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accuracy of rare and low-frequency variants
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Abstract

Here, we present the Northeast Asian Reference Database (NARD), including whole-genome sequencing data of

1779 individuals from Korea, Mongolia, Japan, China, and Hong Kong. NARD provides the genetic diversity of

Korean (n = 850) and Mongolian (n = 384) ancestries that were not present in the 1000 Genomes Project Phase 3

(1KGP3). We combined and re-phased the genotypes from NARD and 1KGP3 to construct a union set of

haplotypes. This approach established a robust imputation reference panel for Northeast Asians, which yields the

greatest imputation accuracy of rare and low-frequency variants compared with the existing panels. NARD

imputation panel is available at https://nard.macrogen.com/.
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Background
During the past decade, the reference panels with

population-scale whole-genome sequencing (WGS) have

enabled the extensive human genetic research [1, 2]. They

have played an imperative role in the genetic research,

especially for genotype imputation in genome-wide associ-

ation studies (GWAS). The most commonly used imput-

ation panels were constructed by the 1000 Genomes

Project Phase 3 (1KGP3) and Haplotype Reference Consor-

tium (HRC) studies, which are publicly available for

researchers. As genotype imputation is an essential step to

increase the power of GWAS in a cost-efficient way, the

confidence of imputed genotypes is the most important. To

improve the quality of imputation in genetic studies, the

large-scale population-specific reference panels with deep

sequencing coverage are required. Accordingly, several re-

search groups have generated large-scale WGS data to

build their own population-specific reference panels [3–10].

Despite Northeast Asians account for 21.5% of worldwide

population (http://www.worldometers.info/world-popula-

tion), the majority of genetic studies and reference panels

are biased to European ancestries [11]. There are some

population-scale studies for building reference panels of

Han Chinese (CHN), Japanese (JPN), Mongolians (MNG),

and Koreans (KOR), but several issues, including public un-

availability [6, 10, 12, 13], inadequate sequencing coverage

[12, 14], small sample size [10, 15], and restriction to exonic

regions [16, 17], need to be resolved for the solid imput-

ation reference panel. Therefore, constructing a large-scale

whole-genome reference panel covering the diverse popula-

tion groups in Northeast Asia with deep sequencing cover-

age is still necessary to allow dense and accurate genotype

imputation for the genetic research in these populations.

Here, we describe the Northeast Asian Reference Data-

base (NARD), consisting of 1779 individuals from Korea,

Japan, Mongolia, China, and Hong Kong. The goal of this

study is to establish a high-quality population-specific ref-

erence panel for the genetic studies and precision medi-

cine in Northeast Asia without the aforementioned issues.
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Construction and content
Variant statistics

The NARD contains 1779 Northeast Asians including

KOR (n = 850), JPN (n = 396), MNG (n = 384), CHN

(n = 91), and Hong Kongese (HKG, n = 58) with deep

(20× ≤, n = 834) or intermediate (10×~20×, n = 945) se-

quencing coverages (Additional file 1: Figure S1, Add-

itional file 2: Table S1). Initially, WGS was performed on

1781 Northeast Asians, but two MNG samples with low

variant count and an abnormal ratio of heterozygous to

homozygous genotypes (Het/Hom) were discarded in

the subsequent analysis (Additional file 1: Figure S2).

We evaluated potential bias from inconsistent sequen-

cing coverage of samples and found no significant cor-

relation (Pearson correlation coefficient) between the

sequencing depth and the number of variants: single nu-

cleotide polymorphism (SNP; R = 0.15) and short inser-

tion/deletion (indel; R = − 0.20). Also, transition to

transversion (Ti/Tv) ratios were consistent across the

samples (2.1 on average; Additional file 1: Figure S3).

The Het/Hom ratios (1.4 on average; Additional file 1:

Figure S4) and the number of loss-of-function variants

(35.4 on average; Additional file 1: Figure S5) in the

NARD were similar to those in East Asians from the

1KGP3 (1.3 and 36.9 on average for each). Also, 99.2%

of the variants passed Hardy-Weinberg equilibrium

(HWE) test (P > 1 × 10−5; Additional file 1: Figure S6).

In the NARD, a total of 40.6 million SNPs and 3.8 mil-

lion indels were discovered, and 77.1% were singletons

or rare variants (minor allele frequency [MAF] < 0.5%;

Table 1). On average, 3.3 million SNPs and 0.3 million

indels were found for each individual. We identified 15.4

million novel SNPs (37.8% of the total) in the NARD

(Additional file 1: Figure S7a). Among them, 45.0% were

specific to KOR, likely due to their large sample size,

and 12.6% were found across populations (Add-

itional file 1: Figure S7b). The majority of novel SNPs

were singletons or rare variants and located in non-

coding regions (Additional file 1: Figure S7c). We found

the high integrity of our WGS variant call pipeline; the

genotype concordance between WGS and Illumina

Omni 2.5M array of 86 CHN samples from the NARD

was 99.6% (Additional file 2: Table S2).

Ancestry composition of NARD

We examined the ancestry composition of individuals in

the NARD to illustrate how it covers the genetic diversity

that was not present in other reference panels. From the

principal component analysis (PCA) result of global human

populations, individuals from the NARD were closely re-

lated to East Asians from the 1KGP3 as expected (Fig. 1a).

MNG were separately clustered and positioned between

East Asian and non-African populations as previously re-

ported [10]. When we applied PCA to only Northeast and

Southeast Asians, a clear population differentiation pattern

was observed among them (Fig. 1b); MNG were most dis-

tinct from other populations based on PC1, and PC2 sepa-

rated KOR, JPN, and mainland East Asians including

Chinese Dai in Xishuangbanna (CDX), Han Chinese in

Beijing (CHB), Han Chinese in Shanghai (CHS), HKG, and

Kinh in Ho Chi Minh City (KHV). Interestingly, there were

no overlapped samples between KOR and JPN except for a

few outliers. This result implies that their ancestral compo-

sitions are distinctive enough to form separate clusters.

Additionally, unsupervised ADMIXTURE analysis [18] sup-

ported the different ancestral components for each of KOR,

MNG, JPN, and mainland East Asians (Fig. 1c). In the case

of MNG, there were Buryats (BUR, n = 299), Khalkha Mon-

gols (KHA, n = 73), and other Mongolians including Barga,

Daringanga, Kazakh, Khoton, Uuld, Durvud, Khotogoid,

Table 1 Total number of variants in 1779 individuals by MAF and functional category

Type Frequencya Number
of variants

Functional variation

Protein coding region Non-coding region

Silent/
nonframeshift

Missense/
frameshift

Stoploss/
Stopgain

Unknown Intronic Intergenic Splicing UTR ncRNA

SNP Singleton 17,811,366 86,804 146,480 3722 2690 6,842,300 9,370,754 2110 247,422 1,109,084

Rare 13,673,626 54,642 87,791 1658 1917 5,270,353 7,248,270 1363 164,492 843,140

Low 3,430,315 12,753 15,710 232 428 1,299,727 1,851,373 245 38,673 211,174

Common 5,727,339 17,886 15,981 151 729 2,049,372 3,228,994 159 53,221 360,846

Total 40,642,646 172,085 265,962 5763 5764 15,461,752 21,699,391 3877 503,808 2,524,244

Indel Singleton 1,402,707 3191 5068 157 129 558,772 717,182 517 27,748 89,943

Rare 1,376,996 2733 2884 127 127 544,183 717,045 217 22,047 87,633

Low 452,337 634 827 37 37 173,946 241,506 61 6444 28,845

Common 569,436 422 369 18 89 207,132 317,135 145 7157 36,969

Total 3,801,476 6980 9148 339 382 1,484,033 1,992,868 940 63,396 243,390

aRare, MAF < 0.5%; low, 0.5% ≤MAF < 5%; common, MAF ≥ 5%

Yoo et al. Genome Medicine           (2019) 11:64 Page 2 of 10



and Zakhchin (OTH, n = 12). They were also genetically

separated into BUR and KHA/OTH (Additional file 1: Fig-

ure S8). The results highlight that the NARD has the most

diverse genetic compositions of Northeast Asian popula-

tions by adding the two ancestries, KOR and MNG, which

have been underrepresented in public datasets such as the

1KGP3 panel.

Evaluation of NARD imputation panel

To illustrate the robustness of the NARD as an imput-

ation reference panel, we built a pseudo-GWAS dataset

using an independent cohort of 97 unrelated KOR individ-

uals [15, 19, 20] and simulated the genotype imputation

analysis. It was generated from WGS data by masking the

genotypes that were not included in the sites of Illumina

Omni 2.5M array. The imputation was conducted by

Minimac3 [21] on the pre-phased SNPs using five types of

reference panels: (1) NARD (n = 1779), (2) 1KGP3 (n =

2504), (3) HRC r1.1 (n = 32,470), (4) NARD + 1KGP3

(n = 4200), and (5) NARD + 1KGP3 (re-phased, n = 4200).

To measure the imputation accuracy, we calculated the

squared Pearson correlation coefficients (R2) between the

true genotypes and the imputed dosages as a function of

MAF in 850 KOR individuals from the NARD. The im-

putation performance of the NARD exceeded the 1KGP3

panel for every MAF bin (Fig. 2a). Notably, the HRC

panel, with the largest sample size including individuals

from the 1KGP3, showed poor performance compared

with other panels. Since the low imputation accuracy of

the HRC panel is inconsistent with the original investiga-

tion, we performed the same analysis using 24 unrelated

French (FRA) individuals [22]. In contrast to a KOR co-

hort, we confirmed that the HRC panel produced the

most accurate genotype dosages for an FRA cohort, and

the NARD panel had poor suitability for Europeans (Add-

itional file 1: Figure S9).

We then merged the NARD and 1KGP3 panels and

performed re-phasing to enhance the imputation per-

formance based on the previous studies [2, 5]. To com-

bine the NARD and 1KGP3 panels without missing

genotypes, we used the identical approach that was im-

plemented in the UK10K and IMPUTE2 [5, 23]; we re-

ciprocally imputed two panels using Minimac3 in order

to statistically infer the missing genotypes in the NARD

PC1

P
C
2

NARD

PC1

1KGP3

Fig. 1 Ancestry composition of 1779 individuals in the NARD. a PCA of global populations from the NARD and 1KGP3. AFR, AMR, EAS, EUR, and

SAS denote Africans, Americans, East Asians, Europeans, and South Asians, respectively. b PCA of Northeast and Southeast Asians from the NARD

and 1KGP3. Japanese in Tokyo from the 1KGP3 were combined into JPN. CHN from the NARD were categorized into CHB and CHS. c Population

substructure of Northeast and Southeast Asians with five ancestral components inferred by ADMIXTURE algorithm
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or 1KGP3 panels. Consistent with previous studies [3, 6,

8–10], combining the two panels showed more accurate

imputation results compared with the NARD or 1KGP3

alone. Furthermore, we confirmed a large improvement

of the imputation accuracy, particularly for very rare

(MAF < 0.2%; R2 = 0.80), rare (0.2% ≤MAF < 0.5%; R2 =

0.83), and low-frequency (0.5% ≤MAF < 5%; R2 = 0.87)

variants, when the haplotypes in the combined panel

were re-phased by SHAPEIT3 [24]. In addition to meas-

uring accuracy, we assessed the number of accurately

imputed SNPs for each panel. For this analysis, we used

the estimated R
2 values measured by Minimac3, as it is

the standard for the quality control procedure in GWAS

[25, 26]. We found that the NARD + 1KGP3 (re-phased)

panel produced the greatest number of high-confident

SNPs (R2
≥ 0.9) compared with other panels, especially

1KGP3 (n = 7.5 million versus 6.7 million), in concord-

ance with the imputation accuracy (Fig. 2b).

We also illustrated the potential of the NARD +

1KGP3 (re-phased) as a reference panel for diverse

Northeast Asians by performing additional imputation

tests using independent cohorts of unrelated CHN and

JPN individuals (n = 79 and 27, respectively) [27, 28].

For imputation accuracy measurement, we used MAF

bins defined by 10,639 CHN and 3554 JPN individuals,

respectively [13, 14]. In agreement with the imputation

result of a KOR cohort, the NARD + 1KGP3 (re-phased)

panel provided the most accurate genotype imputation

on very rare (R2 = 0.71 and 0.84 for CHN and JPN

cohorts, respectively), rare (R2 = 0.71 and 0.89 for CHN

and JPN cohorts, respectively), and low-frequency (R2 =

0.81 and 0.91 for CHN and JPN cohorts, respectively)

variants (Additional file 1: Figure S10a and S10b). The

NARD + 1KGP3 (re-phased) panel also generated the

largest number of accurately imputed genotypes com-

pared with other panels, particularly 1KGP3 (n = 7.0 mil-

lion versus 6.8 million and 6.6 million versus 6.2 million

for CHN and JPN cohorts, respectively; Additional file 1:

Figure S10c and S10d).

To investigate where the improvement of the NARD +

1KGP3 (re-phased) comes from, we divided the panel

into the NARD (re-phased) and 1KGP3 (re-phased) and

assessed the imputation accuracy separately. The NARD

(re-phased) panel had slightly lower imputation power

than the NARD + 1KGP3 (re-phased) panel, but greatly

improved compared to the original NARD panel (Add-

itional file 2: Table S4). Meanwhile, the 1KGP3 (re-

phased) panel showed no improvement in the imput-

ation accuracy compared to the original 1KGP3 panel.

We examined the underlying reasons for improved im-

putation performance caused by the re-phasing approach

using identity-by-descent (IBD) analysis. It is known that

phasing or genotype errors cause the gaps within the

real IBD tracts; hence, the length of segments in phased

genotype data tends to be shorter [29, 30]. Based on this

aspect, we expected that haplotype correction is oc-

curred by re-phasing, and it would extend the length of

shared IBD segments among individuals. Therefore, we

Fig. 2 Imputation performance evaluation. a Imputation accuracy assessment using the five different reference panels. The pseudo-GWAS panel

of 97 KOR was used for the imputation. The x-axis represents MAF of 850 KOR individuals from the NARD. The y-axis represents the aggregated

R2 values of SNPs, which were calculated by the true genotypes and the imputed dosages. Only SNPs that were imputed across all panels were

used for the aggregation of R2 values. b Number of imputed SNPs as a function of the estimated imputation accuracy and the types of

imputation panel. This result was generated based on the R2 values that were estimated by Minimac3

Yoo et al. Genome Medicine           (2019) 11:64 Page 4 of 10



measured the shared large IBD segments (≥ 2 cM) be-

tween two individuals using the original (phased without

1KGP3) and re-phased haplotypes of the NARD. As a

result, we confirmed the significant increase in length

and number of shared IBD segments in re-phased haplo-

types, which implies that the haplotype refinement in

the NARD was achieved by the re-phasing process (Add-

itional file 1: Figure S11).

NARD imputation server

We developed a user-friendly web site to provide imput-

ation service using the NARD + 1KGP3 (re-phased)

panel for researchers (Additional file 1: Figure S12). Our

web site provides the imputation process for a wide

range of genotype data format including PLINK (ped

and bed files paired with map and bim/fam files, respect-

ively) [31], 23andMe (Mountain View, CA), Ances-

tryDNA (Lehi, UT), and variant call format (VCF) [32].

Results are processed through the imputation pipeline

consisting of four major steps: pre-processing, phasing,

imputation, and post-processing. The pre-processing

step checks the format and content validity of uploaded

files and converts them into VCF files for the next steps.

Depending on the format of uploaded files, PLINK and

23andMe/AncestryDNA files will be converted into VCF

files using GotCloud [33] and BCFtools [34], respect-

ively, based on hg19 reference coordinate. When the in-

put files have multiple chromosomes, the server will

automatically separate them into multiple files. The sub-

sequent analyses proceed regardless of whether files have

“chr” prefix in their contig names or not. The pre-

processed data is phased using Eagle2 [35] or SHAPEIT2

[36], and Beagle5.0 [37] with or without a reference

panel, respectively. Then, imputation is performed with

Minimac4 (https://github.com/statgen/Minimac4). In

the post-processing step, the output is assessed and pro-

vided as bgzip-compressed VCF and PLINK binary files.

The server will provide the PLINK format with extra

files containing predicted R
2 values per variant for im-

putation quality check. Once imputation is finished,

users will be notified by email and the result will be

stored in the server for a week.

NARD for variant interpretation

Filtering common variants based on the population allele

frequency is the first step to identify rare disease-causing

genes [38]. To examine the potential advantage of

NARD for clinical variant interpretation, the frequencies

of SNPs between the Genome Aggregation Database

(gnomAD, 2.1.1 release) [39] and NARD were compared.

We redefined the frequency of 1.8 million genome-wide

SNPs that are rare in worldwide populations from the

gnomAD (gnomAD-ALL) to low-frequency or common

(MAF ≥ 5%). Moreover, 0.5 million rare genome-wide

SNPs in East Asians from the gnomAD (gnomAD-EAS)

were low-frequency or common variants in the NARD

(Fig. 3a). We simulated rare disease variant discovery

using 203 samples that were included in the three

pseudo-GWAS panels for the imputation analysis. We

applied variant filtering criteria (MAF < 5%) from the

guidelines of the American College of Medical Genetics

for the interpretation of sequence variants [40]. Notably,

the number of protein-altering variants (missense, non-

sense, frameshift, and splicing variants) was significantly

reduced when the exome catalogues of gnomAD-EAS

and NARD were jointly applied for variant filtration

(Fig. 3b). This result represents that NARD could also

contribute to the classification of pathogenic variant be-

sides genotype imputation for the Northeast Asians.

Whole-genome sequencing

For 1690 individuals of KOR, JPN, MNG, and HKG, we

performed WGS using Hiseq X instrument (Illumina, San

Diego, CA) based on the manufacturer’s instructions. We

also used publicly available 91 CHN samples [41], which

were sequenced by Illumina Hiseq 2000 instrument (Illu-

mina, San Diego, CA). This cohort consists of YH cell line

and samples from the HapMap and 1KGP3 with high se-

quencing depth (on average, 70×) [1, 42, 43].

Variant discovery and refinement

Read alignment to the human reference genome (hg19)

without any alternate contig, duplicate read removal,

and joint calling of SNPs and indels were performed

using Dynamic Read Analysis for GENomics platform

(version 01.003.024.02.00.01.23004; http://edicogenome.

com/dragen-bioit-platform/) with the following parame-

ters: (i) creating gVCF: “--enable-map-align-output true,”

“--remove-duplicates true,” “--enable-bam-indexing true,

” “--enable-variant-caller true,” and “--vc-emit-ref-confi-

dence GVCF,” and (ii) joint calling: “--enable-joint-geno-

typing true.” For indels, we discarded variants greater

than 49 base pairs, which are generally defined as struc-

tural variants [20, 44]. Variant quality score recalibration

(VQSR) was applied to raw variants based on the

GATK’s best practice [45] with the parameters given

below:

i) Annotations

SNP: DP, QD, MQ, MQRankSum, FS, SOR

Indel: DP, QD, MQ, MQRankSum,

ReadPosRankSum, FS, SOR

ii) Truth set

SNP: HapMap3.3 and 1KGP Omni2.5

Indel: Mills & 1KGP gold standard

iii) Training set

SNP: HapMap3.3, 1KGP Omni2.5 and 1KGP

phase1 high confidence
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Indel: Mills & 1KGP gold standard and 1KGP

phase 1

iv) Known set

SNP: dbsnp138

SNPs and indels below 99% of truth sensitivity level

from VQSR were initially filtered. Moreover, recalibrated

variants were further filtered based on the following cri-

teria: (i) located in the low complexity regions (LCRs),

which were defined by the 1KGP3 study, (ii) genotype

quality < 20, and (iii) read depth < 5. After these filtration

processes, SNPs and indels were phased by SHAPEIT3

(version r884.1) which provides a fast population-scale

phasing with low switch-error using the following model

parameters: “--states 100,” “--window 2,” and “--effect-

ive-size 15000.”

Variant discovery evaluation

We selected the 86 CHN samples in NARD with pub-

licly available Illumina Omni 2.5M array data from the

1KGP3, for validating variants in the NARD. A total of

1,664,330 SNPs were overlapped between NARD and

Omni chip, excluding mitochondrial DNA and pseu-

doautosomal regions. The concordance is the cumulative

sum of the matching alleles divided by the total number

of loci multiplied by two, which is the maximum match-

ing opportunity in diploid. The sex chromosomes in

male are considered as diploids for this calculation.

Variant annotation

All the SNPs and indels in this study were annotated by

ANNOVAR based on the RefSeq gene definition [46, 47].

We annotated Kaviar [48], gnomAD, and The Single Nu-

cleotide Polymorphism Database build 150 [27] for the

classification of novel variants. For loss-of-function variant

annotation, we implemented the Loss-Of-Function Tran-

script Effect Estimator (version 0.3-beta) [39] which is a

plugin of Variant Effect Predictor [49] to remove low con-

fidence annotations [50] with the following parameters:

“--pick,” “--vcf,” “--cache,” “--offline,” and “--plugin LoF.”

For the 1KGP3 dataset, we also removed the variants

within LCRs.

Hardy-Weinberg equilibrium calculation

We calculated HWE of variants in the NARD using

VCFtools (version 0.1.12b) with “--hardy” option [32].

Population structure analyses

We converted VCF files of bi-allelic autosomal SNPs

from the NARD and 1KGP3 into PLINK format using

GotCloud (version 1.75.5). Then, we merged the two

panels by PLINK (version 1.9) and extracted SNPs with

genotype rate equals to 100% and MAF ≥ 1% to remove

the batch effect between the NARD and 1KGP3. Finally,

we pruned SNPs with linkage disequilibrium (R2 > 0.1)

within 50 base pairs sliding window using PLINK.

Fig. 3 Variant interpretation using the NARD. a MAF differences of SNPs shared between the NARD and gnomAD. The y-axis denotes the MAF of

SNPs in worldwide populations (ALL) or EAS from the gnomAD. Color represents the MAF of SNPs in 1779 Northeast Asians from the NARD. b

Number of uncommon (MAF < 5%) protein-altering variants (missense, nonsense, frameshift, and splicing variants) after filtration using the

gnomAD with/without NARD. Variant catalogue from the gnomAD (exome) was applied. ***P < 0.0001 by two-tailed Mann-Whitney U test

(compared with gnomAD-EAS + NARD)
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With this processed data, we carried out PCA with

Genome-wide Complex Trait Analysis (version 1.91.3beta)

[51] using (1) worldwide populations from the NARD and

1KGP3 and (2) Northeast and Southeast Asians from the

NARD and 1KGP3, separately. We also applied the un-

supervised ADMIXTURE algorithm (version 1.3) for ances-

try estimation. The optimal cluster number was determined

by comparing the cross-validation error rates of each K

(Additional file 1: Figure S13). The results were visualized by

Genesis (http://www.bioinf.wits.ac.za/software/genesis/).

Imputation

For the imputation panel, the singleton variants in the

NARD were excluded, because they are difficult to be

imputed. To combine the NARD and 1KGP3 panels, we

used the same approach as the UK10K and IMPUTE2;

NARD-specific variants were imputed into the 1KGP3

using Minimac3 (version 2.0.1) and vice versa, then they

were merged into a single reference panel. In addition,

the combined panel was re-phased by SHAPEIT3 using

the model parameters mentioned above with “--early-

stopping” and “--cluster-size 4000” parameters. We kept

variants that are not located in LCRs.

We separately processed 113 KOR, 79 CHN, 27 JPN,

and 24 FRA individuals that are not included in the ref-

erence panels for imputation accuracy evaluation (Add-

itional file 2: Table S3). Then, we discarded 16 related

individuals from a KOR cohort. Unrelated sample selec-

tion was achieved by kinship estimation using KING

[52]. Then, we extracted SNPs from sites on the Illumina

Omni 2.5M array and monomorphic sites were ex-

cluded. As a result, 1,345,511, 1,320,123, 1,214,151, and

2,847,580 autosomal SNPs remained in the pseudo-

GWAS panels of KOR, CHN, JPN, and FRA cohorts,

respectively.

We performed imputation using Minimac3 with the five

different types of reference panels. Imputation using the

HRC panel was performed at the Michigan Imputation

Server (https://imputationserver.sph.umich.edu). Before

imputation, the haplotypes of individuals in the four co-

horts were estimated using Eagle2 (version 2.3.2). After

imputation, we extracted 4,352,921, 5,427,462, 48,431,56,

and 5,419,512 SNPs in the four cohorts, which were im-

puted by all reference panels, and none of them were

present with missing genotype in the non-masked dataset.

The squared Pearson correlation coefficients (R2) were

calculated between the imputed dosages and true geno-

types, and those values were aggregated into 11 MAF bins

to measure the imputation accuracy.

IBD analysis

The shared IBD segments between two individuals were

identified using RefinedIBD (version 12Jul18.a0b) with

“length = 2.0” parameter [29]. To evaluate the effect of

the re-phasing approach on haplotype correction, we

performed this analysis using the original and re-phased

haplotypes of the NARD which were phased without

and with the 1KGP3 panel, separately. The short gaps

and breaks (> 0.6 cM) between IBD segments were dis-

carded using merge-ibd-segments utility program.

Utility and discussion
Due to the cost-reduction and technological advance-

ments in WGS, several groups have been focused on

building the population-specific reference panels, espe-

cially for underrepresented populations in the conven-

tional panels such as 1KGP3 [3, 4, 6–10, 13]. However,

the Northeast Asian-specific reference panel with deep

sequencing coverage and large sample size has been

barely constructed and most of them are publicly un-

available. In this study, we integrated whole-genome se-

quence variants of 1779 Northeast Asian individuals to

construct a reference panel, NARD; to resolve the uncer-

tainty of genotype imputation along with the pre-

existing panels; and to facilitate more comprehensive

genetic analysis of Northeast Asians.

Genotype imputation accuracy is known to be affected

by several factors, and one of the major determinants is

the sample size of reference panel [5, 36]. Until now,

most genotype imputations of Northeast Asians relied

on the panels with large sample size [46–49], although

the ancestries between the study population and refer-

ence panel are not matched. These panels showed lower

imputation power, compared to the well-matched

population-specific panels even with smaller sample size

[3, 6–10, 53]. Considering the importance of population-

specific reference panel, we generated a large-scale WGS

dataset of KOR and MNG that were not included in the

1KGP3 panel. We confirmed that KOR and MNG were

genetically differentiated from other East Asian popula-

tions. Therefore, the major ancestries in Northeast Asia

are finally covered as population-scale by the NARD. In

addition to the two populations, JPN, CHN, and HKG

were also sequenced to increase the imputation power

by the sample size effect and to build NARD as a refer-

ence panel that can be applied to diverse Northeast

Asian populations.

Recently, the HRC panel was constructed using the geno-

types of more than 30,000 individuals, mostly composed of

European descent from various cohorts such as the 1KGP3

study. It is the largest publicly available reference panel, but

previous studies demonstrated the poor imputation per-

formance of this panel for CHN, admixed Africans, and

Hispanic/Latino populations, even worse than the 1KGP3

panel [54, 55], and our analysis again supported this result.

It is reasonably different from the original investigation of

the HRC study because they only examined the imputation
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accuracy using European ancestry. The inconsistent results

between the HRC study and others imply that several com-

plex properties should be considered for achieving high-

quality genotype imputation. It could be speculated that the

population specificity between the reference panel and the

individuals to be imputed would be occasionally more rele-

vant factor than the size of reference panel. Therefore, the

HRC panel might not be a gold standard for non-European

populations. We believe that our new reference panel and

analysis are valuable resources for researchers who want to

achieve more accurate genotype imputation in Northeast

Asians.

As previous studies yield further increment of the im-

putation accuracy from their population-specific panels

by combining dataset of the 1KGP3 [3, 6, 8–10], we also

confirmed the improvement of the imputation perform-

ance by combining the NARD and 1KGP3 panels using

a fast and simple approach as described in the UK10K

and IMPUTE2. However, there could be an issue regard-

ing the uncertainty of imputed genotypes, since the

missing genotypes in each panel were statistically esti-

mated. Referring to the HRC study, calculating genotype

likelihood of each variant using the individual BAM files

would improve the uncertainty of these genotypes, if the

sequencing coverages are sufficient. After merging the

NARD and 1KGP3, we enhanced the power of the com-

bined panel by applying the re-phasing strategy. It is an

advanced process that has not been applied in most of

previous studies [3, 6, 8–10], but the HRC study has

shown further improvement of the imputation accuracy

with this approach. Based on this strategy, the NARD +

1KGP3 (re-phased) panel produced more accurately im-

puted genotype dosages, especially for uncommon vari-

ants (MAF < 5%), than the NARD + 1KGP3 panel. This

might be due to haplotype correction with the assistance

of the haplotypes in the 1KGP3 panel.

Conclusions
In summary, we generated a large-scale reference panel

for Northeast Asians, which will be a highly valuable re-

source to resolve a persistent deficiency of Asian gen-

ome data. We believe that our efforts will remarkably

contribute to precision medicine in Northeast Asia.
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