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Abstract

Background: Cytochrome P450 monooxygenases (P450s) catalyze oxidation of various substrates using oxygen

and NAD(P)H. Plant P450s are involved in the biosynthesis of primary and secondary metabolites performing

diverse biological functions. The recent availability of the soybean genome sequence allows us to identify and

analyze soybean putative P450s at a genome scale. Co-expression analysis using an available soybean microarray

and Illumina sequencing data provides clues for functional annotation of these enzymes. This approach is based

on the assumption that genes that have similar expression patterns across a set of conditions may have a

functional relationship.

Results: We have identified a total number of 332 full-length P450 genes and 378 pseudogenes from the soybean

genome. From the full-length sequences, 195 genes belong to A-type, which could be further divided into 20

families. The remaining 137 genes belong to non-A type P450s and are classified into 28 families. A total of 178

probe sets were found to correspond to P450 genes on the Affymetrix soybean array. Out of these probe sets, 108

represented single genes. Using the 28 publicly available microarray libraries that contain organ-specific

information, some tissue-specific P450s were identified. Similarly, stress responsive soybean P450s were retrieved

from 99 microarray soybean libraries. We also utilized Illumina transcriptome sequencing technology to analyze the

expressions of all 332 soybean P450 genes. This dataset contains total RNAs isolated from nodules, roots, root tips,

leaves, flowers, green pods, apical meristem, mock-inoculated and Bradyrhizobium japonicum-infected root hair

cells. The tissue-specific expression patterns of these P450 genes were analyzed and the expression of a

representative set of genes were confirmed by qRT-PCR. We performed the co-expression analysis on many of the

108 P450 genes on the Affymetrix arrays. First we confirmed that CYP93C5 (an isoflavone synthase gene) is co-

expressed with several genes encoding isoflavonoid-related metabolic enzymes. We then focused on nodulation-

induced P450s and found that CYP728H1 was co-expressed with the genes involved in phenylpropanoid

metabolism. Similarly, CYP736A34 was highly co-expressed with lipoxygenase, lectin and CYP83D1, all of which are

involved in root and nodule development.

Conclusions: The genome scale analysis of P450s in soybean reveals many unique features of these important

enzymes in this crop although the functions of most of them are largely unknown. Gene co-expression analysis

proves to be a useful tool to infer the function of uncharacterized genes. Our work presented here could provide

important leads toward functional genomics studies of soybean P450s and their regulatory network through the

integration of reverse genetics, biochemistry, and metabolic profiling tools. The identification of nodule-specific

P450s and their further exploitation may help us to better understand the intriguing process of soybean and

rhizobium interaction.
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Background
Cytochrome P450 monooxygenases (P450s) are enzymes

found in most organisms from bacteria, to plants and

human [1]. They catalyze the oxidation of various sub-

strates using oxygen and NAD(P)H. In plants, large num-

bers of P450 genes form complex super-families and play

important roles in many plant metabolic processes. They

are involved in biosynthesis of pigments (anthocyanins),

accessory pigments (carotenoids), defense-related com-

pounds (some phytoalexins), UV protectants (flavonoids

and sinapoyl esters), structural polymers (lignins), and

fatty acids. P450s also contribute to the homeostasis of

signalling molecules such as plant hormones because

they are frequently the rate-limiting enzymes of hormone

biosyntheses [2]. Similar to their functions in animals,

P450s are also responsible for degradation of endogenous

as well as exogenous compounds such as herbicides,

insecticides and pollutants [3].

Structurally, the bacterial P450s are soluble proteins. In

contrast, all plant P450s studied so far are membrane-

localized. Most of them are anchored on the cytoplasmic

surface of the endoplasmic reticulum (ER) by a hydro-

phobic peptide present at the N-terminus, possibly form-

ing a trans-membrane segment [4]. Analysis of the

Arabidopsis and other plant P450 sequences predicts

potential signal peptides that should target some of the

P450s to the plastids or to the mitochondria [2], though

no mitochondrial P450s are known in plants. The num-

ber of P450 genes in plants is much higher than in other

organisms, correlating to the fact that plants produce a

huge repertoire of primary and secondary metabolites.

For nomenclature and classification of diverse P450

genes, a universal system has been set up based on the

protein sequence identity and phylogeny [5]. Briefly,

P450 proteins that share at least 40% identity are

assigned to the same family. They are further grouped

into sub-families that share at least 55% identity. A few

exceptions to this nomenclature system do occur, espe-

cially in plants where gene duplication events make it

more complex. In such cases, phylogeny and gene organi-

zation are taken as criteria for family assignment. P450

genes for all organisms are named and classified by a

P450 nomenclature committee in chronological order of

sequence submission (David Nelson: dnelson@uthsc.

edu). To distinguish from other organisms, plant P450s

are classified into families from CYP71A1 to CYP99XY,

and then from CYP701A1 and above [2]. P450s in plants

are traditionally classified in two types: the A-type and

the non-A type [6,7]. Recently, plant P450s have been

re-classified into 11 clans. The A-type is now grouped as

the CYP71 clan and the non-A type has 10 clans includ-

ing the CYP51, CYP72, CYP74, CYP85, CYP86, CYP97,

CYP710, CYP711, CYP727, and CYP746 clan [7].

Here, we carried out a systematic analysis of the soy-

bean genome for P450 gene families. Soybean (Glycine

max) is one of the most important legume species and a

leading oilseed crop in the world. Processed soybeans

are the largest source of vegetable oil and protein feed.

According to a USDA report, soybean represented 56%

of world oilseed production in 2008 http://www.soystats.

com/2009/. The soybean genome has recently been

sequenced and various large-scale expression analyses

have been established in soybean, providing unique

resources for genomic analysis of this important gene

family [8]. Importantly, the soybean P450 information

can be compared to other fully sequenced plant gen-

omes. As of September 2010, from the fully sequenced

plant genomes, there are 71 full-length P450 genes in

moss Physcomitrella patens, 245 in Arabidopsis, 332 in

rice, and 310 in poplar [9].

Since membrane-bound enzymes are traditionally

more difficult to study, few P450s have been functionally

characterized. In the Arabidopsis genome, only 41 of the

245 coding sequences have been associated with a speci-

fic biochemical function [10]. Recently, a large-scale

P450 co-expression analysis with functional annotation

of the 245 Arabidopsis P450 genes was performed to

predict the function of unknown P450 genes [11]. This

co-expression analysis revealed expression patterns of

the majority of Arabidopsis P450s, and provided novel

clues on individual P450 functions, pathways, and their

regulatory networks. A novel phenolic pathway in pollen

development was identified based on this co-expression

analysis [12].

In this study, using in silico resources and bioinfor-

matics tools, we identified and annotated putative func-

tional P450 encoding sequences in the soybean genome.

Phylogenetic analysis using amino acid sequences

allowed us to identify gene orthologs and clusters of

orthologous groups for further characterizations. By

analyzing large-scale microarray and Illumina sequen-

cing data, we also analyzed the co-expression of P450

genes in soybean, which could provide important clues

to their function. We were able to identify tissue-specific

P450 genes that may play roles in biological process like

nodulation, floral development, and seed maturation.

The large-scale expression analyses were confirmed for

selected P450 genes using quantitative real-time reverse-

transcription polymerase chain reaction (qRT-PCR).

Results and Discussions
Soybean cytochrome P450 genes

A large number of soybean P450 genes have been

deposited into the cytochrome P450 database http://

drnelson.uthsc.edu/CytochromeP450.html following the

completion of the soybean genome sequencing. A total
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of 332 full-length soybean P450 genes and 378 pseudo-

genes with Glyma location markers were retrieved from

the database. To screen for additional P450 genes, we

performed BLAST search using standard P450 domains

against Phytozome 4.0 and confirmed all 332 putative

P450 genes in the genome. No new full-length P450

gene was discovered by three sets of domain search

algorithms, including Pfam, Panther, and KOG. Addi-

tionally, we were able to identify 13 new pseudogenes

from the domain searches, which were later confirmed

and classified by the P450 nomenclature committee and

updated in the cytochrome P450 database (as of Sep-

tember, 2010). Currently, the cytochrome P450 database

lists all the soybean P450 genes, pseudogenes, and their

corresponding Glyma location markers. These genes are

classified into A-type and Non-A type P450s. There are

20 families of the A-type and 28 families of the non-A

type P450s in soybean, consisting of 195 and 137 full-

length sequences, respectively (Tables 1 and 2).

Among these families, CYP71 is the largest A-type

family, with 55 members (Table 1); while CYP94 is the

largest non-A type family (Table 2), with 14 members.

Only four families; CYP703, 718, 724, and 727 consist of

a single gene. The remaining 44 families are all multi-

gene families most likely due to two genome duplication

events in soybean [8,13]. The number of pseudogenes

matched well with the number of full-length genes in

the A-type families (Additional File 1, Table S1A). For

example, CYP71, the largest family also has 65 pseudo-

genes, the most in all families. In contrast, pseudugene

numbers did not match the numbers of full-length

genes in non-A type families (Additional File 1, Table

S1B). For example, CYP710 has only two full-length

genes but 17 pseudogenes. We speculate that non-A

type P450s are evolutionally more ancient than A-type

families, allowing more time for gene duplication and

rearrangement, resulting in more diverse compositions

than A-type genes.

The soybean P450 genes were compared to a few

selected plant species including Medicago, Arabidopsis,

rice, poplar, grape and moss (Tables 1 and 2). A com-

parison of P450s among soybean, Medicago, Arabidopsis

Table 1 Comparison of A-type P450 families among soybean, Medicago, Arabidopsis, rice, poplar, grape and moss

Family Soybean Medicago Arabidopsis Rice Popular Grape Moss

A-Type

CYP71 Clan

CYP71 55 37 52 84 25 24 0

CYP73 3 1 1 3 3 3 4

CYP75 7 0 1 3 3 11 0

CYP76 14 6 8 29 13 24 0

CYP77 4 2 5 2 3 2 0

CYP78 11 1 6 8 10 7 3

CYP79 5 3 7 4 4 9 0

CYP80 0 0 0 0 6 6 0

CYP81 12 5 18 12 28 21 0

CYP82 24 10 5 0 10 34 0

CYP83 12 9 1 0 5 0 0

CYP84 3 3 2 3 3 3 0

CYP89 8 9 7 14 10 14 0

CYP92 2 1 0 9 8 6 0

CYP93 13 8 1 3 4 4 0

CYP98 2 1 3 2 5 1 1

CYP99 0 0 0 2 0 0 0

CYP701 2 1 1 5 1 1 1

CYP703 1 1 1 1 1 1 3

CYP705 0 0 26 0 0 0 0

CYP706 3 1 7 4 5 9 0

CYP712 2 1 2 0 9 2 0

CYP723 0 0 0 2 0 0 0

CYP736 12 1 0 0 6 8 0

Others 0 0 0 0 0 0 29

Total 195 101 154 190 162 166 41

The families highlighted in bold have unique distributions among these species as described in the text.
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Table 2 Comparison of non-A type P450 families among soybean, Medicago, Arabidopsis, rice, poplar, grape and moss

Family Soybean Medicago Arabidopsis Rice Popular Grape Moss

Non A-Type

CYP51 clan

CYP51 2 1 1 10 2 2 1

CYP72 clan

CYP72 12 7 9 13 6 22 0

CYP709 0 1 3 9 1 1 0

CYP714 6 3 2 5 6 6 0

CYP715 6 1 1 1 2 1 0

CYP721 2 1 1 2 6 5 0

CYP734 3 1 1 4 2 2 0

CYP735 3 1 1 2 2 1 0

CYP749 0 0 0 0 9 0 0

CYP74 clan

CYP74 6 4 2 4 6 7 3

CYP85 clan

CYP85 5 1 2 1 3 2 0

CYP87 2 2 1 11 12 7 0

CYP88 3 3 2 1 2 2 0

CYP90 12 4 4 5 7 4 0

CYP702 0 0 6 0 0 0 0

CYP707 10 3 4 3 7 5 0

CYP708 0 0 4 0 0 0 0

CYP716 7 3 2 0 17 15 1

CYP718 1 0 1 0 17 15 1

CYP720 2 1 1 0 1 1 0

CYP722 2 1 1 1 1 1 0

CYP724 1 0 1 1 2 2 0

CYP728 2 0 0 11 7 6 0

CYP729 0 1 0 2 1 0 0

CYP733 3 0 0 1 1 1 0

CYP86 clan

CYP86 9 3 11 5 8 6 2

CYP94 14 4 6 18 13 9 2

CYP96 7 5 13 12 9 5 0

CYP704 5 14 3 7 6 6 6

CYP97 clan

CYP97 5 4 3 3 3 3 3

CYP710 clan

CYP710 2 1 4 4 1 1 2

CYP711 clan

CYP711 4 2 1 5 2 1 0

CYP727 clan

CYP727 1 0 0 1 2 0 0

CYP746 clan

CYP746 0 0 0 0 0 0 1

Others 0 0 0 0 0 0 9

Total 137 72 91 142 148 124 30

Non-A type P450 families are organized into 10 clans. The families highlighted in bold have unique distributions among these species as described in the text.
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and rice, where comprehensive analyses of the P450

genes have been published, revealed that the CYP92

family is present in most of the higher plants except

Arabidopsis. CYP92A6 is proposed to be involved in

brassinosteroid (BR) biosynthesis during etiolated hypo-

cotyl growth of pea [14,15]. Since this family is absent

in Arabidopsis that has a robust BR biosynthesis and

signaling system, CYP92A6 might have additional func-

tions that need to be evaluated. Similarly, CYP727,

CYP728 and CYP733 families are present in rice and

soybean and absent in Arabidopsis and Medicago. For

example, CYP727A1 is represented by a single gene in

rice and CYP727B5 is a single gene in soybean. These

are probably solo-function genes similar to the CYP51G

family [9]. CYP736 family is present in soybean and

Medicago [16] but absent from - Arabidopsis and rice.

However, like several other families, the CYP736 family

genes are also found in grape and poplar (Table 1). We

did not identify any unique “legume-specific” A-type

P450s. In general, moss has the most distinct P450

family distribution, representing a significant evolution-

ary distance.

The CYP702 and CYP708 of non-A type families are

present in Arabidopsis but absent in soybean, Medicago

or rice (Table 2). The P450 genes from these two

families are all unique to Arabidopsis and its closest

relatives, such as Brassica napus, making these the only

known Brassicaceae-specific CYP proteins thus far.

Among them, CYP708A2 is a thalianol hydroxylase, and

CYP702A2 and CYP702A3 are triterpene synthases [17].

In contrast, if grape and poplar P450s are included, we

cannot find any P450 families that are unique to soy-

bean, or unique to legumes (soybean and Medicago

combined). Even though legumes P450 are involved in

making unique compounds, such as isoflavones

(CYP93C), these P450 genes are not distant enough to

form their own families.

Phylogenetic analysis of soybean and Arabidopsis

P450 genes

A neighbor-joining (N-J) phylogenetic tree for P450 pro-

tein sequences from soybean and Arabidopsis was con-

structed to determine the orthologous genes and cluster

groups between these two species using P-distance in

the MEGA4 package [18]. The soybean P450 genes were

first classified into two major classes, A-type and non-

A-type (Additional File 2, Figure S1A and Figure S1B).

The A-type genes contain 59% of the soybean sequences

(195 of the 332 sequences) and represent many of the

plant-specific enzymes for the synthesis of secondary

products (such as phenylpropanoids, etc.). The proteins

encoded by the non-A-type sequences contain 137 of

the 332 sequences and include enzymes involved in the

synthesis of primary metabolic compounds (such as

sterols, fatty acids, etc.) hormones and other signaling

molecules. Based on the phylogenetic tree, CYP736

family that is present in soybean and Medicago closely

resembles to the CYP83 and CYP81 gene families in

Arabidopsis (Additional File 2, Figure S1A). The CYP83

family genes are involved in glucosinolate metabolism

[19]. As shown in Additional File 2, Figure S1A, the

CYP733A family in soybean and CYP81K in Arabidopsis

belong to the same cluster, but no function has been

assigned to either of these two gene families.

Flavones are widely distributed in higher plants and

isoflavonoids are mainly produced in the leguminous

plants. They play significant eco-physiological functions

in the adaptation of plants in their biological environ-

ments [20]. Flavonoids are synthesized from the phenyl-

propanoid pathways that utilize several cytochrome

P450s. One of the P450 families involved in flavonoid

biosynthesis in soybean is the CYP93 family that con-

tains 13 genes compared with 8 genes in Medicago, 1

gene in Arabidopsis and 3 genes in rice (Figure 1). The

CYP93 family includes 9 subfamilies, among which

CYP93A encodes dihydroxy-pterocarpan 6a-hydroxylase

(D6aH) involved in legume phytoalexin biosynthesis

[21]; CYP93B is flavone synthase (FNSII) involved in

Figure 1 A phylogenetic tree of CYP93 family proteins. An

unrooted phylogenetic tree of CYP93 family created with amino

acid sequences of Arabidopsis (Green), soybean (Red), Medicago

(Blue) and rice (Black). Isoflaovne synthase and flavonoid

metabolism known genes were shown in parenthesis. Phylogentic

tree was developed using MEGA4.
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flavone biosynthesis [22,23]; CYP93C is isoflavone

synthase (IFS) involved in isoflavone biosynthesis [24].

Arabidopsis CYP93D1 is the only member in the 93D

subfamily and it is closely related to soybean

CYP93A30, suggesting it can be orthologous to the soy-

bean gene (Figure 1). There are a few sequences in the

CYP93F and the CYP93G families, whose functions are

still unclear. Sequence similarity indicated that the

CYP93 family could have evolved from the more ancient

CYP75 by duplication and divergence. The CYP93C

family is mostly confined to legumes, whereas the

CYP93B sequences have a wider distribution and are

found in many species. It is possible that CYP93C might

have evolved from the CYP93B subfamily which appears

to be a more ancient subfamily [9].

For the non-A type P450s, we selected the CYP74

family for more detailed comparisons. Members of

CYP74 family are involved in the formation of plant

oxylipins, a large family of metabolites derived from

polyunsaturated fatty acids [25]. In Arabidopsis genome,

only two CYP74s have been identified: CYP74A1 and

CYP74B2. Arabidopsis CYP74A1 encodes an allene

oxide synthase (AOS), which commits 13-hydroperoxy

linolenic acid (13-HPOT) to the formation of plant

defense hormone, jasmonic acid [26] whereas CYP74B2

is a hydroperoxide lyase (HPL), which converts 13-

HPOT to 6-carbon aldehydes and 12-carbon ω-keto-

fatty acids [27]. The volatile products from HPL path-

way are collectively called green leaf volatiles (GLVs),

which can attract the natural enemies of insect herbi-

vores and play an important role in tritrophic interac-

tions. As shown in Figure S1B, in the soybean genome,

out of 6 CYP74s, there are 3 CYP74As: CYP74A1,

CYP74A21 and CYP74A22. We can assume that these

three CYP74As are bona fide AOSs. It has been

reported that tomato and several other plant species

have at least two AOSs leading to the formation of jas-

monic acid [25]. Similar to Arabidopsis, soybean has

only one member of CYP74B; CYP74B15, which is

probably a functional HPL. The remaining two soybean

CYP74s: CYP74C12 and CYP74C13 do not have homo-

logs in Arabidopsis. CYP74Cs from cucumber, melon,

almond and rice were shown to be HPLs that have a

preference, but not absolute specificity, for 9-hydroper-

oxides of linoleic and linolenic acids [28-31]. A third

AOS gene from tomato was identified, LeAOS3, which

is a 9-AOS and a member of CYP74C. So far, 9-AOS

has been identified in a few plants including tomato,

barley and potato http://metacyc.org/META/new-image?

type=PATHWAY&object=PWY-5407[32]. It is quite

possible that CYP74C12 and CYP74C13 have activities

against 9-HPOT and it would be interesting to identify

the products of enzyme reaction to see if there are 9-

HPL or 9-AOS.

P450 gene expression profiling using Affymetrix arrays

showed organ-specific and stress-induced expression

To obtain expression profiles of soybean P450 genes, we

first utilized the extensive Affymetrix array data publi-

cally available at the NCBI database. To identify P450

probe sets on the Affymetrix soybean array (Part

#900526), we performed BLASTN searches using the

sequences of each probe set against the predicted soy-

bean cDNAs at the TIGR gene index and Phytozome

4.0 genomic sequences. A total of 178 probe sets were

found to correspond to P450 genes. Out of these probe

sets, 108 represented single genes (at least 100 bp in

matching length); the rest matched with more than one

gene (55 of them matched with more than two genes).

Since multiple targets complicate interpretation of the

expression profiles, we focused on the 108 single-target

genes for further analysis.

There are 28 microarray libraries that contain organ-

specific information in the public database. Following

standard microarray data analysis, we identified highly

tissue-specific soybean P450 genes (with a cut-off > 3

for up-regulated genes and < −3 for down regulated

genes). The data are summarized in Figures 2, 3, 4 and

Additional File 3, Table S2. The P450 genes highly

induced in leaves, roots, hypocotyl, seeds and axillary

meristem are apparent (Figures 2 and 3). For example,

out of 108 P450 genes, seven are highly induced and

one significantly repressed in the axillary meristem tis-

sues when all genes expressed in all tissues were aver-

aged as control. Each tissue has its own unique set of

differentially expressed P450s. Interestingly, CYP93C1

(IFS1) and CYP93C5 (IFS2) were highly expressed in

roots and seeds. More specifically, IFS1 is mainly

expressed in the root and seed coat; while IFS2 is mainly

expressed in embryos and pods. These results agree with

previous publications using Northern blot analysis, qRT-

PCR, and promoter:GUS transgene assays [33].

CYP93A2, a member of the 93A subfamily, also

showed high expression in roots. CYP81E12, CYP81E28

and CYP81E21 are also highly expressed in roots. The

CYP81E family encodes isoflavone 2’- and 3’-hydroxy-

lases which are involved in isoflavonoid phytoalexin

synthesis. Not surprisingly, in Medicago CYP81E7 was

reported to be highly expressed in roots as well [34].

Other up-regulated and down-regulated P450 genes in

each tissue are listed in Additional File 4, Table S3. The

functions of these genes are not known, however their

strong tissue-specific expression suggests their involve-

ment in those tissue types.

There are 99 microarray libraries in the public data-

base from various stress treatments of soybean. As sum-

marized in Figure 4, the genes CYP736A28, CYP93E1,

CYP82A4, CYP94C18 and CYP81E11 are highly induced

in soybean cyst nematode infection. Similarly, CYP71D9,

Guttikonda et al. BMC Plant Biology 2010, 10:243

http://www.biomedcentral.com/1471-2229/10/243

Page 6 of 19

http://metacyc.org/META/new-image?type=PATHWAY&object=PWY-5407
http://metacyc.org/META/new-image?type=PATHWAY&object=PWY-5407


CYP736A33, CYP72A128, CYP81E28, and CYP81E21

showed strong induction in hypocotyls infected with

Phytophthora Sojae. Interestingly, CYP707A51 and

CYP710A23 are highly expressed in soybean leaves trea-

ted with Nod factor from B. japonicum compared to

untreated leaves, suggesting they may be involved in the

auto-regulation process in which shoots synthesize a

mobile signal to suppress additional nodulation in the

root after initial rhizobial infection. Under abiotic stress

conditions, CYP71D9 and CYP83D1 were highly

expressed under iron deficiency compared to plants

grown under sufficient iron. The exact functions of

these two genes have not been reported before.

P450 gene expression profiling using Illumina

transcriptome analysis identified organ-specific and

rhizobium-induced expression

Given the limitations of the current soybean Affymetrix

DNA microarray platform, we also utilized Illumina

transcriptome sequencing technology to analyze all 332

soybean P450 gene expressions, using published data

from Libault et al. [35]. These data sets were generated

from total RNAs isolated from nodules, roots, root tips,

leaves, flowers, green pods, apical meristem, mock-

inoculated and B. japonicum-infected root hair cells har-

vested at 12, 24 and 48 h after inoculation [35]. For

comparison, total RNA extracted from stripped roots

(i.e. roots devoid of root hairs) were also harvested and

sequenced at 48 h after inoculation with B. japonicum.

Illumina transcriptome analysis allowed a more

thorough assessment of all of the 332 soybean P450

genes. Additionally, since Affymetrix array analysis is

considered to be less sensitive when comparing different

experimental set ups, especially for low abundant RNAs,

this deep transcriptome sequence analysis allowed a

clear distinction between low-abundance and undetect-

able transcripts.

From these Illumina data, the P450 genes highly

expressed in different tissue were hierarchically clustered

using the MeV v4.5.1 software. The entire expression

profile in all tissues and treatments is shown in Addi-

tional File 5, Figure S2. To simplify the figure, the

expression of P450s involved in isoflavone biosynthesis,

CYP93 family genes and P450 families present only in

soybean and not in Arabidopsis, including CYP92,

CYP733, CYP735 and CYP736 have been highlighted

(Figures 5 and 6). In Figure 5, very different expression

profiles in apical meristem, green pods, nodules, roots,

flowers, leaves, and root tips can be seen among selected

P450s. For example, CYP733A members were not

detected in any of the tissues, suggesting a more narrow

distribution beyond our collection of cDNA libraries. In

Figure 6, root hairs and stripped roots were profiled

with or without rhizobia induction. Isoflavone biosyn-

thetic enzymes were expressed in all tissues and treat-

ments, in contrast with CYP733A and CYP83 family

where no expression could be detected in any tissues.

Interestingly, CYP88A3 appeared to be expressed only in

the root hairs, not in the roots stripped of root hairs.

Similarly, CYP736A31 and CYP736A32 exhibit much

Figure 2 Numbers of up- and down-regulated soybean P450 genes in different organs extracted from Affymetrix soybean microarray

dataset.
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higher expression in the root hairs than in the stripped

roots. In contrast, the same family CYP736A47 and

CYP736A48 had an opposite expression pattern, with

significantly higher expression in roots than in root

hairs.

Of all P450 genes analyzed, the ones highly expressed

in nodules, roots, leaves and flowers are summarized in

Table 3. The most abundant P450 genes in each tissue,

as shown by the calculated tag sequence numbers, are

CYP83G4 (nodules), CYP76X6 (apical meristem, green

pods and leaves), CYP83E12 (flowers), and CYP93C5

(roots and root tips). Clearly, CYP76X6 is the most

abundant P450 in green tissues (function unknown);

while the isoflavone synthetic enzyme IFS is the major

P450 in roots.

We were interested in the rhizobium-induced P450

genes. Out of 12 genes in the CYP736 family,

CYP736A34 showed high expression in nodules and

roots (Table 3 and Figure 6). CYP78A71, CYP83G4 and

CYP71A44 were highly expressed in nodules. Almost no

expression was detected in other tissues. Considering

there are only two members of the CYP83 family in

Arabidopsis, but five members in M. truncatula and six

members in Lotus japonicus, the CYP83 family may play

important roles in legumes, although its function

remains unknown [16].

To confirm these findings from Illumina sequencing,

we carried out qRT-PCR analysis on the four nodule-

specific genes and a set of selected other P450 genes.

Total RNAs were isolated from hypocotyls, roots, leaves,

flowers, seed (stage R8), and dissected nodules. The

expression levels of the above-mentioned CYP78A71,

CYP83G4, CYP71A44, and CYP82D30 were measured.

All four genes showed dominant nodule-specific expres-

sion, consistent with the Illumina data. Two additional

genes, CYP81E12 and CYP736A34, showed strong root

and nodule expression, also fitting the Illumina data

very well. All six genes on Figure 7 had lower expression

in other tissues.

As controls, CYP82D26, CYP74B15, CYP93C5, and

CYP83E21 genes were also analyzed by qRT-PCR (Fig-

ure 8). All four genes showed exactly the same expres-

sion pattern as suggested by Illumina analysis. CYP93C5

(IFS1) has been characterized by other expression analy-

sis methods previously and all data are consistent with

our qRT-PCR analysis. Taken together, we have discov-

ered four major nodulation-specific P450 genes, which

will be functionally characterized in the future.

We also analyzed another set of Illumina data recently

published by Severin et al. [36]. Since the normalization

methods were different in these two data sets, we were

unable to combine these two transcriptome data. How-

ever, the expression profiles of highlighted genes in the

comparable tissue types were similar in these two data

Figure 3 Expression pattern of soybean P450 genes in

different organs according to the analysis of Affymetrix

soybean microarray dataset. The color scale indicates the degree

of expression (green: low expression; red: high expression). Heat

map was created using GeneSpring 10X.
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sets (see Additional File 6, Table S4). For example, the

above-mentioned CYP78A71, CYP83G4, and CYP71A44

all showed nodule-specific expression while CYP82D30

expressed in roots and nodules.

Co-expression analysis revealed co-ordinately expressed

metabolic enzymes of some P450s

Co-expression analysis assumes that some genes of the

same biochemical pathway are co-ordinately regulated at

the transcriptional level. In general, P450s catalyze slow

and irreversible steps in many branches of the plant

metabolic pathways. They have been shown to be co-

expressed and regulated with non-P450 genes with

known functions in the same pathway [37]. For example,

the functions of several uncharacterized P450 genes in

Arabidopsis were predicted using co-expression analysis

and confirmed experimentally later [11,38]. In this

study, we performed co-expression analysis comparing

Figure 4 Expression pattern of soybean P450 genes under stress treatments according to the analysis of Affymetrix soybean

microarray dataset. The color scale indicates the degree of expression (green: low expression; red: high expression). Heat map was created

using GeneSpring 10X.
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the expression of each P450 with that of genes present

in the Affymetrix Soybean gene chip.

The annotation information of the current Affymetrix

soybean gene chip was combined with expression data

to identify genes and pathways co-expressed with the

P450 genes. For each P450 gene, we calculated Pearson

correlation coefficients (r-value) with genes present on

the Affymetrix soybean array. Only the genes with sig-

nificant coefficients (r > 0.7) were selected for pathway

analysis. We first investigated a known soybean P450

gene to test our co-expression analysis approach. As

shown in Table 4, CYP93C5 isoflavone synthase (IFS1)

gene co-expresses strongly with several isoflavonoid-

related metabolic enzymes, including chalcone isomerase

1B1 (r = 0.91), and chalcone isomerase 1B2 (r = 0.87).

Interestingly, the few transcription factors, such as

Myb76 and bZIP42 that are co-expressed with these

genes could be the missing transcription factors that

regulate isoflavone biosynthesis under stress conditions.

Functional annotation of Arabidopsis and soybean are

shown in Table 5.

We then performed the co-expression analysis on many

of the 108 P450 genes on the Affymetrix arrays (Table 4

and Additional File 6, Table S4). We selected three exam-

ples and highlight them in Table 4. The CYP728H1

showed high expression in roots and nodules, and was co-

expressed with 4-coumarate:CoA ligase isoenzyme 2, cyto-

chrome P450 98A2 and 4- coumarate:coenzyme A ligase

Figure 5 Expression pattern of soybean P450 genes in different organs according to the analysis of Illumina transcriptome dataset.

The color scale indicates the degree of expression (green: low expression; red: high expression). Heat map was created using GeneSpring 10X.
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genes which are involved in phenylpropanoid metabolism.

CYP728H1 is also co-expressed with endo-xyloglucan

transferase, NAC transcription factor, 2’-hydroxy isofla-

vone and early nodulin genes. Gene expression and co-

expression analysis suggests that CYP728H1 may play an

important role in isoflavone metabolism, as well as during

root and nodule development.

The CYP736 family is present in soybean but not in

Arabidopsis. CYP736A34 showed high expression in

roots and nodules (Figure 7). Co-expression analysis

showed that the expression of this gene is highly

correlated with lipoxygenase, lectin and CYP83D1, all of

which are involved in root and nodule development

(Table 4). Some of the co-expressed genes are defense

related genes such as cysteine proteinase. Since defense

response is one of the early nodulation events,

CYP736A34 may be functioning at the early stages of

this symbiotic process.

These analyses show that co-expression analysis com-

bined with pathway mapping of co-expressed genes is a

powerful tool to identify genes encoding enzymes acting in

the same biochemical pathway or biological process.

Figure 6 Expression of soybean P450 genes in root hair infection process according to the analysis of Illumina transcriptome dataset.

The labels are 24HA1_UN_RH, root hair sample 24 hours after mock treatment; 12HA1_IN_RH, root hair sample 12 hours after infection;

24HA1_IN_RH, root hair sample 24 hours after infection; 12HA1_UN_RH, root hair sample 12 hours after mock treatment; 48HA1_UN_RH, root

hair sample 48 hours after mock treatment 48HA1_IN_RH, root hair sample 48 hours after infection; 48HA1_Script_Root, stripped root sample 48

hours after infection.
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Unfortunately, annotation of soybean genes in the Affyme-

trix gene chip is not as comprehensive as other model spe-

cies. Many of the co-expressed genes have unknown or un-

confirmed functions. A majority of the P450s cannot be

mapped to specific pathways. However, this approach still

provides important leads to large sets of uncharacterized

soybean P450s, and with improved annotation of soybean

genes in the near future, we should be able to extract more

functional information of soybean P450s.

Conclusions
Soybean is an important leguminous crop. With the

advent of soybean genome sequencing, it is possible to

study large gene families of soybean. We targeted one of

the most challenging families in plants, the cytochrome

P450 genes, and investigated their genetic make-up, gene

distributions, expression profiles, and co-expressed associ-

ates. Cytochrome P450s are indispensable for soybean

growth, development, and defense against pathogens.

They may play important roles for soybean symbiotic

interaction with rhizobacteria. Overall, we identified 332

full-length P450 genes and 378 pseudogenes in the gen-

ome. We used publicly available microarray libraries and

identified few tissue-specific and stress responsive soybean

P450s. The tissue-specific expression patterns of some

P450 genes were confirmed by qRT-PCR. In addition, the

expressions patterns of all 332 soybean P450 genes were

obtained through the analysis of Illumina transcriptome

datasets. The co-expression analysis on some of the P450

genes was performed using the Affymetrix array datasets.

We demonstrate that gene co-expression analysis is a use-

ful tool to guide our further study on the function of

uncharacterized genes. Importantly, the identification of

nodule-specific P450s and their further exploitation may

help us to uncover the intriguing process of soybean and

rhizobium interaction.

Methods
Identification of soybean cytochrome P450 genes

Existing soybean P450 genes and corresponding Glyma

numbers (location markers in soybean genome) were

retrieved from the Cytochrome P450 Homepage website

http://drnelson.uthsc.edu/CytochromeP450.html. Addi-

tional full-length soybean genes were identified based on

the cytochrome P450 domain predictions from Pfam

[39], Panther [40], and KOG [41] separately. The search

results were consolidated with existing soybean P450s.

From these sequences, the pseudogenes were identified

using existing criteria listed on the P450 homepage

website.

Computational phylogenetic analysis

Protein sequences of soybean P450 genes were obtained

based on Phytozome 4.0. For comparison, a collection

of P450s from Arabidopsis thaliana (245 genes) and the

corresponding CYP names were retrieved from Arabi-

dopsis cytochrome P450 web-based resource http://

www.p450.kvl.dk/p450.shtml[42]. In addition, CYP93

family proteins from Medicago truncatula and rice were

selected from Genbank for relationship analysis across

species. Multiple sequence alignment were performed

using the BLOSUM matrix (Gap opening and extension

penalties of 25 and 1, respectively), using the ClustalW

algorithm-based AlignX module from the Mega4 soft-

ware [18]. The phylogenetic tree was constructed using

the Neighbour-Joining Tree method by P-distance in

Table 3 Organ specific expression of P450 genes using Illumina transcriptome

Nodule Apical Meristem Flower Green Pods Leaf Root Root Tips

CYP78A71 7763.1 0 0 0 0 102.7 0

CYP83G4 4737.8 0 0 0 0 50.1 0

CYP71A44 524.1 0 0 2.2 0 0 0

CYP736A34 95.2 0 0 0 0 34.0 0

CYP93C5 889.5 25.0 65.7 20.1 159.2 3334.8 2596.7

CYP81E12 404.8 30.0 1.9 15.6 8.1 2962.0 7.1

CYP82D26 18.3 9.2 4.8 8.9 13.9 310.7 139.4

CYP712B1 3.9 0.8 4.8 2.2 0 231.8 6.1

CYP71A33 51.9 0 1.0 0 0 172.3 9.1

CYP71D108 1.9 0 2.9 0 0 56.0 0

CYP72A135 0 4.2 7.7 8.9 55.8 0 0

CYP83E21 0 0.8 13.5 2.2 27.9 0 0

CYP83E12 1.9 512.4 1403.1 967.1 145.2 36.5 0

CYP74B15 2.9 136.6 468.4 113.9 560.1 9.3 16.2

CYP71D155 0 691.6 89.8 17.9 1.1 11.0 0

CYP76X6 2.9 8328.7 1044.9 12422.1 1119.0 188.5 4.0

List of P450 genes and their expression intensity values in different organs. Value zero indicates no expression.
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MEGA4. The significance level of the neighbor-joining

analysis was examined by bootstrap testing with 1000

repeats.

1.3 Soybean Affymetrix array analysis

Publically available experiments and arrays were listed

at the NCBI GEO and Array Express database http://

www.ncbi.nlm.nih.gov/sites/entrez. For tissue-specific

expression, six experiments (28 arrays) were analyzed

using RNAs isolated from different tissues and devel-

opmental stages. For stress-induced experiments, eight

experiments (99 arrays) were analyzed using RNAs iso-

lated from various abiotic and biotic stress treatments.

Expression analysis was carried out using GeneSpring

Figure 7 qRT-PCR confirmation of soybean P450 genes highly expressed in root and nodule as revealed by the analysis of Microarray

and Solexa transcriptome datasets. Error bars represent SE (Standard error) of three replications.
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10GX (Agilent Technologies, Forster City, CA). First,

all microarray data were normalized and summarized

using the RMA algorithm. Signals from each probe set

were then normalized to the median of their values

across the entire dataset. Quality control of the dataset

was performed using Principal Components Analysis

(PCA) to confirm that there were no outlying replicate

samples, and dye labeling had no associated bias. Data

were combined from replicate samples and grouped in

experiment interpretations. Gene list (CYP genes) were

generated by expression with cut off P < 0.05. Statisti-

cal analysis was performed using One-Way ANOVA

with Posthoc-TukeyHSD test to determine statistical

significant difference between means. Signal intensities

from organ and tissue samples were then compared to

the average signal intensities during normalization. In

stress experiments, signal intensities from treatment

groups were compared to signal intensities from the

corresponding control samples to generate fold

changes. Genes that were significantly up or down

regulated (>two fold) were selected for hierarchical

clustering. Hierarchical clustering tree was created

based on Pearson correlation coefficient under each

experimental condition. Co-expression analysis and

pathway mapping were performed in GeneSpring as

well. The selected P450 genes were mean-centered and

Figure 8 qRT-PCR confirmation of soybean P450 gene expression in different organs as revealed by the analysis of Microarray and

Solexa transcriptome datasets. Error bars represent SE of three replications.
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Pearson correlation coefficients (r-values) calculated

between each P450 probe set. Co-expressed genes with

r > 0.7 were retrieved and the corresponding available

biochemical pathways were extracted from the Plant

Metabolic Network http://www.plantcyc.org/[43].

1.4 Soybean Illumina expression data analysis

Solexa sequencing libraries for fourteen different conditions

including nodules, roots, root tips, leaves, flowers, green

pods, apical meristem, mock-inoculated and B. japonicum-

infected root hair cells harvested at 12, 24 and 48 h after

inoculation, generated and analyzed by Libault et al. [35,44]

were utilized to quantify the transcriptomics expression of

soybean genes (i.e. the number of sequence reads/million

reads aligned). Read counts used in expression analyses

were based on the subset of uniquely aligned reads that also

overlapped the genomic spans of the Glyma1 gene predic-

tions. Read counts for a given sample were normalized by

using values for a gene’s uniquely aligned read counts per

million reads uniquely aligning within that sample. A total

Table 4 Co-expression analysis of selected soybean P450

genes

Soybean
Gene

Co-expressed genes r
value

CYP93C5-
IFS1

Isoflavone synthase 1 1

Chalcone isomerase 1B2 0.91

Chalcone isomerase 1B1 0.87

Peroxidase, pathogen-induced 0.85

Copper amino oxidase 0.82

NAC domain protein 0.81

Peroxidase (PC7) 0.80

Peroxidase precursor (GMIPER1) 0.79

MYB transcription factor MYB67 0.79

Chalcone isomerase 2 0.79

NORK protein 0.79

KNT1 0.78

Transcription factor bZIP42 0.78

Plastid glucose-6-phosphate 0.77

Kunitz trypsin inhibitor p20-1-like protein 0.77

Dof3 0.76

Chalcone isomerase 0.76

Glutathione S-transferase GST 17 0.75

CYP728H1

CYP728H1 1

2’-hydroxy isoflavone/dihydroflavonol reductase
homolog

0.92

4-coumarate:CoA ligase isoenzyme 2 0.90

Cytochrome P450 (CYP98A2) 0.86

RecA/Rad51/DMC1-like protein 0.83

Peroxidase 0.81

Endo-xyloglucan transferase 0.80

bZIP transcription factor bZIP17 0.79

Essex desiccation protectant protein Lea14
homolog

0.79

NAC domain protein (NAC18) 0.79

WD-repeat cell cycle regulatory protein 0.79

4-coumarate:coenzyme A ligase 0.79

31 kDa protein 0.78

Transcription factor bZIP18 0.77

Hydroxyproline-rich glycoprotein (sbHRGP2)
mRNA, 3’ end

0.76

Early nodulin 0.76

Protease inhibitor 0.76

Wee1 0.76

CYP736A32/
34

CYP736A32//CYP736A34 1

Lectin 0.93

SOS2-like protein kinase 0.92

Cultivar Wenfeng7 purple acid phosphatase-like
protein (Pap3)

0.91

Table 4 Co-expression analysis of selected soybean P450

genes (Continued)

Lipoxygenase L-5 0.88

Cysteine proteinase 0.88

Peroxisomal ascorbate peroxidase 0.88

Thiol protease isoform B 0.86

Phosphoglycerate mutase-like protein 0.86

Coronatine-insensitive 1 0.84

Catalase (cat4) 0.83

Sorbitol-like transporter 0.83

MYB transcription factor MYB48 0.82

Phosphoenolpyruvate carboxylase 0.82

Indole-3-acetic acid induced protein ARG-2
homolog

0.81

Lipoxygenase (lox7) 0.79

WRKY39 protein 0.77

Glutathione S-transferase GST 8 0.77

Mitogen-activated protein kinase 1 (MAPK1) 0.76

Ribulose-1,5-bisphosphate carboxylase small
subunit

0.76

Clone pSXET1a xyloglucan endotransglycosylase
precursor (XET1)

0.76

SOC1 0.76

OAS-TL3 cysteine synthase 0.76

WRKY23 (WRKY23) 0.76

Nitrate reductase (NiR) 0.75

NAC domain protein 0.75

bZIP transcription factor bZIP105 0.74

Allene oxide synthase (AOS2) 0.74

Chalcone synthase 1 0.72

CYP75B23v1 (sf3’h1) 0.70

Selected P450 genes and their co-expressed genes are listed with Pearson

correlation coefficient (r value >0.7)
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Table 5 List of Arabidopsis and soybean P450 genes and orthologues with known functions

AGI locus Arabidopsis
Gene

Soybean
orthologue

Percentage
Identity

Function in Arabidopsis Reference -Arabidopsis
function

At1g11680 CYP51A2 CYP51G1 80.9 Obtusifoliol 14a-demethylase (Kushiro et al. 2001); (Kim et al.
2005b)

At2g30770 CYP71A13 CYP71A9 37.9 Conversion of indole-3-acetaldoxime, camalexin
biosynthesis

(Nafisi et al. 2007)

At3g26830 CYP71B15 CYP83E8 Conversion of s-dihydrocamalexic acid to camalexin (Bottcher et al. 2009); (Zhou et
al. 1999)

At1g17060 CYP72C1 CYP72A69 44.3 Exact substrate not identified (Nakamura et al. 2005);
(Takahashi et al. 2005)

At2g30490 CYP73A5 CYP73A11 84.4 Cinnamic acid 4-hydroxylase (t-CAH) (Mizutani et al. 1997)

At5g42650 CYP74A CYP74A1 56.4 Allene oxide synthase (AOS)JA (Laudert et al. 1996); (Park et al.
2002)

At4g15440 CYP74B2 CYP74B15 60.2 Hydroperoxide lyase (HPL) JA (Bate et al. 1998)

At5g07990 CYP75B1 CYP75B43 52.6 3′-hydroxylase for narigenin, dihydrokaempferol (F3′H) (Schoenbohm et al. 2000)

At5g04630 CYP77A4 CYP77A3/A12 68.1 Catalyze the formation of three mono-epoxides of
alpha-linolenic acid

(Sauveplane et al. 2009)

At3g10570 CYP77A6 CYP77A12/A12 65 Chain hydroxylase - for cutin synthesis for morphology
of flower

(Li-Beisson et al. 2009)

At1g13710 CYP78A5 CYP78A72 62.8 KLU control organ size, control leaf growth (Wang et al. 2008); (Anastasiou
et al. 2007)

At5g05260 CYP79A2 CYP79D17 49.1 Conversion of phenylalanine to oxime (Whittstock and Halkier 2000)

At4g39950 CYP79B2 CYP79D21 51.1 Conversion of tryptophan, tryptophan analogs to
oxime

(Hull et al. 2000); (Mikkelsen et
al. 2000)

At2g22330 CYP79B3 CYP79D21 50.9 Conversion of tryptophan to oxime (Hull et al. 2000)

At1g16410 CYP79F1 CYP79D17/21 40.7 Mono to hexahomomethionine in synthesis of aliphatic
glucosinolates

(Hansen et al. 2001); (Reintanz et
al. 2001); (Chen et al. 2003)

At1g16400 CYP79F2 CYP79D17/22 40.2 Long chain penta and hexahomomethionine in
synthesis of long chain aliphatic glucosinolates

(Reintanz et al. 2001); (Chen et
al. 2003)

At5g57220 CYP81F2 CYP82A3 47.6 Conversion of indole-3-yl-methyl to 4-hydroxy-indole-3-
yl-methyl glucosinolate,

(Bednarek et al. 2009); (Pfalz et
al. 2009)

At4g13770 CYP83A1 CYP83E8/
CYP736A29

37 Oxidation of methionine-derived oximes; (Bak and Feyereisen 2001); (Naur
et al. 2003)

At4g31500 CYP83B1 CYP83E8/
CYP736A30

45 Oxidation of indole-3-acetaldoxime (Bak et al. 2001); (Naur et al.
2003)

At4g36220 CYP84A1 CYP8438/39/
21

73.4 5-hydroxylase for coniferaldehyde, coniferyl alcohol and
ferulic acid (F5H)

(Ruegger et al. 1999);
(Humphreys et al. 1999)

At5g38970 CYP85A1 CYP85A12 68.9 C6-oxidase for 6-deoxycastasterone, other steroids (Shimada et al. 2001); (Shimada
et al. 2003)

At3g30180 CYP85A2 CYP85A13 70.3 C6-oxidase for 6-deoxycastasterone, other steroids;
Conversion of castasterone to brassinolide

(Shimada et al. 2003); (Nomura
et al. 2005)

At5g58860 CYP86A1 CYP86A37 72.8 ω-hydroxylase for satur. and unsat. C12 to C18 fatty
acids

(Benveniste et al. 1998)

At4g00360 CYP86A2 CYP86A66 71.2 ω-hydroxylase for satur. and unsat. C12 to C18 fatty
acids

(Duan and Schuler 2005); (Xiao
et al. 2004)

At2g45970 CYP86A8 CYP86A66/67 76.4 ω-hydroxylase for satur. and unsatur. C12 to C18 fatty
acids

(Wellesen et al. 2001)

At5g23190 CYP86B1 CYP86B9/10/
11

69.5 C22 and C24 fatty acids, accumulated in the suberin
polyester.

(Compagnon et al. 2009)

At1g05160 CYP88A3 CYP88A11/25 63.5 Multifunctional ent-kaurenoic acid oxidase (Helliwell et al. 2001)

At2g32440 CYP88A4 CYP88A26 53.2 Multifunctional ent-kaurenoic acid oxidase (Helliwell et al. 2001)

At5g05690 CYP90A1 CYP90A14/23/
24

75.8 23a-hydroxylase for 6-oxo-cathasterone (Szekeres et al. 1996)

At3g50660 CYP90B1 CYP90B15/18/
17

71.3 22a-hydroxylase for 6-oxo-campestanol, campesterol
and cholesterol

(Choe et al. 1998); (Fujita et al.
2006)

At4g36380 CYP90C1 CYP90C8/9/10 55.3 Conversion of typhasterol to castasterone, C-23
hydroxylation

(Ohinishi et al.); (Kim et al.
2005a)

At3g13730 CYP90D1 CYP90D12/13 61.9 Exact substrate in downstream BR synthesis not
identified

(Kim et al. 2005a); (Greer et al.
2007); (Ohinishi et al. 2006)
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of 51,529 annotated soybean genes (74.5% of the 69,145

putative, annotated soybean genes) were found to be

expressed in at least one condition.

1.5 Plant materials, growing conditions, and RNA

extraction

Soybean (G. max L. cv. Jack) seeds were germinated in

three-gallon pots containing Promix (Home Depot,

Atlanta, GA). The seedlings were grown in Conviron

growth chamber (26/20 °C day/night temperature,

photoperiod of 14/10 h, 800 μmol m-2 s-1 light intensity

and 60% humidity). When the seedlings developed four

nodes and three fully opened trifoliate leaves, approxi-

mately 25 d after sowing, the roots, hypocotyls, leaves

were collected. Flowers and early R8 stage seeds were

harvested 55 and 100 d after sowing, respectively. Col-

lected tissues were immediately frozen in liquid nitro-

gen. Soybean plants inoculated with B. japonicum

USDA110 strain was used for nodulation as described

previously [45].

Total RNA was isolated from plants using TRIZOL

reagent (Invitrogen, Carlsbad, CA). For each sample, 10

μg of total RNA were digested with RNase-free DNaseI

(Promega, Madison, WI) to remove any genomic DNA

contamination. After DNaseI treatment, RNA concen-

tration was determined again using a NanoDrop ND-

1000 UV-Vis spectrophotometer (NanoDrop Technolo-

gies, Wilmington, DE). First-strand cDNA was synthe-

sized from 2 μg total RNA using the Superscript III first

strand synthesis system (Invitrogen). All cDNA samples

were diluted 50-fold in sterile water for real time PCR

reaction.

1.6 Quantitative RT-PCR analysis

Gene specific primers were designed using ProbeFinder

Version 2.44 https://www.roche-applied-science.com.

The list of genes and primers used for amplification

are shown in Additional File 7, Table S5. Primer speci-

ficity was further confirmed by blasting each primer

sequence against Phytozome http://www.phytozome.

Table 5 List of Arabidopsis and soybean P450 genes and orthologues with known functions (Continued)

At1g57750 CYP96A15 CYP94B13 42.4 Formation of secondary alcohols and ketones in
cuticular wax of stem, acyl CoA reductase

(Greer et al. 2007)

At1g31800 CYP97A3 CYP97A10/19 70.7 b −ring hydroxylase on carotenes (Kim and DellaPenna 2006)

At3g53130 CYP97C1 CYP97A16/17 79 ε −ring hydroxylase on carotenes (Tian et al. 2004)

At2g40890 CYP98A3 CYP98A2/47 80 3′-hydroxylase for p-coumaryl shikimic/quinic acids (C3′

H)
(Schoch et al. 2001); (Kai et al.
2006)

At5g25900 CYP701A3 CYP701A25/16 61.2 Multifunctional ent-kaurene oxidase (Helliwell et al. 1998)

At1g01280 CYP703A2 CYP703A8 74.9 Sporopollenin synthesis, pollen development (Morant et al. 2007)

At1g69500 CYP704B1 CYP704B28 75.5 Fatty acid -sporopollenin biosynthesis -pollen (Dobritsa et al. 2009)

At4g19230 CYP707A1 CYP707A16 68.4 8′-hydroxylase for ABA inactivation (Saito et al. 2004); (Kushiro et al.
2004)

At2g29090 CYP707A2 CYP707A45 61.9 8′-hydroxylase for ABA inactivation, Enhancement of
ABA catabolism

(Saito et al. 2004); (Kushiro et al.
2004)

At5g45340 CYP707A3 CYP707A16/56 71.6 8′-hydroxylase for ABA inactivation (Saito et al. 2004); (Kushiro et al.
2004)

At3g19270 CYP707A4 CYP707A53/59 65.1 8′-hydroxylase for ABA inactivation (Saito et al. 2004); (Kushiro et al.
2004)

At2g34500 CYP710A1 CYP710A22/23 66.3 C-22 desaturase for b-sitosterol (Morikawa et al. 2006)

At2g34490 CYP710A2 CYP710A22/24 62 C-22 desaturase on 24-epi-campesterol and b-sitosterol (Morikawa et al. 2006)

At2g26170 CYP711A1 CYP711A23/
24/25/26

70.6 Caretnoid,core phenylpropanoid metabolism (Booker et al. 2005)

At2g26710 CYP734A1 CYP734A17/
20/21

76.9 26-hydroxylase for brassinolide and castasterone (Neff et al. 1999)

Soybean
gene

Arabidopsis
orthologue

Percentage
identity

Function in soybean Reference-Soybean function

CYP93C1 CYP93A41 40.9 Isoflavone synthase (IFS1) (Jung et al. 2000)

CYP93C5 CYP93A41 40.3 Isoflavone synthase (IFS2) (Jung et al. 2000)

CYP71D09 CYP71B34 39.1 Flavonoid 6-hydroxylase (Latunde-Dada et al. 2001)

CYP73A11 CYP73A5 84.4 Cinnamate 4-hydroxylase (Schopfer et al. 1998)

CYP93A1 Dihydroxypterocarpan 6a-hydroxylase (D6aH) (Schopfer and Ebel 1998);
(Schopfer et al. 1998)

CYP71A10 Metabolism of phenylurea herbicides (Siminszky et al. 1999)
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net/search.php?show=blast using the BLASTN algo-

rithm. Soybean Actin and Ubiquitin genes were used

as internal controls for gene expression studies [46].

Quantitative RT-PCR (qRT-PCR) reactions were per-

formed in 96-well plates (StepOne Plus Real Time

PCR System; Applied Biosystems, Foster City, CA) for

all tissues tested. Clontech’s SYBR Advantage qPCR

Premix was used for the qRT-PCR reactions. Primer

sets (0.2 μM final concentrations for each primer)

were used in a final volume of 10 μL per well. The

thermal profile of the qRT-PCR reactions was 95°C for

5 min, followed by 40 cycles of 95°C for 15 sec, and

60°C for 10 sec and 72°C for 20 sec. Melting curve of

each PCR amplicon was obtained by adding the follow-

ing cycling condition: 95°C for 15 sec followed by a

constant increase of the temperature between 60 to 95°

C at an increment of 0.3°C/cycle.

Additional material

Additional file 1: Table S1 Comparison of P450 families among

soybean, Medicago, Arabidopsis, rice, poplar, grape and moss. A. List

of A-type P450 families. B. List of Non-Atype P450 families. For each

family number of genes and pseudogenes were compared among

different plant species.

Additional file 2: Figure S1 Phylogenetic tree of all soybean P450s.

S1A. A-type P450s of soybean and Arabidopsis. S1B. Non-A type P450s of

soybean and Arabidopsis. Soybean P450s are shown in blue and

Arabidopsis P450s are shown in green. Trees were constructed using

MEGA4.

Additional file 3: Table S2 Organ-specific expressions of soybean

P450 genes based on Affymetrix arrays.

Additional file 4: Table S3 Organ specific expression of P450 genes

using Illumina transcriptome. List of P450 genes and their expression

intensity values in different organs. Value zero indicates no expression.

Additional file 5: Figure S2 Gene expression of 332 soybean P450

genes according to the analysis of Illumina transcriptome dataset.

Gene expression in different organ and root hair inoculation process.

Additional file 6: Table S4 Co-expression analysis of soybean P450

genes based on Affymetrix arrays.

Additional file 7: Table S5 List of primer pairs used in qRT-PCR
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