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Using a chromatin immunoprecipitation-paired end diTag cloning and sequencing strategy, we mapped estrogen
receptor a (ERa) binding sites in MCF-7 breast cancer cells. We identified 1,234 high confidence binding clusters of
which 94% are projected to be bona fide ERa binding regions. Only 5% of the mapped estrogen receptor binding sites
are located within 5 kb upstream of the transcriptional start sites of adjacent genes, regions containing the proximal
promoters, whereas vast majority of the sites are mapped to intronic or distal locations (.5 kb from 59 and 39 ends of
adjacent transcript), suggesting transcriptional regulatory mechanisms over significant physical distances. Of all the
identified sites, 71% harbored putative full estrogen response elements (EREs), 25% bore ERE half sites, and only 4%
had no recognizable ERE sequences. Genes in the vicinity of ERa binding sites were enriched for regulation by estradiol
in MCF-7 cells, and their expression profiles in patient samples segregate ERa-positive from ERa-negative breast
tumors. The expression dynamics of the genes adjacent to ERa binding sites suggest a direct induction of gene
expression through binding to ERE-like sequences, whereas transcriptional repression by ERa appears to be through
indirect mechanisms. Our analysis also indicates a number of candidate transcription factor binding sites adjacent to
occupied EREs at frequencies much greater than by chance, including the previously reported FOXA1 sites, and
demonstrate the potential involvement of one such putative adjacent factor, Sp1, in the global regulation of ERa target
genes. Unexpectedly, we found that only 22%–24% of the bona fide human ERa binding sites were overlapping
conserved regions in whole genome vertebrate alignments, which suggest limited conservation of functional binding
sites. Taken together, this genome-scale analysis suggests complex but definable rules governing ERa binding and
gene regulation.
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Introduction

Cellular transcriptomes are dictated by complex interac-

tions between signal transduction pathways, general and

specific transcription factors, chromatin remodeling pro-

teins, and the RNA polymerase complexes. Precise transcrip-

tional responses are achieved in part by targeting

transcription factor complexes to the cis-regulatory regions

of target genes via specific binding site sequences. The

importance of these binding site sequences is reflected in the

conservation of sequence motifs in coregulated genes and

through evolution.

A number of studies have examined transcriptomic

changes to breast cancer cells following estrogen treatment

[1–7]. Estrogen receptors (ERs) (specifically ERa and ERb) are

ligand-dependent transcription factors that mediate cellular

responses to hormone exposure in vertebrate development,

physiological processes, and endocrine-related diseases. ERa,

in particular, has been implicated in the etiology of breast

cancer and is a major prognostic marker and therapeutic

target in disease management [8]. At the molecular level, ERs

interact either directly with genomic targets encoded by

estrogen response elements (EREs) (59-GGTCAnnnTGACC-

39) or indirectly by tethering to nuclear proteins, such as AP-1

and Sp1 transcription factors [9–11]. The mechanisms of ER

binding site specificity, however, are not clear since these

binding site sequence motifs are ubiquitous in the genome,

and there is no discernable difference between functional

and nonfunctional sites by computational modeling ap-

proaches. This ambiguity is likely due to a lack of systemic

Editor: Stuart K. Kim, Stanford University School of Medicine, United States of
America

Received October 9, 2006; Accepted April 17, 2007; Published June 1, 2007

A previous version of this article appeared as an Early Online Release on April 17,
2007 (doi:10.1371/journal.pgen.0030087.eor).

Copyright: � 2007 Lin et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author
and source are credited.

Abbreviations: ChIP, chromatin immunoprecipitation; ER, estrogen receptor; ERa,
estrogen receptor a; ERE, estrogen response element; GIS, gene identification
signature; KG, Known Gene; moPET, maximum overlap PET; PET, paired end diTag;
siRNA, small interfering RNA; TFBS, transcription factor binding sites; TSS,
transcriptional start site

* To whom correspondence should be addressed. E-mail: liue@gis.a-star.edu.sg

[ These authors contributed equally to this work.

¤ Current address: Department of Microbiology and Molecular Biology, Brigham
Young University, Provo, Utah, United States of America

PLoS Genetics | www.plosgenetics.org June 2007 | Volume 3 | Issue 6 | e870867



information on binding site usage and architecture and
mechanistic complexity involving additional transcription
factors and epigenetic modifications [12,13].

Chromatin immunoprecipitation (ChIP) assays have facili-
tated characterizations of in vivo protein-DNA complexes
such as histone modifications and recruitment of tran-
scription factor complexes to specific binding sites [14].
Coupled with microarray technology, the ChIP-on-chip
experiments have resulted in more global binding site maps
for a number of human transcription factors in proximal
promoters and in specific genomic regions. For example,
Carroll and colleagues recently mapped ER binding sites first
in human Chromosomes 21 and 22 and more recently across
the entire human genome [15,16]. In spite of the success of
ChIP-on-chip studies, there remain caveats regarding probe
specificity and performance, including constraints on probe
design in certain genomic regions and potential biases
introduced by amplification protocols. Thus, the analysis of
ERa binding sites using alternative genome-wide technologies
is warranted.

Previously we developed a high throughput cloning and
sequencing approach for mapping full-length transcripts. By
employing specialized cloning techniques and vectors,
paired-end diTags (PETs) from ends of transcripts and this
gene identification signature (GIS) can be sequenced and
mapped precisely to the genome [17]. The GIS-PET technique
increases sequencing efficiency by 30-fold as compared to
sequencing the entire transcript insert. We subsequently
showed that binding site fragments from ChIP experiments
can also be subjected to PET analysis to generate an unbiased
whole-genome map of p53 tumor suppressor protein binding
sites and demonstrated an association of binding sites and
adjacent target genes with p53 functions in patient tumor
samples [18]. The PET technology has also been utilized to
study OCT4 and Nanog binding sites in stem cell biology [19].

To obtain a global map of ERa binding sites in breast
cancer cells, we applied ChIP-PET to generate a library of
ERa binding sites in MCF-7 cells following estrogen treat-

ment. We then combined the binding site data with hormone-
responsive and breast tumor sample microarray gene
expression studies to discern correlations between ER bind-
ing, transcriptional activity, and disease status and outcome
in patients. We also compared our findings with data from
ChIP-on-chip studies to evaluate the performance of each
respective technology. Herein, we describe the comprehen-
sive cartographic results and outline the insights they provide
into binding site usage and molecular mechanisms of ER
transcriptional regulatory functions.

Results

ChIP-PET Analysis Mapped ER Binding Sites across the
Human Genome
Hormone-deprived MCF-7 cells were treated with 10 nM

estradiol for 45 min, and then DNA-bound receptor
complexes were isolated through ChIP using anti-ERa anti-
bodies (HC-20, Santa Cruz Biotechnology, http://www.scbt.
com). Prior to generating the PET library for sequencing, we
qualified the ChIP products by measuring DNA fragment size
and enrichment of known ER binding site in the pS2/TFF1
gene promoter after immunoprecipitation to ensure sample
quality. The ChIP DNA fragments ranged from 300 bp to 1
kb, and there was an 80-fold enrichment of ER binding at the
known pS2/TFF1 ERE as compared to the irrelevant antibody
control. Once ChIP DNA quality had been confirmed, the
PET library was constructed and sequenced as described
previously [18]. A total of 635,371 PETs were sequenced, of
which 361,241 (;56.86%) were unambiguously mapped to
unique loci in the human genome (hg17/NCBI build 35) and
localized to 136,158 distinct genomic coordinates. One of the
first questions we asked was whether the sequencing of these
635,371 clone ‘‘equivalents’’ in the form of pair-end tags
provided sufficient representation of the chip library. To
assess the degree of saturation of the PET library sequenced
(the total number of distinct ChIP DNA fragments that can be
captured from the library), we fitted a Hill Function [20] using
extrapolated and historical sequencing data (see Figure S1).
The degree of saturation of the ER ChIP PET library is
estimated at 73.24% (136,158 actual/185,915 expected),
suggesting that ;73% of the extrapolated hypothetical limit
of coverage by our library was sequenced. Sequencing results
are summarized in Figure 1A. Overlapping uniquely mapped
PETs that form PET clusters (see Figure 1B) have been shown
to be highly enriched for ‘‘true’’ binding sites [18]. We
previously set the selection parameter (i.e., number of PETs
within a given cluster) for high probability binding regions by
using the goodness-of-fit analysis employing a mixture of two
standard Pareto distributions to model the signal and noise
within the dataset [18]. MCF-7 cells, however, pose a special
analytical challenge in that regions of gene amplification in
the cell line also appeared to amplify cluster PET numbers
from low quality binding sites (Figure S2). Therefore, we
devised an alternative strategy that normalizes regions of
gene amplification so that all chromosomal regions can be
directly compared. Using this ‘‘adaptive maximum overlap
PET (moPET) threshold’’ approach (unpublished data) and
setting the false-positive rate of ,0.01, 1,234 moPET3þ ER
binding site clusters were then defined as high quality binding
regions and were used for all subsequent analysis. Among the
high quality binding regions, 45% are moPET3 clusters,
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Author Summary

Estrogen receptors (ERs) play key roles in facilitating the transcrip-
tional effects of hormone functions in target tissues. To obtain a
genome-wide view of ERa binding sites, we applied chromatin
immunoprecipitation coupled with a cloning and sequencing
strategy using chromatin immunoprecipitation pair end-tagging
technology to map ERa binding sites in MCF-7 human breast cancer
cells. We identified 1,234 high quality ERa binding sites in the
human genome and demonstrated that the binding sites are
frequently adjacent to genes significantly associated with breast
cancer disease status and outcome. The mapping results also
revealed that ERa can influence gene expression across distances of
up to 100 kilobases or more, that genes that are induced or
repressed utilize sites in different regions relative to the transcript
(suggesting different mechanisms of action), and that ERa binding
sites are only modestly conserved in evolution. Using computational
approaches, we identified potential interactions with other tran-
scription factor binding sites adjacent to the ERa binding elements.
Taken together, these findings suggest complex but definable rules
governing ERa binding and gene regulation and provide a valuable
dataset for mapping the precise control nodes for one of the most
important nuclear hormone receptors in breast cancer biology.



another 20% are moPET4s, and the remaining 35% have five
or more PETs in overlap regions within the clusters (see
Figure 1C). An indication that the ChIP-PET experiment and
the analytical methods were properly executed is that many
known ER binding sites, including the pS2/TFF1, GREB1,
ADORA1, and CYP1B1 EREs are present in the defined set of
regions [6,21,22]. The complete list of 1,234 high quality
binding regions and their chromosomal location can be
found in Table S1.

ERa binding regions defined by ChIP-PET are located in
every chromosome in the human genome, with the exception
of the Y chromosome, which is not present in MCF-7 cells
derived from a female breast cancer patient (see Figure S3A
and S3B). When regions of gene amplification are accounted
for, the frequency of binding clusters per chromosome

generally corresponds to the size and gene density of the
chromosome, and ER does not appear to localize to specific
chromosomal regions within the genome. Figure S3C shows
ER binding clusters distribution relative to the nearest
University of California Santa Cruz (UCSC) Known Genes
(KG) (see Materials and Methods). Binding regions were
mapped to the precise positions relative to the 59 and 39 ends
of transcripts in the UCSC KG database. Only 5% of the
regions map to the proximal promoter regions, defined as 0–
5 kb upstream of the transcriptional start site (TSS), where
the vast majority of current known EREs have been identified
and characterized thus far. The largest fraction (38%) of
binding regions map to intragenic regions of transcripts and
are localized to introns, whereas 23% are within 100 kb from
the 59 start sites, and 19% are within 100 kb of 39
polyadenylation sites. Only 20% of the ER binding regions
are located in gene deserts where the nearest KG is .100 kb
away. These findings initially suggest that DNA-bound ER can
interact with the transcriptional machinery through both
proximal- and distal-acting mechanisms, and these interac-
tions are not likely to be limited by binding site orientation
(59 or 39) relative to the TSSs. Intriguingly, functional ER
binding sites were rarely in exons and when in exons were in
probable untranslated regions. We did not detect any binding
regions that mapped to a protein-coding domain of a
transcriptional unit. These observations further suggest a
dynamic selection of ER binding sites that excludes exonic
regions and raise the possibility that transcription factor
binding sites (TFBSs) in exons may undergo negative
selection during evolution.

The ERE Sequence Motif Is Enriched in Validated ChIP-PET
Binding Sites
As a preliminary assessment on the fidelity of the 1,234

high quality binding regions, we considered presence of
putative ERE motif as a proxy for a real binding event. A total
of 13 base pair sites that were at most two Hamming distance
away (i.e., two base deviation) from the consensus ERE
(GGTCA-nnn-TGACC) were called putative EREs. Upon
scanning the 1,234 binding regions, we discovered that 884
(;71%) binding regions contained at least one ERE-like
sequence, 25% encoded putative half-ERE sites, and the
remaining 4% bore no ERE sequence motifs whatsoever
(Figure 2). To further confirm the validity of the discovered
binding regions, we selected 107 out of the 1,234 high quality
clusters for further ChIP-qPCR validation (Figure 3A). All

Figure 1. ChIP-PET Analysis Identified 1,234 High Confidence ER Binding

Sites in MCF-7 Cells

(A) A total of 635,371 PETs were sequenced and resolved into 1,234
binding site clusters after filtering for ambiguous and redundant
mapping and local noise in amplified regions of the genome.
(B) This diagram illustrates binding site mapping by a cluster of ChIP-
PETs. ER binding site is situated in the region of overlap between the
ChIP fragments and their PETs.
(C) All of the 1,234 high confidence clusters have at least three PETs in
their region of overlap (moPET3þ) with the largest number of clusters
being moPET3s.
doi:10.1371/journal.pgen.0030087.g001

Figure 2. The ERE Sequence Motif Is Enriched in ER Binding Sites

Overall, 71.6% of the 1,234 high confidence ChIP-PET clusters encode at
least one ERE motif, and 3.73% contained no ERE or half site motif.
doi:10.1371/journal.pgen.0030087.g002
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clusters containing a full putative ERE (47 sites) showed

significant (.2-fold over control) enrichment, and based on

this 100% success rate the 884 genomic loci of ER binding

containing consensus ERE motifs are highly likely to

encompass true ER binding sites. We also tested 37 sites with

half EREs and validated ER binding in 84% (31 of 37) of

selected sites. A similar success rate was found for the non-

ERE ChIP-PET clusters, as 19 out of 23 tested sites (83%)

showed binding. The median fold enrichment of the validated

sites containing a full ERE was 81-fold, which was consid-

erably higher than the median fold enrichment observed for

half- and non-ERE-containing PET clusters (36- and 51-fold,

respectively). These results support the idea that EREs tend to

encode high affinity ER binding sites whereas the half- and

non-ERE binding likely support moderate affinity binding,

perhaps through indirect tethering mechanisms. This is

further supported by the enrichment of EREs as the number

of PETs in the moPET clusters increase, corresponding to

higher ChIP efficiency and potentially reflecting the higher

affinity binding. The positive gradient of the curve supports

the notion that higher moPET clusters are more likely to

contain full ERE-like sequences (p ¼ 3.204e�8) (Figure 3B).

Thus, the canonical ERE sequences appears to be a hallmark

of ER control on a genome-wide scale.

Out of the ten clusters that failed validation, eight of the

loci that were misclassified as true binders belonged to the

moPET 3 category, which would be considered in the

borderline confident range; one was a moPET 4 cluster,

whereas a false positive in a moPET7 was located in an

amplified region of the MCF-7 genome on Chromosome 20

(which we have shown overestimates the binding efficiency of

a DNA fragment to ER). When adjusted for the frequency of

full, half, and no ERE motifs in the PET-defined binding loci,

our validation rate for binding calls is 94%. These validation

results are in line with our previous whole-genome ChIP-PET

analysis of p53, Oct4, and Nanog binding sites [18,19] and

compares favorably with other genome-wide technologies

such as ChIP-on-chip.

Figure 3. Putatively Higher Affinity Binding by ER Is Associated with the ERE

(A) ChIP-PET ER binding sites are validated by conventional ChIP followed by quantitative PCR. Data shown represent average of duplicate experiments.
Binding sites are considered validated if the binding ratio (ER ChIP/irrelevant antibody control) � 2. Validated sites are grouped by presence of EREs
(allowing for up to two base deviation from consensus), half ERE sites, and no ERE motifs.
(B) The frequency of ERE motifs increase as the size of binding site clusters increase. ERE motifs are only present in 7.05% similarly sized genomic
fragments shown as the background.
doi:10.1371/journal.pgen.0030087.g003
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To examine whether ER ChIP-PET binding sites containing

putative full EREs harbor transcriptional enhancer activities,

we PCR amplified 11 binding sites from MCF-7 genomic DNA

and cloned them upstream of the pGL4-TATA luciferase

reporter. For negative and positive controls we used pGL4-

TATA and pGL4-2ERE-TATA, respectively. These constructs

were transiently transfected into hormone-depleted MCF-7

cells, treated with either ethanol or E2 for 18–24 hours, and

then assayed for luciferase activity. A total of eight out of 11

ER ChIP-PET binding site reporter constructs tested were E2

responsive (Figure 4A). To show that the transcriptional

enhancer activities of the ER ChIP-PET binding sites are
mediated via EREs, we mutated the putative ERE motifs in the
eight E2 responsive constructs and transfected them into
MCF-7 cells. Destroying the putative EREs resulted in either
significant reduction or complete loss of estrogen response,
thus demonstrating the EREs of the ER ChIP-PET binding
sites are responsible for their enhancer properties (Figure
4B).

Comparative Analysis of ChIP-PET and ChIP-on-Chip Data
Reveals Differential Binding Site Discovery by These
Technologies
Other technologies have been used to map ER binding sites

on a genomic scale. Carroll et al. using ChIP and human
genome tiling arrays have mapped ER binding sites in
Chromosomes 21 and 22 and across the human genome in
MCF-7 cells [15,16]. We first compared our mapped ER
binding sites to the previously published results in Chromo-
somes 21 and 22 [15]. In the 1,234 binding sites mapped by
ChIP-PET, we detected 36 ER binding sites in these
chromosomes and found that 20 binding sites were identified
by both techniques (Figure 5A) and 16 sites were unique to
ChIP-PET. We then tested ER binding to technology-specific
and overlapping sites by conventional ChIP to determine the
validity of the mapped sites. We selected 25 sites detected by
one technique or by both for further validation by ChIP and
quantitative PCR (Figure 5B). The six sites identified by both
technologies were validated as bona fide ER binding sites and
had the greatest fold enrichment (median’ 3003). All nine of
the sites discovered only by ChIP-PET were validated
compared to nine of the ten selected sites discovered by
ChIP-on-chip alone. The median fold enrichment of the sites
identified solely by the ChIP-PET approach was higher than
that of the ChIP-on-chip (medians ;453 versus ;223). A
total of four of the ten sites discovered only by ChIP-on-chip
were also associated with ChIP-PET clusters but not deemed
high probability sites since three had two PETs in their
cluster, and one site was a one PET singleton (unpublished
data). Moreover, these four ChIP-on-chip sites overlapping
with lower probability PET clusters had higher fold enrich-
ment for ER binding than the remaining sites with only ChIP-
on-chip supporting evidence (;373 versus ;123 median),
suggesting that conjoint assignment of sites by the two
technologies even at suboptimal thresholds may identify
higher quality ER binding sites. To assess the two technology
platforms across the entire genome, we also compared the
1,234 ChIP-PET ER binding sites identified in this study to the
recently published whole-genome ChIP-on-chip ER binding
site map of 3,665 binding sites [16] and found 624 (50.6%)
ChIP-PET sites in common with the ChIP-on-chip data and
610 (49.4%) sites unique to the PET technology (see Figure
5C). These results are consistent with the data of Chromo-
somes 21 and 22 where 44.4% (16/36) of the ChIP-PET sites
are unique (see Figure 5A).
It is likely that the difference between the two platforms

are due to lower affinity ER binding sites being more
susceptible to constraints and limitations inherent in the
detection technologies and to possible differences in bio-
logical handling of cell lines in each study. Moreover, there
appears to be content differences between the discovery
capacity of the two technologies. An inherent disadvantage of
the ChIP-on-chip approach is that arrays mask sites that

Figure 4. ERE Sequences in ER ChIP-PET Binding Sites Are Functional

Transcriptional Enhancers

(A) ER ChIP-PET binding sites were cloned into the pGL4-TATA luciferase
reporter construct and transfected into MCF-7 cells that have been
grown in hormone depleted medium for at least three days. The cells
were treated with either ethanol or 10 nM estradiol for 18–24 h before
harvesting for luciferase activity. pGL4-TATA and pGL4-2ERE-TATA (two
copies of the vitellogenin ERE cloned upstream of TATA box of pGL4-
TATA) were used as negative and positive controls, respectively. The cells
were also cotransfected with the HSV-TK renilla vector as an internal
control for transfection efficiency. The data represent the average of
three individual experiments 6 standard error of mean. The binding site
coordinates and their adjacent genes are: ERE1 and ESR1, Chromosome 6:
152029288–152029705; ERE2 and ESR1, Chromosome 6: 152071268–
152071889; ERE3 and FOXA1, Chromosome 14: 37189409–37189699;
ERE4 and GREB1, Chromosome 2: 11589053–11589737; ERE5 and GREB1,
Chromosome 2: 11621762–11622024; ERE6 and GREB1, Chromosome 2:
11622967–11623504; ERE7 and GREB1, Chromosome 2: 11630097–
11630780; ERE8 and PGR, Chromosome 11: 100554271–100554807;
ERE9 and PGR, Chromosome 11: 100712072–100712428; ERE10 and
CA12, Chromosome 15: 61467060–61467460; ERE11 and TFF1, Chromo-
some 21: 42669273–42670075.
(B) Putative ERE motifs in ER ChIP-PET binding sites were mutated and
examined in transient transfection studies as described in (A).
doi:10.1371/journal.pgen.0030087.g004
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contain repetitive sequences, whereas the output of the ChIP-
PET technology is completely unbiased in regard to the
presence or absence of repetitive sequences. To this point, we
found that;27.9% of the base pairs in bona fide binding sites
discovered by the pair-end tag approach were associated with
repetitive sequences, whereas 5.3% of those in Carroll et al.
bore repeats. Taken together, these results further suggest
that the ChIP-PET and the ChIP-on-chip are complementary
methods for the identification of TFBSs in a whole genome
manner.

Integration of Binding Site and Gene Expression Data
Indicates Diversity in Regulatory Region Architecture and
Transcriptional Response
The binding site map denotes ER transcriptional regu-

latory potential for a large number of genes. To determine
the specific transcriptional responses corresponding to
estrogen treatment and ER recruitment to cis-regulatory sites
in MCF-7 cells, we performed gene expression profiling
experiments using Affymetrix U133 microarrays on a time
course following estradiol exposure. Differentially expressed
genes were selected based on a q-value cut-off of less than 2%
using a stringent significance analysis of microarrays analysis
algorithm. We identified 802 probe sets, representing 544
unique named genes, whose expression levels were up-
regulated in response to 10 nM E2 treatment for 12, 24, or
48 h, and 1,168 probe sets corresponding to 704 unique
named genes, were down-regulated following hormone treat-
ment. When combined with the ER binding site mapping data
(within 100 kb of and closest to high quality binding regions
identified by ChIP-PET), 171 up-regulated genes and 116
down-regulated genes were associated with high confidence
ER binding sites. Table S2 contains the complete listing of
estrogen responsive genes with adjacent ER binding sites
identified in this study.
We next examined whether there was a preference for

positioning of the ER binding sites in up-regulated versus
down-regulated genes. Our analysis revealed that there was a
statistically significant association between the presence of an
ER ChIP-PET cluster near an up-regulated gene and an
under-representation of ER ChIP-PET clusters associated
with down-regulated genes (p¼ 8.379e�08) (see Table 1). The
over-representation of ER ChIP-PET clusters that can be
associated with E2-up-regulated genes is particularly notice-
able at the early 12-h time point. That more binding site
clusters are associated with E2 up-regulated genes (60%)
compared with down-regulated genes (40%) suggests that the
ER protein more frequently is directly involved in the
transcriptional regulation of E2 up-regulated genes as
compared to down-regulated genes. This finding is in
concordance with a previous study we conducted in T-47D
human mammary carcinoma cells, where we found that out of
89 genes identified as direct target genes (i.e., E2-responsive
and cycloheximide insensitive), 59 (66.3%) were up-regulated
and only 30 (33.7%) were down-regulated by E2 treatment [6].
To further confirm the observed association of binding

sites with the transcriptional response, we examined the
association of the 107 sites validated by conventional ChIP
qPCR to E2 regulated gene expression data. Of the 107 sites
tested, 22 sites were found to be associated with an E2-
regulated probe from the Affymetrix dataset. Out of these 22
sites, 16 were up-regulated by E2 whereas six were down-

Figure 5. Comparison of ER Binding Sites Discovered by ChIP-PET and

Published ChIP-on-Chip Experiments Indicate Sites Common to Both
Technologies and Platform-Form Specific Sites

(A) In human Chromosome 21 and 22 studies, 57 ER binding sites were
discovered by Carroll et al. [15], and 36 sites were identified in this study.
There is an overlap of 20 sites between the two studies.
(B) Validation of select binding sites from both studies by ChIP and qPCR
suggest that the common sites (both) are high affinity sites, whereas
sites unique to each technology tend to have more moderate affinity for
ER.
(C) Venn diagram of the overlap between the 3,665 sites discovered by
Carroll et al. and the 1,234 sites identified in this study. The 624 binding
sites identified in this study actually correspond to 633 binding regions
reported by Carroll et al. [16].
doi:10.1371/journal.pgen.0030087.g005
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regulated by E2-treatment. The 16 sites associated with E2 up-
regulated probes all showed high levels of enrichment (;25–
4733) when analyzed by ChIP qPCR, whereas the six sites
associated with down-regulated genes showed lower levels of
enrichment (;1–253) (Figure 6A). These data suggested that
some potential mechanistic association exist between high
affinity ER binding sites and induction of gene expression by
ER.

Exploring the association between ER binding sites and the
directionality of the transcriptional response further, we
mapped the locations of the binding sites relative to the start
and termination sites of E2 up- and down-regulated genes as
assessed by time course studies using Affymetrix expression
arrays. As shown in Figure 6B, binding clusters associated
with E2-induced genes are found, significantly above back-
ground, 50 kb upstream of the TSS, 50 kb downstream of the
TSS within the early introns, and within 25 kb downstream of
the termination site of their associated genes. Intriguingly,
approximately 35 ER binding sites were found within 5 kb of
the transcriptional initiation sites of up-regulated genes
(Figure 6B). No such enrichment was detected with down-
regulated genes or with genes randomly selected from the
UCSC KG database. Taken together, our results suggest that
ER binds to many sites in the genome, most bearing a
discernable ERE-like sequences, and that genes induced by
estrogen are significantly more likely to have an ER binding
site within 50 kb of the TSS. Manual analysis of the intronic
binding sites showed no evidence for internal alternative
TSSs. Genes down-regulated by estrogen show no such
positional enrichment and appear to be associated with
lower ChIP efficiency ER binding sites. Moreover, genes
repressed by estrogen are usually down-regulated later than
those induced (48 h versus 12 h; as also observed elsewhere
[3,16]). This suggests that genes repressed by ER may require
further synthesis and recruitment of other factors to the ER
binding sites and that the mechanism of gene repression is
topographically distinct from that of gene induction. Sup-
porting this is our observation that binding sites for up-
regulated genes have higher moPET counts than binding sites
for down-regulated genes (p ¼ 0.0005). When sampled for
validation by quantitative PCR, ER binding sites associated
with induced genes had much higher fold enrichment for ER
occupancy than repressed genes (see Figure 6A).

Genes Adjacent to ER Binding Sites Are Associated with
Breast Cancer Biology
We posited that the genes adjacent to the ER binding sites

identified by ChIP-PET are putative ER target genes and
should reflect ER function in vivo. To assess this possibility,
we examined whether the behavior of the collection of
adjacent genes could determine the ER status of human
breast cancers. All genes within 100 kb of an ER binding site
or with an ER binding cluster within an intron were used to
cluster 251 breast tumors from a cohort from Uppsala,
Sweden previously analyzed for gene expression using
Affymetrix U133 A and B arrays [23].
Our results showed that this proximate gene list could

easily segregate ER-positive and ER-negative breast tumors
(see Figure 7A), whereas a random gene list from the U133 A
and B gene set could not (unpublished data). Statistical
analysis using the Fisher’s exact test showed a highly
significant separation based on ER-status with p ¼ 3.914e�12.
Moreover, patients with ER-positive like expression profiles,
based on the ER-associated genes, have better disease-specific
survival over ten years of follow-up as compared to those with
the ER-negative like profiles (p ¼ 0.0057) (Figure 7B). This is
consistent with all current knowledge of the impact of ER-
status in breast cancer prognosis. These results provide
strong evidence that the ERa binding sites identified using
ChIP-PET enrich for ER responsive genes that are associated
with the biology of human breast cancers.

There Is Limited Conservation of ER Binding Site
Sequences and Specific ERE-Like Motifs
We have previously shown that ERE sequences in promoter

regions of putative ER target genes are not highly conserved,
even though both conserved and nonconserved sites appear
to be involved in ER binding [6]. Carroll et al., however,
indicated conservation of ER binding sites based on their
analysis of binding sites discovered in Chromosomes 21 and
22 [15]. To resolve this apparent difference in our observa-
tions, we performed comparative analysis of binding site
regions and ERE motifs across species using this genome-wide
dataset. The overall conservation of a binding region is
measured using the base-by-base conservation score and the
presence of conserved elements (PhastCons score and
PhastCons Conserved Elements [24]), (see Materials and

Table 1. Statistics Showing Enrichment of ER Binding Sites Adjacent to Up-Regulated E2 Responsive Genes

E2 Response Number of Responsive

Genes

Number of Genes Adjacent to

ChIP-PET Clusters

Over-Representation

p-Value*

Under-Representation

p-Value*

12 h up 269 110 (38.3%) 8.45e�11a 1

24 h up 109 24 (9.1%) 0.6184423 0.4642205

48 h up 166 48 (12.2%) 0.05584486 0.9602466

12 h down 218 39 (13.6%) 0.9680138 0.04587172

24 h down 135 23 (8.0%) 0.9527564 0.07147298

48 h down 351 54 (18.8%) 0.9998978 1.78e�4a

All up 544 171 (59.6%) 3.79e�8a 1

All down 704 116 (40.4%) 1 3.79e�8a

Total 1,248 287 — —

*Binomial p-value of gene representation versus presence of adjacent ChIP-PET cluster.
aHighly significant over- or under-representation of ER binding sites adjacent to responsive genes.
doi:10.1371/journal.pgen.0030087.t001
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Methods). Using this approach, although a clear conservation

signal is visible, as compared to a randomly generated set of

regions, the actual proportion of binding regions that are

conserved is hidden. To analyze this conservation further, we

examined the presence of PhastCons Elements in the ER

binding sites. Surprisingly, only 273 (22%) of the initial 1,234

binding regions overlap with such conserved elements, but

partitioning the binding sites using this criterion showed that

these 22% carry most of the conservation signal (Figure 8).

Using size-matched random samples of genomic location we

estimate the enrichment of conserved sites to be only

approximately 13% (unpublished data).

Since TFBS motifs are short, typically 10–20 bp, they may

not necessarily be located in a conserved region as detected

by standard algorithms. We sought, therefore, to identify ER

binding sites with ERE-like sequences and determine whether

the specific ERE-like motifs are conserved in homologous

regions in chimpanzee, mouse, and dog regardless of

conservation of surrounding sequences. We extracted the

sequences associated with the 1,234 binding regions in human

(hg17) and identified the corresponding homologous regions

in chimpanzee (panTro1), mouse (mm5), and dog (canFam2)

using the tool liftOver (UCSC Genome Browser utility tool,

http://genome.ucsc.edu/cgi-bin/hgLiftOver). We then scanned

for the presence of consensus EREs with up to two mutations.

Using optimized 500-bp windows in human and chimpanzee

Figure 6. Comparative Analysis of Binding Site Affinity and Location Adjacent to E2 Up-Regulated Genes Versus Down-Regulated Genes

(A) Binding site affinity measured by ChIP and qPCR for 22 ChIP-PET sites within 100 kb of E2 responsive genes detected in the microarray studies. Up-
regulated genes are denoted in red bars and down-regulated genes in green bars. Each binding site is furthered characterized for the presence of EREs,
half EREs, or no EREs.
(B) Locations of binding sites adjacent to up- (blue line) and down- (red line) regulated genes are mapped relative to the transcripts. Relative location to
a random set of genes from the UCSC KGs database is included as a reference.
doi:10.1371/journal.pgen.0030087.g006
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and 1-kb windows in mouse and dog (see Table 2), 754 of the
1,234 human binding regions contained a full ERE. As
expected, the vast majority (698 or 93%) of the homologous
binding windows in chimpanzee also contain ERE-like
sequences. The ERE motif is also found in 283 (38%) of the
mouse homologous regions and in 357 (47%) of the dog
windows. Because the ERE-like sequences are common in any
genome, we considered a site bearing a conserved motif only
if the ERE is retained in chimp, mouse, and dog. Using this
more stringent criterion, we found 179 (24%) of the sites
bearing motif conservation in all four species with a back-
ground of ;7%. This suggests that ;17% of the sites are
under positive selection. Taken together, the sequence and
motif conservation results indicate that the majority of
binding sites identified in this study are poorly conserved

between primates and other mammalian species, and the

conservation of binding sites reported previously [15,16]

likely resulted from a minority (22%–24%) of highly

conserved sites when assessed by multiple conservation

metrics. We should note that the actual conservation of

binding sites may be higher than observed due to alignment

errors [25]. Even with adjustment for this potential error,

however, there will likely be a large number of nonconserved

ER binding sites.

ER Binding Regions Are Enriched for Other TFBS Motifs
Though the ERE appears to be the dominant recognition

sequence for ER on DNA, other transcription factors and

their binding sites are also involved in directing ER to their

specific target sites. Indeed, Carroll and colleagues discovered

Figure 7. ER Binding Sites Are Adjacent to Genes Associated with ER-Status and Disease Outcome in Breast Cancer Patients

(A) Expression profiles of genes adjacent to the 1,234 ER binding sites (,100 kb) cluster 260 breast cancer patients into ERþand ER�groups. ER status is
indicated by blue (ERþ) and orange (ER�) bars beneath each patient sample.
(B) Kaplan-Meier analysis of disease outcome indicates significantly longer survival for patients with the ERþ profile (red) and compared to those in the
ER� cluster (black).
doi:10.1371/journal.pgen.0030087.g007
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an enrichment of forkhead binding site motifs within ER

binding regions of human Chromosomes 21 and 22 and

demonstrated a role for the FOXA1 transcription factor in

facilitating ER’s ability to bind EREs and regulate target gene

expression. In other nongenomic based studies, ER is also

known to bind DNA indirectly through interactions with Sp1

and AP-1 transcription factors [9,10]. To determine the

presence of additional TFBS motifs in the 1,234 ChIP-PET

binding sites across the genome, we analyzed the 1,234 cluster

sequences for putative TFBS based on TRANSFAC (profes-

sional version 9.1) using the accompanying MATCH program

[26] with the ‘‘minimize False Positive’’ setup. To compute the

statistical significance, we generated a background sequence

set, matching the total length of 1,234 clusters, using a third

order Markov Chain sequence model trained on the whole

human genome (hg17) and scanned them similarly for

putative TFBS. This was done 1,000 times. For each TFBS

matrix, the average number of sites found per nucleotide

represents the background probability of finding its putative

sites. The p-values were computed under the binomial

distribution and were adjusted for multiple hypotheses

testing using the conservative Bonferroni correction. Table

3 lists the top matrices (see Supporting Information for

additional details of the analysis).

As expected, the predominant sequence motif enriched in

ER binding sites is the ERE, Interestingly, however, a large

number of transcription-factor binding site motifs are

statistically enriched in these ER binding regions even when

corrected for multiple sampling suggesting that ER may

interact extensively with other transcription factors at the
DNA sites. Previous investigations have shown that FOXA1
bound to forkhead binding site motifs adjacent to EREs and
interacted with ER, as do AP-1 and Sp1. We also found
FOXA1, AP-1, and Sp1 binding motifs significantly associated
with the GIS-PET clusters. To further assess the functional
significance of detected binding sites, we performed RNA
interference experiments using small interfering RNA (siR-
NA) to knock-down Sp1 and then examined the expression of
ten estrogen-responsive genes, which from our data were
found to have adjacent ChIP-PET ER binding sites and
predicted Sp1 binding sequences (Figure 9). Transfections
with Sp1 siRNA constructs reduced Sp1 protein levels by 85%
(see immunoblot, Figure 9A) as compared to the luciferase
siRNA controls. Sp1 knock-down reduced basal expression
levels of all the genes examined and had significant impact on
estrogen-responsive induction of MN1, JMJD2B, TBX2,

SL9A3R1, CDC6, and KIBRA and more moderate effects on
GREB1, IGFBP4, RARA, and MYC as compared to the
luciferase and vehicle-treated controls (Figure 9A). In ChIP
experiments where we examined four estrogen responsive
genes (Figure 9B and 9C), we observed that recruitment of ER
to the ChIP-PET site was greatly increased by the presence of
estrogen (E2) and that this ER recruitment was reduced after
knock-down of Sp1 in three of the four genes (Figure 9B). By
contrast to ER, Sp1 was present at a lower level at the ChIP-
PET site (note the lower fold recruitment), and the recruit-
ment level of Sp1 was not affected by treatment with E2
(Figure 9C). We also investigated these parameters in three
estrogen-responsive genes in which their ChIP-PET region
contained an ERE but was not enriched for Sp1 sites. For the
three genes assessed (FOS, BCL2, and PGR), we found that E2
treatment increased their gene expression (mRNA level) and
that Sp1 knock-down also reduced their gene expression after
E2. In these genes, we saw a very low level of Sp1 at the ChIP-
PET region that was not altered by E2 treatment (unpub-
lished data). We believe that our observations are in keeping
with the fact that these genes all contain Sp1 binding sites
close to the promoter, shown previously to be important in
their gene regulations [27–30], so that some Sp1 presence and
impact of Sp1 knock-down would be expected. Looping of
the distal enhancer to a proximal region that binds Sp1 would
result in the presence of both ER and Sp1 in our ChIP assays.
This might be similar to the direct interaction of a distal
signal-specific enhancer binding factor (NF-jB) region with
the proximal transcription factor Sp1 binding region, as
reported recently for the tumor necrosis factor a-inducible
regulation of the monocyte chemoattractant protein-1 gene,

Figure 8. Most of the Sequences Flanking the 1,234 ER Binding Sites Are

Not Conserved through Evolution

Measure of species conservation at all 1,234 ER binding sites from the
center of the ChIP-PET cluster is depicted in the blue line. The green line
measures species conservation of randomly selected fragments. The red
line depicts the degree of conservation in 22% (273/1,234) of the binding
sites bearing conserved elements, and the yellow line shows the degree
of species conservation of the remaining 78% (961/1,234) of the binding
sites that harbor no conserved elements. These results show that most of
the conservation signal is driven by a minority of the binding sites.
Conservation was measured by base-by-base comparisons.
doi:10.1371/journal.pgen.0030087.g008

Table 2. ERE Motif Conservation in Mammalian Species

Species Number of Binding

Sites with ERE Motifs

Human 754 (100%)

Chimp 698 (92.6)

Dog 357 (47.3%)

Mouse 283 (37.5%)

All 179 (23.7%)

doi:10.1371/journal.pgen.0030087.t002

PLoS Genetics | www.plosgenetics.org June 2007 | Volume 3 | Issue 6 | e870876

Binding Sites of the Estrogen Receptor a Mapped



Table 3. Transcription Factors with Binding Sites Enriched in the 1,234 ChIP-PET Clusters

Factor Name Description Occurrences p-Value* Z-Score TRANSFAC

Matrix ID

ER Estrogen receptor 396 ,1e�300 201.7792368 V$ER_Q6

SRY Sex-determining region Y gene product 1,737 ,1e�300 106.0363019 V$SRY_01

VDR Vitamin D receptor 1,197 ,1e�300 103.2204206 V$VDR_Q3

HNF3/FOXM1 Forkhead box M1 862 ,1e�300 102.0257501 V$HNF3_Q6_01

MAF v-Maf musculoaponeurotic fibrosarcoma oncogene homolog (avian) 899 ,1e�300 91.16420976 V$MAF_Q6_01

GATA-4 GATA binding protein 4 1,789 ,1e�300 85.51543437 V$GATA4_Q3

GEN_INI General initiator sequence (viral þ cellular) 1,922 ,1e�300 79.61289361 V$GEN_INI3_B

C/EBP CCAAT/enhancer binding protein 1,773 ,1e�300 78.95359733 V$CEBP_01

HNF-1/TCF Transcription factor 1, hepatic nuclear factor 1, albumin proximal factor 1,673 ,1e�300 78.70316045 V$HNF1_Q6

Evi-1 Ecotropic viral integration site 1 1,214 ,1e�300 76.58422962 V$EVI1_04

CDX Caudal type homeobox transcription factor 1,120 ,1e�300 75.98190192 V$CDX_Q5

Crx Cone-rod homeobox 405 ,1e�300 75.25821558 V$CRX_Q4

Msx-1 Msh-like (muscle segment homeobox) homeobox protein 1 1,769 ,1e�300 74.89307464 V$MSX1_01

HNF-3alpha/FOXA1 Forkhead box A1 547 ,1e�300 74.0130144 V$HNF3ALPHA_Q6

LEF1 Lymphoid enhancer-binding factor 1 1,360 ,1e�300 73.56367927 V$LEF1_Q2

TEF-1/TEAD1 TEA domain family member 1 (SV40 transcriptional enhancer factor) 1,104 ,1e�300 72.77724581 V$TEF1_Q6

GEN_INI General initiator sequence (viral þ cellular) 1,390 ,1e�300 70.73665007 V$GEN_INI_B

Pax-4 Paired box gene 4 485 ,1e�300 67.01764754 V$PAX4_03

AML-1a/RUNX1 Runt-related transcription factor 1 (acute myeloid leukemia 1; aml1 oncogene) 1,119 ,1e�300 64.90311989 V$AML1_01

AP-1/JUN v-Jun sarcoma virus 17 oncogene homolog (avian) 503 ,1e�300 63.82905912 V$AP1_Q4_01

FAC1/FALZ Fetal Alzheimer antigen 1,166 ,1e�300 63.29068727 V$FAC1_01

OCT1/POU2F1 POU domain, class 2, transcription factor 1 850 ,1e�300 61.55390629 V$OCT1_04

Spz1 Spermatogenic leucine zipper 1 710 ,1e�300 60.1643811 V$SPZ1_01

Octamer Octamer transcription factor 793 ,1e�300 56.14963316 V$OCT_Q6

Tst-1/POU3F1 POU domain, class 3, transcription factor 1 1,051 ,1e�300 55.59418198 V$TST1_01

AP-2/TFAP2A Transcription factor AP-2 alpha (activating enhancer binding protein 2 alpha) 430 1.61e�296 65.02967325 V$AP2_Q3

En-1 Engrailed homolog 1 866 5.30e�288 51.33426991 V$EN1_01

Lyf-1/ZNFN1A1 Zinc finger protein, subfamily 1A, 1 (Ikaros) 614 1.41e�284 55.64841425 V$LYF1_01

Ncx/TLX2 T cell leukemia homeobox 2 717 1.69e�266 50.84418969 V$NCX_01

Pax-2 Pax-2 binding sites/paired box gene 2 770 1.47e�262 46.68261402 V$PAX2_01

FOX Forkhead box 354 3.04e�259 63.61039863 V$FOX_Q2

C/EBP CCAAT/enhancer binding protein (C/EBP) 692 5.40e�258 47.03699203 V$CEBP_Q3

SMAD SMAD, mothers against DPP homolog 1 (Drosophila) 695 7.54e�255 49.61884225 V$SMAD_Q6

Multiple factors Direct repeat 4-hormone response element 353 1.88e�245 60.9938724 V$DR4_Q2

TTF-1 Thyroid transcription factor 1 514 3.54e�224 50.34177034 V$TTF1_Q6

FOXD3 Forkhead box D3 363 1.82e�222 55.66987554 V$FOXD3_01

Nkx2–5 NK2 transcription factor related, locus 5 (Drosophila) 399 2.89e�209 50.7901913 V$NKX25_01

DBP D site of albumin promoter (albumin D-box) binding protein 368 1.14e�201 49.03566128 V$DBP_Q6

NF-1 Neurofibromin 1 408 7.51e�200 47.53332487 V$NF1_Q6_01

XPF-1 Exocrine pancreas transcription factor 1 472 1.51e�193 42.66082156 V$XPF1_Q6

PEA3/ETV4 Ets variant gene 4 (E1A enhancer binding protein, E1AF) 572 1.70e�191 40.89323318 V$PEA3_Q6

MZF1/ZNF42 Zinc finger protein 42 (myeloid-specific retinoic acid-responsive) 403 2.20e�188 44.95465591 V$MZF1_02

Cdc5/CDC5L Cell division control protein 5/CDC5 cell division cycle 5-like

(Saccharomyces pombe)

621 4.16e�187 40.61193732 V$CDC5_01

PPAR direct repeat 1 Peroxisome proliferator activated receptor direct repeat 1-HRE 350 8.81e�187 47.36887733 V$PPAR_DR1_Q2

myogenin/MYOG Myogenin (myogenic factor 4) 308 5.39e�181 48.83249743 V$MYOGENIN_Q6

Pbx-1 Pre-B-cell leukemia transcription factor 1 471 1.85e�174 40.65396769 V$PBX1_01

MAZ MYC-associated zinc finger protein (purine-binding transcription factor) 208 6.96e�171 56.15893179 V$MAZ_Q6

Pax-8 Paired box gene 8 614 8.93e�170 37.76687807 V$PAX8_01

TATA Cellular and viral TATA box elements 655 9.05e�169 36.28750161 V$TATA_01

Sp1 Stimulating protein 1/SP1 transcription factor 234 1.77e�166 50.17821204 V$SP1_01

SF-1/NR5A1 Nuclear receptor subfamily 5, group A, member 1 181 1.73e�165 60.97800254 V$SF1_Q6

GATA GATA binging protein 321 2.42e�165 44.36221304 V$GATA_Q6

Xvent-1 Xenopus ventral 1 522 1.23e�164 37.38988793 V$XVENT1_01

HNF4 Hepatic nulear factor 4/hepatocyte nuclear factor 4 alpha direct repeat 1 292 3.71e�160 45.10804582 V$HNF4_Q6_01

STAT4 Signal transducer and activator of transcription 4 402 1.68e�158 38.74517185 V$STAT4_01

IRF1 Interferon regulatory factor 1 408 2.63e�152 37.9070734 V$IRF1_Q6

SREBP-1/SREBF1 Sterol regulatory element binding transcription factor 1 342 2.32e�149 41.20697668 V$SREBP1_Q6

USF2 Upstream transcription factor 2, c-fos interacting 360 4.01e�139 26.48639699 V$USF2_Q6

PBX Pre-B-cell leukemia transcription factor 348 9.21e�135 36.02068816 V$PBX_Q3

HMGIY/HMGA1 High mobility group AT-hook 1 411 6.08e�134 34.34342255 V$HMGIY_Q3

AP-2rep/KLF12 AP-2 repressor/Kruppel-like factor 12 324 2.04e�126 34.48834625 V$AP2REP_01

Zic3 Zinc finger protein of the cerebellum 3 344 2.27e�125 34.86191599 V$ZIC3_01

*Bonferroni corrected binomial p-values.
doi:10.1371/journal.pgen.0030087.t003
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MCP-1 [31]. Our findings suggest that the predicted binding
sites found in ER ChIP-PET clusters and their associated
transcription factors are likely involved in ER-mediated
transcriptional regulation, although the extent and impact
of their involvement may differ due to gene-specific cis-
regulatory architecture and transcription factor complex
recruitment, and, in the case of Sp1, interactions between ER-
associated effects and promoter proximal regulatory func-
tions.

Using these specific validated associations as reference
points to assess the relative importance of other associated
binding site motifs, we found that 46 other transcription
factors are as significantly associated with the 1,234 GIS-PET
binding sites as these three validated cis-partners of ER. This
suggests that a wider range of transcription factors may
partner with ER at the site of DNA binding than previously
thought. Given these findings, we next asked whether there
was discernable structure within the ER binding sites relative
to the transcription factor response elements that are
significantly over-represented.

To this end, we assessed whether some motifs were
nonrandomly distributed within a 500-bp window encom-
passing the center of the PET defined binding site or
centered on the main ERE or half ERE (Tables S3, S4, and

S5). Our results show that factors such as CDX, PAX, AP-1,
SF1, and MAF are distributed within these sites in a
nonrandom fashion. To dissect the anatomy of these adjacent
binding motifs, we examined the specific position of these
motifs vis-à-vis the central ERE (Figure 10). We plotted the
position of the second transcription factor binding motif
against the frequency of such an occurrence and found that
SF1, PAX2, PAX3, MAF, and AP-1 co-exist with the central
ERE in an ordered manner. Surprisingly, all these factors
appear to have significant overlap specifically at the ERE site
itself, the most striking being SF1 and PAX3. It did not escape
our attention that the observed overlap could be arising from
the inherent similarity of the other comotif with ERE or half-
site ERE. However, if we use a validated cofactor AP-1 as a
model, upon alignment of all the sequences of the AP-1
binding sites and their associated ERE (see Table 4), we
discovered an inordinate number of AP-1 sites positioned in
the place of a cognate ERE half site. These associated AP-1
sites could represent either truly functional AP1 sites, or
degenerate ERE recognition sequences but with sufficient
similarity to potentially be recognized by ER, or both. This
half-site mimicry by the ERE of other transcription factor
binding motifs was seen with MAF/BACH, and most intense
with SF1 and PAX3 where a large proportion of those binding

Figure 9. Impact of Sp1 Knock-Down in MCF-7 Cells on E2 Stimulation of Target Genes Adjacent to ChIP-PET Clusters with Predicted Sp1 Binding Sites

(A) Cells were transfected with GL3 luciferase siRNA control or Sp1 siRNA constructs 72 h prior to treatment with 0.1% ethanol vehicle or 1nM E2 for 4 h.
Expression of target genes was analyzed by quantitative real-time PCR. Values and error bars are based on the mean of three determinations.
(B) Knock-down of Sp1 impacts ERa recruitment to E2-regulated genes. ChIP assays using ERa antibody were performed after transfection of MCF-7 cells
with GL3 luciferase siRNA control or Sp1 siRNA for 72 h followed by 45 min treatment with 0.1% ethanol vehicle or 1nM E2.
(C) Sp1 is present at ChIP-PET regions of E2-target genes, but its presence is not affected by E2 treatment. ChIP assays were performed using Sp1
antibodies after 45 min of 0.1% ethanol vehicle or 1nM E2 treatment. Enrichment of ERa or Sp1 at ChIP-PET regions was evaluated by quantitative real-
time PCR and normalized to IgG control antibody. Results average two to four independent determinations.
doi:10.1371/journal.pgen.0030087.g009
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sites replace an ERE half site at ER binding regions. This was
not seen in other adjacency candidates such as AML-1 where
no internal ordering was noted. For CDX where nonrandom
order was detected, the structure appeared to be an under-
representation within 50 bp to around the EREs. Examination
of the consensus binding motifs of these transcription factors
reveal that SF-1, BACH/MAF, and PAX3 contain sequences
usually just one base different from the ERE half site and
could by chance generate an acceptable ERE half site (Figure
11). Moreover, as in the case with AP-1, the 59 flanking
sequences of these sites all contain the AP-1 consensus
dinucleotide TG, which renders the ERE half site into a good
AP-1 consensus. That these 8- to 13-mer recognition
consensus sequences can be so frequently found as part of
an ERE suggest that these factors may interact with ER in
binding cis-regulatory sequences of target genes.

It has been determined that ER can interact with AP-1 and
Sp1 factors to regulate gene expression through a tethering
mechanism where the DNA binding moiety is AP-1/Sp1. In
our genome-wide analysis, we asked whether our ER binding
sites without discernable EREs had a predominant tran-
scription factor binding motif. Our results show that
predominantly forkhead transcription factors, followed by

SRY recognition sequences are significantly enriched in these
regions (Table 5). AP-1 sites, though not on the enriched list is
however very similar to the MAF recognition sequences,
which appear as borderline significant after SRY. Since AP-1
can bind to MAF sites, AP-1 involvement in these purely
tethered sites is projected. Thus, surprisingly, ER binding sites
without EREs appear highly enriched for recognition motifs
for the forkhead family of transcription factors and above
that of the known AP-1 interacting factors.

Discussion

Whole genome analysis of transcription factors provides an
unbiased view of their regulatory dynamics. Here we present
a genome-wide analysis of the DNA binding sites of ERa as
present in the MCF-7 breast cancer cell line and map these
sites to transcripts regulated by estrogen. We used a cloning
and sequencing based technology and identified 1,234 high
probability binding sites using an algorithm that minimizes
false positives from amplified regions of the genome. That
94% of a sample of these sites could be validated by standard
ChIP suggests that the majority of the 1,234 sites identified by
ChIP-PET represent bona fide binding regions for ERa. Of

Figure 10. Nonrandom Positional Distribution of AP-1, SF1, MAF, PAX3, PAX2, CDX, and AML1 (as Negative Control) Binding Sites in the 500-bp Window

Centered on the Main ERE

The y-axis represents the cumulative frequency of the specific transcription factor motif, and the x-axis represents the position of that motif relative to
the ERE centered at position 250. Motif hits are marked in red ‘‘þ’’ and green ‘‘X’’ indicating forward and reverse strand hits respectively. Multiple hits
on the same sequence are depicted as multiple marks on the same y-value sequence.
doi:10.1371/journal.pgen.0030087.g010
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note is that 96% of the validated binding sites harbored
either full ERE-like (71%) or solely half-ERE motifs (25%).
Only 4% had no ERE-like sequences detectable using a two-
position degeneracy cut-off, and therefore a pure tethered
mechanism of ER transcriptional regulation must occur
infrequently.

This dispersed nature of these 1,234 sites vis-à-vis the TSSs
makes the direct molecular assessment of whether these
adjacent genes can be regulated by ER highly impractical. We
sought to resolve this problem by examining the clinical
behavior of these genes adjacent to ER binding sites. We
posited that if these adjacent genes were under ER regulation,
then their expression in breast cancers should readily
determine ER status of primary breast cancers. Our results
using a cohort of 251 breast cancers showed that these
putative ER regulated genes can significantly separate ER
status in breast tumors and therefore represent a transcrip-
tional regulatory cassette that appears to affect ER response.
We further examined this question by studying the behavior
of these genes in MCF-7 cells as assessed using expression
arrays. Though only 23% of the genes proximal to an
adjacent ER binding site are responsive following estrogen
treatment, this represents a significant enrichment of bona

fide ER binding sites adjacent to estrogen responsive versus
unresponsive genes (p ¼ 3.018433e�51) (unpublished data).
Therefore, our in vitro and in vivo probabilistic analysis all
point to the biological significance of the ER binding sites
identified by our ChIP-PET analysis in the regulation of gene
expression by ER.
It is important to note the ability of ChIP-PET to identify,

in an unbiased manner, bona fide ER binding sites among
nearby EREs predicted only by computational methods. For
example, for the carbonic anhydrase XII (CA12) gene, matrix-
based computational approaches used to identify potential
cis-regulatory elements directing ER-regulation of CA12

indicate that five putative EREs reside in the proximal 59 5
kb with an additional ERE found in the first intron of the
gene. However, we have identified a moPET 59 binding site
approximately 6 kb 59 to the gene, which was found to be the
major regulatory site directing ER-mediated transactivation
as a distal enhancer (D.H. Barnett and B.S. Katzenellenbogen,
unpublished data). CA12 mRNA is up-regulated by estradiol
in MCF-7 breast cancer cells [3,32] and in other ER-positive
cells [33] and is positively associated with ERa status in
primary breast tumors [34]. Hence, our findings highlight the
ability of ChIP-PET to identify previously undiscovered
enhancers of biologically relevant target genes.
Much of the research of ER transcriptional regulation has

focused on a few EREs located within the proximal promoter.
We have shown with our global binding site data that, in fact,
the vast majority of sites are located in distal or intragenic
regions relative to the nearest regulated transcripts. Our
genome wide analysis confirmed the more limited observa-
tions previously seen in Chromosomes 21 and 22 that only a
small portion (5%) of the binding sites are within 5 kb of the
TSS and consistent with our previous predictions [6,35].
Intriguingly, however, detailed analyses revealed that the
statistical preponderance of genes responsive in MCF-7 cells
to E2 adjacent to ChIP-PET identified ER binding sites were
up-regulated rather than down-regulated. Moreover, the
location of these sites next to E2 induced genes showed an
obvious enrichment around the TSS both in prestart

Table 4. Alignment of ERE and AP-1 Motifs in ChIP-PET Clusters

ClusterID Aligned Motif Location Consensus/Matrix

ERE consensus --GGTCAnnnTGACC--

AP-1 consensus TGAGTCAT

Chr1.143726496 --AGTCACCATGACC-- 251 ERE þ 1

Chr.1 143726496 tgAGTCAc--------- 249 V$AP1_Q4_01

Chr.1 182853373 --AGTCATATTGCCC-- 251 ERE þ 2

Chr.1 182853373 tgAGTCAt--------- 249 V$AP1_Q4_01

Chr.3 195359437 --AGTCACAGTCACC-- 251 ERE þ 2

Chr.3 195359437 tgAGTCAc--------- 249 V$AP1_Q4_01

Chr.4 55292981 --AGTCACCAGGACC-- 251 ERE þ 2

Chr.4 55292981 tgAGTCAc--------- 249 V$AP1_Q4_01

Chr.8 129159093 --AGTCAACCTGACC-- 251 ERE þ 1

Chr.8 129159093 tgAGTCAa--------- 249 V$AP1_Q4_01

Chr.8 133448798 --AGTCACTGTGCCC-- 251 ERE þ 2

Chr.8 133448798 tgAGTCAc--------- 249 V$AP1_Q4_01

Chr.8 86921957 --AGTCACCTTGACC-- 251 ERE þ 1

Chr.8 86921957 tgAGTCAc--------- 249 V$AP1_Q4_01

Chr.10 104875526 --GGTTAGCCTGACT-- 251 ERE þ 2

Chr.10 104875526 ---------cTGACTca 258 V$AP1_Q4_01

Chr.10 99320987 --GGTCACAGTGACT-- 251 ERE þ 1

Chr.10 99320987 ---------gTGACTca 258 V$AP1_Q4_01

Chr.12 51649893 --GGTCAGGCTGACT-- 251 ERE þ 1

Chr.12 51649893 ---------cTGACTca 258 V$AP1_Q4_01

Chr.12 52505205 --GCTCAACCTGACT-- 251 ERE þ 2

Chr.12 52505205 ---------cTGACTca 258 V$AP1_Q4_01

Chr.16 21430354 --GGTCAGGATGACT-- 251 ERE þ 1

Chr.16 21430354 ---------aTGACTca 258 V$AP1_Q4_01

Chr.20 45988357 --AGTCAGAATGACT-- 251 ERE þ 2

Chr.20 45988357 tgAGTCAg--------- 249 V$AP1_Q4_01

Chr.20 46137128 --TGTCACTGTGACT-- 251 ERE þ 2

Chr.20 46137128 ---------gTGACTca 258 V$AP1_Q4_01

Chr.20 48813837 --AGTCACCGTGCCC-- 251 ERE þ 2

Chr.20 48813837 tgAGTCAc--------- 249 V$AP1_Q4_01

Chr.21 15494062 --TGTCAGGATGACT-- 251 ERE þ 2

Chr.21 15494062 ---------aTGACTta 258 V$AP1_Q4_01

Chr.X 136796110 --AGTCAGAGTGACA-- 251 ERE þ 2

Chr.X 136796110 tgAGTCAg--------- 249 V$AP1_Q4_01

doi:10.1371/journal.pgen.0030087.t004

Figure 11. Alignment of TFBSs Enriched in ChIP-PET Clusters with

Overlapping Sequence Motifs with the ERE

The consensus string is a representation of the matrix based on the
following rules [48]: A single nucleotide is shown if its frequency is
greater than 50% and at least twice as high as the second most frequent
nucleotide; a double-degenerate code indicates that the corresponding
two nucleotides occur in more than 75% of the underlying sequences,
but each of them is present in less than 50%; all other frequency
distributions are represented by the letter ‘‘n;’’ the letters in red indicate
bases identical to the ERE consensus.
doi:10.1371/journal.pgen.0030087.g011
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locations and in 59 introns and within 50 kb from the TSS
(Figure 6B). The number of these sites is small when the
entirety of genes regulated by ER is considered and therefore
would have been missed by a less specific analysis. This
distribution of the ER binding sites relative to the induced
transcripts indicates diversity in both proximal and distal
mechanisms in regulating RNA polymerase activity and
suggests that the proposed looping mechanisms [15] may
play a more prominent role in ER-mediated transcriptional
regulation than previously thought. We have further mapped
the entire transcriptome of the MCF-7 cell line using a full-
length cDNA library sequencing approach [17]. In sequencing
pair-end tags of over 500,000 full-length cDNA equivalents,
we found that 13% of the 22,115 individual transcripts
identified were novel. When novel transcripts from MCF-7
are accounted for, 90% of the 1,234 high quality ER binding
sites are within 100 kb of transcript boundaries (G. Bourque,
C.L. Wei, and E.T. Liu, unpublished data). This apparent
distance restriction may reflect structural and spatial
constraints on the distal effects of the bound ER on
promoters.

Equally intriguing is the possibility that ER-mediated gene
repression may use mechanisms very different than gene
induction, and that genomic topography (i.e., binding site
location and affinity) may have a significant role. Consistent
with this is our quantification study using ChIP-qPCR on
ChIP-PET identified ER binding sites where genes repressed
by ER uniformly had ER binding sites that had the lowest fold
induction after E2 exposure (;1–25), as compared to those
binding sites adjacent to induced genes (;25–473), and were
less likely to harbor a full ERE-like motif. When all sites are
taken into account and measured by the number of over-
lapping PETs (moPETs) up-regulated genes have significantly
higher moPET counts than down-regulated genes (p ¼
4.575e�4, unpublished data). Moreover, in reporter assays
performed with the 11 candidate ER binding sites, the only
three that did not induce transcription off a TATA promoter
were sites associated with repressed genes. These observations
are consistent with previous findings that deviations from the
full ERE motif reduces ER binding affinity and that the
binding site dynamics may differ in genes that are induced by
ER than those repressed by ER [11]. The large number of
bona fide and nonproximal ER binding sites reported here
represents ideal candidates for further characterization of
these distinct mechanisms.

It is known that ER can regulate gene expression not by
direct DNA binding but through association with an

intermediary transcription factor such as AP-1. Theoretically,
this mechanism of ER transcriptional regulation does not
require ER binding to an ERE. Our motif searches in these
non-ERE sites revealed that the predominant motifs in the
pure tethered bin are those for the forkhead transcription
factors, SRY, with MAF reaching borderline statistical
significance (p ¼ 0.056). MAF recognizes sequences related
to the AP-1 target site and are considered as part of the larger
AP-1 family of transcription factors and, therefore, our
results suggest that AP-1 and MAF can bind to these sites [36].
The interesting observation is that in the absence of a
minimum of an ERE half site, the fold enrichment of ER
binding in these sites is lower (a median of 51-fold enrich-
ment of binding as compared to 81-fold for ERE; Student’s t-
test p ¼ 0.027). Moreover, our analysis of AP-1 sites within
EREs show perfect orientation with one half site with
similarities to AP-1 recognition sequences, and the second
(cognate) half site primarily an ERE recognition sequence.
These ‘‘hybrid’’ sites show higher levels of ER binding. This
suggests that AP-1–associated tethering may favor sites with
ERE half-site ‘‘anchors.’’ Indeed, previous analysis of the ERE
half site associated with the AP-1 site found in the
progesterone receptor promoter showed that the integrity
of the ERE half site is required for ER and AP-1 binding and
estrogen responsive promoter activity [37].

These genome wide approaches to nuclear hormone
receptor binding sites are revealing in that the large number
of validated binding sites provide statistical power in
assessing underlying motif structure in the binding sites.
The results of our motif search analysis also point to the
potential involvement of a number of other transcription
factors participating in ER transcriptional regulatory activity.
Included in the list of putative transcriptional coregulators is
FOXA1, which has been previously shown to be required for
ER functions [15]. However, the fact that 46 other factors are
enriched in the ER binding sites with the same probability as
the proven interactors of FOXA1, AP-1, and Sp1 suggests the
potential for highly complex interactions. Of course not all
cis-partner transcription factors will be expressed in every
cell type. But though it would be highly improbably that each
co-occurrence will predict binding by both factors, our
analysis of Sp1 action on ten estrogen-responsive genes with
adjacent ChIP-PET ER binding sites and predicted Sp1
binding sequences showed down-regulation of all ten. More-
over, we have validated the effect of adjacent GATA3 and
BACH interactions in ER binding to EREs (J. Thomsen and
E.T. Liu, unpublished data). This suggests that our algorithms

Table 5. TFBS Enrichment in ER Binding Clusters Lacking ERE Motifs

Factor Motif Name Description Bonferroni Corrected p-Value

HNF3/FOXM1 Forkhead box M1 0

FOXA1 Forkhead box A1 0

FOX Forkhead box 6.17e�14

FOXD3 Forkhead box D3 1.85e�8

SRY Sex-determining region Y gene product 1.72e�7

MAF v-Maf musculoaponeurotic fibrosarcoma oncogene homolog (avian) 0.05629889

doi:10.1371/journal.pgen.0030087.t005
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to predict adjacent transcription-factor binding are poten-
tially highly accurate.

Perhaps even more interesting is the systematic order of
these potential partner transcription factors relative to the
position of the central ERE in bona fide ER binding sites.
Consistent with the model where AP-1 binding appears
‘‘anchored’’ by an adjacent ERE is that AP-1 is distributed in a
nonrandom manner within a 500-bp window of an ER
binding site. In this distribution, the sequence of a number
of full EREs are actually composite binding elements with an
AP-1 site posing as an ERE half site. These composite EREs
are seen with SF-1, MAF/BACH, AP-1, and PAX2 and PAX3.
All these factors have recognition sequences that overlap with
(but are distinct from) the ERE half site. Unexpectedly, highly
skewed positioning was found with the SF-1 and PAX3
recognition sequences (Figure 10), where a large proportion
of these response elements are positioned as the second ERE
half site within bona fide ER binding sites. Although such
overlap may be cues for inherent similarity of the computa-
tional model between ER binding sites and other factor
binding sites, in the case with SF-1, it has been previously
observed that SF-1 response elements can also bind ERa, but
not ERb [38]. Interestingly, SF-1 knock-out mice exhibited
ovarian abnormalities and sterility resembling tissues from
ER and aromatase knock-out animals, further suggesting an
interaction between SF-1 and the ER-estrogen axis [39]. Thus,
such composite sites are potential points of exchange for
transcription factors possibly switching to and from homo-
dimer and heterodimer states of occupancy and represent a
potential mechanism to augment heterogeneous response to
estrogen exposure.

We have previously reported very little conservation of
ERE motifs within promoter regions of human and mouse
genes even though conserved and nonconserved sites both
bind ER [6]. In the promoter regions of putative direct target
genes, approximately 6% of predicted EREs were conserved
in the mouse. In contrast, Carroll and colleagues reported
conservation in sequences flanking ER binding sites they
experimentally mapped to human Chromosomes 21 and 22
and in their whole-genome study [15,16]. To reconcile these
apparent differences, we examined the 1,234 ChIP-PET ER
binding sites and determined conservation in both flanking
sequences and detected ERE motifs. Using similar analytical
approaches as those used by Carroll et al., we also find
evidence of conservation within the 500-bp windows around
the discovered binding sites. However, a more in-depth
analysis showed that the conservation signal observed was
driven by only 22% of all sites tested. There was limited
conservation regardless of whether local sequence similarity
or presence of an ERE motifs were used as the metric for
conservation (Table 2). Thus, the conservation also observed
by Carroll et al. is likely due to a small number of highly
conserved sequences and does not represent global con-
servation of binding sites [15,16]. We have noted that the
conservation may be underestimated due to alignment errors
in the comparative analysis of whole-genome sequence data
[25], but these errors will not fully explain the large number
of nonconserved sites. The list of genes with conserved ER
binding sites does not appear to have functional coherence
(unpublished data). Genes classically thought of as prototypes
of ER responsiveness, such as pS2/TFF1, and the progesterone
receptor have bona fide ER binding sites in the human MCF-

7 cell line that are not conserved by sequence or motif
presence across mammalian species. Moreover, both con-
served and nonconserved sites are associated with ER-
regulated genes. A total of 287 of all 1,234 binding sites
(23.3%) are associated with ER-regulated genes, while 63 of
the 273 conserved binding sites (23.1%) are associated with
regulated genes (not significantly different).
The limited conservation of ER binding sites does not

imply that the genes that are important in ER function are
not regulated by ER, but that the precise DNA targets may
differ. Given the distance of 100 kb, in which an occupied
ERE can potentially regulate its associated promoter, there is
much flexibility in the placement of ER regulatory elements.
Nevertheless, these observations indicate that there are likely
species-specific differences in the components and the
dynamics of estrogen action and that results from animal
studies need to be interpreted with this caveat in mind.
In summary, our work provides a new cartography of ER

binding on a genome-wide scale. The collective configuration
of these binding sites has revealed fundamental rules that
describe the characteristics of a bona fide ER recognition
motif. The dominance of the ERE, the distributed nature of
the binding sites distant to their associated genes, the
separate nature of up- versus down-regulated genes, the
importance of adjacent binding motifs of other transcription
factors, and the frequency of composite ER response
elements are all findings that would have been difficult to
assess on a gene-by-gene basis. Data from this work will
provide the experimental targets that will further dissect the
intricacies of ER transcriptional regulation.

Materials and Methods

Cell culture and treatments. MCF-7 cells were grown to 80%
confluence in D-MEM/F-12 (Invitrogen/Gibco, http://www.invitrogen.
com) supplemented with 10% FBS (Hyclone, http://www.hyclone.
com). Cells were washed with PBS and incubated in phenol red-free
D-MEM/F-12 medium (Invitrogen/Gibco) supplemented with 0.5%
charcoal-dextran stripped FBS (Hyclone) for 24 h in preparation for
17b-estradiol (E2; Sigma, http://www.sigmaaldrich.com) treatment.

ChIP. Estrogen-deprived MCF-7 cells were treated with 10 nM E2
for 45 min prior to the ChIP procedures. ChIP was carried out as
described previously [6] using the HC-20 anti-ERa antibody (Santa
Cruz Biotechnology). Following ChIP, DNA fragments were either
pooled for PET library generation or analyzed for ER binding at
specific sites by real-time PCR. Proper DNA fragment length and ER
binding to the known pS2/TFF1 ERE were confirmed by gel
electrophoresis and real-time PCR, respectively. ChIP assays using
antibodies to Sp1 were performed as previously described [40]. The
antibodies used were from Santa Cruz Biotechnology (Sp1 PEP-2,
rabbit IgG) and Upstate Biotechnology (Sp1) (http://www.upstate.
com). DNA obtained from ChIP was analyzed by quantitative real-
time PCR using specific primers for the ER binding sites closest to
selected ER-regulated genes.

Real-time PCR. PCR quantification was performed on the ABI7500
Real-time PCR System (Applied Biosystems, http:/ /www.
appliedbiosystems.com) with 20 ll reaction volume consisting of 20
ng of ChIP samples or 20 ng of input DNA as templates, 0.2 lM
primer pairs, and 10 ll of 23 SYBR Green PCR Master Mix (Applied
Biosystems). For each PCR run, the samples underwent 40 amplifi-
cation cycles. Fluorescence was acquired at the conclusion of each
cycle at 60 8C during the amplification step.

ChIP-PET library construction and sequencing. Around 140 ng of
ChIP DNA were used for construction of the ChIP-PET library for
mapping ER binding sites in the human genome, following a
procedure described previously [18]. Briefly, End-It DNA End-Repair
Kit (Epicentre, http://www.epibio.com) was used to repair the ends of
the ChIP DNA. DNA fragments larger than 500 bps were selected by
using cDNA size fractionation columns (Invitrogen) and cloned into
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pGIS-3a vector [18], which contains the Mme I cassettes flanking the
cloning site (XhoI). The ligation mixture was transformed into the
One Shot Top10 Electrocomp Cells (Invitrogen). A total of 2.3 million
clones were obtained. Around 90% of the clones contained inserts.
We plated out 1.2 million clones on LB-agar (ampicillin 50 ng/ml) and
scraped off the cells for plasmid DNA isolation. Around 10 lg of
purified plasmid DNA mixture was digested with MmeI and end-
polished with T4 DNA polymerase to remove the 39-dinucleotide
overhangs. The resulting plasmids containing a signature tag from
each terminal of the original ChIP DNA insert were self-ligated to
form single-PET plasmids. These were then transformed into One
Shot Top10 Electrocomp Cells (Invitrogen) to form a ‘‘single-PET
library.’’ We plated out 1.2 million clones from this library on LB-
agar (ampicillin 50 ng/ml) and extracted plasmid DNA from the cells.
Around 250 lg of plasmid DNA were digested with BamHI to release
the 50 bp PETs. About 600 ng of single-PETs were PAGE-purified,
then concatenated and separated on 4%–20% gradient TBE-PAGE.
Appropriate size fraction (600–1,100 bps) of the concatenated DNA
was excised, extracted, and cloned into EcoRV-cut pZErO-1
(Invitrogen) to form the final ChIP PET library. The clones were
grown on LB-Agar (Zeocin 25 lg/ml). The plasmids were prepared
and sequenced using ABI3730 DNA analyzer.

Microarray experiments and analysis. All microarray experiments
were carried out on Affymetrix U133 A and B GeneChips. MCF-7
cells were treated with 10 nM E2 for 12, 24, and 48 h and RNA
extraction, labeling, and hybridizations were performed according to
manufacturer protocols. Affymetrix analysis software was used to
perform the preliminary probe-level quantitation of the microarray
data. These data were further normalized using the RMA [41]
normalization method. The default option of RMA (with background
correction, quantile normalization, and log transformation) was used
to generate the normalized intensity for each probeset.

Differentially expressed genes were identified at each time point
separately using the three untreated at the time point as controls
against the three treated samples. The SAM [42] statistical method
was used to select differentially expressed genes. Genes were selected
based on the q-value less than 2%. Experiments using patient samples
were performed as described in a previous publication [23], and the
data used in this study were obtained from the Uppsala cohort from
the previous study.

Construction of plasmids and luciferase reporter assay. ER ChIP-
PET binding sites were amplified from MCF-7 genomic DNA by PCR
and cloned into the pGL4-TATA vector (a minimal TATA box
upstream of pGL4-Basic) by homologous recombination using the In-
Fusion CF Dry-Down PCR Cloning kit (Clontech, http://www.clontech.
com). Putative EREs were mutated using the QuickChange Site
Directed Mutagenesis kit according to the manufacturers instructions
(Stratagene, http://www.stratagene.com). MCF-7 cells, grown in
hormone-depleted medium for at least 3 d, were cotransfected with
the ChIP-PET constructs and HSV-TK renilla with Fugene (Roche,
http://www.roche.com). After the cells were treated with 10 nM
estradiol or ethanol for 18–24 h, cell lysates were harvested and
assessed for firefly and renilla luciferase activity using the Dual
Luciferase Reporter Assay system (Promega, http://www.promega.
com).

Sp1 RNA interference. Estrogen-deprived MCF-7 cells were trans-
fected with Sp1 SMARTpool or GL3 luciferase control siRNA
(Dharmacon, http://www.dharmacon.com), according to the manufac-
turer’s instructions. After 72 h, cells were treated with 1nM E2 for 4 h.
Total RNA was harvested and prepared using Trizol reagent
(Invitrogen). Quantitative real-time PCR was performed as previously
described [33]. The fold change in expression was calculated using the
ribosomal protein 36B4 as an internal control as previously described
[3,35]. Primer sequences are available upon request. Proteins were
extracted from MCF-7 cells using RIPA buffer, separated on SDS-
PAGE, transferred to nitrocellulose membrane, and immunoblotted
using anti-Sp1 antibodies (Upstate Biotechnology).

ChIP-PET mapping and primary annotations. PET sequence
extraction and mapping were done as described previously [18,19],
using the PET-Tool [43]. The mapped PET sequences were further
processed, annotated, and visualized using the T2G genome browser,
our in-house genome browser developed based on the UCSC genome
browser.

Library saturation analysis. To assess the saturation of the library,
we fitted a Hill Function:

f ðxÞ ¼
axb

xb þ cb

where x is the number of PETs sequenced and f(x) is the number of

distinct PETs mapped into the genome among x PETs sequenced. The
parameters were chosen to ascertain the completeness of the library
and to gain insight on the sequencing effort required for attaining
higher saturation level. Using the nonlinear least-square Marquardt-
Levenberg algorithm [44] and the historical sequencing data, we
obtained a fit with a¼ 185,915 (64.362), b¼ 1.04144 (62.704e�5), and
c¼ 239,414 (612.07).

Identification of high quality binding regions. The underlying
aberrant genome of MCF-7 presented an additional challenge in
determining which of the ChIP-PET clusters were truly bound by ER.
Presence of amplified regions [45], with high and varying copy
numbers, increased the probability of those regions being sampled
during the ChIP assays, which translated into unusual overall ChIP-
PET enrichments in multiple genomic pockets. Relying solely on the
raw count of overlapping PETs would introduce undesirable false
positives. To address this issue, we have developed a binding region
identification algorithm (unpublished data) that produces lower false
positives when predicting binding clusters in amplified regions,
compared to using raw counts. When assessing the likelihood of a
given ChIP-PET cluster being bound by ER, the two-stage algorithm
first estimates the amount of noisy PETs surrounding the cluster of
interest within its 25-kb flanking regions. Based on the estimated
noise level and the neighborhood size (i.e., 50 kb), a moPET cut-off
value can be calculated, such that the false positive probability is less
than 1e�2. If the given ChIP-PET cluster has a stronger overlapping
region (i.e., higher moPET value) than the calculated cut-off, we
consider the cluster to be truly bound by ER.

Comotif analysis. The rich presence of putative EREs points to the
canonical and dominant theme of direct ER-DNA interaction.
Nevertheless, ER interplays with other transcription factors have
previously been reported and are expected, for it to exert wider and
more diverse regulatory roles. These high quality binding regions
present an unprecedented opportunity for the study of regulatory
partners of ER. We employed a three-pronged approach to mine the
binding regions for potential enrichment of binding motifs of other
transcription factors, where the first assessed the enrichment of
certain motifs in a given set of sequences, the second tested whether
putative motifs of other transcription factors exhibited certain
spatial correlation with respect to the main ERE or half ERE motif,
and lastly the Genomatix suite was used for a low-throughput high
quality semi-automatic assessment and visualization of potential
comotifs.

For the first and second sets of analysis, putative binding sites were
identified based on weight matrices available in TRANSFAC
(professional version 9.1) and using the accompanying MATCH
program [26] with the ‘‘minimize False Positive’’ configuration. To
compute the statistical significance of motif enrichment in a given set
of sequences, a background sequence set, with its total length
matching that of the sequence set, was generated using a third-order
Markov Chain sequence model (trained on the whole human genome
[hg17]) and was similarly scanned for putative TFBS. This was done
1,000 times, and for each TFBS matrix, the average number of sites
found per nucleotide represents the background probability of
finding its putative sites. The p-values for motif enrichment were
computed under the Binomial distribution and were adjusted for
multiple hypotheses testing using the conservative Bonferroni
Correction procedure. Evaluation of spatial correlation between
main ERE or ERE half sites was carried out using Kolmogorov-
Smirnov test. A 500-bp sequence window was defined for each
binding region, centering on its main ERE or ERE half site. The
putative binding sites of each transcription factor were tested
whether they were uniformly distributed within the sequence
window.

Conservation analysis. PhastCons scores are base-by-base values
between 0 and 1 that give a measure of evolutionary conservation in
eight vertebrate genomes (human, chimp, mouse, rat, dog, chick,
fugu, and zebrafish) based on a phylogenetic hidden Markov model,
phastCons [24], and Multiz alignments [46]. PhastCons Conserved
Elements identify regions of the genome with high conservation
scores. These tracks were obtained through the UCSC Genome
Browser [47]. A binding site is identified as sequence conserved if its
overlapping region overlaps any PhastCons Conserved Elements.
Motif conservation analysis was carried out as follows: (1) sequences
centered on the middle of the overlapping region of the 1,234
binding regions in human (hg17) were identified; (2) corresponding
homologous regions in chimpanzee (panTro1), mouse (mm5), and
dog (canFam2) were identified using the tool liftOver (UCSC Genome
Browser utility tool); (3) corresponding fasta sequences were
extracted; and (4) all sequences were scanned for the consensus
ERE motif allowing for two mismatches. Process was repeated for
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various window sizes in human varying from 250 bp to 5 kb
(unpublished data).

Supporting Information

Figure S1. Fitting of the Hill Function to Assess the Library
Saturation

The number of distinct unique PETs of the library, representing
nonredundant information, is plotted against the number of PET
sequenced (in chronological order) to attain it. A Hill Function,
shown adjacent to the curve, is then fitted to the empirical data to
estimate the total number of distinct PETs attainable should the PETs
continue to be sequenced indefinitely. From that estimate, we
conclude that the ER ChIP PET library used in this study reaches a
saturation level of 73.24%.

Found at doi:10.1371/journal.pgen.0030087.sg001 (1.2 MB AI).

Figure S2. Comparative Genome Hybridization Reveals Amplified
Regions in the MCF-7 Breast Cancer Cell Line Genome

Found at doi:10.1371/journal.pgen.0030087.sg002 (1.2 MB AI).

Figure S3. High Confidence ER Binding Sites Are Distributed
throughout the Genome and Are Not Enriched in Specific Chromo-
somes When Amplified Regions Are Taken into Account

(A) Comparison of number of ChIP-PET binding sites (open bars) to
chromosome size (closed bars) is presented.
(B) Binding site distribution (open bar) as compared to gene density
(closed bars) on each chromosome is presented.
(C) Location of ER binding sites relative to the nearest genes in the
UCSC KG database shows a large majority of sites distal to the genes
(.5 kb) or within intragenic regions.

Found at doi:10.1371/journal.pgen.0030087.sg003 (1.3 MB AI).

Table S1. Complete Table of 1,234 High Confidence ChIP-PET
Clusters Denoting ER Binding Sites in MCF-7 Cells

Found at doi:10.1371/journal.pgen.0030087.st001 (210 KB XLS).

Table S2. List of Estrogen Responsive Genes Identified in Microarray
Experiments with Adjacent ER Binding Sites

Found at doi:10.1371/journal.pgen.0030087.st002 (47 KB XLS).

Table S3. Nonuniform Distribution of TFBSs in 1,234 ChIP-PET
Clusters

The Kolmogorov-Smirnov Test was employed to test whether the
observed putative binding sites locations follow uniform distribution.

Found at doi:10.1371/journal.pgen.0030087.st003 (15 KB XLS).

Table S4. Nonuniform Distribution of TFBSs Relative to the Main
EREs of the Binding Regions, Based on Kolmogorov-Smirnov Test, as
Described Earlier

Found at doi:10.1371/journal.pgen.0030087.st004 (16 KB XLS).

Table S5. Nonuniform Distribution of TFBSs Relative to the Main
Half EREs of the Binding Regions, Assessed under the Kolmogorov-
Smirnov Test

Found at doi:10.1371/journal.pgen.0030087.st005 (15 KB XLS).
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