binding specificity were computed using 
PBM-derived binding scores for 8-mer sequences overlapping each mutation. To determine whether a given gene set was preferentially enriched for 
binding-change mutations, we computed the statistic M (the number of genes in the gene set with TF binding-change mutations in the promoter) summed 
over all tumors. FIREFLY assessed systematic enrichment of binding-change mutations with 2 statistical tests: (i) Fisher exact test of whether M is greater 
than expected by chance given the number genes in the gene set and the total number of genes affected by binding-change mutations, (ii) a comparison of 
M in actual data with a null distribution of M over 1,000 sets of 70 in silico mutated tumor sequences, based on patient-specific  trinucleotide contexts of 
mutations for each tumor. FIREFLY then tested for putative transcriptional dysregulation associated with the binding-change mutations by performing 
a GSA to associate gene expression dysregulation with the number of binding-change mutations. B, Details of the 4 gene sets meeting FIREFLY’s crite-
ria of q < 0.1 for all three statistical tests: MIKKELSEN_MCV6_HCP_WITH_H3K27ME3, MIKKELSEN_MEF_ICP_WITH_H3K27ME3, MARTORIATI_MDM4_
TARGETS_NEUROEPITHELIUM_DN, and WONG_ENDOMETRIUM_CANCER_DN. C, Details of an example nonsignificant gene set.
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expected for a null distribution based on randomly selected 
gene sets of similar sizes (P < 0.01; Supplementary Fig. 
S5B). We note that FIREFLY results do not imply that every 
somatic promoter mutation in the 4 gene sets affects gene 
expression. Instead, the results indicate that the identified 
sets have excesses of promoter mutations that likely affect 
gene expression. We also note that FIREFLY does not use pre-
dicted gain or loss of binding to infer directionality of change 
in expression levels. This is because, in general, TFs can act as 
either activators or repressors depending on the regulatory 
context. Consequently, one cannot in general predict whether 
a gain or loss of a binding site will result in upregulation or 
downregulation.

To validate a fundamental assumption in the FIREFLY 
pipeline, that is, that mutations predicted to alter TF binding 
also affect transcription, we selected 3 mutations and tested 
them in luciferase reporter assays. We confirmed altered 
regulatory activity for 2 of the 3 mutations, providing direct 
evidence that mutations predicted to change TF binding can 
in fact alter gene expression (Supplementary Fig. S5C).

FIREFLY identified 4 gene sets that were likely dysregu-
lated by altered TF-DNA binding. Interestingly, 2 of these 
(MIKKELSEN_MCV6_HCP_WITH_H3K27ME3 and MIK-
KELSEN_MEF_ICP_WITH_H3K27ME3) are subsets of 
PRC2 target genes that have promoters with histone modifi-
cation H3K27me3 in certain contexts (Fig. 4B). Mutations in 
all 4 enriched gene sets occurred across all 4 of the CCA clus-
ters. It was noteworthy, however, that cluster 1 was enriched 
for mutations in 3 of the 4 gene sets, including 2 associated 
with H3K27me3 (Supplementary Fig. S5D). This, together 
with the observed hypermethylation of polycomb repressive 
complex 2 (PRC2) target genes in cluster 1 (see later section 
on DNA methylation), provides additional evidence of the 
importance of alterations in PRC2 regulation in cluster 1.

Distinct CCA Epigenomic Subtypes

As shown in Fig. 1, iCluster analysis revealed 2 distinct 
hypermethylated CCA subgroups (clusters 1 and 4). To vali-
date these differences across a larger CCA series, we per-
formed unsupervised DNA-methylation clustering on an 
expanded panel of 138 CCAs. Clustering based solely on DNA 
methylation recapitulated 2 hypermethylated clusters highly 
concordant with clusters 1 and 4 (96.3% and 86.1% concord-
ance, respectively; Fig. 5A), and a third group of low-methyla-
tion tumors representing a mix of clusters 2 and 3. Cluster 1, 
enriched in Fluke-Pos CCAs, was dominated by hypermeth-
ylation in promoter CpG islands, whereas cluster 4, enriched 
in Fluke-Neg CCAs, was dominated by hypermethylation in 
promoter CpG island shores (Fig. 5B). Different sets of gene 
promoters were targeted for hypermethylation in clusters 1 
and 4. However, GSEA revealed that both affected common 
pathways, including PRC2 targets. We observed significant 
inverse correlations between transcript levels and promoter 
methylation in both clusters 1 and 4 (q < 0.05; Supplemen-
tary Fig. S6A), consistent with these epigenetic alterations 
exerting transcriptional impact.

DNA hypermethylation in the 2 hypermethylated clusters 
may be driven by distinct epigenetic mechanisms. In cluster 
1, we observed downregulation of the DNA demethylation 
enzyme TET1 and upregulation of the histone methyl-

transferase EZH2 (Supplementary Fig. S6B), suggesting a 
possible role for these genes in establishing the hyper-
methylation phenotype (38). In contrast, cluster 4 CCAs 
were significantly enriched in IDH1/2 mutations, which are 
known to be associated with CCA hypermethylation (31.6% 
in cluster 4 vs. 1.0% in other clusters, q < 0.001, multivariate 
regression; Fig. 5A; refs. 7, 13, 39). Among cluster 4 CCAs 
lacking IDH1/2 mutations (68.4%), BAP1 mutations were 
enriched (q < 0.001 and 0.05, respectively for inactivating 
point mutations and regional deletions; Fig. 5A). BAP1 
mutated cases were also associated with increased CpG 
hypermethylation relative to BAP1–wild-type cases (Sup-
plementary Fig. S6C). Notably, BAP1 mutations have been 
associated with DNA hypermethylation in CCA and renal 
cell carcinoma (13, 40).

To explore mutation patterns between these 2 clusters, we 
identified 10 established mutation signatures in the WGS 
cohort. These included Catalogue of Somatic Mutations 
in Cancer (COSMIC) Signatures 1, 5, 8, 16, and 17, and 
signatures associated with activated APOBECs (signatures 
2 and 13), mismatch-repair deficiency (MMR; Signatures 6 
and 20), and aristolochic acid exposure (signature 22, Sup-
plementary Fig. S6D). Signature 5 burdens were correlated 
with patient age (Spearman correlation 0.25, P < 0.05), 
as previously reported for other cancer types (41). Fluke-
Pos CCAs were enriched for activated APOBEC mutation 
burden (P < 0.001, multivariate regression). Signatures of 
MMR and signatures 8, 16, and 17 have not been previously 
reported in CCA.

We observed elevated levels of signature 1 (CpG>TpG 
mutations) in cluster 1, even after adjusting for patient 
age (P < 0.001, multivariate regression; Fig. 5C). Impor-
tantly, this elevation is signature 1–specific, as it was not 
observed for signature 5. We note that CpG dinucleotides 
are known mutation hotspots, due to spontaneous deami-
nation of 5-methylcytosine (5mC) to thymine (CpG>TpG 
mutation; ref. 42). To investigate if hypermethylated CpGs 
in cluster 1 might provide susceptible genomic substrates 
for deamination and subsequent signature 1 mutations, 
we integrated the locations of the CpG>TpG mutations 
with regions of hypermethylation. In cluster 1, CpG>TpG 
mutations were indeed located preferentially near hyper-
methylated regions (P < 0.001, Fisher exact test; Fig. 5D 
and Supplementary Fig. S6E), whereas in cluster 4, these 
mutations showed no such regional preferences. These 
results support a significantly increased level of DNA 
hypermethylation–related deamination events in cluster 1 
compared with cluster 4.

We further investigated if the differences in genome-wide 
mutation patterns between clusters are accompanied by dis-
tinct clonal structures harboring these mutations. Distribu-
tion analysis of variant allele frequencies (VAF) for point 
mutations (in copy-neutral regions and adjusted for tumor 
purity) revealed a wide spread of VAFs in cluster 1 compared 
with cluster 4 (Fig. 5E), indicating the presence of hetero-
geneous subclones in cluster 1 tumors, but not in cluster 4 
tumors. Together, these distinct patterns of hypermethyla-
tion-related deamination and tumor heterogeneity suggest 
disparate somatic-evolution processes during tumorigenesis 
in these clusters (see Discussion).
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Figure 5.  Epigenetic clusters and integration of mutation signatures in CCA. A, Heat map showing 3 DNA methylation clusters: 2 hypermethylated 
clusters (clusters 1 and 4), and a low methylation cluster (mixed clusters 2 and 3). B, Distinct methylation patterns in cluster 1 versus cluster 4. Top, 
typical organization of a gene promoter with CpG island and shores. Vertical ticks represent CpG sites. Bottom, levels of promoter hypermethylation in 
CpG islands and shores in cluster 1 and cluster 4. C, Left, enrichment of mutation signature 1 (CpG>TpG) in cluster 1. Right, similar levels of mutation 
signature 5 among methylation clusters. Circled tumors represent MSI tumors. D, Proximity of somatic mutations to hypermethylated CpGs in clusters 1 
and 4. Left, CpG>TpG mutations are located preferentially near hypermethylated CpGs in cluster 1, but not in cluster 4. Right, non-C>T mutations are not 
located preferentially near hypermethylated CpGs in either cluster 1 or 4. E, Histograms of corrected VAF of point mutations in clusters 1 and 4.
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DISCUSSION

Surgery is the only proven treatment modality for CCA 
(43), and all formal evaluations of targeted therapies to date, 
performed in unselected CCA cohorts, have proved unsuc-
cessful (44). In this study, we analyzed a cohort of nearly 500 
CCAs from distinct geographic regions, including 94 CCAs 
covered by four genomic platforms. Integrative clustering 
of mutation, copy number, gene expression, and epige-

netic data revealed 4 subtypes of CCA, each exhibiting dis-
tinct molecular and clinicopathologic features. Four lines 
of evidence highlight that clustering based on molecular 
profiles provides additional information beyond anatomic 
site. First, anatomic site does not drive molecular subtypes, 
as evidenced by the reproducibility of the molecular sub-
types within each anatomic site separately (Supplementary 
Fig. S1D). Second, tumors in different anatomic sites may 
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exhibit similarities at the molecular level, whereas tumors 
located in the same anatomic site can display profound dif-
ferences in their molecular profiles. This is exemplified by 
clusters 1 and 2 comprising mixtures of intrahepatic and 
extrahepatic tumors, while intrahepatic tumors are split 
among all 4 clusters. Third, from a disease prognosis stand-
point, CCAs in different anatomic sites do not differ in their 
survival trends, whereas the molecular clusters show sig-
nificant differences in survival, in both the original and an 
independent validation cohort (Fig. 1C and Supplementary 
Fig. S2F). Finally, we note that current medical oncology 
guidelines do not discriminate CCA treatments based on 
their anatomic site (1) as classifications based on anatomy 
do not provide information regarding potential therapeutic 
opportunities. In contrast, the molecular profiles highlight 
several potential cluster-specific therapies (see next para-
graph). Taken collectively, our results indicate that molecu-
lar CCA subtypes based on integrative molecular clustering 
are likely to offer enhanced information regarding CCA 
biology and clinical behavior, beyond that provided by ana-
tomic location alone.

Examination of signature genomic alterations in each sub-
type highlights potential therapeutic opportunities, although 
we emphasize that such findings require further clinical vali-
dation. For example, it is possible that CCAs in clusters 1 and 
2 with ERBB2 amplification may be appropriate for therapies 
targeting ERBB2/HER2 signaling (45). The elevated expres-
sion of immune related genes and pathways in cluster 3 CCAs 
suggests a therapeutic opportunity for immunotherapy; how-
ever, this conclusion should be treated with caution due to 
the small sample size of this cluster. The specific mechanisms 
driving the elevated expression of immune-related genes in 
cluster 3 remain unclear; however, increased levels of immu-
nogenicity and upregulation of MHC protein and antigen 
processing complexes have been independently observed in 
aneuploid tumors (46, 47), consistent with the elevated level 
of chromosomal aberrations in cluster 3. Cluster 4 CCAs, 
which are associated with IDH1/2 mutations and FGFR2 and 
PRKA-related gene rearrangements, might also be tested with 
recently described IDH inhibitors (ClinicalTrials.gov identi-
fier: NCT02073994) or FGFR-targeting agents. Notably, our 
study suggests that loss of FGFR2 3′UTRs may represent an 
alternative mechanism of FGFR2 activation, beyond FGFR2 
in-frame gene fusions and activating mutations. This, along 
with our additional observation of FGFR3 rearrangements, 
expands the proportion of potential FGFR-targetable cases 
in CCA (48).

Previous cancer studies have discovered recurrent regula-
tory mutations in individual promoters such as TERT (33, 
49). In complement to these studies, we developed in this 
work an alternative analysis framework (FIREFLY), which 
uses protein binding microarray (PBM)–based analysis to 
examine the effects of noncoding promoter mutations on 
gene-expression pathways in cancer. FIREFLY’s use of PBM 
data with a k-mer—based approach provides advantages for 
estimating the effects of mutations on TF-binding affini-
ties compared with traditional PWM models. For example, 
PWMs implicitly assume that each base pair contributes 
independently to binding affinity; however, this is not always 
true. Moreover, PWMs do not capture the multiple modes 

of binding associated with many TFs, and PWM scores are 
not easily comparable between TFs. FIREFLY addresses these 
shortcomings by using experimentally determined PBM data, 
which provides actual binding affinities of every possible 
8-mer. Using FIREFLY, we identified several pathways with 
strong statistical evidence for recurrent systematic dysregu-
lation in CCA. Interestingly, 2 of these pathways reflected 
epigenetically modulated cellular differentiation processes, 
which have been shown to be dysregulated in cancer in 
general by other means such as DNA hypermethylation or 
histone modification.

Of the 4 clusters, 2 clusters (clusters 1 and 4) are most 
clearly distinguished by their highly distinctive patterns of 
genome-wide DNA hypermethylation, targeting either pro-
moter CpG islands or promoter CpG shores. To our knowl-
edge, such epigenetically distinct tumor subtypes have not 
been previously reported in the literature, particularly for 
tumors from the same tissue type. Further analysis demon-
strated that cluster 1 CCAs are Fluke-Pos with elevated muta-
tion rates, Mutation Signature 1 enrichment, and increased 
point-mutation subclonality, whereas cluster 4 CCAs are 
Fluke-Neg and by comparison relatively clonal. We propose 
that these differences are consistent with a model where early 
in tumorigenesis, cluster 1 CCAs are likely driven by exter-
nal carcinogenic agents and early epigenetic deregulation 
(“epimutations”), whereas cluster 4 CCAs are likely driven 
by pioneer genetic events such as IDH1/2 or BAP1 muta-
tions, with epigenetic aberrations arising as a downstream 
consequence (Fig. 6). In this model, fluke infection, by induc-
ing chronic inflammation, metabolic disruption of host bile 
homeostasis (50), or secretion of fluke growth factors and 
excretory vesicles for modulating host–pathogen interactions 
(51), induces genome-wide epigenetic deregulation. Cytosine 
residues experiencing aberrant methylation are then at higher 
risk of spontaneous deamination and mutation, consistent 
with the enrichment of signature 1 mutations in this subtype. 
CpG island hypermethylation in this subtype may also silence 
tumor suppressor genes, further enhancing cancer develop-
ment. Moreover, because the processes of carcinogen-induced 
methylation, deamination, and mutation are inherently sto-
chastic from cell to cell, such events would inevitably lead to 
increased levels of intratumor heterogeneity. In contrast, in 
cluster 4 CCAs which are Fluke-Neg, somatic mutations in 
critical chromatin modifier genes (e.g., IDH1/2 and BAP1) 
may occur as a primary event preceding epigenetic deregula-
tion, driving both rapid clonal outgrowth and directly induc-
ing DNA hypermethylation. Specifically, IDH1/2 mutations 
have been shown to increase 2-hydroxyglutarate oncometabo-
lite production, leading to DNA hypermethylation.

We acknowledge that other models may also explain the 
striking molecular differences between clusters 1 and 4. These 
include differential vulnerabilities in distinct cells of origin, 
as the biliary system is known to contain multipotent stem/
progenitor cells. Liver fluke infection primarily affects large 
intrahepatic and extrahepatic bile ducts, giving rise to intra-
hepatic and/or extrahepatic CCA. Conversely, parenchymal 
liver diseases exclusively affect canals of Hering and bile duct-
ules, and are primarily associated with intrahepatic CCA (52).

A recent study from The Cancer Genome Atlas (TCGA) con-
sortium reported a multi-omic analysis of a smaller and more 
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homogenous CCA series (38 samples, exclusively Fluke-Neg, 
mostly intrahepatic and North American; ref. 13). Compari-
son of this study with our own data revealed an obvious differ-
ence—specifically our inclusion of Fluke-Pos samples allowed 
the discovery of another major CCA subtype (cluster 1) with 
distinct clinical and molecular features. Besides cluster 1, the 
other study’s “IDH” (IDH mutants) and “METH3” (BAP1 
mutants and FGFR rearrangements) groups are likely matches 
to our cluster 4 (characterized by IDH and BAP1 mutants, and 
FGFR rearrangements), whereas their “ECC” group (extrahe-
patic) matched cluster 2 (containing Fluke-Neg extrahepatic 
tumors). On the other hand, the TCGA “METH2” group 
(CCND1 amplifications) and our cluster 3 were not obviously 
matched. Taken collectively, these results suggest that most 

of the TCGA study’s clusters are largely concordant with our 
own, and neither classification strictly precludes the other.

We acknowledge that limitations of sample resources 
(DNA, RNA, and paraffin-embedded tissues) were a major 
constraint in this study. We were unable to generate data 
using all platforms on all samples, which reduced the sample 
size in the integrative clustering analysis. To overcome this 
constraint, we sequenced an extended and separate sample 
cohort, to validate findings emerging from the integrative 
clustering. Center-specific differences in presample process-
ing steps, including collection site, biopsy site, and sample 
processing protocols, may also result in sequencing biases. 
We attempted to control for these variations by reviewing 
the histology of all cases using standardized American Joint 

Figure 6.  Model for distinct pathways of CCA tumorigenesis. A proposed model for CCA development in clusters 1 and 4 being driven by distinct 
mechanisms. Cluster 1 may be initiated by extrinsic carcinogens (fluke-infection) causing genome-wide epigenetic derangement and subsequent spon-
taneous 5-methylcytosine deamination and CpG>TpG mutations. In contrast, in cluster 4 CCAs, intrinsic genetic mutations in strong driver genes such as 
IDH1 reflect a primary initiating event and consequently drive DNA hypermethylation. See Discussion for details.
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Committee on Cancer (AJCC) 7th criteria to confirm and har-
monize the histology and anatomic subtype of samples. We 
also attempted to reduce biopsy bias and normal contamina-
tion originating from the biopsy sites by estimating tumor 
cell content through histopathologic review or SNP arrays. 
Lastly, our study merged data from different DNA sequenc-
ing platforms [WGS, whole-exome sequencing (WES), and 
targeted sequencing], thus limiting our analysis across the 
entire cohort to genomic regions common to these platforms. 
However, we overcome biases from different data processing 
centers and merging different data types by using one analy-
sis pipeline, ensuring uniform analysis on each data type, and 
confirming good concordance between samples sequenced on 
multiple platforms (Supplementary Methods).

In summary, integrative analysis of a large CCA cohort has 
revealed a novel molecular taxonomy, with discovery of new 
potential CCA driver genes and gene rearrangements. This 
taxonomy may be clinically relevant; however, more functional 
data are required to test the validity of the genomic data. 
Analysis of noncoding promoter mutations, made possible by 
whole-genome analysis, revealed that they play a significant 
role in CCA targeting genes involved in PRC2 biology, and we 
identified 2 highly distinct CCA subtypes demonstrating dis-
tinct DNA hypermethylation patterns. We conclude by noting 
that these last two findings may carry conceptual relevance 
beyond biliary tract cancers. Specifically, although elevated 
DNA methylation levels have been observed in numerous 
cancers, these cases to date been largely consigned to a general 
CpG island methylator phenotype (CIMP) class—our data 
suggest that a more detailed examination of these cases may 
reveal potential for epigenetic heterogeneity. Finally, as exem-
plified by the TERT promoter, previous analyses of noncoding 
promoter mutations have largely focused on identifying indi-
vidual regions of recurrent genomic aberration. Our FIREFLY 
analysis suggests that such cases are likely rare and that, simi-
lar to protein coding genes, mutations in noncoding regula-
tory regions may target genes in specific pathways rather than 
individually. Extending this concept to promoter mutation 
catalogues of other cancer types will certainly test the general 
applicability of this proposition.

METHODS

Sample Collection

Primary tumor and matched normal samples (nonneoplastic liver 

or whole blood) were obtained from the SingHealth Tissue Reposi-

tory (Singapore), Fundeni Clinical Institute (Romania), Khon Kaen 

University (Thailand), ARC-Net Biobank (Italy), Centre de Resources 

Biologiques Paris-Sud (France), Department of Pathology, Yonsei 

University College of Medicine (South Korea), Hospital do Cancer de 

Barretos (Brazil), Linkou Chang Gung Memorial Hospital (Taiwan), 

and Department of Pancreatobiliary Surgery, The First Affiliated 

Hospital, Sun Yat-Sen University (China) with signed informed con-

sent. WGS data from 10 Japanese cases were also included (National 

Cancer Center, Japan). The study was approved by the SingHealth 

Centralized Institutional Review Board (2006/449/B), Ethics Com-

mittee of the Clinical Institute of Digestive Diseases and Liver 

Transplantation, Fundeni (215/18.01.2010), Khon Kaen University 

(HE471214), Centre de Resources Biologiques Paris-Sud, National 

Cancer Center, Japan (G20-03), Severance Hospital, Yonsei Univer-

sity Health System (4-2014-0829), Hospital do Cancer de Barretos 

(716/2013), Linkou Chang Gung Memorial Hospital (100-2030B), 

The First Affiliated Hospital of Sun Yat-Sen University (2014/C_006), 

and ARC-Net Biobank at Verona University Hospital (n. prog. 1959). 

Clinicopathologic information for subjects, including age, sex, histol-

ogy, tumor subtype, stage, and overall survival, were reviewed retro-

spectively. Cases were staged according to the AJCC Staging System 

7th Edition. All patients had not received prior treatment. In total, 

489 tumors with associated clinicopathologic data were obtained 

(133 Fluke-Pos: 132 O. viverrini, 1 C. sinensis; 39 HBV/HCV-positive; 5 

PSC-positive). These were assayed on at least one profiling platform, 

which included: (i) WGS (71 CCAs); (ii) targeted sequencing survey-

ing 404 genes (188 CCAs); (iii) published exome sequencing (ref. 8;  

200 CCAs); (iv) HumanOmniExpress BeadChip arrays (SNP arrays; 

175 CCAs); (v) DNA methylation 450k BeadChip arrays (138 CCAs); 

and (vi) HumanHT-12 Expression BeadChip arrays (gene expression 

arrays; 118 CCAs; Supplementary Tables S1 and S5). A detailed list of 

clinical data is included in Supplementary Table S1A.

Cell Lines

H69 nonmalignant immortalized cholangiocyte cells were 

obtained in 2011 from D. Jefferson (New England Medical Center, 

Tufts University) and cultured as previously described (53). HEK293T 

cells were obtained from the ATCC (CRL-3216) in 2015 and cultured 

with DMEM, 10% FBS, 2 mmol/L L-glutamine, and 1% penicillin/

streptomycin. EGI-1 was purchased from DSMZ (ACC 385) and 

maintained in DMEM supplemented with 10% FBS (Sigma-Aldrich). 

HUCCT1 (JCRB0425) cells were purchased from the Health Sci-

ences Research Resources Back (HSRRB) in 2009 and maintained 

in RPMI-1640 medium with 10% FBS. M213 (JCRB1557) cells were 

obtained from the Liver Fluke and Cholangiocarcinoma Research 

Center in 2015 and cultured with Ham’s F12 media (Gibco). Cells 

were cultured at 37°C in a 5% CO2 humidified chamber. All cell lines 

were authenticated by short-tandem repeat profiling and found to 

be negative for Mycoplasma as assessed by the MycoSensor qPCR 

Assay Kit (Agilent Technologies).

Sample Preparation and Sequencing

Genomic DNA was extracted using the QIamp DNA mini kit 

(Qiagen). DNA yield and quality were determined using Picogreen 

(Invitrogen) and further visually inspected by agarose gel electro-

phoresis. RNA was extracted using an RNeasy mini kit (Qiagen), 

quantified by measuring Abs260 with a UV spectrophotometer, and 

quality assessed with the Agilent 2100 Bioanalyzer (Agilent Tech-

nologies). Sequencing libraries were prepared from DNA extracted 

from tumor and normal samples using the SureSelect XT2 Target 

Enrichment System for the Illumina Multiplexed Sequencing plat-

form (Illumina) according to the manufacturer’s instructions. WGS 

was performed using Illumina HiSeq X10, Illumina HiSeq2500, and 

Illumina HiSeq2000 instruments. To survey the frequency and dis-

tribution of somatic mutations in the validation cohort (188 CCAs), 

targeted sequencing of 404 genes was performed after capture with 

a custom SureSelect capture reagent designed using the SureDesign 

tool (Agilent Technologies). Target-enriched libraries were sequenced 

on the Illumina HiSeq 4000 sequencing platform. Coverage of cod-

ing regions based on the amplicon design was 99.6% (Supplementary 

Table S5).

Reporter Assays

For 3′ UTR reporter assays, control reporter plasmids (LUC) 

were generated by cloning the SV40 promoter into the pGL4.10 

promoterless luciferase reporter vector (Promega). The LUC-

FGFR2_3′UTR test plasmid was engineered by inserting the 1,666 

bp 3′UTR region of FGFR2 (starting from stop codon) into the 

immediate 3′ end of the luciferase gene of the LUC plasmid. 

HEK293T or H69 cells were cotransfected with a Renilla-containing 
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plasmid with either LUC or LUC-FGFR2_3′UTR. Transfected cells 

were incubated for 24 hours.

For promoter mutation reporter assays, luciferase constructs were 

generated by ligating fragments of promoter regions (2 kb upstream 

and 500 bp downstream of the transcription start site) prepared from 

genomic PCR using gene-specific primers. Mutant constructs were 

generated using the QuikChange II XL site-directed mutagenesis kit 

(Agilent Technologies) according to the manufacturer’s instructions. 

H69 or EGI-1 cells were transfected and incubated for 48 hours, after 

which Dual-Luciferase Reporter Assays (Promega) were performed. 

Relative luciferase activity was calculated as the firefly luciferase 

activity normalized to Renilla (Promega) luciferase activity. Assays 

were conducted in triplicate and each experiment was repeated 3 

independent times.

RASA1 shRNA Silencing and Functional Assays

Construction of hairpin-pLKO.1 vectors (carrying a puromycin 

antibiotic resistance gene) containing shRNAs targeting RASA1  

coding sequences were performed as follows: shRNA#1 (CCGGGCT 

GCAAGAACACTGATATTACTCGAGTAATATCAGTGTTCTT 

GCAGCTTTTTG; TRCN0000356449, Sigma) and shRNA#2 (CCGG 

CCTGGCGATTATTCA CTTTATCTCGAGATAAAGTGAATAATCG 

CCAGGTTTTT; TRCN0000005998, Sigma). Lentivirus particles 

were produced in HEK-293T cells transfected with psPAX2, PMD2G 

(Addgene), and pLKO.1-shRNA-containing plasmids. M213 and 

HUCCT1 cells were infected with the lentivirus, and stable cells were 

established by puromycin selection (Sigma). Migration assays were 

performed in Transwells (Corning Inc., 8.0-μm pore size). For migra-

tion, 2.5 × 104 cells of RASA1 stably silenced M213 and HUCCT1 

cells in serum-free medium were added to 24-well insert plates. Media 

containing 10% FBS were added to the lower wells and incubated 

for 5 hours. For cell invasion assays, the filters were precoated with 

Matrigel. RASA1 stably silenced M213 and HUCCT1 cells (2.5 × 104) 

in serum-free medium were added into 24-well insert plates. Media 

containing 10% FBS were added to the lower well of the chambers 

and incubated for 5 hours. After incubation, the cells on the upper 

surface of the filter were completely removed and migrated cells were 

trypsinized and counted.

Somatic Mutation Detection

We aligned sequence data to the human reference genome 

(hs37d5) using BWA-MEM v0.7.9a (54). We removed PCR dupli-

cates using SAMTools (55) and performed indel realignments using 

Genome Analysis Toolkit v1.0 (GATK; ref. 56). We used realigned 

data as input to both GATK Unified Genotyper and MuTect to call 

sSNVs. We used GATK IndelGenotyperV2 to identify indels. We 

applied filters and manual inspection to retain only high confidence 

sSNVs and indels. Further details are provided in the Supplementary 

Methods.

Analysis of Somatic Promoter Mutations with FIREFLY

FIREFLY is a method for identifying gene sets dysregulated by 

somatic promoter mutations through modulation of TF binding. 

We extracted somatic promoter mutations by selecting noncod-

ing sSNVs within ±2 kb of transcription start sites of GENCODE 

genes. We identified those mutations predicted to change TF-bind-

ing based on PBM data (details below). We then evaluated gene 

sets for enrichment in promoter binding-change mutations. For 

each gene set, we calculated the test statistic M = number of genes 

in the gene set with binding-change mutations, summed across all 

tumors. To identify gene sets enriched in binding-change muta-

tions, we performed two statistical tests in sequence, where gene 

sets found significant in each test (q < 0.1) were then tested in the 

next: (i) Fisher exact test; (ii) a synthetic mutations test. For gene 

sets passing these tests, we then performed gene expression tests 

using the Gene Set Analysis (GSA) v1.03 R package (37) to assess 

their transcriptional dysregulation. Further details are provided in 

the Supplementary Methods.

We generated synthetic mutations in promoter regions of interest 

based on the genome-wide frequency of mutations at each trinu-

cleotide observed for each tumor/normal pair. Synthetic mutations 

were generated separately for each tumor, based on the frequencies 

and mutation types observed in the actual tumor. Further details are 

provided in the Supplementary Methods.

Identifying TF Binding-Change Mutations

To identify binding-change mutations, we used TF-DNA binding 

specificity PBM data from the cis-BP database (34). PBM experi-

ments measure TF binding to all possible 8-mer sequences with a 

DNA binding enrichment score (E-score; ref. 35). Typically, E-scores 

> 0.35 correspond to specific TF-DNA binding (57). To call binding 

sites for a particular TF, we required that such sites contain at least 

2 consecutive 8-mers with E-scores > 0.4. We also used PBM data 

to call “nonbinding sites,” defined as genomic regions containing 

only 8-mers with E-score < 0.3. For each somatic mutation and each 

TF with available PBM data, we analyzed the 15-bp genomic region 

centered at the mutation. If the region contained a TF binding site in 

the normal sample but not in the corresponding tumor sample, the 

mutation was called a “loss-of-binding” mutation for that TF. If the 

region contained a TF binding site in the tumor sample but not in 

the normal sample, then the mutation was called “gain-of-binding” 

for that TF. We describe a mutation as “binding change” if it is either 

loss-of-binding or gain-of-binding for any of the interrogated TFs. 

Further details are provided in the Supplementary Methods.

Driver Gene Analysis

We integrated (i) 71 WGS CCAs, (ii) 188 targeted-sequenced CCAs 

(Supplementary Table S5), and (iii) 200 exome-sequenced CCAs (8), 

and performed gene significance analyses using MutSigCV (58) and 

IntOGen (59). For input, we used the list of all coding sSNVs and 

indels found in the 404 targeted genes across 459 samples (includ-

ing both silent and nonsilent mutations). Both tools were run with 

default parameters and we retained genes found significant by both 

tools with q values < 0.1. Further details are provided in the Supple-

mentary Methods.

Detection and Annotation of Structural Variations

BWA-MEM alignments from each tumor–normal pair were ana-

lyzed by CREST (Clipping REveals STructure; ref. 60) and PTRfinder 

(61). For most tumors we required ≥3 uniquely mapped split-read 

alignments at each SV breakpoint; for the shallower Japanese WGS 

data we required only ≥5 such alignments over both SV breakpoints 

combined. We considered a tumor SV to be somatic if no SV in 

the normal sample occurred within one-half of a read length from 

the tumor SV. Further details are provided in the Supplementary 

Methods.

Identification of L1-Retrotransposition Insertions

We searched for sources of somatic L1 insertions by looking for 

highly recurrent SVs: ≥10 SVs in a 1 Mb region. We then selected the 

subset of these regions that contained a mobile L1 element in a data-

base of retrotransposon insertion polymorphisms (dbRIP; ref. 62). 

Only SVs with ≥2 reads with poly-A tails at the putative L1 insertion 

site were retained for further analysis.

Validation of Structural Variations

For genomic DNA, 100 ng of whole-genome amplified DNA of 

the tumor and normal matched cases were used as PCR templates. 

For cDNA, total cDNAs of tumor and normal matched control 
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were synthesized using SuperScript III System according to the 

manufacturer’s instructions (Invitrogen) and 40 ng of cDNA were 

used as PCR template. PCR was performed using fusion-specific 

primers with Platinum Taq DNA Polymerase system (Invitrogen). 

PCR products were cleaned up by the Exo/Sap enzyme system (Inv-

itrogen) and bidirectionally sequenced using the BigDye Termina-

tor v.3.1 Kit (Applied Biosystems) and an ABI PRISM 3730 Genetic 

Analyzer (Applied Biosystems). Sequencing traces were aligned to 

reference sequences using Lasergene 10.1 (DNASTAR) and analyzed 

by visual inspection.

Somatic L1 insertions were validated by PCRs using primers flank-

ing predicted sites of insertion. PCRs were performed using AccuPrime 

Pfx DNA Polymerase (Invitrogen) with 200 ng of WGA DNA.

Copy-Number Analysis

Raw SNP array data was processed using Illumina Genome Studio. 

We used ASCAT v2.0 (63) to estimate allele-specific copy-number 

profiles. We determined regions of copy-number alteration based on 

their relative copy number using the “copy-number” R package (64). 

For tumor–normal pairs without SNP array data, we estimated copy-

number profiles based on sequencing data using Control-FREEC (65), 

Quandico (66), and Sequenza (67). We used GISTIC v2.0.22 (68) to 

determine regions of significant focal copy-number alterations, using 

ASCAT/Sequenza’s inferred copy-number segments, and associated 

copy-number values were defined as log2 of the segment’s relative copy 

number. Full details are provided in the Supplementary Methods.

Gene Expression Analysis

Gene expression microarray data were preprocessed using the 

“lumi” R package (69). Batch effects were removed using ComBat 

(70). We used GSEA v2.2.2 (71) with a classic weighting scheme to 

determine pathways upregulated or downregulated in each integra-

tive CCA cluster relative to the others, employing canonical pathways 

in the MSigDB C2 catalogue of annotated gene sets. Full details are 

provided in the Supplementary Methods.

Immune Cell Infiltration Analysis

ESTIMATE (72) was used to determine the presence of infiltrating 

immune cells, using the ImmuneSignature geneset. A total of 126 

genes were used to determine the immune score for each tumor.

DNA Methylation Analysis

DNA methylation profiles were obtained for 138 tumors and 4 

normal samples. Data were preprocessed using the “minfi” (73) and 

“wateRmelon” (74) R packages. We selected 4,520 probes with the 

highest standard deviations in β-values across the tumors, and mean 

β < 0.5 in the normal samples, for clustering using the “RPMM” R 

package (75). In the hypermethylated methylation clusters (1 and 

4), we considered a CpG site to be hypermethylated if the following 

conditions held: (1) β < 0.5 in normal samples; (2) M values were sig-

nificantly different in the (i) hypermethylated cluster versus (ii) the 

combined normal samples and the low-methylation tumors—those 

not in methylation cluster 1 or 4 (q < 0.05, two-sided t test); and (3) 

its mean β in the hypermethylated cluster minus the mean β across 

the normal samples and low-methylation tumors was >0.2.

To explore associations between mutation signatures and hyper-

methylated CpGs, we considered only mutations located within 50 

bp of CpG probes that had mean β < 0.5 in normal samples. In each 

tumor, the nearest CpG probe to a mutation was considered to be 

hypermethylated if (i) it was hypermethylated in that tumor’s meth-

ylation cluster; (ii) its individual β was > 0.5; and (iii) its individual β 

minus the mean β across the normal samples and low-methylation 

tumors was >0.2. Other analyses were similar to community-standard 

analyses. Further details are provided in the Supplementary Methods.

Integrative Clustering

The “iClusterPlus” R package (76) was used to perform integrative 

unsupervised clustering of 94 CCAs based on 4 genomic data types: 

(i) somatic point mutations in 404 targeted genes (gene by sample 

matrix of binary values), (ii) sCNAs defined as copy-number segments 

identified by ASCAT v2.0, (iii) the most variable expression probes 

(coefficient of variation > 0.1), and (iv) the most variable methylation 

probes (top 1% standard deviation in β value). We ran iClusterPlus.

tune with different numbers of possible clusters (n = 2–7), choosing 

the number of clusters at which the percentage of explained variation 

leveled off (n = 4), and the clustering with the lowest Bayesian infor-

mation criterion. Further details are provided in the Supplementary 

Methods.

Survival Analysis

The “survival” R package was used to perform survival analysis 

using Kaplan–Meier statistics, with P values computed by log-rank 

tests. Multivariate survival analysis was performed using the Cox pro-

portional hazards method. To validate our survival analysis results, 

we also analyzed a separate validation cohort of 58 samples by com-

bining two sources: (i) 25 samples (with survival data) newly classified 

into CCA clusters under the expanded integrative clustering; and (ii) 

33 recently published CCA samples with survival data from Farshid-

far and colleagues (2017; ref. 13). Further details are provided in the 

Supplementary Methods.

Mutation Signature Analysis

Nonnegative matrix factorization (NMF) was applied to the trinu-

cleotide-context mutation spectra of CCAs to extract mutation sig-

natures. Six stable and reproducible extracted mutational signatures 

were compared with the 30 signatures from COSMIC (http://can-

cer.sanger.ac.uk/cosmic/signatures) based on cosine similarities. We 

used supervised NMF to evaluate the contributions of the  COSMIC 

signatures to mutations in CCA. Additional signatures were consid-

ered via visual inspection. We ignored signatures that contributed 

<5% of the total mutations in a particular tumor, and removal of 

these signatures did not substantially increase reconstruction errors. 

The MSI status in the prevalence set was determined by the indel 

counts in simple repeat sequences. Further details are provided in the 

Supplementary Methods.

Accession Codes

The whole genome and targeted sequencing data done in this 

article have been deposited at the European Genome-phenome 

Archive (EGA; http://www.ebi.ac.uk/ega) under accession num-

bers EGAS00001001653 and at the International Cancer Genome 

Consortium Data Portal database (https://dcc.icgc.org/). The 

WES data (8) has been deposited at EGA under accession num-

ber EGA00001000950. Gene expression and methylation data have 

been deposited at the Gene Expression Omnibus (GEO; www.ncbi.

nlm.nih.gov/geo) with GEO accession numbers GSE89749 and 

GSE89803, respectively.
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