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Abstract

Background: Autism spectrum disorders (ASDs) represent a group of childhood neurodevelopmental disorders that

affect 1 in 88 children in the US. Previous exome sequencing studies on family trios have implicated a role for rare,

de-novo mutations in the pathogenesis of autism.

Methods: To examine the utility of whole-genome sequencing to identify inherited disease candidate variants and

genes, we sequenced two probands from a large pedigree, including two parents and eight children. We evaluated

multiple analytical strategies to identify a prioritized list of candidate genes.

Results: By assuming a recessive model of inheritance, we identified seven candidate genes shared by the two

probands. We also evaluated a different analytical strategy that does not require the assumption of disease model,

and identified a list of 59 candidate variants that may increase susceptibility to autism. Manual examination of this

list identified ANK3 as the most likely candidate gene. Finally, we identified 33 prioritized non-coding variants such

as those near SMG6 and COQ5, based on evolutionary constraint and experimental evidence from ENCODE.

Although we were unable to confirm rigorously whether any of these genes indeed contribute to the disease, our

analysis provides a prioritized shortlist for further validation studies.

Conclusions: Our study represents one of the first whole-genome sequencing studies in autism leveraging a large

family-based pedigree. These results provide for a discussion on the relative merits of finding de-novo mutations in

sporadic cases versus finding inherited mutations in large pedigrees, in the context of neuropsychiatric and

neurodevelopmental diseases.

Background
Autism spectrum disorders (ASDs) are childhood

neurodevelopmental disorders characterized by impair-

ments in social interaction, communication, and by re-

stricted, repetitive, and stereotyped patterns of behavior

[1]. The Centers for Disease Control and Prevention

(CDC) reported in 2012 that approximately 1 per 88

children in the United States has a diagnosis of ASD [2].

Boys are five times more likely to have ASDs than girls.

Although autism is typically thought of as a childhood

disorder, some affected patients need care even after

they reach adulthood. In fact, a recent study

demonstrated that it can cost about $3.2 million to take

care of an autistic individual over his or her lifetime [3];

therefore, autism presents a great social and economic

toll on society.

Understanding the causes of ASDs is critical for the

development of better diagnoses and treatment strat-

egies. ASDs are highly heritable and are indeed among

the most heritable neurodevelopmental and neuro-

psychiatric disorders [4]. The genetic basis of ASDs has

been pursued aggressively over the past few decades

using cytogenetic studies, linkage analysis, and candidate

gene association analysis [5]. With the development of

high-throughput SNP genotyping technologies, genome-

wide association studies (GWAS) [5-9] and copy number

variation (CNV) studies [10-13] have been conducted

over the past few years, revealing the association be-

tween specific candidate genes and loci with ASDs, but

with moderate effect sizes.
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Recent genetic studies demonstrated that next-

generation sequencing (NGS) technology can be a

powerful tool to identify the genetic basis of human dis-

eases, especially Mendelian disorders [14-16]. Unlike

GWAS that relies on proxy association of genetic vari-

ants with unknown disease causal variants, NGS tech-

nology enables researchers to interrogate the complete

human genome or exome for the detection of both com-

mon and rare variants, hence improving the chance of

finding disease causal variants, given the potential ability

to perform functional annotation on each of the identi-

fied variants. Recently, several studies have been pub-

lished to examine the role of whole-exome sequencing

(WES) to identify genetic risk factors for autism. In

2011, a trio-based study of autism performed WES on

60 individuals from families affected with sporadic ASDs

and 20 unaffected control individuals, and suggested

that de-novo sequence variants might contribute to the

genetic etiology of ASDs [17]. A follow-up study from

the same group sequenced 209 families and found that

de-novo mutations fall within a highly interconnected

β-catenin/chromatin remodeling protein network [18].

A companion paper using WES on 928 individuals, in-

cluding 200 phenotypically discordant sibling pairs,

reported that highly disruptive (nonsense and splice-site)

de-novo mutations in brain-expressed genes are associ-

ated with ASDs and carry large effects [19]. Another

study sequenced 175 trios by WES and nominated CHD8

and KATNAL2 as genuine autism risk factors, but also

suggested a more limited role for the contribution of

de-novo mutations to ASD pathogenesis than previously

reported [20]. Similarly, an exome sequencing study on

343 families did not identify significantly greater num-

bers of de-novo missense mutations in affected versus

unaffected children, but they identified more gene-

disrupting mutations in affected children and found that

many of the disrupted genes are associated with the fra-

gile X protein FMRP [21]. The rate of de-novo muta-

tions has been recently linked to paternal age, in a study

that sequenced 78 trios including 44 offspring with aut-

ism and 21 offspring with schizophrenia [22]. Another

study sequenced balanced chromosomal translocations

in patients with autism or related neurodevelopmental

disorders, and revealed the disruption of 33 loci from

four categories, reinforcing a polygenic risk model of

autism [23]. These and many other recently published

studies suggested that de-novo mutations may play

important roles in susceptibility to autism.

However, current exome sequencing studies on autism

may not be comprehensive or representative enough.

Many of these studies focus only on simplex families or

sequence one affected child from multiplex families.

More importantly, the published studies do not specific-

ally analyze inherited mutations, despite the fact that

ASDs are highly heritable and that the vast majority of

the mutations identified are inherited mutations. We

note that one rare exception was published recently,

which demonstrated that some familial ASDs were asso-

ciated with biallelic mutations in known Mendelian dis-

ease genes [24]. Although it is clear that de-novo

mutations explain a fraction of autism patients, it is

likely that inherited mutations, in combination or in ag-

gregation, may explain a higher fraction of autism cases.

Therefore, we attempted to address this problem by

performing a pilot sequencing analysis on patients from

multiplex families. We selected a large two-generation

family, with parents and eight children, two of whom

were diagnosed with autism. DNA samples were avail-

able for all subjects, except for one unaffected child. We

generated whole-genome sequencing data on the two

probands. Not knowing the exact disease model for aut-

ism in the family, we performed a series of different pro-

cedures for removing variants that are less likely to be

functionally important and for finding candidate disease

causal genes. Additionally, we genotyped all members of

the pedigree (except for the one unaffected child) using

Illumina HumanHap550 SNP arrays with approximately

550,000 SNP markers, to help further reduce the num-

ber of candidate genes. We have not yet proven whether

these mutations singly or in combination contribute to

the development of this disease in the two children in

this family, and we discuss the potential implications of

our study, as a more general issue to the use of NGS for

the study of autism and other neuropsychiatric

disorders.

Methods
Sample selection and sequencing

We manually reviewed all large pedigrees at the Autism

Genetic Resource Exchange (AGRE) [25] with >8 sub-

jects, and selected a family for next-generation sequen-

cing. The pedigree includes two parents and eight

children, two of whom were affected with autism

(Figure 1). The DNA samples for all members of the

pedigree were retrieved from the AGRE, and all of them

were de-identified subjects. The study was approved by

Institutional Review Board of the Children’s Hospital of

Philadelphia. After quality control to ensure lack of gen-

omic degradation, we sent 10 ug DNA of two probands

to Complete Genomics (CG) in Mountain View, CA,

USA for sequencing.

The whole-genome DNA was sequenced with a

nanoarray-based short-read sequencing-by-ligation tech-

nology [26], including an adaptation of the pairwise end-

sequencing strategy [27]. Reads were mapped to the

National Center for Biotechnology Information (NCBI)

reference genome build 36. The short reads alignment

and variant calling were performed by the CG pipeline
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version 1.7 developed by CG as previously reported [28].

Each variant was assigned a quality score, which was calcu-

lated as 10*log10[P(call is true)/P(call is false)], representing

the confidence in the call. We removed variants that do

not pass the default quality filter, including homozygous

calls with quality scores <20, or heterozygous calls with

quality scores <40. The variants passing the QC thres-

hold were used for downstream analysis.

SNP genotyping

All genome-wide SNP genotyping for the family was

performed using the Illumina HumanHap550 BeadChip

at the Center for Applied Genomics at the Children’s

Hospital of Philadelphia. Standard data normalization

procedures and canonical genotype clustering files pro-

vided by Illumina were used to process the genotyping

signals and generate genotype calls.

CNV calling

The Log R Ratio and B Allele Frequency measures for

all markers for all samples were directly calculated and

exported from the Illumina BeadStudio software. The

CNV calls were generated using PennCNV (version

2009Aug27) [29], which utilizes an integrated hidden

Markov model (HMM) that incorporates multiple

sources of information, including total signal intensity

Figure 1 Analysis of copy number variations (CNVs) in the family with autism. (A) The five inherited CNVs inferred from SNP arrays are

depicted with family structure, but none of the CNVs segregate with disease status. (B) Signal intensity (Log R Ratio and B Allele Frequency) plot

from SNP arrays validates the 1q31 deletion in sample 10. In the deletion (dots between the two vertical lines), Log R Ratio values for SNP

markers drop, and B Allele Frequency values cluster around 0 or 1. (C) PennCNV-Seq signal (sequence count and B Allele Frequency) plot on WGS

data validates the 1q31 deletion in sample 10. In the deletion, the sequence counts tend to be lower than neighboring regions, and very few B

Allele Frequency values cluster around 0.5. (D) Signal intensity plot from SNP arrays did not indicate the presence of the 1q31 deletion in sample 8.

(E) PennCNV-Seq signal on WGS data did not indicate the presence of a 1q31 deletion in sample 8.
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and allelic intensity ratio at each SNP marker, the dis-

tance between neighboring SNPs, and the allele fre-

quency of SNPs. Family information was not used in

CNV calling. The default program parameters, library

files, and the genomic wave adjustment routine [30] in

the detect_cnv.pl program were used in generating CNV

calls. The scan_region.pl program in PennCNV was used

to map called CNVs to specific genes and exons, using

the RefSeq gene definitions.

We excluded sparse CNV calls, that is, those CNV calls

with average inter-marker distance >50kb (the average

distance is approximately 5kb across the whole-genome

for the arrays that we used). Furthermore, we excluded all

CNV calls whose genomic span overlap with known

immunoglobulin regions (chr22:20715572–21595082,

chr14:105065301–106352275, chr2:88937989–89411302,

chr14:21159897–22090937) was >50%, as these CNVs

may be a result of somatic changes. In addition, we ex-

cluded CNV calls whose genomic span overlap with cen-

tromeres (a list of genomic coordinates for centromeres in

human genome NCBI 36 build were given at the

PennCNV website FAQ section) was also >50%. The final

set of CNV calls encompassing more than or equal to 10

SNP markers were then used in our inheritance analysis.

We also applied a recently published method,

ERDS (Estimation by Read Depth with SNVs) ver-

sion 1.06.04 [31], to generate CNV calls from the

sequence data. We first used the Complete Genom-

ics Analysis Tools (http://cgatools.sourceforge.net/)

to generate BAM files from CG-provided map files.

ERDS starts from read depth information inferred

from BAM files, but also integrates other informa-

tion including paired end mapping and soft-clip sig-

nature, to call CNVs sensitively and accurately.

Since ERDS models deletions and duplications dif-

ferently, we collected deletions >10 kb and duplica-

tions >200 kb, with a confidence score >300, as a

set of highly confident CNV calls. Furthermore, we

used a preliminary version of PennCNV-Seq to le-

verage whole-genome sequence data to validate the

CNV calls from SNP arrays. We developed custom

scripts to process the BAM file and generated two

signal intensity measures: sequence count and B Al-

lele Frequency. Sequence count refers to the nor-

malized sequence read on either a single SNV or as

the average across a continuous segment of genomic

positions without SNVs, and this measure can be

directly counted from SAMtools pileup output. B

Allele Frequency refers to the fraction of reads

supporting non-reference alleles at a given SNV, and

this measure can be calculated from aligned alleles

at each position with a SNV call. For 1-copy dele-

tions, one would expect to see decreased sequence

count and the general lack of clustering of B Allele

Frequency around 0.5, compared to neighboring re-

gions without deletions.

Validation by Sanger sequencing

Selected putative variants were examined among all fam-

ily members using Sanger sequencing methods. Given

the position of variants, the PCR primers were designed

to encompass the candidate position, ensuring that com-

mon SNPs are not covered by the primers. The ABI

Prism 3500 sequencer was used for sequencing, and the

resulting *.AB1 files were loaded into the ABI Sequence

Scanner version 1.0 for further analysis and genotype

calling. All sequence traces were manually reviewed to

ensure the reliability of the genotype calls.

Variant annotation and prioritization

We used the ANNOVAR software [32] for variant anno-

tation, analysis, and filtering. Besides gene-based annota-

tion, we used a custom ‘variants reduction’ pipeline to

identify a list of candidate genes with the following cri-

teria: (1) identify variants causing splicing or protein-

coding changes, including stop loss and stop gain vari-

ants; (2) remove variants with minor allele frequency

(MAF) >1% in the 1000 Genomes Project April 2012 re-

lease; (3) remove variants with MAF >1% in the NHLBI-

5400 Exomes (European Americans or African Ameri-

cans); (4) remove variants with MAF >1% in the CG46

database compiled from unrelated individuals sequenced

by the Complete Genomics platform; and (5) requiring a

recessive mode of inheritance, with at least two deleteri-

ous mutations found in each proband.

Additionally, we also used an alternative analytical

strategy that attempts to identify any predicted deleteri-

ous variants shared by two probands with autism, re-

gardless of disease models or family segregation

patterns. We used wANNOVAR [33] (http://wannovar.

usc.edu) to process this list of variants, and specified the

following criteria in the website: (1) SIFT scores <0.05;

(2) PolyPhen scores >0.85; and (3) GERP++ scores >2.0.

These are the default thresholds recommended by the

developers. The final list of variants and genes are

manually examined to identify any prior association with

autism or other neurodevelopmental disorders.

To extend the analysis to non-coding variants, we used

another custom ‘variants reduction’ pipeline using the

ANNOVAR software with the following criteria: (1)

identify variants that do not target canonical splicing

sites and protein-coding regions; (2) remove variants

with minor allele frequency (MAF) >1% in the 1000 Ge-

nomes Project April 2012 release, or the NHLBI-5400

Exomes (European Americans or African Americans), or

the CG46 database; (3) identify subset of variants that

target evolutionarily constrained regions, defined as be-

ing located within a GERP++ conserved element with
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GERP++ scores >2 [34]; and (4) identify subset of vari-

ants that target ‘active promoter’ (state 1 inferred by

chromHMM [35]) or ‘strong enhancer’ (state 4 and 5 in-

ferred by chromHMM [35]) sites. Given that the nine

ENCODE cell lines analyzed by chromHMM do not include

a neuronal cell line, we used the data from GM12878

(Epstein-Barr Virus transformed lymphoblastoid cell line),

as lymphoblastoid cell lines are used in many gene expres-

sion profiling studies on mental disorders.

Haplotype analysis

We performed haplotype sharing analysis on the pedi-

gree, to identify genomic regions that have an identity-

by-descent (IBD) score of 2 between the two affected

subjects. Additionally, in an exploratory analysis, we

identified regions with IBD score of 0 or 1 between af-

fected and unaffected siblings. We used the Merlin soft-

ware [36] to perform haplotype phasing on the SNP

genotyping data with best estimates of haplotype trans-

mission patterns. We then used a custom script to

identify genomic regions that satisfy the user-supplied

IBD criteria.

Results
CNV analysis on the pedigree

We previously performed whole-genome genotyping on

the pedigree, including parents and seven children

(DNA samples for subject 9 is not available), using the

Illumina HumanHap550 SNP genotyping arrays [6].

Given the availability of signal intensity data from the

SNP arrays, we generated copy number variant (CNV)

calls (see Methods).

We detected three CNVs in the father and two CNVs

in the mother of potential clinical relevance, respectively

(Table 1, Figure 1A). Among them, two encompassed

genes and both CNVs are inherited from the mother to

the offspring. A 50.7 kb duplication on 13q12.13 was

detected in the mother and four children. The duplication

disrupts the WASF3 (WAS protein family, member 3)

gene, which encodes a member of the Wiskott-Aldrich

Table 1 A list of CNV calls encompassing >10 SNPs in the pedigree

Region (hg18 coordinate) #SNP Length Type ID Start End Relationship

chr1:193577075-193861997 44 284,923 del 10 rs1359381 rs12745696 Offspring

chr1:193577075-193861997 44 284,923 del 4 rs1359381 rs12745696 Offspring

chr1:193577075-193861997 44 284,923 del 2 rs1359381 rs12745696 Father

chr13:26048387-26099109 10 50,723 dup 7 rs2133814 rs7986966 Offspring

chr13:26048387-26099109 10 50,723 dup 10 rs2133814 rs7986966 Offspring

chr13:26048387-26099109 10 50,723 dup 6 rs2133814 rs7986966 Offspring

chr13:26048387-26099109 10 50,723 dup 8 rs2133814 rs7986966 Offspring

chr13:26048387-26099109 10 50,723 dup 1 rs2133814 rs7986966 Mother

chr2:41082092-41099005 11 16,914 del 6 rs12474136 rs2373974 Offspring

chr2:41082092-41099005 11 16,914 del 8 rs12474136 rs2373974 Offspring

chr2:41082092-41099005 11 16,914 del 3 rs12474136 rs2373974 Offspring

chr2:41082092-41099005 11 16,914 del 2 rs12474136 rs2373974 Father

chr8:3753745-3763223 14 9,479 del 5 rs2930372 rs1464619 Offspring

chr8:3753745-3763223 14 9,479 del 7 rs2930372 rs1464619 Offspring

chr8:3753745-3763223 14 9,479 del 4 rs2930372 rs1464619 Offspring

chr8:3753745-3763223 14 9,479 del 6 rs2930372 rs1464619 Offspring

chr8:3753745-3763223 14 9,479 del 8 rs2930372 rs1464619 Offspring

chr8:3753745-3763223 14 9,479 del 3 rs2930372 rs1464619 Offspring

chr8:3753745-3763223 14 9,479 del 1 rs2930372 rs1464619 Mother

chrX:22775615-22833684 14 58,070 del 5 rs7889437 rs5970944 Offspring

chrX:22775615-22833684 14 58,070 del 7 rs7889437 rs5970944 Offspring

chrX:22775615-22833684 14 58,070 del 4 rs7889437 rs5970944 Offspring

chrX:22775615-22833684 14 58,070 del 3 rs7889437 rs5970944 Offspring

chrX:22775615-22833684 14 58,070 del 2 rs7889437 rs5970944 Father

The DNA sample for subject 9 is not available.
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syndrome protein family. The encoded protein forms a

multiprotein complex that links receptor kinases and

actin, and is involved in the transmission of signals

from tyrosine kinase receptors and small GTPases to

the actin cytoskeleton [37]. The WASF3 gene appears to

have the highest expression in brain [38]. A 9.5 kb dele-

tion on 8p23.2 in six children and the mother is located

in the intronic region of the CSMD1 (CUB and Sushi

multiple domains 1) gene. A previous report suggests

that CSMD1 may be an important regulator of comple-

ment activation and inflammation in the developing

central nervous system [39]. The other three transmitted

CNVs do not disrupt protein coding regions. However,

none of the five CNVs segregate with disease status

(Figure 1A), although we cannot exclude the possibility

that they may still increase the susceptibility to autism

with weak effects. On the other hand, we were not able

to identify any de-novo CNVs in this family with the

array platform that we used, further suggesting that

large de-novo CNVs are unlikely to be the major cause

of autism in this multiplex pedigree. Furthermore, we

stress that a de-novo CNV is not by any means both

necessary and sufficient to cause a disease in any par-

ticular individual, as such CNVs have variable expressi-

vity and they are moderated by the genetic background

and the environment in each particular family.

Whole-genome sequencing identifies a prioritized list of

candidate genes

We selected two probands in the family for next-

generation whole-genome sequencing by Complete

Genomics (CG) with over 50X coverage. In total, we

identified 3,811,318 variants (including 3,396,697 SNPs)

in proband 1 (ID: 10) and 3,767,904 variants (including

3,365,158 SNPs) in proband 2 (ID: 8), respectively

(Additional file 1: Table S1). We next compared these

variants to those generated from the Illumina SNP ar-

rays: the concordance rates for proband 1 and 2 were

99.3% and 99.2%, respectively, suggesting the high qua-

lity of the sequence data. These high rates of concor-

dance were similar to other published studies using the

CG platform [28,40,41].

Given the availability of sequence data, we next ex-

plored two methods to generate CNV calls and validate

calls from SNP arrays. We first converted the alignment

files provided by CG into BAM files, and generated

CNV calls using the ERDS software [31]. The CNV calls

from SNP arrays can be validated in sequence data, with

potentially higher resolution: for example, the boundar-

ies for 1q31.1 deletion (285 kb on SNP array) and 13q12

duplication (51 kb on SNP array) on sample 10 were re-

fined to be chr1: 193574801–193871200 (296kb) and

chr13: 26049001–26110000 (61kb), respectively. The list

of highly confident CNV calls shared by the two

probands is given in Additional file 1: Table S2. Next, we

developed a custom pipeline (PennCNV-Seq) to convert

BAM files into quantitative measures as ‘sequence count’

and ‘B Allele Frequency’, similar to measures on SNP ar-

rays. The presence (Figure 1B,C) or absence (Figure 1D,E)

of CNVs in the two probands can be visually validated

by these two quantitative measures, but the data appear

to be extremely noisy, highlighting the challenge to gen-

erate reliable CNV calls from whole-genome sequencing

data.

To identify potentially deleterious mutations from

both probands, we next performed variant annotation

and prioritization using the ANNOVAR software [32].

Our goal is to identify a list of variants/genes that are

likely to be disease causal, and then assess the variant

transmission patterns across the pedigree. We used a

custom ‘variants reduction’ pipeline on these two ge-

nomes, which is composed of a series of procedures

(Figure 2). For example, these include removing variants

observed in several public databases that compile variant

frequency information from large-scale sequencing stud-

ies. Similar to a previous study [42], we emphasize here

that dbSNP is not used in the filtering procedure, since

this database does not contain allele frequency informa-

tion for the vast majority of SNPs and some disease

causal variants may be present in dbSNP. About 500 var-

iants were prioritized to be potentially deleterious using

this pipeline in each proband. We next imposed a reces-

sive model, requiring that each gene must contain two

deleterious mutations (homozygous or compound het-

erozygous) to be declared as a putative contributory

gene. We implemented a recessive model, because the

parents are both unaffected and the phenotype distribu-

tion in the siblings is consistent with a recessive model,

with 2/8 (25%) of the children being affected. This ana-

lysis resulted in 22 and 23 candidate genes in the two

children with autism, respectively. Seven of these genes

are shared by the two siblings, closely matching the ex-

pectation that 25% of genomic region is identical be-

tween siblings (Figure 2).

Among these candidate genes, FLG (filaggrin) encode

an intermediate filament-associated protein that aggre-

gates keratin intermediate filaments in mammalian epi-

dermis [43]. Mutations in this gene are known to cause

ichthyosis vulgaris and atopic eczema [44,45]. TCHH

(trichohyalin) encodes a protein that forms multiple

complex cross-links with itself and with other structural

proteins, to confer mechanical strength to the hair fol-

licle inner root sheath and to other toughened epithelial

tissues [46]. NOTCH2 (neurogenic locus notch homolog

protein 2) encodes a single pass transmembrane protein

belonging to an evolutionarily conserved NOTCH

receptor family. Mutations in NOTCH2 have been asso-

ciated with several developmental diseases. NOTCH2
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mutations are found in about 1% of the cases of Alagille

syndrome [47], a severe developmental disorder defined

clinically by hepatic bile duct paucity and cholestasis in

association with cardiac, skeletal, and ophthalmologic

manifestations. Mutations in NOTCH2 can also cause

the Hajdu-Cheney syndrome [48], a disorder of severe

and progressive bone loss. Additionally, truncating mu-

tations in the last exon of NOTCH2 can cause a rare

skeletal disorder with osteoporosis [49]. TCHHL1

(trichohyalin-like 1) has unknown function, but it shared

high sequence similarity with TCHH. EMG1 (Essential

for Mitotic Growth 1) encodes an essential, conserved

eukaryotic protein involved in ribosome biogenesis [50].

Mutations in EMG1 have been previously associated

with Bowen-Conradi syndrome, a lethal autosomal re-

cessive disorder [51]. PCNT (pericentrin) encodes a pro-

tein that is expressed in the centrosome and is an

integral component of the pericentriolar material [52].

Mutations in this gene can cause primordial dwarfism

[53]. HRNR (hornerin) encodes a component of the epi-

dermal cornified cell envelopes [54], and this gene has

been linked with atopic dermatitis (AD) susceptibility in

a genome-wide association study [55]. None of these

genes are well recognized candidate genes previously as-

sociated with autism; however, this is not surprising

given some predictions that perhaps approximately

1,000 genes will contribute in some way to the autism

spectrum disorders [18-21,24,56].

Shared haplotype analysis trims down candidate genes

Given the availability of whole-genome SNP genotype

data, we next performed haplotype analysis on the pedi-

gree, to assess the utility of using allele sharing informa-

tion to reduce candidate genes/regions. The goal in this

analysis is to identify regions that have IBD (identity-by-

descent) =2 in the two affected children, that is, genomic

regions that are identically inherited from parents be-

tween the two affected children. In theory, only 25% of

the genome should have IDB = 2 between the two pro-

bands. Using SNP genotype data, we identified 126 gen-

omic regions that fit this criterion, with a total size of

593 Mb. Furthermore, assuming that regions with IBD =

2 have high penetrance for autism and are far less likely

to be observed in unaffected siblings, we identified a

subset of genomic regions that have IBD = 0 or IBD = 1

between each proband and all other unaffected siblings.

This procedure further reduced candidate regions to 27

regions totaling 115 Mb (Table 2). However, we

recognize that the latter hypothesis is likely too restrict-

ive, as complex diseases such as autism may behave in

polygenic fashion [57,58], that is, true disease causal

genes can still be present in IBD = 2 regions in

Figure 2 Illustration of the variants reduction procedure on two probands with autism in the pedigree. Applying a recessive model of

disease inheritance, we identified 22 and 23 candidate genes in the two probands, including seven shared genes.
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unaffected siblings without manifesting disease pheno-

types. This analysis should therefore be regarded as an

exploratory analysis to reduce the number of candidate

genes to be assessed.

With the above analysis, we found that NOTCH2

(neurogenic locus notch homolog protein 2) is the only

gene among the seven candidates that fall within the 27

candidate regions. Sanger sequencing confirmed that the

two probands share a R2047W mutation in exon 34 and

D1327G in exon 24 of NOTCH2. However, while

R2047W is present in the father, both parents appear to

carry the D1327G mutation. Additional sequencing re-

vealed that both subject 4 and subject 5 also carry the

two variants. Further analysis showed that the D1327G

mutation has already been documented in dbSNP

(rs61752484), and it has allele frequency of 0.27% and

0.47% in 1000 Genomes Project and NHLBI-ESP 5400

exomes, respectively. It was not predicted to be deleteri-

ous by SIFT (score = 0.4) [59] and PolyPhen (score =

0.07) [60]. Therefore, D1327G does not represent a vari-

ant that is private or deleterious to the family.

Alternative approaches to assess shared candidate

variants

We also attempted a different analytical strategy, consider-

ing that the analytical procedures described above make

strong assumptions on disease mode of inheritance (reces-

sive disease) and the extent of haplotype sharing (IBD = 2

between probands and IBD <2 between probands and un-

affected siblings). Instead, prior to implementing the reces-

sive model of inheritance in the last step of Figure 2, we

were left with a large collection of rare variants (approxi-

mately 500 in each proband) that may be responsible for

the autistic phenotype observed in two members of the

Table 2 Genomic regions where the two probands have identical by descent (IBD) of 2, but have IBD of 0 or 1 with all

other five unaffected siblings

Chromosome Start End #SNP Length Start SNP End SNP

1 24,685,742 25,641,524 174 955,783 rs195704 rs10903129

1 111,171,895 111,330,302 39 158,408 rs343769 rs947633

1 111,345,660 118,691,338 1,454 7,345,679 rs12038954 rs7535961

1 118,704,719 143,649,677 333 24,944,959 rs10923556 rs2500347

1 144,148,243 144,975,558 40 827,316 rs2236566 rs12122100

1 156,202,557 165,715,016 2,338 9,512,460 rs16839492 rs7518703

1 201,467,879 204,068,495 606 2,600,617 rs6672661 rs1361754

1 204,074,127 214,016,229 2,022 9,942,103 rs954206 rs7549052

2 143,712,980 143,772,718 16 59,739 rs4371294 rs12328672

3 71,274,040 71,332,365 26 58,326 rs4677532 rs7374975

3 188,567,203 189,810,377 350 1,243,175 rs6797770 rs3732909

3 189,812,552 191,786,499 536 1,973,948 rs9824282 rs6444435

5 179,518,398 179,998,061 106 479,664 rs6897922 rs4700745

5 180,003,882 180,623,543 95 619,662 rs11960332 rs1279912

8 13,440,994 15,451,587 1,070 2,010,594 rs1160220 rs919401

8 15,464,497 17,859,195 885 2,394,699 rs12547525 rs208753

8 17,881,369 18,740,036 391 858,668 rs10503606 rs6982585

10 53,836,193 58,170,063 976 4,333,871 rs11001909 rs10825864

10 58,698,423 63,455,095 941 4,756,673 rs2393230 rs10821944

10 109,396,522 114,694,771 1,012 5,298,250 rs11193576 rs17746916

12 14,293,625 17,541,979 550 3,248,355 rs17834211 rs1553115

12 17,545,101 28,831,294 2,813 11,286,194 rs10840729 rs7311230

12 130,049,943 132,288,869 432 2,238,927 rs7135850 rs7975069

13 59,004,926 61,882,091 525 2,877,166 rs1622710 rs11838572

13 62,305,059 66,409,431 620 4,104,373 rs9598515 rs9540948

13 66,611,634 73,911,046 1,636 7,299,413 rs7336017 rs9573384

13 73,937,508 77,639,621 839 3,702,114 rs9318278 rs2254690
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family. Two hundred of these variants are shared by the

two probands, and we directly assessed the likelihood that

each variant would be deleterious. Our assumption was that

one or several highly penetrant variants in this list could

contribute to the pathogenesis of autism in a dominant

fashion, and that these variants will not be 100% penetrant

so they could still be present in the parents or other un-

affected siblings as well.

We submitted this list of variants to wANNOVAR

[33], which is a web server that provides a simple and

intuitive interface to help users determine the func-

tional significance of variants from high-throughput se-

quencing data. In addition to allele frequency based

filtering to detect rare variants, the wANNOVAR also

provides functional prediction scores such as SIFT

scores [59], PolyPhen scores [60], PhyloP scores [61],

and GERP++ scores [34], to help users determine the

functional significance of specific genetic variants. We

identified 59 variants that were concordantly pre-

dicted as deleterious by SIFT (score <0.05), PolyPhen

(score >0.8), and GERP++ (score >2) or without predic-

tions. These include three splicing variants, six frame-

shift mutations, and 50 non-synonymous variants

(Additional file 1: Table S3).

We next attempted to further trim down this list of

candidate genes, by using prior biological knowledge.

Manual examination of the list of genes did not identify

any candidate genes that were previously reported in

genetic association studies for autism, or were suspected

candidate genes for autism. Therefore, we used the DA-

VID server [62] for functional annotation of these genes,

including gene ontology assignment, SwissPro keywords,

BioCarta/KEGG pathways, and OMIM association.

Among this list of genes, PTK2B, ANK3, MYO7A are in-

volved in neuron differentiation and development based

on Gene Ontology. DCTN1 is associated with neur-

opathy, amyotrophic lateral sclerosis and Perry syn-

drome based on OMIM. MYO7A is associated with

deafness and other neurosensory disorders based on

OMIM. Among this prioritized list of genes, the most

interesting one is ANK3 (Ankyrin 3). Several genome-

wide association studies for bipolar disorder (BD) have

found a strong association of the ANK3 gene [63,64].

More recently, missense mutations in ANK3 were identi-

fied in four out of 67 patients with ASDs in an exome

and candidate gene sequencing study [65], and have

been identified in another study that sequenced balanced

chromosomal abnormalities in patients with autism or

related neurodevelopmental disorders [23]. The ANK3

protein contains two well recognized domains: Ankyrin

repeat-containing domain and DEATH domain. The

c.11068G > A (p.G3690R) mutation observed in our

study is located at the C-terminal end of this large pro-

tein, but it does not disrupt either domain. Nevertheless,

the variant is located in a large genomic region that is

highly conserved across 28 vertebrate species (Figure 3A),

suggesting strong evolutionary constraint on the variant.

Among the unaffected siblings, only subject 6 shares this

variant (Figure 3B).

Extending to non-coding variants

Our analysis above made the strong assumption that all

autism contributory variants in this family might be lo-

cated in protein coding regions. However, recent large-

scale studies such as ENCODE [66] and Roadmap

Epigenomics [67] have reinforced an important role for

non-coding variants in regulating gene expression and

function genome-wide, suggesting that some non-coding

variants may also cause diseases with major effects [68].

Compared to previously published autism sequencing

studies, one unique aspect of our study is the availability

of whole-genome data, so we extended our analysis to

non-coding variants. Given that >99% of the variants in

whole-genome sequence data are non-coding and that

functional prediction algorithms for non-coding variants

are far less well developed than coding variants, the data

analysis is expected to be much more challenging.

Nevertheless, we used an analytical procedure aimed to

significantly reduce the candidate list and focus on vari-

ants that are most likely to be relevant to autism patho-

genesis. For each proband, similar to above, we first

removed variants that are found in three public databases

(1000 Genomes Projects, NHLBI-ESP5400, CG46) with

MAF >1%. This resulted in a reduced list of 46,224 non-

coding rare variants that are shared between the two pro-

bands, which is still more than even the whole-exome

variants without any filtering. Next, we attempted to use

functional prediction approaches that leverage computa-

tional and experimental evidence to prioritize non-

coding variants. From the candidate pool, we identified a

list of 1,096 variants that are located within GERP++

conserved elements and have GERP++ scores [34] >2,

which represent genomic sites that are under strong se-

lective constraint by computational means. Furthermore,

we used the ENCODE experimental data to retrieve vari-

ants that are located in ‘active promoters’ or ‘strong en-

hancers’ as predicted by chromHMM [35]. Previous

studies demonstrated that disease-associated SNPs are

significantly more likely to coincide with the predicted

‘strong enhancers’ [35]. In total, we identified 14 variants

located in active promoters and 19 variants located in

strong enhancers (Additional file 1: Table S4). Two ex-

amples are illustrated (Figure 4). COQ5 encodes a

methyltransferase based on studies in yeast [69]. The

intergenic variant upstream of COQ5 is also highly con-

served, and is located within ENCODE H3K4Me1 (en-

hancer/promoter-associated) and H3K4Me3 (promoter-

associated) peaks and DNase I hypersensitivity site
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(Figure 4A). SMG6 encodes a protein that participates in

the nonsense-mediated mRNA decay (NMD) pathway

[70], and it was recently identified as an autism candidate

gene by sequencing balanced chromosomal abnormalities

in patients with autism or related neurodevelopmental

disorders [23]. A prioritized intronic variant is located in

a region of SMG6 that is predicted to be a ‘strong enhan-

cer’, is highly conserved across 28 vertebrate species, and

is located in ENCODE H3K4Me1 (enhancer/promoter-

associated) peaks and DNase I hypersensitivity sites

(Figure 4B).

Discussion
In this study, we performed a pilot sequencing analysis

aimed at identifying potential genetic risk factors for aut-

ism in a large pedigree, focusing on inherited mutations.

We attempted multiple complementary analytical ap-

proaches, each of which identified one to a few candi-

date genes. We were not able to confirm specific

disease-causing mutations with certainty, but we uncov-

ered multiple rare mutations unique to the family, as

well as several candidate genes that harbor suspected

deleterious coding or non-coding mutations. Among

them, based on prior literature, ANK3 is a highly plaus-

ible candidate gene that may increase the susceptibility

to ASDs in this family. Given that autism is a complex

neuropsychiatric disease, it is likely that multiple con-

tributing variants in the family may increase susceptibil-

ity; therefore, even if a specific candidate gene does

contribute to disease risk, we caution that a single candi-

date gene may not be entirely responsible (that is, neces-

sary and sufficient) for the genetic risk of autism in this

pedigree. Although our findings are restricted to this

specific family, these new candidates can certainly be

evaluated in future sequencing studies to establish their

true relevance to autism susceptibility.

We applied a whole genome sequencing strategy to reveal

specific genetic mutations that may confer susceptibility to

ASDs in one single family, and these results can also be

compared to exome sequencing studies on schizophrenia,

ADHD, and other neurodevelopmental disorders. A recent

study revealed that de-novo mutation rate might play a

major role in schizophrenia, and a large excess of non-

synonymous changes were identified by whole exome

Figure 3 Illustration of the non-synonymous mutation in ANK3. (A) A UCSC genome browser shot of the ANK3 gene and the location of the

mutation, together with sequence conservation patterns across 28 vertebrate species. (B) Validation of the mutation by Sanger sequencing in the

family. The primers used are CTTCATGGTCATGGTGGATG (forward) and AGGGGGAAGGGGATAAAAGT (reverse).
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sequencing from 53 sporadic cases, 22 unaffected controls,

and their parents [71]. In another study on schizophrenia,

four of the 15 identified de-novo mutations in eight pro-

bands were nonsense mutations [72]. In a previous small-

scale exome sequencing study screening attention deficit/

hyperactivity disorder (ADHD) genes on a multiplex pedi-

gree, multiple rare coding variants were identified but were

not prioritized based on bioinformatics predictions [42]. In

comparison, our study specifically identified rare and

family-specific variants rather than de-novomutations.

We initially focused on inherited mutations that are

likely to be recessive, which shares some similarity with

a very recent exome sequencing study on ASD families

enriched for inherited causes due to consanguinity [24].

Other studies have focused on sporadic mutations in

families where the parents have been characterized as

most likely ‘unaffected’ with autism [17-22], and several

observations support the hypothesis that the genetic

basis for ASDs in sporadic cases may be different from

that seen in families with multiple affected individuals,

with some of the former possibly more likely to result

from de-novo mutation events rather than inherited vari-

ants. For an approach complementary to ongoing exome

sequencing studies aiming to detect de-novo mutations

in ASDs [17-22], we specifically selected a multiplex

family to test our ability to find inherited mutations that

increase risk for ASDs.

In addition to finding inherited mutations, one unique

aspect of our study is the use of whole-genome sequence

data, which enabled us to perform exploratory analysis

on non-coding variants. Given the far larger number of

candidate non-coding variants than coding variants, we

had to apply highly stringent filtering criteria to focus on

those that are most likely to be functionally relevant.

These include the use of bioinformatics predictions from

evolutionary constraint [34], as well as experimental evi-

dence from the ENCODE project [66]. As our know-

ledge and bioinformatics approaches for non-coding

variants may improve in the future, we may be able to

better interrogate the sequencing data to identify disease

causal non-coding variants.

We also need to emphasize that previous studies all

used the Illumina platform, yet our study used the CG

platform, which represents a different type of sequencing

technology [28] and generates vastly different types of

output files for downstream analysis. As the Illumina

platform uses open data formats, a variety of academic

and commercial tools have been developed to analyze

Figure 4 UCSC genome browser shots of prioritized non-coding variants, demonstrating the sequence conservation levels and the

predicted functionality in ENCODE lymphoblastoid cell lines. The ‘prioritized variants’ track shows the location of the prioritized non-coding

variants shared by both probands. (A) A prioritized variant is located in a predicted ‘active promoter’ for COQ5. (B) A prioritized variant is located

in the intronic region of SMG6, and is predicted to be a ‘strong enhancer’.
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data from the Illumina sequencers and improve variant

calls; in comparison, the CG platform takes a propri-

etary, ‘black-box’ approach, so that researchers generally

have to rely on variant calls and associated quality scores

provided by CG. A recent study has comprehensively

compared these two platforms and identified that 12% of

the called variants are discordant between platforms, yet

>60% of these discordant variants were indeed present

in the genome based on Sanger validation [40]. Another

recently published study also compared data from the

1000 Genomes Project and Complete Genomics, and

demonstrated that 19% of the single nucleotide variants

(SNVs) reported from common genomes are unique to

one dataset [73]. Therefore, current sequencing studies

on neuropsychiatric diseases, including ours, may all suf-

fer significantly from false-negative variant calls, and

may miss a portion of disease causal variants. Combin-

ing data from orthogonal platforms may partially reduce

this problem, although this will result in higher sequen-

cing and analytical cost.

In the current study, we first made the assumption

that the ASD in the pedigree might be caused by a just a

handful of mutations with high penetrance, and under

such a model we were able to identify a list of possible

such candidate genes. However, in practice, there may

be a spectrum of diseases manifesting in each individual,

with an as-yet-unknown balance of oligogenic and poly-

genic modes of inheritance. So, the approaches that we

used were somewhat ad hoc, and we were unable to gen-

erate statistical support for these candidate genes. In-

deed, the appropriate statistical threshold to determine

functional relevance, in the context of prior biological

knowledge, is not well developed. In summary, our study

represents one of the first examples demonstrating the

feasibility of whole genome sequencing for familial sam-

ples and analyzing inherited mutations on ASDs. Ultim-

ately, we believe that studies focusing on de-novo or

inherited mutations can complement each other, and re-

veal a more comprehensive picture of susceptibility to

ASDs, once sufficient sample sizes have been reached by

the community.

Conclusion
In conclusion, while whole-genome sequencing is a

powerful discovery tool, our results demonstrate the

complexity of whole-genome analysis when focusing on

individual families. Although we were able to generate a

list of candidate genes through several approaches, we

caution that extensive functional studies are needed to

identify any disease causal variants with certainty. Des-

pite that, our analysis provides a prioritized shortlist for

further association and validation studies and reflects

upon the added value with large family pedigrees.

Additional file

Additional file 1: Table S1. Summary of variant calls generated from

whole-genome sequence data on two probands. Table S2. A list of

highly confident CNV calls generated by ERDS and shared by two

probands. Conf refers to ‘confidence score’, and CN refers to ‘copy

number’. Table S3. A list of prioritized exonic/splicing variants that are

shared between two probands and are predicted to be deleterious.

Table S4. A list of prioritized non-coding variants that are shared

between the two probands.
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