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SUMMARY

The extent to which low-frequency (minor allele frequency [MAF] between 1-5%) and rare (MAF
<1%) variants contribute to complex traits and disease in the general population is largely
unknown. Bone mineral density (BMD) is highly heritable, is a major predictor of osteoporotic
fractures and has been previously associated with common genetic variants!~3, and rare,
population-specific, coding variants”. Here we identify novel non-coding genetic variants with
large effects on BMD (11,457 = 53,236) and fracture (ny, = 508,253) in individuals of European
ancestry from the general population. Associations for BMD were derived from whole-genome
sequencing (7=2,882 from UK10K), whole-exome sequencing (1= 3,549), deep imputation of
genotyped samples using a combined UK10K/1000Genomes reference panel (77=26,534), and de-
novo replication genotyping (2= 20,271). We identified a low-frequency non-coding variant near a
novel locus, EN/, with an effect size 4-fold larger than the mean of previously reported common
variants for lumbar spine BMDS3 (rs11692564[T], MAF = 1.7%, replication effect size = +0.20
standard deviations [SD], Pmeta = 2x10‘14), which was also associated with a decreased risk of
fracture (OR = 0.85; P = 2x10711; ngyqes = 98,742 and negpirors = 409,511). Using an En1€re/flox
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mouse model, we observed that conditional loss of En/ results in low bone mass, likely as a
consequence of high bone turn-over. We also identified a novel low-frequency non-coding variant
with large effects on BMD near WNT/6 (rs148771817[T], MAF = 1.1%, replication effect size =
+0.39 SD, Pyyers = 1x10711). In general, there was an excess of association signals arising from
deleterious coding and conserved non-coding variants. These findings provide evidence that low-
frequency non-coding variants have large effects on BMD and fracture, thereby providing
rationale for whole-genome sequencing and improved imputation reference panels to study the
genetic architecture of complex traits and disease in the general population.

Recently, genetic discoveries have generally focused on common variants of small effect and
rare coding variants identified through GWAS and whole-exome sequencing initiatives,
respectively!0-11, The effect of low-frequency and rare non-coding variants upon common
diseases, and their underlying traits has been recently explored in an isolated
population!2-13_ but has not been well-studied to date in the general population. The UK10K
has generated a large whole-genome sequence-based resource to address this question in a
general European-ancestry population, which is 10-fold larger than the European subset of
the 1000 Genomes Project reference!4.
Osteoporosis, diagnosed largely through measurement of bone mineral density (BMD), is a
common systemic skeletal disease characterized by an increased propensity to fracture!S.
The narrow-sense heritability of BMD has been estimated to be ~85%, and genome-wide
association studies (GWAS) have successfully identified numerous loci associated with
BMD which in total explain ~5% of the genetic variance for this trait'®. However, these
studies have been largely unable to assess the role of low frequency (MAF 1-5%) and rare
(MAF <1%) genetic variation, since their methods relied on testing common variants (MAF
>5%). A recent sequencing-based study identified a rare nonsense variant associated with
BMD using 4,931 Icelandic subjects with low BMD and 69,034 population-based controls®.
This coding variant, which disrupts the function of LGR4, appears to be confined to the
Icelandic population.

To investigate the role of rare and low-frequency genetic variation on BMD the general
population of European descent, we first undertook whole genome sequencing in 2,882
subjects from two cohorts in the UK10K project and whole-exome sequencing in 3,549
subjects from five cohorts (Supplementary Table 1) with BMD phenotypes. We then used a
novel imputation reference panel generated by the UK10K and 1000Genomes consortia to
impute variants that were missing, or poorly captured, from previous GWAS studies in
26,534 subjects (Supplementary Table 1 and Extended Data Fig. 1a). The UK10K and
1000Genomes reference panel, which in total contained 3,781 and 379 European individuals
with whole genome sequences from UK10K and 1000Genomes Projects, respectively,
enabled improved imputation, particularly of low frequency variants, when compared to the
1000Genomes reference panel alone!”. We then undertook de-novo replication genotyping
of lead variants in 13 cohorts for BMD, comprising 20,271 individuals of European descent.

We meta-analyzed association results from all discovery cohorts (11,54, = 32,965,
Supplementary Table 1) for BMD measured at the forearm, femoral neck and lumbar spine,
the sites where osteoporotic fractures are most prevalent. We tested bi-allelic single-
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nucleotide variants (SNVs) with MAF >0.5% for association, declaring genome-wide
statistical significance at P <1.2 x 1078 (accounting for all independent SNVs above this
MAF threshold; Supplementary Methods)!8. The sequence kernel association test (SKAT)
was used to assess association of regions containing SNVs with MAF <5% and <1%. All
summary-level meta-analytic results are available for unrestricted download
(www.gefos.org). Novel genome-wide significant loci were then tested for their relationship
with fracture in up to 508,253 individuals. Finally, functional genomics as well as cellular
and animal models were utilized to investigate the relevance of these novel genetic
associations to bone physiology.

Through meta-analysis of sequenced and imputed single-SNV association tests from the
discovery cohorts (Supplementary Table 1), we identified a novel locus at 2q14.2 harboring
variants associated with lumbar spine BMD (lead low-frequency SNV rs11692564[T], MAF
= 1.7%, effect size = +0.24 SD, P=4x1079, Fig. 1 and Table 1). The direction of effect was
consistent across all discovery cohorts (Extended Data Fig. 2) and the mean imputation
information score for the imputed cohorts was 0.71 (Supplementary Table 3). This variant is
located 53 kilobase pairs downstream from engrailed homeobox-1 (EN7), which, to our
knowledge, has not previously been associated with any osteoporosis-related traits in
humans. The rs11692564 variant was not present on HapMap imputation panels, nor on
genotyping chips, underlining the importance of developing more comprehensive imputation
reference panels.

To validate whole-genome sequencing genotypes at rs11692564, we genotyped 1,853
whole-genome sequenced subjects, and found all genotypes to be perfectly concordant
(Supplementary Table 4). We validated imputation of rs11692564 in 3,601 imputed subjects
through direct genotyping and observed that the association strengthened, and its statistical
significance improved, as compared to imputed results (lumbar spine: imputed effect size =
0.22 SD; P = 0.05, genotyped effect size = 0.31 SD; P = 0.004) (Supplementary Table 6). We
next sought additional evidence for the association at rs11692564 by performing additional
de novo genotyping in 16,233 independent individuals and found a similarly large effect size
in this population (effect size = +0.20 SD; P= 3x107°). Meta-analysis of the discovery and
replication cohorts provided strong evidence for association (Puompined-meta = 2x1071%)
(Table 1).

We also identified an additional association signal, arising from rs55983207 (MAF = 4%),
17 kb downstream of rs11692564 (2 = 0.001) to be associated with femoral neck BMD
from the combined meta-analysis (Ppeta = 7.2 x 10713 Table 1). A haplotype containing both
effect alleles was not observed from within the UK10K whole genome-sequenced cohort
(total number of haplotypes = 7,562).

In addition to rs11692564, we also observed two additional novel genome-wide significant
variants for lumbar spine BMD near EN/, 1s6542457 (MAF = 6.7%) and rs188303909
(MAF = 1.9%), which are 391kb downstream and 67kb upstream from rs11692564,
respectively (Fig. 1b and Table 1). Variant rs188303909 was in moderate LD with
rs11692564 (12 = 0.47), and conditional analysis demonstrated that these two association
signals were not independent (Supplementary Table 7). On the other hand, rs6542457 was in
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low LD with rs11692564 (12 = 0.002), and remained independent in conditional analyses
(Supplementary Table 7). Overall, the EN/ locus harbors multiple non-coding variants
associated with lumbar spine and a single variant associated with femoral neck BMD. All
three genome-wide significant variants for lumbar spine BMD (Table 1) co-localize solely
with EN/ in a sub-region of high interaction frequency within a single topologically-
associated domain!® (Fig. 1a).

The mean effect size of previously reported genome-wide significant SNPs (MAF >5%)
from the largest GWAS meta-analysis to date for lumbar spine and femoral BMD was 0.048
SD and the largest effect size was 0.1 SD8. Hence, the observed effect size at rs11692564 is
4-fold larger than this mean and twice that of the largest previously reported effect (Figure
1c)8. For all genome-wide significant variants, we observed larger effect sizes across
decreasing MAF bins (Fig. 2a).

An increase in BMD is associated with a decrease in risk of bone fracture. We therefore
tested the association of rs11692564[T] (the low-frequency allele at EN/ associated with the
largest increase in BMD) in 18 cohorts comprising 508,253 individuals (98,742 cases and
409,511 controls, Supplementary Table 8). rs11692564[T] was strongly associated with a
decreased risk of fracture (OR = 0.85 [95% CI: 0.80-0.89]; P = 2.0x10~!!; 12 = 0.00) (Table
2 and Supplementary Table 9). Table 2 also shows clear associations between other variants
near EN/ and risk of fracture. The fracture association at rs11692564 was 2.9-fold larger
than the mean of fracture associations detected in the largest GWAS to date, and 2.0-fold
larger than the largest previously identified fracture association®.

ENI1 encodes a homeobox gene central to mouse limb developmentY, which has been
shown to be involved in Wnt signaling interaction with Dkk 12!, Studies of calvarial bone
development and fracture healing of long bones in mice have shown that perinatal En/~~
mutants display osteopenia and enhanced skull bone resorption?Z, whereas in normal adult
mice En/ is up-regulated in the bone callus post fracture?2. Investigating the functional role
of ENI1, we detected En/ expression during osteoblastogenesis in developing and mature
cultured murine calvarial osteoblasts, but not in marrow-derived osteoclasts, or in human
primary osteoclast cultures (Figure 3a and Extended Data Fig. 3). To determine where En/ is
active in adult bones, we analyzed vertebrae from En//2°Z/* knock-in mice?3 and detected
LacZ expression in proliferative and hypertrophic chondrocytes, osteogenic cells in the
periosteum and trabecular bone surface, and in osteocytes of cortical and trabecular bone
(Fig. 3b and Extended Data Fig. 4).

Using En1€e/*; R2610x-STOP-lox--EYFP reporter mice to genetically tag cells for which the
Enl promoter was active at any point within a cell lineage, we confirmed that En/
expression was only observed in osteogenic lineages (Extended Data Fig. 4). Since most
Enl~~ animals die soon after birth, we generated En/" e/flox gelf-deleted Enl (sdEnl)
conditional mutants24 (z = 5) and demonstrated by pCT that mutants have lower trabecular
bone volume fraction (BV/TV), trabecular number, and trabecular thickness in both the
lumbar L5 vertebrae (Fig. 3¢ and 3d and Extended Data Fig. 5) and the femur (Extended
Fig. 5) as compared to littermate controls (7= 6). A decrease in femoral cortical thickness
was also observed (Extended Fig. 5). By histomorphometry (Fig. 3c), we observed that the
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sdEn mice had a statistically higher proportion of osteogenic and osteoclastic cells
compared to littermate controls (Fig. 3d and Supplementary Table 10). The driving force for
the low bone mass would appear to be an increase in osteoclastic activity induced by En/
null osteogenic cells. This in turn initiates the expected coupled increase in mineralizing
bone formation (Fig. 3b & 3d) mediated by an increased number of osteogenic cells and thus
conforms to a high turnover osteoporosis-like phenotype, although dynamic
histomorphometry and evidence from bone turn-over markers would be required to confirm
an increased rate of bone formation (Extended Data Fig. 4). Lastly, genetic evidence from
homologous regions in mice also supported a role for En/ in bone, as the homologous region
contained a QTL peak for femur BMD (Supplementary Table 11)23. These findings, together
with an earlier study focusing on En/ function in calvarial bone development22 implicate
this gene as an important mediator in skeletal biology.

Taken together, these findings suggest that EN/ plays an important role in bone physiology
and that low-frequency non-coding variants mapping near EN/ have large effects on BMD
and risk of fracture in the general European population.

We also identified a novel SNV at 7q31.31 within the intron of CPED/ (rs148771817[T],
MAF = 1.2%, effect size = +0.47 SD, Pyjscovery= 9.31 x 1079) associated with forearm BMD
(Table 1, Supplementary Table 12, and Extended Data Fig. 6). We replicated the association
at rs148771817 in 2,539 independent individuals and found a similar effect size (effect size
=+0.41 SD, P=6x10~%), and combined meta-analysis of the discovery and replication
cohorts further improved statistical evidence for association (+0.46 SD, P= 1x10~!1) (Table
1). This variant had an effect size 2.2-fold larger than the mean of previously reported effects
for common variants associated with forearm BMD (Extended Data Fig. 6)2°.

We previously identified rs7776725 to be associated with BMD at WNT16, a gene
neighboring CPED1, (Extended Data Fig. 6) and demonstrated that knock-out of Wnt/6in
mice confers a 50% decrease in bone strength (P= 7x10713)26:27 We have recently shown
that osteoblast-derived Wnt16 represses osteoclastogenesis28. As a result, we undertook
conditional analysis of rs148771817 upon rs7776725. The rs148771817 variant remained
associated after conditioning, albeit with lower statistical significance (effect size =0.35 SD;
Peta=1x1077; Extended Data Fig. 6d). Similarly, conditional analysis of the common
variant upon rs148771817 revealed little change in the effect size or the statistical
significance (Supplementary Table 7). While we acknowledge that both variants may be
causal, our data does not permit us to distinguish if one or both of these variants have

distinct biologic effects.

While rs148771817 is intronic in CPED1, we found that DNA accessibility at this region, as
measured by DNase I hypersensitivity data from ENCODE, was moderately correlated with
DNA accessibility at the WNT76 promoter in 305 cell types2* (maximum 2= 0.4, P= 2.2 x
10715, Supplementary Table 13), whereas correlation to the promoter of CPEDI was lower
(maximum 2=0.1,P= 0.06). Moreover, analysis of chromosome conformation capture Hi-
C interaction frequencies from human H1 embryonic stem cells shows elevated interaction
frequency between rs148771817 and WNT16 (Extended Data Fig. 6), though we also
observed stronger interactions between these loci and their immediate neighboring regions.
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We assessed whether association signals were enriched for deleterious coding SNVs or
SNVs with increased evolutionary constraint (see Supplementary Methods). These two
groups of SN'Vs were matched to control SNVs by MAF and distance to gene
(Supplementary Methods and Supplementary Table 14), followed by LD pruning (2 < 0.2).
We observed enrichment of association signal across the spectrum of positive evolutionary
constraint thresholds, which was comparable to deleterious coding variants (Fig. 2b).

In total, we have identified multiple variants associated with BMD, including 3 genome-
wide significant loci for forearm BMD, 14 for femoral neck and 19 for lumbar spine
(Supplementary Tables 12 and 16-18, and Extended Data Figures 7 and 8). A common
variant not on previous HapMap imputation panels, near the SOX6 gene was also identified
(rs11024028, MAF = 19%) (Table 1), and was found to be an independent signal from a
previously reported signal at this locus (rs7108738, 12 = 0.002)8. Consistent with recent
experience??-39, region-based collapsing methods did not identify any convincing novel
associations that were not already identified as genome-wide significant through single SNV
associations. This included collapsing variants below 1% and 5% MAF thresholds, including
all variants, only variants with increased GERP++ scores or those from protein-coding
regions (Supplementary Table 19 and Extended Data Figures 9 & 10).

We have identified low-frequency, non-coding genetic variants of large effect that are
present in the general population and associate with BMD and fracture. These variants have
effect sizes up to four-fold larger than the mean effect described for common variants
associated with BMD and approximately three-fold larger than those for fracture. Our study
illustrates that larger reference panels, covering relevant ethnicities, will facilitate the
discovery of low frequency and rare variants. This was enabled here by a large imputation
reference panel (UK10K and 1000 Genomes) which offers 10-fold more European samples
than the 1000 Genomes reference panel alone. Although we did not identify coding low-
frequency or rare variants associated with BMD at a genome-wide significant level, we did
observe that deleterious coding variants were enriched for association as a group. This
suggests the existence of as yet undiscovered coding variants influencing BMD. Importantly,
we have also generated new functional evidence for a central role of the engrailed
homeobox-1 gene in regulation of BMD and outlined En/ as a critical protein in bone
biology. In summary, our findings demonstrate the utility of whole-genome sequencing-
based discovery and deep imputation to enable the identification of novel genetic
associations. These discoveries provide an improved understanding of the pathophysiology
of osteoporosis and suggest that more comprehensive sets of whole-genome sequenced
individuals, covering relevant ethnicities, will enable accurate imputation and thus facilitate
discovery of low frequency and rare variants influencing complex traits and common

disease.

METHODS

More details for Methods can be found in the Supplementary Information. All human
studies were approved by their institutional ethics review committees, and all participants
provided written informed consent.
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Whole-Genome Sequencing

ALSPAC and TwinsUK cohorts were sequenced at an average read depth of 6.7x through the
UKI10K program (www.UK10K.org) using the [llumina HiSeq platform, and aligned to the
GRCh37 human reference using BWA3!. SNV calls were completed using samtools/bcftools
and VQSR and GATK were used to recall these calls.

Whole-Exome Sequencing
The AOGC, FHS, RS-I, ESP and ERF cohorts were whole-exome sequenced as described in

the Supplementary Information.

Whole-Genome Genotyping

All remaining discovery cohorts were genome-wide genotyped and imputed to the UK10K/
1000 Genomes reference panel, as described in the Supplementary Information.

Association testing for BMD

Single variants with a MAF >0.5% were tested for an additive effect on lumbar spine,
femoral neck and forearm BMD, adjusting for sex, age, age?, weight and standardized to
have a mean of zero and a standard deviation of one. Meta-analysis of cohort-level summary
statistics was undertaken using GWAMAD32. Conditional analyses for significant SNVs was
performed using GCTA33. Region-based collapsing tests were performed using skatMeta4,
an implementation of the SKAT method3? that enables the meta-analysis of multiple cohorts.
For each cohort, variants with MAF <% or <1% were collected and meta-analysis using
skatMeta was conducted for windows of 30 SNVs within each region, overlapping by 10
SNVs.

Replication Genotyping

Lead SNVs were selected for replication genotyping, which was performed at LGC
Genomics, using KASP genotyping. Association testing for replication genotyping was
undertaken using the same additive model, using the same covariates for BMD, as above.

Fracture Association Testing

Fractures were defined as those occurring at any site, except fingers, toes and skull, after age
18. Both incident and prevalent fractures were included and were verified by either
radiographic, casting, physician, or subject reporting. Fractures resulting from any type of
trauma were considered. Covariates included in the additive model were age, age2, sex,
height, weight, estogen/menopause status (when available), ancestral genetic background
and cohort-specific covariates (such as clinical centre). Association testing was done in two
phases. The first involved all 1,482 genome-wide significant SN'Vs for BMD. In the second
phase of fracture association testing, variants at EN1 were assessed in 18 cohorts,
comprising 98,467 cases and 409,736 controls. Meta-analysis of cohort-level summary
statistics was performed using GWAMA32,
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Functional Genomics

We tested whether variants with increasing GERP++ scores© were more strongly associated
with BMD than SNVs matched for distance to gene and MAF, after LD pruning using
PLINK37 at an 72 of <0.2, using windows of 100kb and step of 20kb. Coding variants were
partitioned as deleterious using Variant Effect Predictor 38 LD pruned (+Z <0.2). The
proportion of variants passing an FDR g-value of €0.05 were reported.

Enl Murine Expression Experiments

Pre-osteoblast-like cell were differentiated to osteoblasts from calvaria of C57BL/6J mice
and expression levels of each gene was quantified using RNAseq. The temporal expression
of En/ in cell culture experiments of these osteoblasts and bone marrow derived osteoclasts
(isolated from long bones of six week old mice) was measured by PCR, with Bglap
(osteocalcin) and 7Tnfrsfl1a (RANK), serving as controls. Further, total mRNA for Enl in
osteoblasts was quantified using real-time PCR.

Murine Histology

Two month old Enl old En/%aZ* mice 39 were sectioned at bone sites and stained for X-gal

and/or alkaline phosphatase and imaged at 400x.

Micro-CT and histomorphometry

Bone characteristics of self-deleted conditional En/(sdEnl) mutants were compared to
EnI*/fox Jittermates using Micro-CT. The same animals were assessed for
histomorphometry (and labs performing Micro-CT and histomorphometry were blinded to
each other’s results). After tissue sectioning, samples were stained for calcification (calcein
blue), tartrate acid (TRAP) to assess for osteoclasts and alkaline phosphatase to assess for

osteoblasts.
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Extended Data
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Extended Data Figure 1. Discovery single variant meta-analysis
a. Overall study design b. From top to bottom, quantile-quantile plots for the sex-combined

single SNV meta-analysis, sex-stratified single SNV meta-analysis (forearm phenotype
consists solely of female-only cohorts), and sex-combined single SNV conditional meta-
analysis. Plots depicts p-values prior (blue) and after conditional analysis (red). ¢. From top
to bottom, Manhattan plots for sex-combined meta-analysis for lumbar spine BMD, femoral
neck BMD, and forearm BMD. Each plot depicts variants from the UK10K/1KG reference

Nature. Author manuscript; available in PMC 2016 April 01.



)dLosnuep Joyiny YHID 1duosnuep Joyiny YHID

lduosnuey Joyiny 4HIO

Zheng et al.

Page 10

panel with MAF > 0.5% across the 22 autosomes (odd=grey, even=black) against the —log10
p-value from the meta-analysis of 7 cohorts (dots). Also depicted is the subset variants from
the reference panel that are also present in Estrada et al. (2012) with p value < 5e-6
(diamonds). Variants with MAF < 5% and p < 1.2e-6 are also depicted (red). d. Quantile-
Quantile plots for the sex-combined meta-analysis of lumbar spine, femoral neck, and
forearm BMD for SNVs present across both exome-sequenced and genome-wide cohorts i.e.
SNV absent from all exome-sequenced cohort are not shown. e. Manhattan plot for the
Meta-Analysis of Sex-Combined results for Lumbar Spine BMD for SN'Vs present in
exome-sequenced and genome-wide cohorts i.e. SNV absent from all exome-sequenced
cohort are not shown (from top to bottom: lumbar spine, forearm and femoral neck BMD).
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Extended Data Figure 2. Forest Plots by Cohort for Genome-wide Significant Loci from

Discovery Meta-analysis

Forest plots for three BMD phenotypes are shown. Title of each plot includes gene
overlapping the SNV and its genomic position on build hg19. P-values are from fixed-effect

meta-analysis (see Supplemental Information).
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Extended Data Figure 3. Gene Expression in Human and Mouse
a. Quantification of Dock8 expression and its temporal pattern through RNA-seq in cultured

calvarial murine osteoblasts across day 2 through to day 18 of osteoblast development.
Bglap is shown for comparison, which encodes osteocalcin a critical protein in osteoblasts.
b. Quantification of expression of genome-wide significant genes and their temporal pattern
through RNA-seq in cultured calvarial murine osteoblasts across day 2 through to day 18 of
osteoblast development. ¢. Expression of ENI mRNA in human cells presented as percent of
GAPDH mRNA. d. Expression of En/ in control and sdEnl mice in purified osteoblast
culture. For osteoblast marker gene expression, total mRNAs were purified from osteoblast
cultures at day 10 and measured using quantitative real-time PCR. mRNA levels were
normalized relative to GAPDH mRNA. e. Real-time PCR expression of control and sdEn1
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as compared to 18S mRNA in whole vertebral bone extract. All data are shown as mean+
SEM. Significance computed by student unpaired #test.

Cras; RIBLELVFFS
Alignment of En? with Alkaline Phosphatase Activity

1Cre_

Extended Data Figure 4. Histological Assessment of En expressing cells in in skeletal cells of

the vertebra
a. Lineage history of En/¢"—expressing cells in skeletal cells of the vertebra. The En/¢"e

allele was combined with the R26-SL-YFP reporter allele and examined using frozen
fluorescent immunohistochemistry and alkaline phosphatase (AP) staining. Cell nuclei were
detected with DAPI. YFP-expressing cells have expressed CRE (£n/) at some time in their
history. A. Control animals lacking the R26-SL-YFP reporter show low background YFP
signal (green). B. In En/Ce/*; R261SL-YFP/* mice YFP-expressing cells are detected in the
growth plate chondrocytes of the vertebra (*), trabecular bone lining cells (arrow) and
osteocytes (arrow head). Note, high fluorescent background staining in the marrow space. C.
The same section is shown stained for AP activity using the fast red substrate. Strong
activity is present in the hypertrophic chondrocytes of the growth plate and trabecular bone
lining cells (arrow). D. Alignment of the AP and YFP images shows that the trabecular
lining cells co-express AP and YFP. b. Colocalization of En/ and Alkaline Phosphatase
expression. Images of lumbar vertebrae sections (growth plate and trabecular bone regions,
40x) from two-month old En//°Z* mice. (see Figure 3b), stained for LacZ and Alkaline
phosphatase (AP), false-coloured as indicated. Double-positive cells are indicated by arrows,
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while single-positive cells are indicated by arrowheads (LacZ+) or asterisks (AP+). Except
for some chondrocytes, most AP+ cells are also LacZ+, i.e. express En/. The bone marrow
was digitally removed, as it contains no AP+ cells.
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Extended Data Figure 5. MicroCT Results for control (EnlfIOX/+) and self-deleting En1 knockout
(sdEn1, En1CTf10%) animals

a. Trabecular Bone MicroCT images from Lumbar Vertebra 5. b. Morphological
characteristics at lumbar vertebra 4,5, and 6 (from bottom to top). ¢. Morphological
characteristics of left femur trabecular bone and d. left femur cortical bone. e. MicroCT
parameter results for the comparison of control type and sdEnl animals at lumbar vertebra 5,
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femur trabecula, and femur cortical bone. Horizontal lines denote mean of observations.
Significance between control and sdEn1 is calculated using an unpaired #test.
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Extended Data Figure 6. Novel association from 7¢31.3
a. Chromatin interaction data from Hi-C performed in H1 ES cells?? of a 2 Mb region

encompassing rs148771817 (red and identified by arrow) and WANT/6. b. The left axis
denotes the association P-value (red and green lines at P= 1.2 x 1075 and 1.2 x 1078,
respectively). The novel genome-wide significant SNV, rs148771817, within an intron of
CPED], and the lead genome wide-significant SNV rs7776725 upstream to WNT16 (within
FAM3C) are in low LD with each other. c. Allele frequency versus absolute effect size (in
standard deviations) for forearm BMD of all previously identified genome-wide significant
variants (blue)® and the novel variant within CPED1 (red), rs148771817 from replication
meta-analysis. The blue line denotes the mean of effect sizes for previously reported forearm
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BMD variants. d. Meta-analysis summary statistics of rs148771817 conditioned on
1s7776725.
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Extended Data Figure 7. Regional Plots of Genome-Wide Significant Loci from Single-SNV
Association Tests for forearm and femoral neck BMD

Each regional plot depicts SNVs within 1 Mb of a locus’ lead SNV (x-axis) and their
associated meta-analysis p value (-log10). SN'Vs are color coded according to r with the
lead SNV (labelled, 12 calculated from UK 10K whole genome sequencing dataset).
Recombination rate (blue line), and the position of genes, their exons and the direction of
transcription are also displayed (below plot).
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Lumbar Spine BMD
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Extended Data Figure 8. Regional Plots of Genome-Wide Significant Loci from Single-SNV
Association Tests from Lumbar Spine BMD
Each regional plot depicts SNVs within 1 Mb of a locus’ lead SNV (x-axis) and their

associated meta-analysis p value (-log10). SN'Vs are color coded according to r2 with the
lead SNV (labelled, 2 calculated from UK 10K whole genome sequencing dataset).
Recombination rate (blue line), and the position of genes, their exons and the direction of

transcription are also displayed (below plot).
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Extended Data Figure 9. Region-based association tests using skatMeta for windows of 30 SNVs
and window step of 20 SNVs

a. From top to bottom, quantile-quantile plots for forearm BMD (FA), femoral neck BMD
(FN), and lumbar spine (LS) BMD. For each MAF range considered (<5% or <1%), analysis
was conducted across all variants, variant overlapping coding exons, and variants with
GERP++ score > 1. b. From top to bottom, Manhattan plots forearm BMD, femoral neck
BMD, and lumbar spine BMD. For each MAF range considered (<5% or <1%), analysis was
conducted across all variants, variant overlapping coding exons, and variants with GERP++
score > 1. Blue and red lines at genome-wide suggestive [P= 1.2 x 107°] and genome-wide
significant [P = 1.2 x 1078] thresholds, respectively.
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Femoral Neck BMD
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Extended Data Figure 10. Single Variant Analysis of Signals from Region-based Tests
a. Drop-one SNV and drop-one cohort for genome-wide significant 30 SNV windows for

forearm BMD from skatMeta analysis. (A, B) For given 30 SNV window, the —log10(p) of
skatMeta test for 29 SNVs, excluding (i.e. dropping) the SNV at position labeled on x-axis.
(C, D) For given 30 SNV window, the —-log10(p) of skatMeta test for 4 cohorts, excluding
(i.e. dropping) cohort labeled on x-axis. b. Drop-one SNV and drop-one cohort for genome-
wide significant 30 SNV windows for femoral neck BMD for skatMeta analysis. (A) For
given 30 SNV window, the —log10(p) of skatMeta test for 29 SNVs, excluding (i.e.
dropping) the SNV at position labeled on x-axis. (B) For given 30 SNV window, the —
log10(p) of skatMeta test for 4 cohorts, excluding (i.e. dropping) cohort labeled on x-axis. c.
Regional view of CPED1/WNT16 locus for forearm BMD. In top panel, significant SNVs
from single variant meta-analysis (rs148771817 and rs79162867, in blue) overlap significant

o]

regions found using region-based test (red bars).
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a, A topological domain includes associated variants and EN/, and chromatin interaction
analysis with paired-end tag sequencing (ChIA-PET for CTCF in MCF-7 cell line) suggests
a smaller interacting region containing EN/, and three genome-wide significant variants for

lumbar spine BMD (in red).

b, Association signals at the EN/ locus (green line at P= 1.2x1078) for lumbar spine BMD.
Red circles and triangles represent results from discovery and combined discovery and

replication using fixed-effects meta-analysis (see Supplementary Information), respectively.

¢, Allele frequency versus absolute effect size for lumbar spine BMD for previously

identified variants (blue)® and the three EN7 novel variants (red). The blue line denotes the

mean of previously reported effect sizes.
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Figure 2. Genome-wide features of association signals
a, Box plots of the effect sizes of genome-wide significant SNVs (P < 1.2x1078), pruned for

LD (© < 0.2) by MAF bin for discovery cohorts. Grey bars represent the values of beta not
observed and for which we lack statistical power to observe (at . <1.2x10~8 and power >
0.8). P-values per phenotype are from the non-parametric trend test across MAF bins (see
Supplementary Information).

b, Proportion of SNVs passing an FDR g-value 0.05 across different annotation features in
discovery cohorts (green) vs. matched control variants (red). The rightmost three panels
show enrichment across a range of evolutionary constraint scores, where green denotes
SNVs above the threshold and red denotes variants below the threshold. Bars represent
standard error (for methods refer to Supplementary Information).
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Figure 3. Mouse Enl Functional Experiments
a, Left: Quantitative expression of En/ and its temporal pattern (RNA-seq) in cultured

calvarial murine osteoblasts (n=3 per time point). Right: Confirmation of the expression of
Enlin a separate RT-PCR experiment of cultured calvarial murine osteoblasts and lack of
expression in osteoclasts matured from bone marrow derived precursor cells (Positive
controls for osteoblasts (osteocalcin) and osteoclast (RANK) are also shown).

b, Representative sections from lumbar vertebra 2 show the growth plate and bone marrow
(GP and BM, left), cortical bone (CB, middle), and trabecular bone (TB, right) at 40x
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magnification from En//4Z* adult mice (n = 2) stained for B-gal activity (LacZ blue, En/+
cells) and alkaline phosphatase (AP, red late chondrocytes and actively calcifying tissues). In
the periosteum (PO), all the LacZ+ cells were AP+; some AP- BM cells expressed LacZ.
Some AP- proliferative chondrocytes in the GP expressed lacZ+, whereas most AP+
hypertrophic chondrocytes expressed LacZ. Some AP- osteocytes (Ocy) in CB and TB were
LacZ+.

¢, Left: Histomorphometry images of lumbar vertebrae 5 show decreased trabecular bone
volume and increased bone surface area occupied by osteoclast cells when comparing
En[Cre/flox (self-deleted Enl, sdEnl) mutants and En/70%* control mice. Right:
Reconstructed uCT images show the mineral density in a control and an sdEn/ animal (right
panels).

d, Micro-CT (uCT) and histomorphometry measures within sdEn/ (n = 5) and controls
(Enl'o* p=6). By uCT, sdEn! mutants exhibit decreased L5 trabecular number (Tb.N)
and thickness (Tb.Th), as well as deceased bone volume fraction (BV/TV). Using
histomorphometry, sdEn/ mutants exhibit increased osteoclastic area (TRAP/BS). Average
for each measure denoted by solid horizontal line. P-value computed using paired t-test.
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