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T
he formation of every lake or island represents a fresh oppor-
tunity for colonization, proliferation and diversification of 
living forms. In some cases, the ecological opportunities pre-

sented by underutilized habitats facilitate adaptive radiation—rapid 
and extensive diversification of the descendants of the colonizing 
lineages1–3. Adaptive radiations are thus exquisite examples of the 
power of natural selection, as seen for example in Darwin’s finches 
in the Galapagos4,5, the Anolis lizards of the Caribbean6 and in East 
African cichlid fishes7,8.

Cichlids are one of the most species-rich and diverse families of 
vertebrates, and nowhere are their radiations more spectacular than 
in the Great Lakes of East Africa: lakes Malawi, Tanganyika and 
Victoria2, each of which contains several hundred endemic species, 
with the largest number in Lake Malawi9. Molecular genetic studies 
have made major contributions to reconstructing the evolutionary 
histories of these adaptive radiations, especially in terms of the rela-
tionships between the lakes10,11, between some major lineages in Lake 
Tanganyika12, and in describing the role of hybridization in the ori-
gins of the Lake Victoria radiation13. However, the task of reconstruct-
ing within-lake relationships remains challenging owing both to the 
retention of large amounts of ancestral genetic polymorphism (that 
is, incomplete lineage sorting) and the gene flow between taxa12,14–18.

Initial genome assemblies of cichlids from East Africa suggest 
that an increased rate of gene duplication, together with accelerated 
evolution of some regulatory elements and protein coding genes, 
may have contributed to the radiations11. However, our understand-
ing of the genomic mechanisms contributing to adaptive radiations 
is still in its infancy3.

Here we provide an overview of and insights into the genomic 
signatures of the haplochromine cichlid radiation of Lake Malawi. 

The species that comprise the radiation can be divided into seven 
groups with differing ecology and morphology (see Supplementary 
Note): (1) the rock-dwelling ‘mbuna’; (2) Rhamphochromis—typi-
cally midwater pelagic piscivores; (3) Diplotaxodon—typically deep-
water pelagic zooplanktivores and piscivores; (4) deep-water and 
twilight-feeding benthic species; (5) ‘utaka’ feeding on zooplankton 
in the water column but breeding on or near the lake bottom (here 
utaka corresponds to the genus Copadichromis); (6) a diverse group 
of benthic species, mainly found in shallow non-rocky habitats; and 
(7) Astatotilapia calliptera, a closely related generalist that inhabits 
shallow weedy margins of Lake Malawi, and other lakes and rivers 
in the catchment, as well as river systems to the east and south of the 
Lake Malawi catchment. This division into seven groups has been 
partially supported by previous molecular phylogenies based on 
mitochondrial DNA (mtDNA) and amplified fragment length poly-
morphism data18–20. However, published phylogenies show numer-
ous inconsistencies and, in particular, the question of whether the 
groups are genetically separate remained unanswered.

To characterize the genetic diversity, species relationships, and sig-
natures of selection across the whole radiation, we obtained Illumina 
whole-genome sequence data from 134 individuals of 73 species 
distributed broadly across the seven groups (Fig. 1a; Supplementary 
Note). This includes 102 individuals at ~15×  coverage and 32 addi-
tional individuals at ~6×  coverage (Supplementary Table 1).

Results
Low genetic diversity and species divergence. Sequence data were 
aligned to and variants called against a Metriaclima zebra refer-
ence genome11. Average divergence from the reference was 0.19% 
to 0.27% (Supplementary Fig. 1). After filtering and variant refine-
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ment, we obtained 30.6 million variants, of which 27.1 million were 
single nucleotide polymorphisms (SNPs) and the rest were short 
insertions and deletions. All the following analyses are based on 
biallelic SNPs.

To estimate nucleotide diversity (π) within the species, we mea-
sured the frequency of heterozygous sites in each individual. The 
estimates are distributed within a relatively narrow range between 
0.7 and 1.8 ×  10−3 per base pair (bp) (Fig. 1b). The mean π estimate 
of 1.2 ×  10−3 per bp is at the low end of values found in other ani-
mals21. There does not appear to be a relationship between π and the 
rate of speciation: individuals in the species-rich mbuna and shallow 
benthic groups show levels of π that are comparable to those of the 
relatively species-poor utaka, Diplotaxodon and Rhamphochromis 
(Supplementary Fig. 1).

Despite their extensive phenotypic differentiation, species 
within the Lake Malawi radiation are genetically closely related22,23. 
However, genome-wide genetic divergence has never been quanti-
fied. We calculated the average pairwise sequence differences (dXY) 
between species and compared dXY against heterozygosity, find-
ing that the two distributions partially overlap (Fig. 1b). Thus, the 

sequence divergence within a single diploid individual is sometimes 
higher than the divergence between two distinct species. The aver-
age dXY is 2.0 ×  10−3 with a range between 1.0 and 2.4 ×  10−3 per 
bp. The maximum dXY is therefore approximately one-fifth of the 
divergence between human and chimpanzee24. In addition to the 
low ratio of divergence to diversity, most genetic variation is shared 
between species. On average both alleles are observed in other spe-
cies for 82% of heterozygous sites within individuals, consistent 
with the expected and previously observed high levels of incomplete 
lineage sorting (ILS)23. Supplementary Fig. 2 shows values of dXY and 
of the fixation index (FST) for comparisons between the seven eco-
morphological groups and Supplementary Fig. 3 shows patterns 
of linkage disequilibrium across the radiation, within groups and 
within individual species.

Low per-generation mutation rate. It has been suggested that the 
species richness and morphological diversity of teleosts in general 
and of cichlids in particular might be explained by elevated muta-
tion rates compared to other vertebrates25,26. To obtain a direct esti-
mate of the per-generation mutation rate, we reared offspring of 
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Fig. 1 | The lake Malawi haplochromine cichlid radiation. a, The sampling coverage of this study: overall and for each of the seven main eco-morphological 

groups within the radiation. A representative specimen is shown for each group (Diplotaxodon: D. limnothrissa; shallow benthic: Lethrinops albus; deep 

benthic: Lethrinops gossei; mbuna: Metriaclima zebra; utaka: Copadichromis virginalis; Rhamphochromis: R. woodi). Numbers of species and genera are based 

on ref. 29. b, The distributions of genomic sequence diversity within individuals (heterozygosity; π) and of divergence between species (dXY). c, Principal 

component analysis (PCA) of whole-genome variation data.

NATuRE EcoloGy & EvoluTioN | VOL 2 | DECEMBER 2018 | 1940–1955 | www.nature.com/natecolevol 1941

http://www.nature.com/natecolevol


ARTICLES NATURE ECOLOGY & EVOLUTION

three species from three different Lake Malawi groups (A. calliptera, 
Aulonocara stuartgranti and Lethrinops lethrinus). We sequenced 
both parents and one offspring of each to high coverage (40× ), 
applied stringent quality filtering, and counted variants present in 
each offspring but absent in both its parents (Supplementary Fig. 
4). There was no evidence for significant difference in mutation 
rates between species. The overall mutation rate (μ) was estimated 
at 3.5 ×  10−9 (95% confidence interval (CI): 1.6 ×  10−9 to 4.6 ×  10−9) 
per bp per generation, approximately three to four times lower than 
in humans27, although, given much shorter mean generation times, 
the per-year rate is still expected to be higher in cichlids than in 
humans. We note that ref. 26 obtained a much higher mutation rate 
estimate (6.6 ×  10−8 per bp per generation) in Midas cichlids, but 
from relatively low-depth sequencing of restriction-site-associated 
markers that may have made accurate verification more difficult. 
We also note that our per-generation rate estimate, although low, 
is still higher than the lowest μ estimate in vertebrates: 2 ×  10−9 
per bp per generation recently reported for Atlantic herring28. By 
combining our mutation rate with nucleotide diversity (π) values, 
we estimate the long term effective population sizes (Ne) to be in 
the range of approximately 50,000 to 130,000 breeding individuals 
(with Ne =  π/4μ).

Genome data support for eco-morphological groupings. PCA of 
the whole-genome genotype data generally separates the major eco-
morphological groups (Fig. 1c). The most notable exceptions to this 
are (1) the utaka, for which some species cluster more closely with 
deep benthics and others with shallow benthics, and (2) two spe-
cies of the genus Aulonacara, A. stuartgranti and A. steveni, which 
are located between the shallow and deep benthic groups. Although 
these have enlarged lateral-line sensory apparatus like many deep 
benthic species including other Aulonocara, they are typically found 
in shallower water29. Another interesting pattern in the PCA plot 
is that the utaka and benthic samples are often spread along prin-
cipal component (PC) axes (Fig. 1c, Supplementary Fig. 5), a pat-
tern typical for admixed populations (for example ref. 30). Along the 
two main PCs, the deeper-water benthic species extend towards the 
deep-water Diplotaxodon, an observation we will return to in the 
context of gene flow and shared mechanisms of depth adaptation.

To further verify the consistency of group assignments, we tested 
whether pairs of species from the same group always share more 
derived alleles with each other than with any species from other 
groups. Group assignments were again supported, except for the 
four species also highlighted in the PCA: the two shallow-living 
Aulonocara are closer to shallow benthics than to deep benthics in 
71% and 82% of tests respectively when comparing these alterna-
tives, and Copadichromis trimaculatus is closer to shallow benthics 
than to utaka in 58% of the comparisons. Copadichromis cf. trewava-
sae always clustered with shallow benthics; therefore, we treat it as 
a member of the shallow benthic group henceforth. With the three 
intermediate samples removed and C. cf. trewavasae reassigned, all 
other species showed 100% consistency with their group assignment.

Allele sharing inconsistent with tree-like relationships. The 
above observations suggest that some species may be genetically 
intermediate between well defined groups, consistent with previ-
ous studies that have suggested that hybridization and introgression 
subsequent to initial separation of species may have played a signifi-
cant part in cichlid radiations, including in lakes Tanganyika12,14–16 
and Malawi18,20. Where this happens, there is no single tree relating 
the species.

To assess the overall extent of violation of tree-like species rela-
tionships, we calculated Patterson’s D statistic (the ABBA-BABA 
test)31,32 for all possible trios of Lake Malawi species, without assum-
ing any a priori knowledge of their relationships. N. brichardi from 
Lake Tanganyika was always used as the outgroup. The test statistic 

Dmin is the minimum absolute value of Patterson’s D for each trio, 
across all possible tree topologies. Therefore, a significantly positive 
Dmin score signifies that the sharing of derived alleles between the 
three species is inconsistent with a single species tree relating them, 
even in the presence of incomplete lineage sorting.

Overall, 62% of trios (75,616 out of 121,485) have a significantly 
positive Dmin score (Holm–Bonferroni FWER <  0.01). The Dmin 
values are not independent: for example, a single gene-flow event 
between ancestral lineages can affect multiple contemporary spe-
cies and thus more trios than would a more recent gene-flow event. 
However, tree violations are numerous and pervasive throughout 
the dataset, within all the major groups and also between groups 
(Fig. 2a), revealing reticulate evolution at multiple levels. Therefore, 
phylogenetic trees alone cannot fully describe the evolutionary rela-
tionships of Lake Malawi cichlids.

Phylogenetic framework. Despite no tree giving a complete and 
accurate picture of the relationships between species, standard phy-
logenetic approaches are useful to provide a framework for discus-
sion. To obtain an initial picture we divided the genome into 2,543 
non-overlapping windows, each comprising 8,000 SNPs (average 
size 274 kb) and constructed a maximum likelihood phylogeny sep-
arately for the full sequences within each window, obtaining trees 
with 2,542 different topologies. We also calculated the maximum 
clade credibility (MCC) summary tree33 and a maximum likeli-
hood phylogeny based on the full mtDNA genome (Fig. 2b and 
Supplementary Fig. 6).

We next applied a range of further phylogenomic methods 
which are known to be robust to incomplete lineage sorting. These 
included three multispecies coalescent methods34,35: the Bayesian 
SNAPP36 (with a subset of 48,922 unlinked SNPs in 12 individuals 
representing the eco-morphological groups), the algebraic method 
SVDquartets37,38, which allows for site-specific rate variation and is 
robust to gene-flow between sister taxa39, and the summary method 
ASTRAL40,41, using the 2,543 local maximum likelihood trees that 
were described above as input. We also built a whole-genome neigh-
bour-joining tree using the Dasarathy et al.42 algorithm, which has 
been shown to be a statistically consistent and accurate species tree 
estimator under ILS42,43. The above methods have also been applied 
to datasets where the individuals that are genetically intermediate 
between eco-morphological groups (C. trimaculatus, A. stuartgranti 
and A. steveni) have been removed, thus probably reducing the 
extent of violation of the multispecies coalescent model.

Despite extensive variation among the 2,543 individual maxi-
mum likelihood trees (at least in part attributable to ILS), and, to 
a lesser extent, variation between the different genome-wide phy-
logenetic methods, there is some general consensus (Fig. 2c and 
Supplementary Figs. 6–10). Except for the three previously iden-
tified intermediate species, individuals from within each of the 
previously identified eco-morphological groups cluster together 
in all the whole-genome phylogenies, forming well supported 
reciprocally monophyletic groups. The pelagic Diplotaxodon and 
Rhamphochromis together form a sister group to the rest of the 
radiation, except in the all-sample MCC and SVDquartets phylog-
enies. Perhaps surprisingly, all the methods place the generalist A. 
calliptera as the sister taxon to the specialized rocky-shore mbuna 
group in a position that is nested within the Lake Malawi radiation. 
On a finer scale, many similarities between the resulting phylog-
enies reflect features of previous taxonomic assignment, but some 
currently recognized genera are always polyphyletic, including 
Placidochromis, Lethrinops and Mylochromis.

The mtDNA phylogeny is an outlier, substantially different from 
all the whole-genome phylogenies and also from the majority of the 
local maximum likelihood trees (Fig. 2b,c and Supplementary Figs. 6  
and 11). Discordances between mtDNA and nuclear phylogenies 
in Lake Malawi have been reported previously and interpreted as 
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a signature of past hybridization events18,20. However, as we discuss 
below, some of these previously suggested hybridization events are 
not reflected in the whole-genome data. Indeed, large discrepan-
cies between mitochondrial and nuclear phylogenies have been 
shown in many other systems, reflecting both that mtDNA as a 
single locus is not expected to reflect the consensus under ILS, and 
high incidence of mitochondrial selection44–46. This underlines the 

importance of evaluating species relationships in the Lake Malawi 
radiation from a genome-wide perspective.

Specific signals of introgression. We applied a variety of meth-
ods to identify the species and groups whose relationships violate  
the framework trees described in the previous section. First,  
we contrasted the pairwise genetic distances used to produce the 
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neighbour-joining tree against the distances between samples along 
the tree branches, calculating the residuals (Supplementary Fig. 12). 
If the tree captured all the genetic relationships in our sample per-
fectly, the residuals would all be zero. However, as expected in light 
of the Dmin analysis above, we found numerous differences, affecting 
both groups of species and individual species, with some standout 
cases. Among the strongest signals on individual species, in addi-
tion to the previously discussed C. trimaculatus, we can see that (1) 
Placidochromis cf. longimanus is genetically closer to the deep ben-
thic clade and to a subset of the shallow benthic (mainly Lethrinops 
species) than the tree suggests; and (2) our sample of Otopharynx 
tetrastigma (from Lake Ilamba) is much closer to A. calliptera (espe-
cially to the sample from Lake Kingiri, only 3.2 km away) than is 
expected from the tree.

Second, the sharing of long haplotypes between otherwise dis-
tantly related species is an indication of recent admixture or intro-
gression. To investigate this type of gene flow signature, we used the 
chromopainter software package47 and calculated the ‘co-ancestry 
matrix’ of all species—a summary of nearest-neighbour (therefore 
recent) haplotype relationships. The Lake Ilamba O. tetrastigma and 
Lake Kingiri A. calliptera also stand out in this analysis, showing 
a strong signature of recent gene flow between individual species 
from distinct eco-morphological groups (Supplementary Fig. 13). 
The other tree-violation signatures described above are also visible 
on the haplotype sharing level but are less pronounced, consistent 
with being older events involving the common ancestors of multiple 
present-day species. However, the chromopainter results indicate 
additional recent introgression events (for example, the utaka C. 
virginalis with Diplotaxodon; more highlighted in Supplementary 
Fig. 13). Furthermore, the clustering based on recent co-ancestry 
is different from all phylogenetic trees: in particular a number of  
shallow benthics, including P. cf. longimanus, cluster next to the 
deep benthics.

Third, we used the f4 admixture ratio31,32,48 (f statistic; closely 
related to Patterson’s D), computing f(A,B;C,O) for all groups of 
species that fit the relationships ((A, B), C) in the ASTRAL* tree 
(Supplementary Fig. 7), with the outgroup fixed as N. brichardi. 
When elevated owing to introgression, the f statistic is expected to 
be linear in relation to the proportion of introgressed material. The 
ASTRAL* tree has the lowest mean topological distance to all the 
other trees, and excludes the three species with intermediate group 
assignment, a choice made here because we were interested in iden-
tifying additional signals beyond the admixed status of A. stuart-
granti, A. steveni and C. trimaculatus. Out of the 164,320 computed 
f statistics, 97,889 were significant at FWER <  0.001.

As in the case of Dmin, a single gene-flow event can lead to multiple 
significant f statistics. Noting that the values for different combina-
tions of ((A, B), C) groups are not independent as soon as they share 
branches on the tree, we sought to obtain branch-specific estimates 
of excess allele sharing that would be less correlated. Building on the 
logic employed to understand correlated gene flow signals in ref. 49, 
we developed the ‘f-branch’ metric or fb(C): a summary of f scores 
that, on a given tree, captures excess allele sharing between a species 
C and a branch b compared to the sister branch of b (Methods). 
Therefore, an fb(C) score is specific to the branch b (on the y-axis in 
Fig. 3), but a single introgression event can still lead to significant 
fb(C) values across multiple related C values. There were 11,158 fb(C) 
scores of which 1,421 were significantly elevated at FWER <  0.001 
(Supplementary Fig. 14), and 238 scores were larger than 3% (the 
value inferred for human–Neanderthal introgression in ref. 31). The 
majority of nodes in the tree are affected: 92 of the 158 branches in 
the phylogeny show significant excess allele sharing with at least one 
other species C (Fig. 3).

Overall, the highest fb(C) (14.2%) is between the ancestor of 
the two sampled Ctenopharynx species from the shallow benthic 
group and the utaka Copadichromis virginalis (Fig. 3). Notably, 

Ctenopharynx species, particularly C. intermedius and C. pictus, 
have very large numbers of long slender gill rakers, a feature shared 
with Copadichromis species, and believed to be related to a diet of 
small invertebrates50. Several other benthic lineages also share excess 
alleles with C. virginalis, however these signals are less pronounced. 
Next, the significantly elevated fb(C) scores between the shallow  
and the deep benthic lineages suggest that genetic exchanges 
between these two groups go beyond the clearly admixed shallow-
living Aulonacara (not included in this analysis). The f-branch  
signals between O. tetrastigma and A. calliptera Kingiri are  
observed in both directions—A. calliptera Kingiri with shallow 
benthics (and most strongly O. tetrastigma) and O. tetrastigma with  
A. calliptera (most strongly A. calliptera Kingiri), suggesting  
bi-directional introgression.

At the level of the major eco-morphological groups, the stron-
gest signal indicates that the ancestral lineage of benthics and 
utaka shares excess derived alleles with Diplotaxodon and, to a 
lesser degree, Rhamphochromis, as previously suggested by the 
PCA plot (Fig. 1c). Furthermore, there is evidence for addi-
tional ancestry from the pelagic groups in utaka, which could be 
explained either by an additional, more recent, gene-flow event 
or by differential fixation of introgressed material, possibly due to 
selection. Reciprocally, Diplotaxodon shares excess derived alleles 
(relative to Rhamphochromis) with utaka and deep benthics, as 
does Rhamphochromis with mbuna and A. calliptera. Furthermore, 
mbuna show excess allele sharing (relative to A. calliptera) with 
Diplotaxodon and Rhamphochromis (Fig. 3). On the other hand, 
while ref. 18 suggested gene flow between the deep benthic and 
mbuna groups on the basis of a discrepancy between mtDNA and 
nuclear phylogenies, our genome-wide analysis did not find any sig-
nal of substantial genetic exchange between these groups.

The f statistic tests are robust to the occurrence of incomplete lin-
eage sorting, in the sense that ILS alone cannot generate a significant 
test result32. We note, however, that pronounced population structure 
within ancestral species, coupled with rapid succession of speciation 
events, can also substantially violate the assumptions of a strictly 
bifurcating species tree and lead to significantly elevated f scores32,51. 
This needs to be taken into account when interpreting non-tree-like 
relationships, for example among major groups early in the radiation. 
However, in cases of excess allele sharing between ‘distant’ lineages 
that are separated by multiple speciation events, ancestral population 
structure would have needed to segregate through these speciation 
events without affecting sister lineages, a scenario that is not cred-
ible in general. Therefore, we suggest that there is strong evidence 
for multiple cross-species gene flow events. Additionally, simulations 
suggest that, compared with treemix52, fb(C) is robust to misspecifica-
tion of the initial tree (Supplementary Note).

Overall, the neighbour-joining tree residuals, the haplotype 
sharing patterns and the many elevated fb(C) scores paint a consis-
tent picture. They confirm the extensive violations of the bifurcating 
species tree model initially revealed by the Dmin analysis, and suggest 
many independent gene-flow events at different times during the 
evolutionary history of the adaptive radiation.

Origins of the radiation. The generalist Astatotilapia calliptera has 
been referred to as the ‘prototype’ for the endemic Lake Malawi cich-
lids29,53, and discussions concerning the origin of the radiation often 
centre on ascertaining its relationship to the Malawi species20,54. 
Previous phylogenetic analyses, using mtDNA and small numbers 
of nuclear markers, showed inconsistencies in this respect18,20,54. In 
contrast, our whole-genome data indicated a clear and consistent 
position of the Lake Malawi catchment A. calliptera as a sister group 
to the mbuna, in agreement with the nuclear DNA phylogeny in a 
previous study18. While it is not certain whether the 320 remaining 
mbuna species form a monophyletic group with the eight species we 
used here, the eight species represent the majority of the genera of 
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mbuna and therefore are likely to be representative of much of the 
genetic diversity within the group.

To explore the origins of the Lake Malawi radiation in greater 
detail, we obtained 24 additional Astatotilapia whole-genome 

sequences from outside Lake Malawi: five A. calliptera from 
Indian Ocean catchments, thus covering most of its geographi-
cal distribution, and 19 individuals from seven other Astatotilapia 
species (Supplementary Table 2). We generated new variant calls 
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Fig. 3 | identifying tree violating branches and possible gene-flow events. The branch-specific statistic fb(C) identifies excess sharing of derived 

alleles between the branch of the tree on the y axis and the species C on the x axis (see Supplementary Note). The ASTRAL* tree was used as a basis 

for the branch statistic and grey data points in the matrix correspond to tests that are not consistent with the phylogeny. Colours correspond to eco-

morphological groups as in Fig. 1. Asterisks denote block jackknifing significance at |Z| >  3.17 (Holm–Bonferroni FWER <  0.001).
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(Supplementary Methods) and first constructed a neighbour-join-
ing tree, finding that all the A. calliptera (including Indian Ocean 
catchments) cluster as a single group nested at the same place within 
the radiation, whereas the other Astatotilapia species branched off 
well before the lake radiation (Fig. 4a–c). All A. calliptera individu-
als cluster by geography (Fig. 4b,c), except for the specimen from 
the crater lake Lake Kingiri, whose position in the tree is likely to 
be a result of admixture with O. tetrastigma. Indeed, a neighbour-
joining tree built only with A. calliptera samples (Supplementary 
Fig. 17) places the Kingiri individual according to geography with 
the specimens from the nearby crater lake Lake Massoko and the 
Mbaka River.

Applying the same logic as above, we tested whether the posi-
tion of the A. calliptera group in the neighbour-joining tree changes 
when the tree is built without mbuna (as would be expected if A. cal-
liptera were affected by hybridization with mbuna). We found that 
the position of A. calliptera is unaffected (Supplementary Fig. 18), 
suggesting that the nested position is not due to later hybridization. 
The f statistics in Fig. 3 further support this, because the signals 
involving the whole mbuna or A. calliptera groups are modest and 
do not suggest erroneous placement of these groups in all phylo-
genetic analyses. Furthermore, the nested position of A. calliptera 
is also supported by the vast majority of the genome. Searching for 
the basal branch in a set of 2,638 local maximum likelihood phylog-
enies, we found results that agree with the whole-genome ASTRAL, 

SNAPP and neighbour-joining trees: the most common basal 
branches are the pelagic groups Rhamphochromis and Diplotaxodon 
(in 42.12% of the genomic windows). In comparison, A. calliptera 
(including Indian Ocean catchment samples) were found to be basal 
only in 5.99% of the windows (Supplementary Fig. 19).

Joyce et al.20 reported that the mtDNA haplogroup of A. callip-
tera from the Indian Ocean catchment clustered with mbuna (as 
we confirm in Supplementary Fig. 15) and suggested that there had 
been repeated colonization of Lake Malawi by two independent 
Astatotilapia lineages with different mitochondrial haplogroups: 
the first founding the entire species flock, and the second, with the 
Indian Ocean catchment mtDNA haplogroup, introgressing into 
the Malawi radiation and contributing strongly to the mbuna. This 
hypothesis predicts that, compared with the Malawi catchment 
A. calliptera, the Indian Ocean catchment A. calliptera should be 
closer to mbuna. However, across the nuclear genome we found a 
strong signal in the opposite direction, with 30% excess allele shar-
ing between Malawi catchment A. calliptera and mbuna (Fig. 4d). 
Therefore, the Joyce et al.20 hypothesis that the mbuna, the most 
species-rich group within the radiation, may be a hybrid lineage 
formed from independent invasions is not supported by genome-
wide data.

It has been repeatedly suggested that A. calliptera may be the 
direct descendant of the riverine-generalist lineage that seeded the 
Lake Malawi radiation7,50,53,54. Our interpretation of this argument  
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is that the ancestor was probably a riverine generalist that was 
ecologically and phenotypically similar to A. calliptera and other 
Astatotilapia. This hypothesis is lent further support by geometric 
morphometric analysis. Using 17 homologous body shape land-
marks we established that, despite the relatively large genetic diver-
gence, A. calliptera is nested within the morphospace of the other 
more distantly related but ecologically similar Astatotilapia spe-
cies (Fig. 4a,e), and these together have a central position within 
the morphological space of the Lake Malawi radiation (Fig. 4e and 
Supplementary Fig. 16).

To reconcile the nested phylogenetic position of A. calliptera 
with its generalist ‘prototype’ phenotype, we propose a model where 
the Lake Malawi species flock consists of three separate radiations 
splitting off from the lineage leading to A. calliptera. The relation-
ships between the major groups supported by the ASTRAL, SNAPP 
and neighbour-joining methods suggest that the pelagic radiation 
was seeded first, then the benthic +  utaka, and finally the rock-
dwelling mbuna, all in a relatively quick succession, followed by 
subsequent gene flow as described above (Fig. 4f; the pelagic versus 
utaka +  benthic branching order is swapped in the SVDquartets tree 
in Supplementary Fig. 9). Applying our per-generation mutation rate 
to observed genomic divergences we obtained mean divergence time 
estimates between these lineages between 460 thousand years ago 
(ka) (95% CI 350–990 ka) and 390 ka (95% CI 300–860 ka) (Fig. 4f),  
assuming three years per generation as in ref. 55. The point estimates 
all fall within the second-most recent prolonged deep-lake phase 
inferred from the Lake Malawi paleoecological record56, while the 
upper ends of the confidence intervals cover the third deep-lake 
phase at about 800 ka. Considering that our split time estimates 
from sequence divergence are likely to be reduced by subsequent 
gene-flow, leading to underestimates, the data are consistent with a 
previous report based on fossil time calibration which put the origin 
of the Lake Malawi radiation at 700–800 ka12.

The fact that the common ancestor of all the A. calliptera appears 
to be younger than the Malawi radiation suggests that the Lake 
Malawi A. calliptera population has been a reservoir that has repop-
ulated the river systems and more transient lakes following dry–wet 
transitions in the East African hydroclimate56,57. Our results do not 
fully resolve whether the lineage leading from the common ancestor 
to A. calliptera retained its riverine generalist phenotype throughout 
or whether a lacustrine species evolved at some point (for example, 
the common ancestor of A. calliptera and mbuna) and later de-spe-
cialized again to recolonize the rivers. However, while it is a possi-
bility, we suggest that it is unlikely that the many strong phenotypic 
affinities of A. calliptera to the basal Astatotilapia (Fig. 4e; refs 58,59) 
would be reinvented from a lacustrine species.

Signatures and consequences of selection on coding sequences. 
To gain insight into the functional basis of diversification and 
adaptation in Lake Malawi cichlids, we next turned our attention 
to protein-coding genes. We compared the mean between-species 
levels of non-synonymous variation ̄p

N
 to synonymous variation ̄p

S
 

in 20,664 genes and calculated the difference between these two val-
ues ( ̄ ̄δ = −

−
p pN S N S

). Overall, coding sequence exhibits signatures of 
purifying selection: the average between-species ̄p

N
 was 54% lower 

than in a random matching set of non-coding regions. Interestingly, 
the average between-species synonymous variation ̄p

S
 in genes was 

13% higher than in non-coding control regions ( < . ×
−P 2 2 10 16, 

one-tailed Mann–Whitney U-test). One possible explanation of this 
observation would be if intergenic regions were homogenized by 
gene flow, whereas protein-coding genes were more resistant to this.

To control for statistical effects of variation in gene length and 
sequence composition we normalized the δN−S values per gene by 
taking into account the variance across all pairwise sequence com-
parisons for each gene, deriving the non-synonymous excess score 
ΔN−S (see Methods). Values at the upper tail of the distribution of 

ΔN−S are substantially over-represented in the actual data when com-
pared to a null model based on random sampling of codons (Fig. 5a).  
We focus below on the top 5% of the distribution (ΔN−S >  40.2, 
1034 candidate genes). Genes with elevated ΔN−S are expected to 
have been under positive selection at multiple non-synonymous 
sites, either recently repeatedly within multiple species or ances-
trally. Therefore, the statistic reveals only a limited subset of posi-
tive selection events from the history of the radiation (for example 
a selection event on a single amino acid would not be detected). 
Furthermore, to minimize any effect of gene prediction errors, all 
the following analyses focus on the 15,980 (77.3% of total) genes 
for which zebrafish homologues were found in a previous study11; 
selection scores of genes without homologues are briefly discussed 
in the Supplementary Note.

Cichlids have an unexpectedly large number of gene duplicates, 
which has possibly contributed to their extensive adaptive radia-
tions3,11. To investigate the extent of divergent selection on gene 
duplicates, we examined how the ΔN−S scores are related to gene 
copy numbers in the reference genomes. Focusing on homologous 
genes annotated both in the Malawi reference (M. zebra) and in the 
zebrafish genome, we found that the highest proportion of candidate 
genes was among genes with two or more copies in both genomes 
(N −  N). The relative enrichment in this category is both substantial 
and highly significant (Fig. 5b). On the other hand, the increase in 
proportion of candidate genes in the N −  1 category (multiple cop-
ies in the M. zebra genome but only one copy in zebrafish) is much 
smaller and is not significant (χ2 test P =  0.18), suggesting that selec-
tion is occurring more often within ancient multi-copy gene fami-
lies, rather than on genes with cichlid-specific duplications.

We used GO annotation of zebrafish homologues to test whether 
candidate genes are enriched for particular functional categories 
(Methods). We found significant enrichment for 30 GO terms 
(range: 1.6 ×  10−8 <  P <  0.01, weigh algorithm60; Supplementary 
Table 3): 10 in the ‘molecular function’, 4 in the ‘cellular component’ 
and 16 in the ‘biological process’ category. Combining all the results 
in a network (connecting terms that share many genes) revealed 
clear clusters of enriched terms related to (1) haemoglobin function 
and oxygen transport; (2) phototransduction and visual perception; 
and (3) the immune system, especially inflammatory response and 
cytokine activity (Fig. 5c). That evolution of genes in these func-
tional categories has contributed to cichlid radiations has been sug-
gested previously (see below); it is nevertheless interesting that these 
categories stand out in a genome-wide analysis.

Shared mechanisms of depth adaptation. To gain insight into 
the distribution of adaptive alleles across the radiation, we built 
maximum likelihood trees from amino acid sequences of candidate 
genes, thus summarizing potentially complex haplotype genealogy 
networks. Focusing on the significantly enriched GO categories, 
many haplotype trees have features that are unusual in the broader 
dataset: the haplotypes from the deep benthic group and the deep-
water pelagic Diplotaxodon tend to group together (despite these 
two groups being distant in whole-genome phylogenies and mono-
phyletic in only two out of 2,638 local maximum likelihood trees) 
and also tend to be disproportionally diverse when compared with 
the rest of the radiation. We quantified both excess similarity and 
diversity, and found that both measures are elevated for candidate 
genes in the ‘visual perception’ category (Fig. 6a; Mann–Whitney 
U-tests: P =  0.007 for similarity, P =  0.08 for shared diversity, and 
P =  0.003 when the scores are added) and also for the ‘haemoglo-
bin complex’ category (P values not significant owing to the small 
number of genes).

Sharply decreasing levels of dissolved oxygen and low light 
intensities with narrow short-wavelength spectra are the hallmarks 
of the habitats below about 50 m to which the deep benthic and 
Diplotaxodon groups have both adapted, either convergently or in 
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parallel61. Shared signatures of selection in genes involved in vision 
and in oxygen transport therefore point to shared molecular mech-
anisms underlying this ecological parallelism. Further evidence of 
shared mechanisms of adaptation is that, for genes annotated with 
‘photoreceptor activity’ and ‘haemoglobin complex’ GO terms, the 
ΔN−S selection score is strongly correlated with the local levels of 
excess allele sharing between the two depth-adapted groups mea-
sured by the fdM statistic, a conservative version of the f statistic more 
suited to analysing small genomic intervals55 (Fig. 6b; ρS =  0.63 and 
0.81, P =  0.001 and P =  0.051, respectively).

Vision genes with high similarity and diversity scores for the 
deep benthic and Diplotaxodon groups include three opsins: the 
green-sensitive RH2Aβ and RH2B, and rhodopsin (Fig. 6a and 
Supplementary Fig. 20). The specific residues that distinguish the 
deep-water-adapted groups from the rest of the radiation differ 
between the two RH2 copies, with only one shared mutation out of 
a possible fourteen (Supplementary Fig. 20). RH2Aβ and RH2B are 
located less than 40 kilobases (kb) apart on the same chromosome 
(Fig. 6c); a third paralogue, RH2Aα, is located between them, but 
does not show signatures of shared depth adaptation (Supplementary 
Fig. 21), consistent with reports of functional divergence between 
RH2Aα and RH2Aβ62,63. A similar, albeit weaker, signature of shared 

depth-related selection is apparent in rhodopsin, which is known 
to have a role in deep-water adaptation in cichlids64. Previously, we 
discussed the role of coding variants in rhodopsin in the early stages 
of speciation of A. calliptera in the crater lake Lake Massoko55. The 
haplotype tree presented here for the broader radiation shows that 
the Massoko alleles did not originate by mutation in that lake but 
were selected out of ancestral variation (Fig. 6a). The remaining 
opsin genes are less likely to be involved in shared depth adaptation 
(Supplementary Note).

There have been many studies of selection on opsin genes in 
fish65–67, including selection associated with depth preference, 
but having whole-genome coverage allows us to investigate other 
components of primary visual perception in an unbiased fashion. 
We found shared patterns of selection between deep benthics and 
Diplotaxodon in six other vision-associated candidate genes (Fig. 6a).  
The functions of these genes, together with the fact that RH2Aβ 
and RH2B are expressed exclusively in double-cone photoreceptors, 
suggest a prominent role of cone-cell vision in depth adaptation. 
The wavelength of maximum absorbance in cone cells expressing 
a mixture of RH2Aβ with RH2B (λmax =  498 nm) corresponds to the 
part of the visible-light spectrum that best transmits into deep water 
in Lake Malawi67.
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Figure 6c illustrates interactions of the vision genes with shared 
selection patterns in the cichlid double-cone photoreceptor. The 
homeobox protein six7 governs the expression of RH2 opsins and is 
essential for the development of green cones in zebrafish68 (specific 
mutations are highlighted in Supplementary Fig. 20). The kinase 
GRK7 and the retinal cone arrestin-C have complementary roles in 
photoresponse recovery: arrestin produces the final shutoff of the 
cone pigment following phosphorylation by GRK7, thus determin-
ing the temporal resolution of motion vision69. Bases near to the 
carboxy terminus in RH2Aβ mutated away from serine (S290Y and 
S292G), thus reducing the number of residues that can be modified 
by GRK7 (Supplementary Fig. 20). The transducin subunit GNAT2 
is located exclusively in the cone receptors and is a key component 
of the pathway that converts light stimulus into electrical response 
in these cells70. Finally, peripherin-2 is essential to the development 
and renewal of the membrane system that holds the opsin pigments 
in both rod and cone cells71.

Haemoglobin genes in teleost fish are found in two separate 
chromosomal locations: the minor ‘LA’ cluster and the major ‘MN’ 
cluster72. The region around the LA cluster has been highlighted 
by selection scans among four Diplotaxodon species by ref. 73, who 

also noted the similarity of the haemoglobin subunit beta (HBβ) 
haplotypes between Diplotaxodon and deep benthic species. We 
confirmed signatures of selection in the two annotated LA cluster 
haemoglobins. In addition, we found that four haemoglobin sub-
units (HBβ1, HBβ2, HBα2 and HBα3) from the MN cluster are also 
among the genes with high selection scores (Supplementary Fig. 22).  
The shared patterns of depth selection may be particular to the β 
-globin genes (Supplementary Fig. 22), although this hypothesis 
remains tentative, because the repetitive nature of the MN cluster 
precludes us from confidently examining all haemoglobin genes.

A key question concerns the mechanism leading to the similar-
ity of haplotypes in Diplotaxodon and deep benthics. Possibilities 
include parallel selection on variation segregating in both groups 
owing to common ancestry, selection on the gene flow that we 
described in a previous section, or independent selection on new 
mutations. From considering the haplotype trees and local patterns 
of excess allele sharing (using fdM statistics55), there is evidence for 
each of these processes acting on different genes. The haplotype 
trees for rhodopsin and HBβ  have outgroup taxa (and also A. cal-
liptera) appearing at multiple locations on their haplotype networks 
(Fig. 6a), suggesting that the haplotype diversity of these genes 
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may reflect ancestral variation. In contrast, trees for the green cone 
genes show the Malawi radiation all being derived with respect to 
outgroups and we found substantially elevated fdM scores extending 
for around 40 kb around the RH2 cluster (Fig. 6d), consistent with 
adaptive introgression in a pattern reminiscent of mimicry loci in 
Heliconius butterflies74. Finally, the peaks in fdM around peripherin-2 
and one of the arrestin-C genes are narrow, ending at the gene 
boundaries, and fdM scores are elevated only for non-synonymous 
variants; synonymous variants do not show excess allele sharing 
(Supplementary Fig. 23). Owing to the close proximity of non-syn-
onymous and synonymous sites within the same gene, this suggests 
that for these two genes there may have been independent selection 
on the same de novo mutations.

Discussion
Variation in genome sequences forms the substrate for evolution. 
Here we described genome variation at the full sequence level across 
the Lake Malawi haplochromine cichlid radiation. We focused on 
ecomorphological diversity, representing more than half the genera 
from each major group, rather than obtaining deep coverage of spe-
cies within any particular group. Therefore, we have more samples 
from the morphologically highly diverse benthic lineages than, for 
example, from the mbuna where there are relatively fewer genera 
and many species are largely recognized by colour differences.

The observation that cichlids within an African Great Lake radi-
ation are genetically very similar is not new75, but we now quantify 
the relationship of this to within-species variation, and the conse-
quences for variation in local phylogeny across the genome. The fact 
that between-species divergence is generally only slightly higher 
than within species diversity, is probably the result of the young 
age of the radiation, the relatively low mutation rate and of gene 
flow between taxa. Within-species diversity itself is relatively low 
for vertebrates, at around 0.1%, suggesting that low genome-wide 
nucleotide diversity levels do not necessarily limit rapid adaptation 
and speciation, results that are in contrast to a recent report that 
found that high diversity levels may have been important for rapid 
adaptation in Atlantic killifish76. One possibility is that in cichlids 
repeated selection has maintained diversity in adaptive alleles for 
a range of traits that support ecological diversification, as we have 
concluded for rhodopsin and HBβ  and as appears to be the case for 
some adaptive variants in sticklebacks77.

We provide evidence that gene flow during the radiation, 
although not ubiquitous, has certainly been extensive. Overall, the 
numerous violations of the bifurcating species tree model suggest 
that full resolution of interspecies relationships in this system will 
require network approaches (see for example section 6.2 of ref. 35) 
and population genomic analyses within the structured coales-
cent framework with gene flow. The majority of the signals affect 
groups of species, suggesting events involving their common ances-
tors, or are between closely related species within the major eco-
logical groups. The only strong and clear example of recent gene 
flow between individual distantly related species is not within Lake 
Malawi itself, but between Otopharynx tetrastigma from crater Lake 
Ilamba and local A. calliptera. Lake Ilamba is very turbid and the 
scenario is reminiscent of cichlid admixture in low-visibility condi-
tions in Lake Victoria78. It is possible that some of the earlier signals 
of gene flow between lineages we observed in Lake Malawi may 
have happened during periods of low lake level when the water is 
known to have been more turbid56.

Our model of the early stages of radiation in Lake Malawi (Fig. 
4f) is broadly consistent with the model of initial separation by 
major habitat divergence23, although we propose a refinement in 
which there were three relatively closely spaced separations from 
a generalist Astatotilapia type lineage, initially of pelagic genera 
Rhamphochromis and Diplotaxodon, then of shallow- and deep-
water benthics and utaka (this includes Kocher’s sand dwellers23,29), 

and finally of mbuna. Thus, we suggest that Lake Malawi contains 
three separate haplochromine cichlid radiations stemming from the 
generalist lineage, interconnected by subsequent gene flow.

The finding that cichlid-specific gene duplicates do not tend to 
diverge particularly strongly in coding sequences (Fig. 5b) suggests 
that other mechanisms of diversification following gene duplica-
tions may be more important. Divergence via changes in expression 
patterns has previously been illustrated and discussed11, and future 
studies addressing structural variation between cichlid genomes will 
assess the contribution of differential retention of duplicated genes.

The evidence concerning shared adaptation of the visual and 
oxygen-transport systems to deep-water environments between 
deep benthics and Diplotaxodon suggests different evolutionary 
mechanisms acting on different genes, even within the same cellular 
system. It will be interesting to see whether the same genes or even 
specific mutations underlie depth adaptation in Lake Tanganyika, 
which harbours specialist deep-water species in least two different 
tribes79 and has a similar light attenuation profile but a steeper oxy-
gen gradient than Lake Malawi61.

Over the last few decades, East African cichlids have emerged as a 
model for studying rapid vertebrate evolution11,23. Taking advantage 
of recently assembled reference genomes11, our data and results pro-
vide insight into patterns of sequence sharing and adaptation across 
the Lake Malawi radiation, and into mechanisms of rapid phenotypic 
diversification. The datasets are publicly available (see ‘Data avail-
ability’) and will underpin further studies on specific taxa and molec-
ular systems. For example, we envisage that our results, clarifying 
the relationships between all the main lineages and many individual 
species, will facilitate speciation studies, which require investigation 
of taxon pairs at varying stages on the speciation continuum80,81, and 
studies on the role of adaptive gene flow in speciation.

Methods
Samples. Ethanol-preserved fin clips were collected by M. J. Genner and G. F. 
Turner between 2004 and 2014 from Tanzania and Malawi, in collaboration with 
the Tanzania Fisheries Research Institute (the MolEcoFish Project) and with 
the Fisheries Research Unit of the Government of Malawi (various collaborative 
projects). Samples were collected and exported with the permission of the Tanzania 
Commission for Science and Technology, the Tanzania Fisheries Research Institute, 
and the Fisheries Research Unit of the Government of Malawi.

From sequencing to a variant callset. The analyses presented above are based on 
SNPs obtained from Illumina short (100–125 bp) reads, aligned to the M. zebra 
reference assembly version 1.111 with bwa-mem82, followed by GATK haplotype 
caller83 and samtools/bcftools84 variant calling restricted to 653 Mb of ‘accessible 
genome’ where variants can be determined confidently with short reads, filtering, 
genotype refinement, imputation and phasing in BEAGLE85 and further haplotype 
phasing with shapeit v286, including the use of phase-informative reads87. For 
details please see Supplementary Methods.

Linkage disequilibrium calculations. The haplotype disequilibrium coefficient88 r2 
between pairs of SNPs was calculated along the phased scaffolds 0 to 201 (scaffolds 
are assembled fragments of the reference genome and scaffolds 0–201 are longer 
than 1 Mb), using vcftools v0.1.12b89 with the options --hap-r2 --ld-window-bp 
50000. To reduce the computational burden, we used a random subsample of 10% 
of SNPs. We binned the r2 values according to the distance between SNPs into 1-kb 
or 100-bp windows and plotted the average values in each bin.

To estimate background linkage disequilibrium, we calculated haplotype r2 
between variants mapping to different linkage groups in the Oreochromis niloticus 
genome assembly. First, we used the chain files generated by the whole genome 
alignment pipeline90 (see Supplementary Methods) and the UCSC liftOver tool 
(http://hgdownload.soe.ucsc.edu/downloads.html#source_downloads) to translate 
the genomic coordinates of all SNPs to the O. niloticus coordinates. Then we 
calculated linkage disequilibrium between variants mapping to linkage groups  
LG1 and LG2.

De novo mutation rate estimation. In each trio we looked for mutations in the 
child that were not present in either of its parents. Because the results of this 
analysis are very sensitive to false positives and false negative rates, we used higher 
coverage sequencing (about 40×  average) and applied more stringent genome 
masks than in the population genomic work. Increased coverage supports clean 
separation of sequencing errors and somatic mutations from true heterozygous 
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calls in the offspring, and improved ability to distinguish single copy versus multi-
copy sequence on a per-individual basis.

First we determined the ‘accessible genome’ (that is the regions of the genome 
in which the mutations can be confidently called (de novo mutations) for each trio 
by excluding:

 1. Genomic regions where mapped read depth in any member of a trio is ≤ 25×  
or > 50× 

 2. Bases where either of the parents has a mapped read that does not match the 
reference (the specific bases where any read has non-reference alleles in the 
parents were masked)

 3. Sequences where indels (base insertion or deletion) were called in any sample 
(we also excluded ±  3 bp of sequence surrounding the indel)

 4. Sites that were called as multiallelic among the nine samples in the overall 
trios dataset

 5. Known segregating variable sites— that is, sites with alternative alleles found 
in four and more copies in the overall Lake Malawi dataset

 6. Sites in the reference where less than 90% of overlapping 50-mers  
(sub-sequences of length 50) could be matched back uniquely and without 
1-difference. For this we used Heng Li’s SNPable tool (http://lh3lh3.users.
sourceforge.net/snpable.shtml), dividing the reference genome into  
overlapping k-mers (sequences of length k; we used k =  50), and  
then aligning the extracted k-mers back to the genome (we used  
bwa aln -R 1000000 -O 3 -E 3).

After excluding sites in the categories above, we were left with an ‘accessible 
genome’ of 516.6 Mb in the A. calliptera trio, 459 Mb in the A. stuartgranti trio 
and 404 Mb in the L. lethrinus trio. Because any observed de novo mutation could 
have occurred either on the chromosome inherited from the mother or on the 
chromosome inherited from the father, the point estimate of the per-generation 
per-base-pair mutation rate is: μ =  nmutations/(2 ×  the size of the accessible genome).

Next we set out to search for de novo mutations: that is, heterozygous sites in 
the offspring within the accessible genome. Under random sampling there is an 
equal probability of seeing a read with either of the two alleles at a heterozygous 
site. Therefore, Na (the number of reads supporting the alternative allele) is 
distributed as approximately Binomial(read depth, 0.5). We filtered out variants 
with observed Na values below the 2.5th or above the 97.5th percentiles of this 
distribution, thus accepting a false-negative rate of 5%. We also filtered out sites 
where the offspring call had Read Position or Base Quality rank-sum test Z-score 
exceeding the 99.5th percentile of the standard normal distribution or where the 
strand-bias phred-scaled P value (− log10(error probablility)) was ≥ 20 or where the 
phred-scaled genotype quality in either mother, father or offspring was ≤ 30. For 
simplicity, assuming these filters are independent, they are expected to introduce 
a false-negative rate of 7.17%. The mutation rate estimate was adjusted to account 
for this.

After filtering, we found nine de novo mutations across the three offspring. For 
each mutation we double-checked the alignment in the IGV genome browser and 
found all of them were single base mutations supported by high number of reads 
(> 8) in the offspring. The 95% confidence intervals for the number of observed 
mutations were calculated using the ‘exact’ method relating γ2 and Poisson 
distributions91,92. If N is the number of observed mutations, the lower (ciNL) and 
upper (ciNU) limits are:

χ χ
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≤ .

=

≥ .
+

P P
ciN

( 0 025)

2
ciN

( 0 975)

2
N N

L
2

2

U
2( 1)

2

where 2N and 2(N +  1) are the degrees of freedom of the corresponding γ2 
distributions.

PCA. SNPs with minor allele frequency ≥  0.05 were selected using the bcftools 
(v1.2) view option --min-af 0.05:minor. The program vcftools v0.1.12b was 
then used to export that data into PLINK format93. Next, the variants were 
linkage-disequilibrium-pruned to obtain a set of variants in approximate linkage 
equilibrium (unlinked sites) using the --indep-pairwise 50 5 0.2 option in PLINK 
v1.0.7. PCA on the resulting set of variants was performed using the smartpca 
program from the eigensoft v5.0.2 software package94 with default parameters.

Genome-wide FST calculations. In addition to performing PCA, the smartpca 
program from the eigensoft v5.0.2 software package also calculates genome-
wide FST for all pairs of populations specified by the sixth column in the .pedind 
file. For the calculation, it uses the Hudson estimator, as defined previously95 in 
their equation (10), and the ‘ratio of averages’ is used to combine estimates of FST 
across multiple variants, as they recommended. We used all SNPs (no minor allele 
frequency filtering).

Allele sharing test for group assignment. We tested whether two individuals who 
come from the same group always share more derived alleles with each other than 
with any individuals from other groups. Technically, we implemented this using the 
D statistic (ABBA-BABA tests) framework31,32, by calculating D A G G O( , ; , )1 2   
for all permutations of individuals, where G1 and G2 come from the same  

eco-morphological group and A from a different group. The outgroup O was 
always N. brichardi from Lake Tanganyika. Note that this is an unusual use of the 
D statistics and our aim here was not to look for gene flow but to test whether 
allele sharing is greater within eco-morphological groups (G1 with G2) compared 
to across groups (A with G2), in which case >D A G G O( , ; , ) 01 2 . All results were 
statistically significant, which was assessed using block jackknife31 on windows of 
60,000 SNPs.

Dmin statistic. Here we calculated the D statistic for each trio of species (A,B,C) and 
for all possible tree topologies (the outgroup again fixed as N. brichardi). Therefore, 
Dmin =  min(|D(A,B;C,O)|, |D(A,C;B,O)|, |D(C,B;A,O)|. If this is significantly elevated, 
then allele sharing within the trio of species is inconsistent with any simple tree 
topology. Note that this approach is conservative in the sense that the Dmin score for 
each trio is considered in isolation and we ignore ‘higher-order’ inconsistencies where 
different Dmin trio topologies are inconsistent with each other. Statistical significance 
was assessed using block jackknife31 on windows of 60,000 SNPs and family wise error 
rate (FWER) was calculated following the Holm–Bonferroni method.

Sample selection for demographic analyses. To prevent potential confounding 
effects of uneven sequencing depth, we limited these analyses to one high-coverage 
(15× ) individual per species. Species without a high-coverage sample  
(P. subocularis, F. rostratus and L. trewavasae) were not included.

Outgroup sequences/alleles. Outgroup (Supplementary Table 5) sequences in 
M. zebra genomic coordinates were obtained based on pairwise whole-genome 
alignments (Supplementary Methods). Insertions in the outgroup were ignored 
and deletions filled by ‘N’ characters.

Local phylogenetic trees and maximum clade credibility. To generate a multiple 
alignment input in fasta format we used the getWGSeq subprogram of evo. We set 
the window size in terms of the numbers of variants rather than physical length 
(8,000 variants; the --split 8,000 option) aiming for the local regions to have similar 
strengths of phylogenetic signal. Small windows at the ends of scaffolds were 
discarded. We limited the sequence output to the accessible genome using the 
--accessibleGenomeBED option. The N. brichardi outgroup sequence in M. zebra 
genomic coordinates was added via the --incl-Pn option.

Maximum likelihood phylogenies were inferred using RAxML version  
7.7.896 under the GTRGAMMA model. The best tree for each region was  
selected out of twenty alternative runs on distinct starting maximum parsimony 
trees (the -N 20 option).

The MCC trees were calculated in TreeAnnotator version 2.4.2, a part of the 
BEAST2 platform97. Clade credibility is the frequency with which a clade appears 
in the tree set; the MCC tree is the tree (from among the trees in the set) that 
maximizes the product of the frequencies of all its clades33. The node heights for 
the MCC trees are derived as a summary from the heights of each clade in the 
whole tree set via the ‘common ancestor’ heights option.

Mitochondrial DNA phylogenies. The mtDNA sequence corresponds to  
scaffolds 747 and 2,036 in the M. zebra reference. Variants from these scaffolds 
were subjected to the same filtering as in the rest of the genome except for the 
depth filter because the mapped read depth was much higher (approximately 
300–400×  per sample). Because of the greater sequence diversity in the mtDNA 
genome, we found that more than 10% of variants were multiallelic. Therefore, 
we separated SNPs from indels at multiallelic sites using bcftools norm with the 
--multiallelics - option, then removed indels and the merged multiallelic SNPs 
back together with the --multiallelics +  option. Sequences in the fasta format 
were generated using the bcftools consensus command, and missing genotypes 
in the VCF replaced by the ‘N’ character with the --mask option. The N. brichardi 
outgroup sequence in M. zebra genomic coordinates was added to the fasta files.

A maximum likelihood tree was inferred using RAxML version 7.7.896 under 
the GTRGAMMA model. The best tree was selected out of twenty alternative runs 
on distinct starting maximum parsimony trees (using the -N 20 option) and two 
hundred bootstrap replicates were obtained using RAxML’s rapid bootstrapping 
algorithm98 satisfying the -N autoFC frequency-based bootstrap stopping criterion. 
Bipartition bootstrap support was drawn on the maximum likelihood tree using 
the RAxML -f b option.

Neighbour-joining trees and the residuals. For the neighbour-joining99 trees we 
calculated the average numbers of single-nucleotide differences between haplotypes 
for each pair of species. This simple pairwise difference matrix was divided by 
the accessible genome size to obtain pairwise differences per base pair, which are 
equivalent to the ̂p

AB
 variable of Dasarathy et al.42. Then we followed equation (8) 

from Dasarathy et al. 42 and calculated their corrected measure of dissimilarity:











̂ = − − ̂d p
3

4
log 1

4

3
AB AB

The ̂dAB values were then used as input into the nj() tree-building function 
implemented in the APE package100 in the R language.
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We measured the distances between all pairs of species in the reconstructed 
neighbour-joining tree (that is the lengths of branches) using the get_distance() 
method implemented in the ETE3 toolkit for phylogenetic trees101. Our first 
measure of ‘tree violation’ is the difference between these distances and the 
distances between samples in the original matrix that was used to build the 
neighbour-joining tree.

Multispecies coalescent methods. We applied three different methods that 
attempt to reconstruct the species tree under the multispecies coalescent model. 
For a brief discussion of these approaches see Supplementary Methods.

For SNAPP36 we used a random subset of about 0.5% of genome-wide SNPs 
(48,922 SNPs) for 12 individuals representing the eco-morphological groups and 
the Lake Victoria outgroup P. nyererei, whose alleles were filled in based on the 
whole-genome alignment. The P. nyererei alleles were assigned as ‘ancestral’  
(0 in the nexus input file). The ‘forward‘ and ‘backward’ mutation rate parameters 
u and v were calculated directly from the data by SNAPP (the ‘Calc mutation’  
rates option). The default value 10 was used for the ‘Coalescent rate’ parameter  
and the value of the parameter was sampled (estimated in the Markov chain  
Monte Carlo (MCMC) chain). We used uninformative priors as we do not  
assume strong a priori knowledge about the parameters. The prior for ancestral 
population sizes was chosen to be a relatively broad gamma distribution with 
parameters α = 4 and β = 20. The tree height prior λ was set to the initial value  
of 100 but sampled in the MCMC chain with an uninformative uniform  
hyperprior on the interval [0, 50,000]. We ran three independent MCMC chains 
with the same starting parameters, each on 30 threads with a total runtime of  
over 10 central processing unit (CPU) years. The first one million steps from  
each MCMC chain was discarded as burn-in. In total, more than 30 million 
MCMC steps were sampled in the three runs. For the MCMC traces for each  
run, see Supplementary Fig. 24.

Next we used SVDquartets37,38 as implemented in PAUP* (v4.0a, build 159)102. 
We prepared the data into the NEXUS ‘dna’ format, using evo with the getWGSeq 
--whole-genome --makeSVDinput -r options. This command outputs for each 
individual the DNA base at each variable site, randomly sampling one of the two 
alleles at heterozygous sites, and ignoring sites that become monomorphic owing 
to this random sampling of alleles. The final dataset contained 17,833,187 SNPs. 
Then we ran SVDquartets in PAUP* setting outgroup to N. brichardi and then 
executing svdq evalq= all; specifying that all quartets should be evaluated (not 
just a random subset). In the final step, PAUP* version of the QFM algorithm103 is 
used to search for the overall tree that minimizes the number of quartets that are 
inconsistent with it.

Finally we used ASTRAL40 (v.5.6.1) with default parameters and the full set of 
2,543 local trees generated by RAxML (see above) as input.

Tree comparisons. To summarize the degree of (dis)agreement between the 
topologies of trees produced by different phylogenetic methods (Fig. 2c), we 
calculated the normalized Robinson–Foulds distances between pairs of trees104 
using the RF.dist function from the phangorn105 package in R with the option 
normalize= TRUE.

Chromopainter and fineSTRUCTURE. Singleton SNPs were excluded using  
the bcftools v.1.1 -c 2:minor option, before exporting the remaining variants  
in the PLINK format93. The chromopainter v0.0.4 software47 was then run for 
the 201 largest genomic scaffolds on shapeit-phased SNPs. Briefly, we created 
a uniform recombination map using the makeuniformrecfile.pl script, then 
estimated the effective population size (Ne) for a subsample of 20 individuals 
using the chromopainter inbuilt expectation-maximization procedure47, averaged 
over the 20 Ne values using the provided neaverage.pl script. The chromopainter 
program was then run for each scaffold independently, with the -a 0 0 option 
to run all individuals against all others. Results for individual scaffolds were 
combined using the chromocombine tool before running fineSTRUCTURE v0.0.5 
with 1,000,000 burn-in iterations, and 200,000 sample iterations, recording a 
sample every 1,000 iterations (options -x 1000000 -y 200000 -z 1000). Finally,  
the sample relationship tree was built with fineSTRUCTURE using the -m T  
option and 20,000 iterations.

The f-branch statistic. The f4-admixture ratio (f statistic) statistic was developed 
to estimate the proportion of introgressed material in an admixed population (see 
SOM18 in ref. 31, and fG in ref. 48). However, when calculated for different subsets 
of samples within the same phylogeny, there are a very large number of highly 
correlated f values that are hard to interpret. To make the interpretation easier, 
we developed the ‘f-branch’ metric or fb(C): =f C f A B C O( ) median [min [ ( , ; , )]]

b A B

, where B are samples descending from branch b, and A are samples descending 
from the sister branch of b. The outgroup O was always N. brichardi. The fb(C) 
score provides for each branch b of a given phylogeny and each sample C a 
summary of excess allele sharing of branch b with sample C (Fig. 3, Supplementary 
Fig. 26). Each fb(C) score was also assigned an associated z-score to assess statistical 
significance =Z C Z A B C O( ) median [min [ ( , ; , )]]b A B . Additional information on the 
f and fb(C) statistics, including detailed reasoning behind the design of fb(C), are in 
Supplementary Methods.

Geometric morphometric analyses. A total of 168 photographs were used to 
compare the gross body morphology of Astatotilapia calliptera to that of endemic 
Lake Malawi species and other East African Astatotilapia lineages (Supplementary 
Table 7). Coordinates for 17 homologous landmarks (following ref. 106) were 
collected using tpsDig2 v2.26107. After landmark digitization, analysis of shape 
variation was carried out in R (v3.3.2) using the package GeoMorph v3.0.2108. First 
a General Procrustes Analysis was applied to remove non-shape variation and 
shape data were corrected for allometric size effects by performing a regression 
of Procrustes coordinates (10,000 iterations). The resulting allometry-corrected 
residuals were used in PCA.

Maps. Present-day catchment boundary maps are based on ‘level 3’ detail of the 
Hydro1K dataset from the US Geological Survey. We downloaded the watershed 
boundary data from the United Nations Environment Programme website (http://
ede.grid.unep.ch) and processed it using the QGIS geographic information system 
software (http://www.qgis.org/en/site/).

Protein-coding gene annotations. We used the BROADMZ2 annotation 
generated by the cichlid genome project11 and removed overlapping transcripts 
using Jim Kent’s genePredSingleCover program. Genes whose  
annotated length in nucleotides was not divisible by three were discarded,  
as they typically had inaccuracies in annotation that would require manual 
curation (2,495 out of 23,698 genes). We also used the cichlid genome  
project11 assignment of homologues between the M. zebra genome reference  
and zebrafish (Danio rerio).

Coding sequence positive selection scan. We used evo with the getCodingSeq  
-H b --no-stats options to obtain the coding sequences for each allele  
and each gene. The excess of non-synonymous variation (δ

−N S) and the non-
synonymous variation excess score (ΔN−S) were calculated on a per-gene basis as 
follows. Let NTS be the number of possible non-synonymous transitions and NTV 
the number of possible non-synonymous transversion between two sequences; 
analogously STS and STV represent possible synonymous differences. We do not 
specify the ancestral allele, and therefore consider it equally likely that allele i 
mutated into allele j or that allele j mutated to allele i. Then let N be the number  
of observed non-synonymous mutations and S the number of observed 
synonymous mutations. If there is more than one difference within a codon,  
all ‘mutation pathways’ (that is, the different orders in which mutations could  
have happened) have equal probabilities. When a particular allele contained a 
premature stop codon, the remainder of the sequence after the stop was excluded 
from the calculations.

Because the transition:transversion ratio in the Lake Malawi dataset was 
1.73, and hence (because there are two possible transversions for each possible 
transition) the prior probability of each transition is 3.46 times that of each 
transversion, we account for the unequal probabilities of transitions and 
transversions in calculating the proportions of non-synonymous (pN) and of 
synonymous differences (pS) as follows:
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The excess of non-synonymous variation (δN−S) is the average of −p p
N S

 over 
pairwise sequence comparisons. Only between-species sequence comparisons 
are considered for the Lake Malawi dataset. We normalized the δN−S values in 
order to take into account the effect on the variance of this statistic introduced by 
differences in gene length and by sequence composition. To achieve this, we used 
the leave-one-out jackknife procedure across different pairwise comparisons for 
each gene, estimating the standard error. The non-synonymous variation excess 
score (ΔN-S) is then:

Δ
δ

δ
=

_
−

−

−
jackknife se( )

N S
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Note that because the sequences are related by a genealogy, there is a 
correlation structure between the pairwise comparisons. Therefore, the jackknife 
approach substantially underestimates the true standard error of δN−S and is used 
here simply as a normalization factor.

The null model shown in Fig. 5a was derived by splitting all the coding 
sequence into its constituent codons, and then randomly sampling these codons 
with replacement to build new sequences that matched the actual coding genes 
in their numbers and the length distribution. Then we calculated the ΔN−S scores, 
as we did for the actual genes and compared the two distributions. High positive 
values at the upper tail of the distribution are substantially over-represented in the 
actual data when compared to a null model.

We also calculated the above statistics for random non-coding regions, 
matching the gene sequences in length. We used the bedtools v2.26.0109  
‘shuffle’ command to permute the locations of exons along the chromosomes.  
Of the total length of all the permuted sequences, 98.4% were within the ‘accessible 
genome’ and outside coding sequences (we required at least 95% in any of the 
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permuted locations). The specific command was bedtools shuffle -chrom -I exons.
bed -excl InaccessibleGenome_andExons.bed -f 0.05 -g chrom.sizes.

GO enrichment. Zebrafish has the most extensive functional gene annotation 
of any fish species, providing a basis for GO110 term enrichment analysis. GO 
enrichment for the genes that were candidates for being under positive selection 
(the top 5% of ΔN−S values) was calculated in R using the topGO v2.26.0  
package111 from the Bioconductor project112. The GO hierarchical structure  
was obtained from the GO.db v3.4.0 annotation and linking zebrafish gene 
identifiers to GO terms was accomplished using the org.Dr.eg.db v3.4.0  
annotation package. Genome-wide, between 9,024 and 9,353 genes had a GO 
annotation that could be used by topGO, the exact number depending on the  
GO category being assessed. The nodeSize parameter was set to 5 to remove  
GO terms which have fewer than five annotated genes, as suggested in the  
topGO manual.

There is often an overlap between gene sets annotated with different  
GO terms, in part because the terms are related to each other in a hierarchical 
structure110. This is partly accounted for by our use in topGO of the weight 
algorithm that accounts for the GO graph structure by down-weighing  
genes in the GO terms that are neighbours of the locally most significant  
terms in the GO graph60. All the P values we report are from the weight  
algorithm, which the authors suggest should be reported without multiple  
testing correction111.

Some interdependency between significant GO terms remains after using the 
weight algorithm. Therefore, we used the Enrichment Map113 app for Cytoscape 
(http://www.cytoscape.org) to organize all the significantly enriched terms into 
networks where terms are connected if they have a high overlap, that is if they 
share many genes.

Diplotaxodon and deep benthic convergence. To obtain a quantitative measure of 
the similarity between and the extent of excess diversity in the Diplotaxodon and 
deep benthic amino acid sequences, we calculated simple statistics based on the 
proportions of non-synonymous differences (pN scores). Intuitively, the similarity 
score is high if Diplotaxodon and deep benthic jointly have higher pN than all the 
others, but are not very different from each other relative to how much diversity 
there is within Diplotaxodon and deep benthic.

Specifically, the similarity score s is calculated as follows:
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O is the mean pN between Diplotaxodon jointly with deep benthic and 
all the other Lake Malawi species, p

N

B is the mean pN between Diplotaxodon and 
deep benthic, and p

N

W  is the mean pN within Diplotaxodon and deep benthic. The 
jackknife normalization is analogous to the one used for ΔN-S and the mean ( ̄sraw) is 
subtracted to centre the statistic at zero.

The excess diversity score is high when the mean pN scores within Diplotaxodon 
and within deep benthic are high relative to the mean pN in the rest of the 
radiation. Specifically, the excess score ex is defined as:
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D is the mean pN within Diplotaxodon, ̄p
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DB is the mean pN within deep 
benthic, and ̄p

N

R is the mean pN within the rest of the radiation.

Haplotype trees. To view the relationship between haplotypes for genes of interest, 
we translated nucleotide sequences to amino acid sequences and loaded these into 
Haplotype Viewer (http://www.cibiv.at/~greg/haploviewer). This software requires 
that a tree is loaded together with the sequences. Therefore, we inferred gene trees 
using RAxML v7.7.896 with the PROTGAMMADAYHOFFF model of substitution.

Local excess allele sharing between Diplotaxodon and deep benthic. We 
used an extension of the fd statistic48; this extension55 is referred to as fdM. fdM is 
a conservative version of the f statistic that is particularly suited for analysis of 
small genomic windows48,55. For the gene scores shown in Fig. 6b, we calculated 
fdM (mbuna, deep benthic, Diplotaxodon, N. brichardi) for each gene in window 
from the transcription start site (TSS) to 10 kb into the gene. For the ‘along the 
genome’ plots, as shown in Fig. 6d and Supplementary Fig. 23, we used a product 
of two fdM statistics (fdM(shallow benthic; deep benthic, Diplotaxodon, N. brichardi) 
×  fdM(Rhamphochromis, Diplotaxodon; deep benthic, N. brichardi)), an approach 
which we found to increase the local resolution. This score was calculated in 
sliding windows of 100 SNPs across a region of ±  100 kb around the genes. Finally, 

we also calculated fdM (mbuna, deep benthic; Diplotaxodon, N. brichardi) separately 
for synonymous and non-synonymous mutations in each gene.

Reporting Summary. Further information on experimental design is available in 
the Nature Research Reporting Summary linked to this article.

Code availability. The majority of the custom code used in this project is available 
on Github as a part of the evo package (https://github.com/millanek/evo). All other 
custom codes are available from the authors upon request.

Data availability
All raw sequencing reads have been deposited to the NCBI Short Read Archive: 
(BioProjects PRJEB1254 and PRJEB15289). Sample accessions are listed in 
Supplementary Table 4. In addition, we are making whole-genome variant calls in 
the Variant Call Format (VCF), phylogenetic trees and protein coding sequence 
alignments, and tables with f4 statistics available through the Dryad Digital 
Repository (https://doi.org/10.5061/dryad.7rj8k6c).
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Data collection DNA sequencing was performed by the Wellcome Sanger Institute sequencing core facility
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