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Whole genome sequence association analysis of
fasting glucose and fasting insulin levels in diverse
cohorts from the NHLBI TOPMed program

The genetic determinants of fasting glucose (FG) and fasting insulin (FI) have been studied

mostly through genome arrays, resulting in over 100 associated variants. We extended this

work with high-coverage whole genome sequencing analyses from fifteen cohorts in NHLBI’s

Trans-Omics for Precision Medicine (TOPMed) program. Over 23,000 non-diabetic indivi-

duals from five race-ethnicities/populations (African, Asian, European, Hispanic and

Samoan) were included. Eight variants were significantly associated with FG or FI across

previously identified regions MTNR1B, G6PC2, GCK, GCKR and FOXA2. We additionally

characterize suggestive associations with FG or FI near previously identified SLC30A8,

TCF7L2, and ADCY5 regions as well as APOB, PTPRT, and ROBO1. Functional annotation

resources including the Diabetes Epigenome Atlas were compiled for each signal (chromatin

states, annotation principal components, and others) to elucidate variant-to-function

hypotheses. We provide a catalog of nucleotide-resolution genomic variation spanning

intergenic and intronic regions creating a foundation for future sequencing-based investi-

gations of glycemic traits.
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Type 2 diabetes (T2D) and insulin resistance are complex
genetic conditions often characterized by disruptions of
normal levels of fasting glucose (FG) and fasting insulin

(FI)1. These traits are influenced by a spectrum of common to
rare genetic variation2–7 with most evidence coming from
genome-wide association studies (GWAS)8,9, exome arrays2,3,6,
whole-exome sequencing2, and small samples of low-pass whole-
genome sequencing (WGS)4,10. These efforts have found over
100, mostly common (minor allele frequency (MAF) > 0.05),
variants associated with FG or FI, including those in non-coding
and intergenic spaces2–4,6,8,9. We expand on these previous stu-
dies by assessing common, low frequency (MAF < 0.05), and rare
(MAF < 0.01) variants through comprehensive WGS association
analysis in diverse population cohorts in NHLBI’s Trans-Omics
for Precision Medicine (TOPMed) program. The current study
aims to better understand the variants at GWAS loci through
multiple approaches including discovery and fine-mapping in
both coding and non-coding regions as well as aggregate rare
variant testing using both protein-coding variants and intergenic
variants. In addition, we explore ancestry-specific results through
our four included race/ethnicities and one population group:
African, Asian, European, Hispanic, and Samoan, respectively.
Finally, we characterize all reported regions with annotations
including chromatin states, annotation principal components
(PCs), expression quantitative trait loci (eQTL), and others from
recent annotation accumulation efforts including the Diabetes
Genome Atlas (DGA).

Results
Phenotypes and genotypes in the NHLBI TOPMed program.
We identified and characterized common and rare variants asso-
ciated with FG and (natural log-transformed) FI through associa-
tion tests using WGS data from fifteen cohorts in TOPMed
(Supplementary Table 1). As in prior quantitative trait analyses, we
excluded individuals with diabetes (by glycemia or medication),
resulting in a total sample size of 26,807 individuals with FG and
23,211 individuals with FI. This represents a diverse sample of four
self-reported race/ethnicities and one population group including
African, Asian, European, Hispanic, and Samoan, respectively, and
our total sample was >40% non-European (Supplementary
Tables 2–3). In addition to use of genetic ancestry adjustments in
our models (see the “Methods” section), we used participant’s self-
reported race/ethnicity to assign individuals to one of five groups
for stratified analyses or inclusion as a covariate. Individuals were
given a single label to infer their ancestry, but each group repre-
sents a diverse cross-section of race, culture, or admixture. Trait
measures were harmonized across cohorts and assays and adjusted
for self-reported race/ethnicity, study age, sex, and body mass
index (BMI; Supplementary Tables 2–3, “Methods”). We assessed
60M variants from the TOPMed Freeze 5b WGS data freeze for
each trait using single-variant testing (minor allele count, MAC >
20) in pooled and race/ethnicity-specific approaches. We used a
significance threshold of P < 1.0 × 10−9 as has been established for
WGS studies including African ancestry11. We also separately
report signals identified with P < 5.0 × 10−8 as suggestively asso-
ciated with either trait. These suggestively associated signals are
reported to characterize potential regions of interest with our
available annotations for use in future higher-powered studies. We
further performed rare variant testing (MAF < 0.01) using aggre-
gate burden and SKAT tests in both gene centric and genetic
region approaches. We computed 95% credible sets for each dis-
tinct common variant signal conditioned on any other identified
signal at the locus (“Methods”, Supplementary Data 1). 99%
credible sets are also reported for signals identified through the
pooled analysis (Supplementary Data 2), with a median size of 12

variants. This is 20% smaller than a recent multi-ethnic GWAS of
glycemic traits12 which reported a median 99% credible set
size of 15.

Whole-genome sequence significant associations with fasting
glucose and insulin. We identified eight distinct variants sig-
nificantly associated with FG or FI across five gene regions in the
pooled race/ethnicity analysis (P < 1.0 × 10−9, Table 1). These
include previously identified MTNR1B, G6PC2, GCK, GCKR, and
FOXA2 gene regions (Supplementary Data 3–4). MTNR1B had a
distinct secondary signal after conditioning on the lead variant.
G6PC2 had three distinct association signals, one of which was
rare (MAF < 0.01), as determined by sequential conditional ana-
lysis. These distinct secondary and tertiary signals are also
reported in Table 1 (locus-wide significance threshold of
1.0 × 10−5, “Methods”) and further described in the following
sections. Manhattan and QQ plots for single variant analyses of
FG and FI are shown in Supplementary Fig. 1.

Our significantly associated variants replicate previous GWAS
findings, which are summarized in Supplementary Data 3–4. We
further characterize these variants in the context of sequencing
and related available resources as summarized in Fig. 1. We used
the Diabetes Epigenome Atlas (DGA) and TOPMed resources to
provide functional annotations including chromatin states,
annotation principal components (aPCs)11 that each provide a
summary of related functional annotations via PCA (“Methods”),
and expression quantitative trait loci (eQTL) from adipose,
pancreas, liver and skeletal muscle. In addition to variant
descriptions in Fig. 1, regional locus plots with tissue-specific
annotations for reported loci in Supplementary Fig. 2, and
associations of reported loci with related traits in Supplementary
Fig. 3 and Supplementary Data 5. Selected regions are further
described based on the data below.

MTNR1B intronic variant rs10830963 (P= 9.1 × 10−46) has
been characterized as a strong signal for insulin secretion13; this
variant is in a weak transcription chromatin state in islets, is a
metabolite QTL for glucose14,15, and is a pancreatic-islet-specific
eQTL associated with the expression of MTNR1B16. Identified
after conditioning on the primary variant rs10830963 in the
MTNR1B region, intronic variant rs73560545 occurs upstream of
the primary signal and had a lowering effect on FG, in contrast to
the primary signal which had a glucose-raising effect. While this
is a well-known region in the context of these traits, this
secondary variant at rs73560545 has not been previously
identified in the reviewed literature (Supplementary Data 3–4).

The GCKR locus had a significant association with both FG
and FI at rs1260326 (P= 6.1 × 10−21, 7.2 × 10−13, respectively)
with functional activity suggested by its relatively high aPC-
Epigenetics and aPC-Transcription-Factor values. This variant is
also an eQTL and pQTL associated with many genes and
proteins, most relevantly with insulin17. GCKR and rs1260326
have been previously described in previous studies for both traits
(Supplementary Data 3–4).

The FOXA2 locus has also been previously found to be
associated with glycemic traits, regulating gene expression for
glucose sensing in pancreatic beta cells18. We observe one FG-
associated signal at rs3833331 (P= 5.4 × 10–10), a variant
moderately linked to previously identified FOXA2 lead variants
rs6048205 and rs6048216, and based on conditional analysis is
likely the same signal. The variant rs3833331 is in the 3′ UTR of
the gene and classified as a CAGE promoter, GeneHancer, and
SuperEnhancer. It is in an active TSS chromatin state for both
pancreas and islets. Our identified variant rs3833331 is frequent
in African individuals, while it has relatively low frequency in
both European and Hispanic race/ethnicities.
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Rare variant aggregate testing performed using both gene-
centric and genetic region approaches identified one significantly
associated region with FG at the known G6PC2 locus, described
in the next section (Supplementary Data 6–7). No rare variant
aggregate signals were found to be associated with FI that were
not composed mostly of singletons (Supplementary Data 8–9).
Manhattan plots for region-based rare variant aggregate analysis
in Supplementary Fig. 4.

Refinement of the multi-allelic associations at the known
G6PC2 locus. At the known FG and T2D-associated G6PC2
locus2,3, we observed several previously identified variant associations
with FG (Fig. 2). In single variant analyses, we identified three distinct
association signals, the third of which was a previously identified
association after conditioning on two previously reported common
GWAS variants, rs560887 (primary signal, P= 6.8 × 10−37) and
rs540524 (secondary signal, P= 9.9 × 10−14). The rare missense
variant rs2232326 (tertiary signal, P= 5.0 × 10−6) is annotated19 by
the aPCs as disruptive and likely damaging, with a score falling in the
top 7% distribution of the aPC representing “protein function” (aPC-
Protein Function= 31.5, top 7% genome-wide). In addition,
rs2232326 appears to be highly conserved, with a score falling in the
top 0.13% of the distribution of an aPC representing “conservation”
(aPC-Conservation= 28.8, top 0.13% genome-wide). The genomic
region surrounding rs2232326 is annotated to be in a weakly tran-
scribed chromatin state, relative to the genome, in islets and this
variant is near the transcription end site (Fig. 2). The frequency of the
C allele at rs2232326 was <0.01 in all race/ethnicity groups except for
the Asian group where the frequency was 0.03 (gnomAD: East Asian
AF= 0.05, Overall AF= 0.01). In aggregate gene-centric testing of all
75 rare missense variants in G6PC2, this previously identified rare
(MAF= 0.01) variant rs2232326, along with variant rs2232323
(MAF= 0.01), contributed the most to the significant association test
statistic (PBurden,1,1= 1.4 × 10−10, Supplementary Data 6).

Given the multiple distinct signals at G6PC2, we performed a
haplotype analysis to evaluate the contribution of rare variants and
identify allele-specific effects. We extended the haplotype analysis of
Mahajan et al.3 (rs560887, rs138726309, rs2232323, rs492594) to
include our secondary (rs540524) and tertiary (rs2232326) signals.
Our secondary signal is in moderate linkage (r2= 0.58) to the
previously haplotyped rs492594 and the effect allele A has a
glucose-raising effect in both marginal and conditional analyses
(Supplementary Table 4 and Table 1). We observed consistent
direction of effects as the previous haplotype analysis, demonstrat-
ing the reliability of associations identified in the present TOPMed
sample. Both haplotypes containing the C allele of the tertiary signal
at rs2232326, the variant with the largest effect size included in the
analysis, had glucose-lowering effects. The largest glucose-lowering
effects at G6PC2 were observed at the two haplotypes each carrying
a rare allele: rs2232326 (rs560887-C, rs138726309-C, rs2232323-A,
rs492594-C, rs540524-G, rs2232326-C, Beta=−0.15+/− 0.00002)
and rs2232323 (rs560887-T, rs138726309-C, rs2232323-C,
rs492594-G, rs540524-A, rs2232326-T, Beta=−0.11+/−0.00008,
Supplementary Table 4).

Additional suggestive associations with fasting glucose and
insulin. We further report twelve distinct variants suggestively
associated with FG or FI across ten gene regions in the pooled
race/ethnicity analysis and ancestry-specific analyses
(P < 5.0 × 10−8; Table 2). These include previously identified
SLC30A8, TCF7L2, and ADCY5 gene regions (Supplementary
Data 3–4). Other regions not previously identified include APOB,
PTPRT, ROBO1 and those described in the ancestry-specific
section below. SLC30A8 and PTPRT have distinct secondary
signals identified through conditional analysis, which are alsoT
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reported in Table 2 (locus-wide significance threshold
P < 1.0 × 10−5). We outline these suggestive signals and the cor-
responding gene regions below to provide annotation and
description and to provide context for investigation of these
signals in future, larger studies.

In the ADCY5 region, variant rs72964564 (P= 2.8 × 10−8)
showed suggestive association with FG and is highly linked
(r2= 0.86 in the present study sample) with the known FG-
associated variant rs11708067. Both ADCY5 variants are
designated GeneHancer and SuperEnhancer variants, and
rs72964564 is in an active enhancer state for adipose tissue and
is an eQTL associated with ADCY5 expression in pancreatic
islets16. ADCY5 and rs72964564 have been previously identified
in studies of FG (Supplementary Data 3–4).

Near the APOB region a suggestively associated variant at
rs478588 (P= 2.9 × 10−9) has not previously identified (Supple-
mentary Data 4). Variant rs478588 has robust associations with
lipid traits20 and significant parent-of-origin effects on metabolic
traits21. Lipid traits have been studied for pleiotropy with
glycemic traits but have been inconclusive with respect to APOB.
Replication was attempted in UK-BioBank (UKBB) with
consistent direction of effect and P= 0.01, but it should be noted
UKBB sample used was not based on WGS data (Supplementary
Table 5).

We identified a pair of suggestively FG-associated signals in
islet-specific active enhancer regions at the known SLC30A8
locus. The primary signal is at variant rs35859536
(P= 1.0 × 10−9), which is an intergenic variant 2.5KB down-
stream of SLC30A8. This variant is highly linked (r2 > 0.95) to
previously identified lead variants rs11558471 and rs3802177 at
SLC30A8, both of which are in the 3′ UTR. This is a known T2D
susceptibility locus and has been identified as associated with
triglyceride levels22. Our lead variant is also significantly
associated with T2D in TOPMed (Supplementary Data 5)23. To
evaluate potential causal variants (“Methods”) we performed
credible set analyses and found rs35859536 has a posterior

probability (PP) of 0.48; other variants in the 95% credible set
with PP of at least 0.05 were either missense or in the 3′ UTR, are
highly linked with this lead variant (r2 > 0.97), and were
significantly associated with FG in previous studies2,8,24. Our
lead variant, along with other previous lead variants, is in an
active enhancer 2 region for islets; rs35859536 is also mapped as
an accessible chromatin site in islet of Langerhans given
inflammatory-inducing cytokine exposure25. Replication of these
signals was attempted in the METSIM cohorts, and we observe
nominal significance of the primary signal with a consistent
direction of effect, while the secondary signal was too low
frequency in this cohort to estimate an effect (Supplementary
Table 6).

The secondary suggestively FG-associated signal at the
SLC30A8 locus is at variant rs542965166 (P= 1.9 × 10−6). This
intergenic variant is only observed in individuals in the Asian
population (Asian EAF= 0.007); this race/ethnicity-specificity is
replicated in gnomAD26 where the allele is only observed in East
Asians at a rare frequency. This secondary, race/ethnicity-specific
signal is not highly linked to other variants in the region, which
may indicate that this is a distinct, secondary signal and requires
further follow-up in an Asian population.

Upstream of the ROBO1 locus we identified a suggestively
novel (to the best of our knowledge) FI-associated rare variant,
rs539973028 (P= 4.7 × 10−8). This locus has previously been
studied for SLIT-ROBO signaling and expression in T2D
complication diabetic retinopathy27. ROBO1 has been associated
with the glycemia-related traits of BMI and waist-to-hip
ratio28–30 and is commonly expressed in muscle and skin31. This
variant is only observed in the African population of TOPMed
and gnomAD26. It is intergenic and in a weakly transcribed
region in islets.

We identified a pair of distinct, suggestively novel (to the best
of our knowledge) rare variant signals associated with FI near the
PTPRT gene (Table 2). The primary signal, rs185250851
(P= 2.1 × 10−8), is an intronic variant. It is rare in all tested
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Fig. 1 Characterization of significant and suggestive single-variant signals associated with fasting glucose and fasting insulin in TOPMed. TOPMed
features of distinct, significant and suggestive signals associated with fasting glucose and fasting insulin (log-transformed) in pooled analysis. P-values
(unconditional −log10-transformed) for glycemic and related traits (HbAa1c and type 2 diabetes) and effect allele frequency (with respect to the pooled
analysis effect allele) across race/ethnicities in TOPMed are reported. Chromatin states at relevant tissues were drawn from two sets of experiments from
DGA46,47; annotation PCs provide summaries of multi-faceted variant function; variants that are significant eQTLs in relevant tissues are denoted. EAF,
effect allele frequency for TOPMed sample; EnhA1, Active Enhancer 1; EnhA2, Active Enhancer 2; Het, Heterochromatin; Quies, Quiescent/Low; ReprPC,
Repressed PolyComb; ReprPCWk, Weak Repressed PolyComb; TssA, Active TSS; TssFlnk, Flanking TSS; TxWk, Weak Transcription; ZNF/Rpts, ZNF genes
& repeats.
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population groups and not observed in Asian individuals, as
validated in gnomAD26. The secondary signal at variant
rs78618809 (P= 5.9 × 10−6) is in an intergenic region. This
variant is within the top 5% of variants with respect to an aPC
representing “Distance to TSS/TSE,” a composite measure of
individual annotations indicating low variant distance to the
endpoints of the intergenic region. This variant is rare overall, but
observed frequently (EAF= 0.07) in the African ancestry
population. This gene has previously been associated with BMI,
which has moderate genetic correlation (previously estimated as
ρg= 0.48) with FI20,21. The expression of this gene is most
commonly associated with variants as eQTLs in pancreas in
GTEx31. The multi-ethnic TOPMed sample permits the identi-
fication of this signal, which requires a sufficiently diverse sample.

Race/ethnicity-specific analyses associated with fasting glucose
and insulin. In race/ethnicity-specific analyses, we observed two
not previously identified race/ethnicity-specific rare variant sug-
gestive associations with FG in individuals of the Hispanic/Latinx
population (Table 2). The first signal, rs1328056 (P= 3.6 × 10−8),
is an intronic variant in the HS6ST2 gene, which has been asso-
ciated with obesity and impaired glucose metabolism in mouse
studies13. The second signal is an intergenic variant near the
ATPSCKMT gene, rs13361160 (P= 3.1 × 10−8) which is asso-
ciated with eosinophil counts, a measure that has been negatively
correlated with FG14. We would require further data from indi-
viduals from the Hispanic/Latinx population in order to replicate
these suggestive signals.

We identified two suggestively novel (to the best of our
knowledge) race/ethnicity-specific rare alleles associated with FI.
In the European population, rs775018107 (P= 4.5 × 10−8) at the
LINC00704/LINC00705 locus was suggestively associated with FI
(Table 2). We also identified a suggestive FI association in the
Samoan population cohort at rs117592405 (P= 3.3 × 10−8); this
intronic variant was not replicated in an independent Samoan
cohort using imputed genotypes (N= 1401, Supplementary
Table 7).

Enrichment of trait-associated variants in chromatin states. We
assessed whether our trait-associated variants were found more
often than expected in a particular chromatin state using the tool
GREGOR (Genomic Regulatory Elements and Gwas Overlap
algorithm)15 (“Methods”). We observe that fasting glucose-
associated variants are found more often in “Active Enhancers”,
“Weak Transcription”, and “Genic Enhancer” chromatin states in
Islets (P < 0.05, Supplementary Table 8). This complements
findings from Chen et al.12 showing similar enrichment of gly-
cemic trait-associated signals in islet enhancers.

Discussion
In this paper, we leveraged high-coverage WGS data in large
multi-ethnic population-based cohorts to assemble a compre-
hensive catalog of nucleotide-resolution genomic variation asso-
ciated with the key diabetes-related quantitative traits FG and FI.
Our analysis covered intergenic and intronic regions to a MAC of
20 in single variant analysis and combines base pair variation
with tissue-specific epigenomic annotation to illuminate variant-
to-function hypotheses in diabetes pathobiology.

A strength of the present analysis is the inclusion of individuals
from 15 cohorts, comprised of four major race/ethnicity groups
and one population group(African, Asian, European, Hispanic/
Latinx, and Samoan, respectively). Some of our reported regions
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Fig. 2 Regional investigation of three conditionally significant signals
associated with fasting glucose in the G6PC2 locus in TOPMed.
Regional association plot of −log10 P values by genomic position for
sequential conditional single-variant analyses. The linkage disequilibrium
(r2) between the primary signal (rs560887, 2:168906638:T:C), as
defined by the highest posterior probability, and variants in the region for
each panel as calculated in TOPMed is indicated in the colors of the
points. The chromatin states at four relevant tissues47 and annotation
PCs are provided across the region. APC1, APC Epigenetics, APC2, APC
Conservation, APC3, APC Protein, APC9, APC Distance to TSS/TSE;
EnhA1, Active Enhancer 1; EnhA2, Active Enhancer 2; Het,
Heterochromatin; Quies, Quiescent/Low; ReprPC, Repressed PolyComb;
ReprPCWk, Weak Repressed PolyComb; TssA, Active TSS; TssFlnk,
Flanking TSS; TxWk, Weak Transcription; ZNF/Rpts, ZNF genes &
repeat.
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were either mostly or exclusively present in a single race/ethnic
group. These include the secondary SLC30A8 variant
rs542965166 only observed in the Asian group, ROBO1’s
rs539973028 only present in African group, and others. Previous
genetic studies of glycemic traits have included samples primarily
from individuals of European ancestry, but increasingly a larger
degree of African ancestry. The most recent meta-analysis by the
MAGIC consortium included ~30% non-European ancestry
individuals, demonstrating that a number of trait-associated loci
that would have been undetected in samples exclusively of Eur-
opean ancestry18. While extending the genetic ancestries studied
beyond European populations, the MAGIC results were subject to
the limitation of imputation by the 1000 Genomes Project
reference panel, so most rare and ancestry-specific variation was
still not assessed. In addition, we observe a 20% decrease in
average 99% credible set size from the MAGIC results suggesting
value of WGS in fine-mapping.

This analysis benefits from the availability of whole-genome
sequencing data provided by the TOPMed Program of the
NHLBI’s Precision Medicine Initiative10,32. Previous studies have
been limited by reliance on imputation or minimal sample sizes
for data with sequencing paired with glycemic phenotypes. The
GoT2D study has performed WGS in a limited sample, con-
tributing to the larger DIAMANTE meta-analysis of summary
statistics but relying on imputation for complete genotyping of
most samples33. The UKBB study includes a large set of primarily
European individuals with whole-exome sequencing; however,
the sample size with measured fasting glycemic traits is limited as
described in the validation study. One of the most expansive
efforts, a MAGIC collaboration8,34, has performed extensive
analyses for glycemic traits, but results rely primary on Exome
Chip data and thus have limited coverage of intergenic and
intronic regions6. Our significant findings replicate previous
GWAS findings in terms of gene regions, but we are able to
characterize these regions in great detail and report on specific
variants which may not previously described in these known
regions, such as the secondary MTNR1B-associated variant.

In addition to reporting significant and suggestive associations,
we provide detailed characterization of each locus in terms of
functional annotations, chromatin states, quantitative trait loci,
related trait associations and more. The G6PC2 in particular was
described in terms of allelic effects and provided functional
characterization of low-frequency signal, demonstrating the
glucose-lowering effects of rare alleles and islet-specificity of this
locus’s associations. Many of our reported regions lie in enhancer
or transcription start site chromatin states, and we particularly see
significant enrichment in enhancer states in islets. This agrees
with findings of previous GWAS and the expected relevant tissues
for glycemic traits. We provide this data and the visualizations for
use in future investigation of these loci.

A limitation of this study is our smaller sample size compared
to the most recent GWAS. Our significant single variant results
are all found near previously identified gene regions. Also, many
of our suggestively novel results lack substantiating replication,
particularly those which are race/ethnicity specific. We analyzed
independent studies with genetic data to investigate associations
significant in TOPMed; we were unable to replicate potentially
novel signals in these external cohorts. This may be attributable to
limitations in the available replication studies’ samples with
respect to size, race/ethnicity and imputed versus WGS geno-
types. To support the understanding of these signals, we consider
a set of tissue-specific chromatin states, an effort that would
benefit from further tissue-specific characterization across func-
tional measures. This could also help inform the underlying
biological mechanisms of glycemic regulation and its role in
diabetes.T
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This multi-ethnic WGS study provides the foundation for
future sequencing-based investigation of glycemic traits. Our
results from common and rare variant analysis comprised mul-
tiple suggestive hits, including those with exceedingly rare var-
iants that require further investigation, indicating the potential
for the identification of novel signals given larger sequencing
studies and external validation studies. The value of diverse stu-
dies like TOPMed is further evidenced by the specificity of such
signals to certain populations and cohorts. This value is also
demonstrated by the intronic and intergenic location of many
such suggested signals. These signals, in both single variant and
rare variant set-based testing, indicated that many associations lie
outside gene boundaries and it is important to perform genome-
wide single variant testing but also complement gene-centric RV
testing with region-based RV testing to fully capture signal.
Future TOPMed study phases will permit the continued investi-
gation of these signals empowered by increased sample sizes, with
future directions including detailed fine-mapping of signal
regions and assessment of glycemic trait heritability. To support
future research, all results from this analysis have been made
available to the research community through the Type 2 Diabetes
Knowledge Portal (Genetic Association Data will be released in
January 2021)17.

Methods
Whole-genome sequencing. Whole-genome sequencing of blood samples for all
participants included deep coverage (>30x on average) sequencing from blood
samples provided by the NHLBI TOPMed program. Sequencing was performed
across six centers (Broad Institute of MIT and Harvard, Northwest Genomics
Center, New York Genome Center, Illumina Genomic Services, Macrogen, and
Baylor College of Medicine Human Genome Sequencing Center) as previously
described35. The TOPMed Informatics Research Center at the University of
Michigan performed data harmonization and joint variant discovery and genotype
calling, requiring DNA sample contamination below 3% and at least 95% of the
genome with at least 10x coverage. Freeze 5b was aligned to GRCh38 reads from
the 1000 Genomes Project reference sequences36. The samples were further pro-
cessed by a centralized pipeline by the TOPMed Data Coordinating Center at the
University of Washington, where further quality control and sample-identity
resolution were performed, including sex and relatedness concordance and selec-
tion of variants with missingness <5% and QUAL > 127. Variants were also
checked via an excess heterozygosity filter (EXHET), which removed the variant if
the Hardy-Weinberg disequilibrium p-value was <1 × 10−6, after accounting for
population structure. After processing, Freeze 5b contained 54,508 samples with
438 million single nucleotide variants (SNVs) and 33 million short insertion-
deletion variants.

Population structure principal components were calculated across all Freeze 5b
TOPMed participants using PC-AiR; a genetic relatedness matrix was calculated
across all Freeze 5b TOPMed participants using PC-Relate accounting for
population structure. Race/ethnicity was determined by self-report from each
study. Self-reported race/ethnicity was used in conjunction with principal
component and/or genetic relatedness matrix adjustment to control for both
genetic and individually identified ancestry37.

Phenotype harmonization. Phenotype harmonization proceeded following a
protocol defined by the TOPMed Diabetes Working Group for participating
TOPMed studies. Duplicated individuals were excluded following the TOPMed
Diabetes Working Group protocol. Within a study, monozygotic twins were
retained and the duplicate to be kept was chosen based on verification of cohort
characteristics, including proper cohort sequencing center designation, and then by
highest call rate. Across studies, duplicates were selected by removing missing trait
data, prioritizing population-based cohorts, and retaining individual records with
the longest follow-up period. All study participants provided informed consent and
each study was approved by their respective institutional review boards.

Glycemic traits (fasting glucose (FG) and fasting insulin (FI)) were analyzed for
individuals who did not have diabetes at the time of glycemic trait measurement.
This subset was defined as those not taking anti-diabetes medication, with fasting
glucose <7 mmol/l and/or HbA1c < 6.5%. For individuals with multiple blood
draws, the earliest exam or most complete exam was used. Age, sex, and BMI
covariates were reported at the time of glycemic trait measurement. Fasting was
defined to be at least 8 h without food or drink; measurements from blood were
converted to plasma values using a 1.13 correction factor38. The units for glucose
are mmol/l; units for insulin are pmol/l. Fasting insulin was natural log-
transformed prior to analysis in order to address non-normality.

Study sample and power. The present analysis included 23,211 (FI) and 26,807
(FG) individuals from the NHLBI TOPMed program. The cohorts included consist
of participants of self-reported African American (FI n= 6803; FG n= 7174), East
Asian (FI n= 572; FG n= 2217), European (FI n= 13,281; FG n= 14,513), His-
panic/Latinx (FI n= 1641; FG n= 1989), and Samoan (FI n= 914; FG n= 914)
race/ethnicity. Our analysis of fasting insulin included 14 cohorts and fasting
glucose included 15 cohorts. The sample is predominantly of European race/eth-
nicity (FI 57.2%; FG 54.1%) and female (FI 66.5%; FG 65.2%); full cohort
descriptions are given in Supplementary Tables 2 and 3.

We performed a post hoc power calculation to evaluate the power to detect
genetic signal at the genome-wide threshold for statistical significance of 5 × 10−8.
Given the study sample size, this analysis was powered to detect 0.54–4.21% and
0.57–4.21% percent variation in glycemic trait explained by a genotype in race/
ethnicity-specific analyses for FG and FI, respectively. The pooled study including
all samples was powered to detect 0.16% and 0.17% percent variation in glycemic
trait explained by a genotype for FG and FI, respectively.

Single-variant analysis. We performed single variant analysis in Freeze 5b of
TOPMed using race/ethnicity-specific and pooled approaches. We tested
64,675,008 variants for associations with FG and 58,759,883 with FI in both pooled
and race/ethnicity-specific analyses, and restricted analysis to variants with minor
allele count >= 20. We used linear mixed effects models and adjusted for age, age
squared, sex, body mass index, study-race/ethnicity, with heterogeneous variance
permitted across study-race/ethnicity groups and empirical kinship for relatedness
and population structure. Models were fit using GENetic Estimation and Inference
in Structured samples (GENESIS)39 in the Analysis Commons cloud-computing
platform40. P-Values reported are for a two-sided Wald test from the mixed model.
Fasting glucose and natural log-transformed fasting insulin were used as outcomes
in separate models. We define the standard genome-wide threshold for statistical
significance as 1 × 10−9. We also report variants with P < 5 × 10−8 as suggestively
associated to provide context for regions of interest for future, higher-powered
studies.

Stepwise conditional analysis was performed at each identified locus, defined to
be a 500 kb region centered on the most significant variant, in order to identify
distinct signals. This analysis proceeded by first including the most significant
variant as a covariate, and repeating until no variants were associated with the
phenotype with p-value <1 × 10−5. For each distinct signal, a final model was run
conditioning on the set of other distinct signals; we report these potentially distinct
signals.

Towards fine-mapping the identified loci, we generated 95% credible sets to
investigate likely causal variants (LocalZoom). For each locus, we calculated Bayes
factors for all variants from their single variant p-value; p-values were taken from
conditional analyses on all other identified variants at the locus where multiple
distinct signals were identified in the stepwise conditional analysis. We calculated
posterior probability of association (PP) of each variant as the proportion
contributed to the summation of all BFs in the region. The variants were sorted by
descending PP, indicating decreasing probability that the variant is truly associated
with the glycemic trait. The 95% credible set was constructed by including variants,
starting with the highest PPA, until their cumulative PPA exceeded 0.95. 99%
credible sets were similarly constructed for association signals from the pooled
analysis only.

Rare variant analysis. We performed gene-based and genetic region aggregate
testing to identify sets of rare variants associated with fasting glucose and log-
transformed fasting insulin. We first fit a heteroscedastic linear mixed model for
fasting glucose and log-transformed fasting insulin. Both traits were adjusted for
age, age2, sex, body mass index (BMI), study-race/ethnicity group indicators, and
ten population structure principal components. A variance component was
included for the empirically derived sparse kinship matrix and residual variances
were permitted to be different for study-race/ethnicity groups to account for family
relatedness, population structure, and study-race/ethnicity differences.

The heteroscedastic linear mixed model was used to perform variant set
analyses for rare variants with MAF < 1%. Sets were defined by genetic regions and
gene-centric categories. Genetic regions allowed the complete analysis of the
genome, particularly non-coding regions that have not been previously captured by
arrays. The regional analysis used 2 kb sliding windows to scan the genome with
1 kb skip length. The gene-centric analysis examined all protein-coding genes in
Ensembl using functionally determined masks to aggregate variants together by
coding and non-coding annotations. Coding annotations were used to define three
SNV filters categorized by GENCODE based on consequence: (a) putative loss of
function (stop gain, stop loss, splicing), (b) missense, and (c) synonymous variants.
Leveraging the whole-genome sequencing, we used non-coding annotations to test
sets of variants that are not protein coding. We constructed masks (d)
characterized as promoters given they were within +/− 3 kb of a transcription start
site with CAGE signal overlay, or (e) characterized as enhancers given they were
identified by GeneHancer with CAGE signal overlay.

The burden test and SKAT were used for testing the association of the rare
variant sets and FG and FI. In these approaches, a weight based on the MAF can be
used to upweight rarer variants. We considered two common weighting schemes
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based on wj ¼ BetaðMAFj; a1; a2Þ, where a1 ¼ 1 and a2 ¼ 25 or a1 ¼ 1 and
a2 ¼ 1.

Statistical significance was defined for each glycemic trait, separately for gene-
centric and genetic region analysis. For gene-centric analysis, a threshold was defined
by a Bonferroni-corrected significance threshold of α � 0:05=ð120; 000Þ ¼ 4 ´ 10�7,
correcting for all five masks and all protein-coding genes when considering the
minimum p-value across the burden and SKAT tests (Supplementary Table 9). The
threshold for the genetic region analysis was determined given the total number of
2 kb sliding windows tested, yielding a Bonferroni-corrected threshold of
α � 0:05=ð2:68´ 106Þ ¼ 1:86´ 10�8. We report sets that include variant(s) with
effective minor allele count greater than five and that are not exclusively composed
of singletons; complete results based on the significance threshold are provided in
Supplementary Data 6–9.

Haplotype analysis. We performed haplotype analysis for variants associated with
fasting glucose. This analysis considered a set of 18,071 unrelated individuals,
identified by PC-AiR41 by the TOPMed Program with a threshold of third-degree
relatives. We performed regression of fasting glucose on haplotype using a two-step
EM algorithm on the unphased genotypes, as implemented in the haplo.stats R
package42. The posterior probabilities of haplotypes were computed for variants in
the G6PC2 gene; the variants were included based on the variants included in a
previous G6PC2 haplotype analysis, variants driving the G6PC2 missense set signal,
and distinct G6PC2 signals from the single variant analysis. The association was
adjusted for age, age2, sex, body mass index, study-race/ethnicity, and ten popu-
lation structure principal components.

Annotation. In order to characterize the functional impact of associated variants,
we assembled functional annotations from multiple publicly available databases.
We considered annotations from the Diabetes Epigenome Atlas, FAVOR, InsPIRE,
and GTEx projects. From the Diabetes Epigenome Atlas, we obtained chromatin
states from four tissues relevant to glycemic traits: adipose, islet, liver, and muscle.
These were available from two experiments, Parker lab ChromHMM 13-state
model under accession TSTSR679993 & AMP-T2D ChromHMM 18-state model
under accession TSTSR043890. We also report annotation PCs from the FAVOR
database43, which are summaries calculated as the first principal component of
individual functional annotations across functional categories including con-
servation, epigenetics, local nucleotide diversity, mutation density, protein func-
tion, proximity to TSS/TSE, proximity to coding, and transcription factor binding.
The individual annotations contributing to the aPCs are previously described19.
Annotation PCs are calculated at the variant level and reported as PHRED-scaled
scores derived from the first PC from the category’s PCA, providing the inter-
pretation that variants with scores >10 are in the top 10% of category across all
TOPMed variants. We obtained pancreatic islet-specific signals from the InsPIRE
consortium and tissue-specific signals from the GTEx project (Version 8) to assess
colocalization with gene expression at signal variants and those highly linked to
signal variants via look-up. We reported eQTLs in the following tissues, reported
for their importance in glycemic phenotypes: adipose subcutaneous, adipose
visceral, muscle skeletal, and pancreas.

Replication. We sought to replicate our findings in the METSIM study44, using
data from 10,058 individuals with fasting glucose, fasting insulin, and TOPMed-
imputed genotypes. EMMAX was used to test for associations with fasting glucose
or log-transformed fasting insulin at the variants reported in Table 1 with age, age2,
and BMI as covariates and kinship; sex was not included as a covariate as the study
is all males.

We additionally performed replication analysis in a sample from the UK
Biobank. A sample of 12,854 European ancestry individuals from the UK Biobank
with glucose was selected from all individuals with glucose measurement, excluding
individuals with diabetes (Data-field 2443), on diabetes medication (Data-field
6177/6153), or with fasting time <8 h (Data-field 74). Glucose values were taken
from variable 30740. The model included age (Data-field 21022), age2, sex (Data-
field 31), BMI (Data-field 21001), and ten population structure PCs. Association
models were run using Scalable and Accurate Implementation of GEneralized
mixed model (SAIGE)45 to analyze UKBB phenotype data and the imputed chip
genetic data.

This research has been conducted using the UK Biobank Resource under
Application Number 42614.

We also performed replication analysis of the Samoan-specific association of
rs117592405 with fasting insulin in a cohort of 1401 Samoans without WGS from
the Samoan Study. rs117592405 was imputed using a Samoan-specific reference
panel that was developed from the WGS of 1284 Samoans as part of TOPMed. R
version 3.6.0 was used to replicate the association with fasting insulin in individuals
without a previous diabetes diagnosis or diabetes medication use. Age, age2, BMI,
and sex were included in the model.

Enrichment. The tool GREGOR was used to assess if our trait-associated variants
in Table 1 were significantly enriched in a particular chromatin state annotation.
Using computed LD from the 1000-genomes reference panel and the 18-state
chromatin model described in the text and shown in Fig. 1, we obtained an

expected number of variants to lie within each chromatin state. This was compared
to the observed number of variants in each chromatin state to generate a P-value.
Any P-values <0.05 are reported in the text and Supplementary Table 8.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The summary results generated during this study are available at the AMP-T2D Portal,
http://t2d.hugeamp.org/. Fasting Insulin: https://t2d.hugeamp.org/dinspector.html?
dataset=TOPMed_frz5b_pooled_FI_WGS. Fasting Glucose: https://t2d.hugeamp.org/
dinspector.html?dataset=TOPMed_frz5b_pooled_FG_WGS. Accession codes for
genotype and phenotype files by cohort may be found in Supplementary Table 1.

Code availability
This study did not rely on custom code or mathematical algorithms.
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