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Whole-genome sequencing enables complete characterization of genetic variation, 

but geographic clustering of rare alleles demands many diverse populations to be 

studied. Here, we describe the Genome of the Netherlands (“GoNL”) Project, in 

which we sequenced whole genomes of 250 parent-offspring families from the 

Netherlands and constructed a phased haplotype map of 20.4 million single 

nucleotide variants and 1.2 million short insertions and deletions (indels). The 

intermediate coverage (~13x) and the trio design enabled extensive characterization 

of structural variation, including mid-size events (30-500 bp) previously poorly 

catalogued, and of de novo point mutations and larger structural changes. We 

demonstrate that the quality of the haplotypes significantly boosts imputation 

accuracy in independent samples, especially for lower frequency alleles (<5%). 

Population genetic analyses demonstrate fine-scale structure across the country 

and support multiple migration events in the past (consistent with historical sea 

level changes and floods in northern/westerns parts of the country) but relatively 

little movement in recent times. The GoNL Project illustrates how whole-genome 

sequencing can provide detailed characterization of genetic variation—inherited 

and de novo—within a relatively homogeneous population, and may guide the 

design of future population studies.  
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Introduction 

Although the human genome reference sequence provides a common scaffold for 

the annotation of genes, regulatory elements and other functional units, it does not contain 

information about how individuals differ in their DNA sequences.1 Initial efforts to map 

such variation across the human genome have successfully catalogued millions of 

common single-nucleotide polymorphisms (SNPs) in various populations.2-5 Fueled by the 

commercial development of microarrays for efficient SNP genotyping and collaborative 

projects in large samples, genome-wide association studies (GWAS) have provided a 

systematic approach to test genetic variants for a role in disease. To date, GWAS have 

reproducibly identified thousands of genomic loci, providing insight into underlying 

pathways of disease, in some cases with translational and clinical impact.6,7 The 

importance of these discoveries notwithstanding, many questions remain about the allelic 

architecture of complex traits, in particular with regard to the relative contributions of 

common versus rare variation.7-9  

 

To elucidate the genetic basis of disease, comprehensive sequencing-based 

approaches are required to interrogate all types of genetic variation, not only single 

nucleotide variants (SNVs), but also structural DNA variations and de novo events.10-12 

The characterization of rare variation poses a major challenge. Since rare alleles have 

emerged, on average, relatively recently,13 they show much greater geographic 

clustering14 and are more susceptible to population stratification compared to common 

variation.15 It is therefore imperative to study large samples across multiple populations, 

even within continental groups, to build a relatively complete catalog of rare variation in 

the human genome.  
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We initiated the Genome of the Netherlands (“GoNL”) Project to characterize DNA 

sequence variation—common and rare—for SNVs, short insertions and deletions (indels) 

and larger deletions in 769 individuals of Dutch ancestry selected from five biobanks 

under the auspices of the Dutch hub of the Biobanking and Biomolecular Research 

Infrastructure (BBMRI-NL).16,17 Specifically, we sampled 231 trios, 11 quartets with 

monozygotic twins, and 8 quartets with dizygotic twins, from 11 of the 12 provinces of the 

Netherlands without ascertaining on phenotype or disease. (The twelfth province, 

Flevoland, was excluded from sampling as it was established by land reclamation in the 

20th century.) By whole-genome sequencing these 250 families at ~13x coverage, our aim 

was to build a resource of 1,000 haploid genomes as representative for a small (41,543 

km2) but densely populated country (> 17 million inhabitants) in northwestern Europe 

(Supplementary Note). 

 

Here, we provide the first detailed analysis of the GoNL data set after data 

processing and quality control (Supplementary Fig. 1 and Supplementary Note). To 

maximize sensitivity, we analyzed all samples jointly18 and discovered 20.4 million biallelic 

SNVs, 1.2 million biallelic indels (< 20 bp) and 27,500 larger deletions (> 20 bp). Of the 

SNVs, 6.2 million are common (MAF > 5%), 4.0 million are low-frequency (MAF 0.5–5%), 

and 10.2 million are rare (MAF < 0.5%). Based on coverage and mapping metrics, we 

estimate that 94.1% of the genome could be called reliably (the “accessible” genome) 

within which 99.2% of SNVs of 1% frequency should be detectable (Supplementary 

Note). Indeed, we discovered 18.9M SNVs and 1.1M indels in the accessible, autosomal 

genome (Supplementary Table 1). Indels and large deletions were based on 

conservative consensus calls from several complementary methods that use information 

about mapped reads, read depth, read pair, split reads and de novo assembly 

(Supplementary Note). We used MVNcall for trio-aware phasing and linkage 
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disequilibrium-based imputation,19 starting from the genotype likelihoods of SNVs and 

indels, which yielded a fully phased panel of 998 unique haplotypes after QC. The non-

reference genotype concordance for SNVs was 99.4% (compared to genotypes from 

Complete Genomics sequencing data in 20 overlapping samples) and 99.5% (compared 

to Illumina Immunochip genotypes collected in all GoNL samples). The average coverage 

of 13.3x coupled with the family-based design allowed us to construct a high-quality 

whole-genome data set for further analysis, including characterization of structural 

variation, detection of de novo events, imputation, and demographic inference. 

 

Novel variation in GoNL 

To determine the number of novel variants, we investigated the overlap between 

GoNL and existing databases. We rediscovered almost all sites (98.2%) in the European 

sample (CEU) of HapMap Phase 2,4 and 71.1% of sites in the European subset of the 

1000 Genomes Project Phase 1 (1KG-EUR),20 consistent with the expectation that 

commonly segregating alleles across European populations should also be detected in 

GoNL (Fig. 1a). Conversely, only 39.0% of SNVs observed in GoNL at 0.5% frequency or 

below (but excluding singletons) were observed in 1KG-EUR, highlighting the value of 

studying individual populations in greater depth. The contribution of 7.6 million novel 

SNVs in GoNL represents a 14.6% increase of dbSNP (build 137), although the majority 

(75.6%) of these novel variants are singletons. Considering that 16.5% of 2.0 million 

singletons in 1KG-EUR were also observed in GoNL, we expect that a substantial number 

of the novel GoNL singletons will be encountered again as we continue to sequence 

larger samples within the Netherlands and across Europe.  

 

Structural variation could be called confidently across a broad size range, from 

large deletions to short insertions (Fig. 1b). The overall shape of the size spectrum shows 
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that larger structural events are less frequent than smaller indels, presumably reflecting 

their relative deleterious nature. We recognized specific peaks in the size spectrum that 

correspond to microsatellite instability (MSI) around 4 bp, short interspersed elements 

(SINEs) at 300 bp, and long interspersed elements (LINEs) at 6 kb. In general, we 

detected a large number of novel deletions throughout the size spectrum. In comparison 

to 1KG Phase 1, 54.4% of the indels (< 20 bp) and 93.3% of the larger deletions (> 20 bp) 

are novel (Supplementary Note). Taking advantage of the medium coverage data and 

using especially tuned methods (PINDEL, CLEVER), our analysis fills an important gap for 

the discovery of mid-size deletions (30–500 bp) where essentially all (98.4%) of the 

observed variants are novel. The novelty rate for deletions larger than 500 bp is still 

substantial (66.3%). We note that most of the deletions reported here are biased to be 

common because stringent filtering required variants to be present in at least three 

families and transmitted to at least one offspring. This strategy allowed us to generate a 

specific call set with an overall validation rate of 96.5% (Supplementary Table 2). A more 

sensitive and complete data set including duplications, inversions, mobile element 

insertions, and translocations is currently being assembled and validated. 

 

Functional variation 

Predicting the biological consequences of functional variants within a single 

genome is still an unresolved challenge with important implications for using next-

generation sequencing in a clinical setting. To characterize the burden of loss-of-function 

(LoF) variants in detail, we classified all such variants in GoNL according to LoF 

definitions described by MacArthur et al.21 and applied various filters to remove potential 

annotation errors (Supplementary Note). Amongst rare variants, we observed an excess 

of probably or possibly damaging missense variants (according to PolyPhen-222), 

nonsense variants, and frameshift indels, consistent with a model in which such functional 
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variants are subject to purifying selection (Supplementary Fig. 2).23,24 Of the larger 

deletions, we counted 66 LoF deletions that eliminate the first exon of a gene or more 

than half of its coding sequence,21 and found evidence they were depleted relative to all 

deletions (p = 0.005 for 20–100 bp; p = 2.6 x 10-9 for > 100 bp). This effect was amplified 

when considering only genes listed in the OMIM compendium (p = 2.4 x 10-27), illustrating 

a strong selective force against large structural changes in key genes.   

 

The overall patterns and per-individual distributions of LoF SNVs (premature stops 

or variants interrupting a splice site) and missense variants are consistent with those 

found in 1KG (Table 1, Supplementary Fig. 3). On average, an individual carries 60 LoF 

SNVs, 69 LoF frameshift indels, and 15 LoF large deletions. The bulk of these LoF 

mutations per individual are common (>5% frequency in the population), suggesting that 

these variants are not subject to strong selective pressure and, though they are protein-

truncating mutations, are likely phenotypically benign. This emphasizes the need for 

caution in assigning pathogenicity to variants purely on the basis of their predicted impact 

on protein structure. 

 

In contrast, when we considered only rare LoF variants, those more likely to be 

pathogenic, we found that the average individual in GoNL carries 4 nonsense variants, 2 

variants interrupting a splice site, and 2 frameshift indels. By comparing these numbers to 

synonymous variants (which provides a baseline expectation under neutrality), we 

estimate that each individual carries an excess of 4–5 rare LoF SNVs (Supplementary 

Note), which are sufficiently deleterious that they will never reach high frequency in the 

population at large.  
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We also investigated the number of compound heterozygotes of rare LoF SNVs, 

short indels and large deletions. Across all genes in the genome, we observed three 

compound heterozygous events mapping to three genes in three separate individuals 

(average 0.01 compound heterozygous events per individual). The phenotypic impact of 

compound heterozygotes of rare LoF mutations demands further characterization and 

should be considered explicitly in rare variant studies.  

 

Whereas compound heterozygotes of rare LoF variants are sparse, we expected 

compound heterozygotes of common LoF variants to be more prevalent assuming these 

variants are less likely to be deleterious. Indeed, we found that the average number of 

common-LoF compound heterozygotes per individual increased to 2.89 (range: 0–7). 

Interestingly, while overall there are 1,917 common-LoF compound heterozygous events 

across all GoNL samples, these are confined to only 11 genes (Supplementary Table 

3a). All but one of these genes appear to have extreme Residual Variation Intolerance 

Scores (all >84th percentile across 16,956 genes), which is unlikely to occur by chance (p 

= 1.41 x 10-5, Supplementary Fig. 4a).25  This suggests that these genes are more 

tolerant of disruptive mutations.  

 

Because disease mutation databases are often employed to identify potential 

variants of interest, we annotated variants in GoNL listed as disease-causing (“DM”) in the 

Human Gene Mutation Database (HGMD).26 We observed that an individual in GoNL 

carries on average 20 such “DM” variants (range: 9–33) (Table 1). Since all GoNL 

samples were derived from population-based cohorts, the impact of these alleles is 

unclear. One possibility is that the presence of modifier alleles gives rise to incomplete 

penetrance or variable expressivity of “DM” variants depending on the particular 

background of the carrier.27 An alternative explanation is that, in fact, HGMD contains a 
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considerable number of false-positive disease-causing mutations that need further 

scrutiny.28 Of the 1,093 “DM” mutations occurring in GoNL, 32% have a frequency >1%, 

which is much higher than the prevalence of many of the rare diseases described in 

HGMD. Following the inheritance patterns of the diseases conferred by these variants, 

many individuals in GoNL should have been affected by diseases with profound physical 

or even lethal manifestations (Table 2, Supplementary Table 4). In fact, one of these 

variants (chr14:94847262, an alpha 1 antitrypsin deficiency variant) was recently 

implicated as a pathogenic incidental finding in a set of 1,000 exomes after undergoing 

stringent filtering including in-depth literature reviews of the original findings.29 The 

prevalence of alpha 1 antitrypsin deficiency (OMIM: 613490), an autosomal recessive 

disease, is estimated to be 0.02-0.06%, yet two unrelated GoNL individuals are 

homozygous carriers of this variant (prevalence = 0.4%, ~10x higher than the disease 

prevalence). Further, the typical age of onset of alpha 1 antitrypsin deficiency is between 

20 and 50 years old, whereas the two homozygous carriers in GoNL were ages 60 and 63 

at ascertainment. These results highlight the potential pitfalls of employing such 

databases in disease studies and the difficulty of interpreting personal genomes. 

 

De novo mutations 

A distinct advantage of the family-based study design was the ability to call de novo 

events in genomic regions with sufficient coverage in a trio. To this end, we developed the 

PhaseByTransmission (PBT) module in the Genome Analysis Toolkit (GATK).30 From an 

initial 4.5 million Mendelian violations in the original Unified Genotyper calls made in the 

258 independent offspring, we prioritized 58,569 putative de novo mutation (DNM) 

candidates with PBT (Supplementary Note). After removing polymorphic sites, we 

counted a total of 29,162 autosomal DNM candidates, still many more than the expected 

average of 16,306, assuming 63.2 mutations per offspring.31 To reduce false positives, we 
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evaluated to what extent sequencing features could help increase the DNM prediction 

accuracy. We selected 1,060 candidate sites across a broad confidence range and 

validated 569 sites of these as true DNMs using various technologies. We also classified 

another 1,139 candidates as false positives on the basis of Complete Genomics genotype 

data in 19 parents and 1 unrelated child. We trained a random forest classifier using 70% 

of the combined validation results on various features (Supplementary Note), and 

obtained a model with an estimated classification accuracy of 92.2% based on the 

remaining 30% of the data (Fig. 2a). This illustrates that the joint assessment of raw trio 

data and sequencing context can greatly boost prediction accuracy. After applying this 

classifier to our initial candidates, we obtained 11,258 high-confidence DNMs (with a 

range of 18–74 DNMs per individual) that we used for downstream analyses. Due to 

coverage fluctuating regionally, we expect a substantial fraction of genuine DNMs to be 

missed. We note that early embryonic somatic mutations would be indistinguishable from 

germline mutations. 

 

We observed a significant positive correlation (r2 = 0.47, p < 2.2 x 10-16) between 

the father’s age at conception and the number of DNMs in the offspring (Fig. 2b), 

providing a third, independent estimate based on a larger sample size.31,32 Accounting for 

a Poisson distributed background mutation rate and correcting for coverage, we estimate 

that each additional year of father’s age is associated with a 2.5% increase of the mean 

number of DNMs. While parents’ ages are highly correlated (r2 = 0.66), comparing 

regression models based on the father’s and mother’s age at conception suggests that the 

observed age-related increase in DNMs is a predominantly paternal effect 

(Supplementary Note). Interpolating from the paternal model, we expect on average 

75.4% of the DNMs in the GoNL offspring to derive from the father (assuming a linear 

increase in DNMs from puberty). Using read-pair information we were able to assign 
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parental origin to 1,321 DNMs, and found that indeed 74.5% were paternal in origin. When 

considering only mutations for which parental origin could be determined, the correlation 

with father’s age remained significant (r2 = 0.56, p = 0.012) but not with mother’s age (p = 

0.94) (Supplementary Fig. 5). The striking consistency of these results highlights the 

relative impact of paternal and maternal mutations.   

 

Within a single family, we also tested if we could discover de novo indels and large 

deletions. Using strict filtering criteria for Mendelian violations followed by PCR-based 

Sanger sequencing, we confirmed 6 intergenic indels (4 insertions of 1 bp, 1 deletion of 1 

bp and 1 deletion of 2 bp), as well as a large 113 kb deletion located in an intron of the 

SUMF1 gene at chr3p26 (which seems unlikely to have a significant impact on gene 

function). These results illustrate that our predictions of indels and structural changes are 

a valuable source not only for commonly segregating alleles, but also for de novo events. 

Further work is needed to assess the frequency of such de novo deletions or other types 

of genomic rearrangements in the general population. 

 

Imputation 

One of the goals of the GoNL Project was to provide a community resource for 

downstream imputation into GWAS samples. To evaluate the performance of the GoNL 

panel we used Complete Genomics sequence data collected in 81 individuals of Dutch 

ancestry, independent from the GoNL samples, which we will refer to as the NTL data set. 

In these NTL samples, we masked all genotypes at SNVs not present on the Illumina 

Human-1M array, imputed these “non-genotyped” SNVs from the 1M-genotyped SNVs, 

and then compared the imputed to the known sequenced genotypes (Supplementary 

Note). The aggregate mean r2 was 0.99 for common SNVs, 0.86 for low-frequency SNVs 

and 0.63 for rare SNVs, indicating that the overall quality was good (Fig. 3). We repeated 
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this evaluation based on the SNV content of other microarrays and obtained similar 

imputation performance for common SNVs, although there were significant differences for 

lower frequency alleles (Supplementary Fig. 5). To directly measure the impact of trio-

based phasing we constructed a panel based on the unrelated parents alone, and re-

evaluated the imputation quality in the NTL samples. The imputation accuracy dropped to 

a mean r2 of 0.47 for rare variants (0.85 for low-frequency SNVs and 0.98 for common 

SNVs), indicating that the trio-based phasing contributed significantly to the imputation 

quality, especially for rare variants. 

 

In comparison to 1KG as a reference panel, we observed better imputation 

accuracy with the GoNL panel for SNVs up to 10% frequency despite the larger sample 

size of 1KG (Fig. 3). To investigate the basis for the improved imputation accuracy with 

the GoNL panel, we constructed three reference panels based on 1KG-CEU (Northern 

Europeans from Utah), 1KG-TSI (Tuscans from Italy), and GoNL, all with a fixed sample 

size of 85 individuals. With each of these reference panels, we imputed in independent 

CEU, TSI and NTL samples with Complete Genomics data, and then evaluated their 

performance (Supplementary Note). Of the three panels, GoNL gave the highest 

imputation accuracy (especially for rare variants) not only for the Dutch NTL samples but 

also for the CEU samples, ruling out that the improved performance of the GoNL panel 

was simply due to shared Dutch ancestry of GoNL and NTL samples (Supplementary 

Fig. 6). Differentiation between northern and southern European populations may explain 

why the 1KG-CEU and GoNL panels gave roughly equivalent performance for TSI (but 

certainly worse than 1KG-TSI). Overall, these results suggest that the GoNL trios have 

enabled accurate reconstruction of long-range haplotypes with an advantageous effect on 

the imputation of rare alleles.  
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To assess the potential value of much larger reference panels, we combined the 

1KG and GoNL panels with IMPUTE2,33 and evaluated again the imputation accuracy in 

the NTL samples. Here we obtained an additional gain in imputation accuracy over the 

GoNL panel alone, reaching a mean r2 of 0.70 for rare SNVs and 0.88 for low-frequency 

SNVs (Fig. 3). Thus, increasing the sample size of the reference panel will likely continue 

to improve imputation performance (especially for lower frequency alleles), which 

motivates a community-wide effort to create a unified reference panel across multiple 

ethnicities and populations.   

 

Population structure and demographic inference 

Although it is well understood that extensive migration and gene flow occurred 

amongst European populations,34-36 we focused on creating a unified picture of Dutch 

demography in recent millennia. Because of unbiased ascertainment and inclusion of rare 

variation, whole-genome sequence data can potentially offer greater resolution for 

demographic inference than SNP array data. 

 

 First, we explored global relationships, analyzing both common and rare variants to 

elucidate ancient and recent population differentiation. We calculated Hudson’s FST 

between the Dutch and the 14 populations represented in 1KG Phase I and found that FST 

patterns were consistent with continental clustering in principal component analysis (PCA) 

and with previous estimates (Supplementary Table 5, Supplementary Fig. 7).37 Among 

the European populations, the Dutch samples clustered best with 1KG samples from 

Great Britain and Northern Europe (FST = 0.0008 and 0.0006, respectively) and least with 

the Finnish (FST = 0.0068). To investigate more recent population connections, we 

focused on so-called f2 variants that appear exactly twice (in two heterozygote carriers) in 

the joint data of GoNL and 1KG (Supplementary Note). As was observed in 1KG, within-
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population f2 sharing accounts for the majority (50.8%) of all f2 alleles (Supplementary 

Fig. 8), but f2 sharing revealed cross-population connections as well. For example, a 

Dutch sample sharing an f2 variant with a non-Dutch individual was far more likely to share 

that variant with another individual of European descent (71.6%) or from the Americas 

(21.0%, due to substantial European admixture) than with an individual coming from Africa 

(6.2%) or East Asia (1.3%). These results underscore the high degree of geographic 

clustering of recent mutations within neighboring populations. Analysis of maternally 

inherited mitochondrial DNA (using 492 GoNL parent individuals) (Supplementary 

Information) revealed that the major haplogroups are H (39.4%), U (25.2%), J (10.4%) 

and T (10.8%), and the minor haplogroups are HV0 (4.9%), N1 (3.5%), W (3.3%), X 

(2.4%) and HV1 (0.2%), a composition that is in good agreement with previous 

observations in other European populations.38 

 

Within the Netherlands (Fig. 4a), PCA revealed subtle substructure along a North–

South gradient on the first two principal components (Fig. 4b and Supplementary Note), 

consistent with previous findings.39,40 Because PCA has limitations in terms of 

demographic inference (in particular for migration patterns),41 we also performed an 

independent analysis of identity-by-descent (IBD) sharing that revealed subtle signals of 

migration (Supplementary Note).42 From the length distributions of the IBD segments,43 

we inferred demographic models and estimated effective population sizes of the Dutch 

provinces at different time scales, reflecting demographic changes throughout history 

(Supplementary Note).  

 

Analysis of IBD segments of 1–2 cM (Supplementary Fig. 9a), corresponding to 

an estimated time-to-most-recent-common-ancestor ≈ 4,000 years, revealed rather 

homogeneous effective population sizes across the 11 provinces, consistent with common 
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genetic origins. Additionally, we observed a smooth south-to-north gradient of decreasing 

ancestral population size, accompanied by increased homozygosity in the northern 

provinces (correlation between average IBD sharing within provinces and latitude: r = 0.952, p = 6 ൈ 10ି଺; Supplementary Fig. 10, Supplementary Note). Traditionally, this 

observation has been explained by a serial founder effect characterized by migration from 

the south to the north.39  

 

Interestingly, GoNL samples, regardless of place of birth, tend to share more IBD 

segments with other individuals from the north of the country than with individuals from the 

same geographic region. In fact, although within-province IBD sharing is strong (diagonal 

values of the heat map), the excess sharing with the northern provinces (off-diagonal 

values for FR, GR, DR, OV, and NH) is evident (correlation between average province-

province IBD sharing and average province latitude: r = 0.943, p = 5 ൈ 10ି଻; Fig. 4c, 

Supplementary Table 6a). This pattern indicates that a simple south-to-north serial 

founder model is not sufficient to explain the observed IBD sharing. Grouping the 

provinces into three clusters (North, Center and South), we reconstructed possible 

coalescent time distributions within and across the clusters. Based on the reconstructed 

coalescent rates, the average individual from the Center or the South of the country is 

expected to co-inherit more IBD segments with the average northern individual in the past 

4,000 years than with other individuals from the same geographic region (Supplementary 

Fig. S11). While different founder effect patterns emerge from these simulations, they all 

show support for a substantial amount of regional migration within the Netherlands. 

Assuming ancient serial migrations towards the North are causing the observed gradient 

of increasing homozygosity, a possible explanation for these results is that additional 

migratory events out of the North took place after initial settlements. These subsequent 

migratory events are consistent with the dynamic nature of the Netherlands, particularly in 
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the northern coastal regions, between 5000 B.C.E. and 50 C.E. (Supplementary Fig. 12). 

More than half of the current Dutch territory is below sea level and a series of 

abandonments and resettlements of different regions were likely prompted by ocean level 

shifts and flooding that changed once-habitable land into dunes and marshes or buried 

regions under water entirely. We emphasize that other more complex demographic 

models may yield similar patterns of IBD sharing; additional analyses are required to 

assess alternative scenarios. 

 

  In recent centuries, the advent of water defense technologies (beginning in the 13th 

century) increased land stability, which resulted in other forces influencing demography. 

An analysis of f2 variants revealed non-random sharing within and across provinces. 

Though the proportion of within-province f2 sharing comprises only 12% of all f2 alleles, 

consistent with a homogeneous population, the proportion of within-province f2 alleles is 

significantly larger than expected under the null hypothesis of uniform allele sharing 

across all provinces (Fig. 4d). This geographic localization of rare variants is suggestive 

of limited migration in recent centuries, which is consistent with about half of Dutch 

citizens still living in the same province in which their great-grandparents were born. 

Notably, Noord-Brabant and Overijssel show significantly stronger within-province f2 

sharing in comparison to the other provinces (p = 1.2 x 10-151, p < 10-200, respectively), 

which is in agreement with small effective population sizes in these two provinces inferred 

from long (7–15 cM) IBD segment sharing (Fig 4c, Supplementary Table 6b, 

Supplementary Fig. 9b). Further, we found that within-region sharing in the northern and 

southern regions was substantially stronger when compared to the central regions (p < 10-

200, both comparisons). Altogether, these results suggest increased migration in the 

central region (as compared to the northern and southern regions), consistent with recent 

urbanization in the wealthier central provinces.     
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Discussion 

The results presented here reflect the enormous wealth of knowledge that can be 

gleaned from whole-genome sequencing data, and illustrate how intermediate-coverage 

sequencing within a single country complements the cosmopolitan, low-coverage effort by 

1KG. The observed proportion of novel variation (in particular for structural variation) 

underlines the added value of in-depth population studies such as GoNL. Combining 

sequencing data sets within and across populations will not only maximize sensitivity and 

resolution for discovery of all types of DNA variation, but also enable population genetic 

analyses that can shed more light on the shared ancestry of the human species.  

 

In spite of the intermediate coverage, we were able to reliably call de novo point 

mutations and confirm the relationship between paternal age and mutation load. Although 

we could also identify larger de novo events, these calls will have to be validated 

empirically and their properties studied across the entire cohort. The methods we 

developed for DNM discovery should be broadly applicable for disease studies where 

DNMs are suspected to play a role.12 DNM represents an important class of DNA 

sequence variation that can further elucidate fundamental processes of mutagenesis, 

even if its absolute contribution may be limited in terms of explaining heritability 

(depending on the disease).44 In cancer, for example, accounting for the genome-wide 

heterogeneity of mutation rates may be necessary to accurately pinpoint driver mutations 

against a background of random mutation.45 Our results suggest that trio-based 

sequencing of large samples at intermediate coverage may be a cost-effective way to 

ascertain genome-wide variation in mutation rates and establish a “null expectation” for 

the general population against which mutations in cases can be compared. 
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As long as the cost of genotyping continues to be competitive with whole-genome 

sequencing, imputation on the basis of linkage disequilibrium will remain important. The 

consolidation of available whole-genome data sets into a single cosmopolitan panel 

including low-frequency, structural and other complex types of variation46,47 should 

therefore be considered a top priority. Through more complete interrogation of genetic 

variation, studies of large, well-phenotyped samples will continue to increase opportunities 

for development of diagnostic tools, prevention measures and therapeutics for human 

disease. 

  



 19

Methods Summary 

 

All details concerning sample collection, data generation, processing and analysis can be 

found in the Supplementary Note.  
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Figure legends 

 

Figure 1 | Discovery of SNVs and structural variation.  a, Venn diagram of all SNVs 

discovered in GoNL relative to dbSNP (build 137), 1KG Phase 1 and HapMap-CEU. The 

majority of the 7.6 million novel sites are rare (MAF < 0.5%), including 5.8 million 

singletons. b, Size spectrum of structural variation discovered in GoNL. Our detection 

strategy employed multiple approaches and provided a significant boost in novel SVs in 

the midsize range (30–500 bp). Peaks corresponding to long interspersed elements 

(LINEs), short interspersed elements (SINEs) and microsatellite instability (MSIs) are 

highlighted. The total number of variants called in GoNL are shown in orange, whereas 

SNVs found in dbSNP (build 137) and short indels and large deletions found in 1KG 

Phase 1 are shown in blue. For large deletions (> 20 bp), we required at least 80% 

reciprocal overlap between variants to be considered as similar. 

 

Figure 2 | De novo mutation detection.  a, Receiver-operating-characteristics (ROC) 

curve to predict de novo mutations using PhaseByTransmission only (purple line, 2,199 

sites) or using PhaseByTransmission followed by Random Forests classification trained 

on 70% of the validation data (green line, evaluation subset only, 657 sites). The 

highlighted circle is the cutoff we used for our analyses with an estimated 84.5% 

sensitivity and 94.6% specificity. b, The number of de novo mutations in each of the 258 

independent offspring is plotted (in blue) as a function of paternal age at conception. 

Linear regression of mutational load on paternal age is significant (Pearson’s correlation = 

0.59, p < 2.2 x 10-16), with the least-squares fit plotted in orange. 

 

Figure 3 | Imputation accuracy. The aggregate r2 between imputed and gold-standard 

genotype dosages is plotted as a function of allele frequency. We used genotypes from 81 
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Dutch samples (independent from GoNL) all sequenced with Complete Genomics as the 

gold-standard truth. The GoNL panel consistently outperforms the 1KG panels, especially 

at lower allele frequencies. A combined GoNL+1KG panel provides the best performance.  

 

Figure 4 | Population genetic analyses in the Dutch population. a, Map of the 

Netherlands with its 12 provinces. We selected 769 individuals from five BBMRI-NL 

biobanks across all provinces except Flevoland. b, Principal component analysis. 

Individuals are projected onto the two dominant principal components, revealing subtle 

substructure along a North-South axis within the Netherlands. c, Heat map of IBD 

segment sharing within and across provinces. The upper half represents ancient IBD 

sharing (1-2 cM), the bottom half represents recent IBD sharing (7-15 cM). Strikingly, all 

GoNL individuals, regardless of current residence, share more short IBD segments with 

individuals from the northern provinces than with other individuals from their own province. 

Long IBD segment patterns are consistent with restricted geographic movement in recent 

times. d, Sharing of rare doubleton (f2) variants within and across provinces. The level of 

within-province sharing of f2 variants exceeds that of across-province sharing, reflecting 

strong geographically localized clustering of these recent variants. The degree of f2 

sharing amongst northern or southern provinces is statistically significant compared to 

central provinces (p < 10-200). 
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Table 1 | Individual variant load of coding mutations 
 
 Non-reference allele frequency 
 Rare (< 0.5%) Low-frequency (0.5–5%) Common (> 5%) 
Variant type Mean [SD] Mean [SD] Mean [SD] 
    
All SNVs1 28,142 [3009.2] 130,190 [2448.1] 2.90M [10,080.9] 
Novel1,2 17,751 [1,176.3] 4,354 [346.8] 620 [31.7] 
Total conserved 1,892 [187.7] 7,593 [154.5] 106,824 [443.9] 
    
Functional variation    
Synonymous 18 [4.9] 73 [8.9] 990 [19.0] 
Nonsynonymous 101 [11.9] 238 [15.6] 2089 [31.8] 
     Probably damaging 32 [5.8] 58 [7.9] 394 [12.2] 
Stop gain1 4 [1.9] 5 [2.2] 38 [4.3] 
Splice site donor1 1 [0.9] 1 [0.9] 4 [1.5] 
Splice site acceptor1 1 [0.7] 0.5 [0.6] 7 [1.4] 
Total LoF1 5 [2.2] 6 [2.4] 49 [4.7] 
    
Disease-associated variation    
OMIM 0 [0.6] 2 [1.6] 57 [4.9] 
HGMD3 2 [1.2] 8 [2.7] 11 [2.3] 
    
Indels (< 20 bp)    
Indel frameshift1 2 [1.4] 6 [2.6] 61 [4.8] 
Indel non-frameshift1 1 [1.1] 6 [2.6] 99 [5.9] 
    
Deletions (> 20 bp)    
Loss of function 0 [0.2] 1 [1.0] 14 [3.3] 
Total bases deleted 6.7M bases 
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Only SNV sites at which ancestral state can be assigned with high confidence and that are highly conserved (GERP > 2.0) are reported. Frequency stratifications 
based on the unrelated samples only. OMIM, Online Mendelian Inheritance in Man. 
1No conservation filter applied 
2Not observed in dbSNP build 137 (which includes all SNVs reported in the 1000 Genomes Project Phase I data release) 
3Frequency stratification and variant counts based on the reported mutation allele 



Table 2 | HGMD disease-causing mutations in the GoNL samples 
 

Chr Pos Gene 
Mutation 

allele 
Referenc
e allele 

Disease in HGMD 
Disease 

prevalence 
Inheritance 

pattern 
Affected 

individuals3 
Phenotypic 

manifestations1 
OMIM 
ID(s) 

Mutation 
allele 

frequency 
 GoNL4 

Mutation 
allele 

frequency  
1KG – CEU 

4 6302519 WFS1 A G Wolfram syndrome 0.0002%1 AR 257 
Hyperglycemia, vision and 

hearing loss 
604928, 
222300 

0.728 0.759 

13 52515354 ATP7B G A Wilson disease 0.003%1 AR 167 
Liver disease, 

neuropsychiatric 
problems 

277900 0.574 0.582 

16 3304463 MEFV T C 
Familial 

Mediterranean fever 

0.10% in 
Mediterranean 

populations; rarer 
elsewhere1 

AR 36 
Recurrent fevers, 

inflammation of the 
abdomen, chest, joints 

249100, 
134610 

0.277 0.224 

11 6415463 SMPD1 A G 
Niemann-Pick 

disease 
0.0004%1 AR 37 

Nervous system 
deterioration, failure to 
thrive, fatal in infancy or 
early childhood (type A)

257200, 
607616, 
257220, 
607625,

0.230 0.230 

20 61463522 COL9A3 A C 
Pseudo-

achondroplasia 
0.003%1 AD 177 Short stature, joint pain 177170 0.197 0.200 

10 13340236 PHYH A G Refsum disease 
Unknown, current 
estimate 0.0001%1 

AR 18 

Anosmia, progressive 
blindness, deafness, 

hand/feet bone 
abnormalities, arrhythmia

266500 0.188 0.153 

15 52643564 MYO5A A G Griscelli syndrome <0.0001%2 AR 10 

Albinism (all types), 
intellectual disability (type 

1), recurrent infection 
(type 2)

214450, 
607624, 
609227 

0.159 0.141 

19 36339247 NPHS1 T C 
Congenital nephrotic 

syndrome  
(Finnish type) 

0.01% in Finland; 
rarer elsewhere2 

AR 2 
Proteinuria, rapid 

progression to renal 
failure 

256300 0.082 
0.082 

(0.110)5 

14 94847262 SERPINA1 A T 
Alpha 1 antitrypsin 

deficiency 
0.02-0.06%1 AR 2 Lung disease, liver disease 613490 0.039 0.053 

Acronyms are: HGMD (Human Gene Mutation Database); AR (autosomal recessive); AD (autosomal dominant); OMIM (Online Mendelian Inheritance in Man). 1National Institutes of 
Health, Genetics Home Reference – USA. 2National Institute of Health and Medical Research – France. 3Unrelated individuals in GoNL carrying two copies of the mutation allele (for 
autosomal recessive diseases) or at least one copy of the mutation allele (for autosomal dominant diseases). 4Calculated from unrelated individuals. 5Frequency in 1KG Phase I 
samples from Finland 
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