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Whole-Genome Sequencing of Kaposi’s Sarcoma-Associated
Herpesvirus from Zambian Kaposi’s Sarcoma Biopsy Specimens
Reveals Unique Viral Diversity

Landon N. Olp,a Adrien Jeanniard,a Clemence Marimo,b John T. West,a Charles Wooda

Nebraska Center for Virology and School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USAa; Department of Pathology and Microbiology,

University of Zambia School of Medicine, Lusaka, Zambiab

ABSTRACT

Kaposi’s sarcoma-associated herpesvirus (KSHV) is the etiological agent for Kaposi’s sarcoma (KS). Both KSHV and KS are en-

demic in sub-Saharan Africa where approximately 84% of global KS cases occur. Nevertheless, whole-genome sequencing of

KSHV has only been completed using isolates from Western countries—where KS is not endemic. The lack of whole-genome

KSHV sequence data from the most clinically important geographical region, sub-Saharan Africa, represents an important gap

since it remains unclear whether genomic diversity has a role on KSHV pathogenesis. We hypothesized that distinct KSHV geno-

types might be present in sub-Saharan Africa compared to Western countries. Using a KSHV-targeted enrichment protocol fol-

lowed by Illumina deep-sequencing, we generated and analyzed 16 unique Zambian, KS-derived, KSHV genomes. We enriched

KSHV DNA over cellular DNA 1,851 to 18,235-fold. Enrichment provided coverage levels up to 24,740-fold; therefore, support-

ing highly confident polymorphism analysis. Multiple alignment of the 16 newly sequenced KSHV genomes showed low level

variability across the entire central conserved region. This variability resulted in distinct phylogenetic clustering between Zam-

bian KSHV genomic sequences and those derived from Western countries. Importantly, the phylogenetic segregation of Zam-

bian from Western sequences occurred irrespective of inclusion of the highly variable genes K1 and K15. We also show that four

genes within the more conserved region of the KSHV genome contained polymorphisms that partially, but not fully, contributed

to the unique Zambian KSHV whole-genome phylogenetic structure. Taken together, our data suggest that the whole KSHV ge-

nome should be taken into consideration for accurate viral characterization.

IMPORTANCE

Our results represent the largest number of KSHV whole-genomic sequences published to date and the first time that multiple

genomes have been sequenced from sub-Saharan Africa, a geographic area where KS is highly endemic. Based on our new se-

quence data, it is apparent that whole-genome KSHV diversity is greater than previously appreciated and differential phyloge-

netic clustering exists between viral genomes of Zambia and Western countries. Furthermore, individual genes may be insuffi-

cient for KSHV genetic characterization. Continued investigation of the KSHV genetic landscape is necessary in order to

effectively understand the role of viral evolution and sequence diversity on KSHV gene functions and pathogenesis.

Kaposi’s sarcoma-associated herpesvirus (KSHV), or human

herpesvirus 8 (HHV-8), is the etiologic agent for all forms of

Kaposi’s sarcoma (KS) (1). KS manifests as an endothelial tumor

primarily on the skin but can also involve mucosal membranes

and visceral organs. Among the HIV-uninfected population, KS is

rare worldwide; however, HIV infection and immunosuppression

greatly increase the risk of developing KS (2). In sub-Saharan Af-

rica, HIV is epidemic, and KSHV is endemic. Accordingly, KS is

one of the most common cancers in sub-Saharan Africa, and this

region accounts for 84% of global KS cases (3). Two other HIV-

associated lymphoproliferative malignancies (primary effusion

lymphoma [PEL] and multicentric Castleman’s disease), as well as

the KSHV inflammatory cytokine syndrome, are also associated

with KSHV infection (4–6). However, the role of KSHV genetic

variation on pathogenesis and disease presentation is unknown.

Therefore, as a first step, it is necessary to analyze KSHV genetic

variation in sub-Saharan Africa at the whole-genome level.

KSHV is a human gammaherpesvirus with a largely conserved

double-stranded DNA genome of approximately 140 kb. How-

ever, the extreme 5= and 3= termini are disproportionately variable

compared to the central region of the KSHV genome, and both

have been used to categorize KSHV into different genotypes (7, 8)

The 5= end encodes the K1 gene and can be separated into five

distinct genotypes (A, B, C, D, and E), differing by up to 30% at the

amino acid level. At the nucleotide level, 85% of polymorphisms

within K1 are nonsynonymous, suggesting that strong selective

pressure acts on the gene (7). The 3= terminus of the KSHV ge-

nome encodes the K15 gene. Sequence analysis of K15 supports

additional categorization of KSHV sequences into P, M, or N al-
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leles, with up to 70% interallele divergence at the amino acid level
(8, 9). In addition, nine discrete loci (�5.6% of the genome)
within the central, more conserved, region of the KSHV genome
also contain polymorphisms, albeit at a much lower rate. To-
gether, 12 KSHV genotypes have been proposed based on these 11
discrete loci (9). However, the remaining KSHV genes, represent-
ing more than 90% of the genome, have not been used to further
characterize KSHV genetic structure and diversity due to a lack of
high coverage, whole-genome, viral sequences.

Presently, only six KSHV whole-genome sequences are avail-
able. The first complete, and most extensively annotated genome,
GK18, was generated from a classic KS lesion from a Greek patient
(AF148805.2) (10). The nearly complete, “KS” genome was se-
quenced using shotgun sequencing of fragments obtained after
Sau3A digestion of DNA from AIDS-associated KS biopsy speci-
mens (U93872.2) (11). In addition, three genomic KSHV se-
quences were generated from KSHV-infected PEL cell lines, BC-1
(U75698.1), JSC-1 (GQ994935.1), and BCBL-1 (HQ404500.1)
(12–14). The sixth and most recently sequenced KSHV genome,
DG-1 (JQ619843.1), was the first to be completed using Illumina
next-generation sequencing technology and the first obtained
from virus in patient plasma (15). Despite these significant efforts,
all current genomic KSHV sequences were generated from sam-
ples obtained in Western countries where KSHV is not endemic.
The lack of whole-genome KSHV sequence data from sub-Saha-
ran Africa—the geographical region most relevant to KSHV infec-
tion—represents an important gap in genetic characterization for
this pathogen since it remains unclear whether a correlation exists
between whole-genome sequence diversity and KSHV pathogen-
esis. A recent study of Epstein-Barr virus (EBV) whole genomes
revealed significant levels of sequence diversity in isolates from
nasopharyngeal carcinoma (NPC) clinical samples in a region
with high NPC prevalence (16). This further suggests that a thor-
ough characterization of KSHV whole-genomes needs to be con-
ducted—including isolates from sub-Saharan Africa—as a first
step to investigate possible relationships between genomic diver-
sity and pathogenesis.

In the present study, we sought to test the hypothesis that dis-
tinct whole-genome KSHV variants are present in sub-Saharan
Africa compared to Western countries. We also investigated
whether diversity within the central region genes may contribute
to viral characterization. To this end, we generated and analyzed
KSHV whole-genome sequences derived from KS skin lesions of
16 different Zambian patients. Using a biotinylated RNA-library
as bait, KSHV sequences were preferentially enriched over human
genomic DNA present in tumor samples and the KSHV-enriched
DNA was sequenced using Illumina deep-sequencing technology.
Polymorphism and phylogenetic analyses were then performed to
measure KSHV genome-wide diversity. Our results represent the
largest number of KSHV whole-genomic sequences published to
date and the first time that multiple genomes have been sequenced
from sub-Saharan Africa, a geographic area where KS is highly
endemic.

MATERIALS AND METHODS

KS sample collection. KS biopsy specimens were obtained from patients
upon disease presentation at the skin clinic of the University of Zambia,
University Teaching Hospital. The biopsy specimens were collected as
part of KS diagnosis, and residual tissue samples were used for the present
study. All patients provided written, informed consent to participate in

the study. Collection of biopsy specimens was approved by the Institu-
tional Review Board of the University of Nebraska and the University of
Zambia Biomedical Research Ethics Committee.

Sample DNA preparation. Total DNA was extracted from frozen KS
tumor biopsy specimens using the Gentra Puregene tissue kit according to
the manufacturer’s protocol (Qiagen). Purified DNA samples were ana-
lyzed via Qubit broad-range dsDNA kit, a NanoDrop spectrometer, and
agarose gel electrophoresis to measure the concentration, protein con-
tamination, and level of degradation. All samples were of high quality and
usable for downstream applications.

KSHV viral load. The number of KSHV genomes in each KS biopsy
sample was quantified before enrichment using the Bio-Rad QX100 drop-
let digital PCR (ddPCR) system. Human �-globin and KSHV ORF26 were
amplified using primers and probes described previously (17). Each 20 �l
of ddPCR reaction mixture contained 1� ddPCR Supermix (Bio-Rad),
900 nM concentrations of forward and reverse primer, 250 nM TaqMan
probe, and 6 or 60 ng of genomic DNA. Droplet generation, amplification,
and reading were carried out according to the manufacturer’s protocol.
Amplification conditions for �-globin were as follows: 95°C for 10 min, 40
cycles of 94°C for 30 s, and 60°C for 60 s, and 98°C for 10 min. KSHV
ORF26 amplification conditions were similar with the exception of a 55°C
elongation temperature. All samples were run in triplicate and the mean
KSHV copy number per cellular equivalent was calculated.

Library preparation, target enrichment, and Illumina sequencing.

Sample library preparation and target enrichment were performed using
the SureSelectXT Target Enrichment System (Agilent) according to the
manufacturer’s Illumina paired-end sequencing library protocol. Briefly,
120-bp overlapping RNA baits were custom designed at 5� coverage in
conjunction with Agilent SureDesign based on the KSHV GK18 sequence
(AF148805.2). Baits with high homology to human DNA were excluded
from the RNA library. For each sample, 3 �g of purified KS tissue biopsy
DNA was sheared and Illumina specific adapters were added. The DNA-
libraries were then hybridized for KSHV-specific enrichment, index
tagged, and pooled at equimolar amounts for sequencing. Next-genera-
tion sequencing was performed using an Illumina HiSeq with 100-bp
paired-end reads on two separate runs at the University of Nebraska DNA
Sequencing Core.

Guided assembly of KSHV genomes. Output reads from the Illumina
HiSeq 2500 were filtered using Trimmomatic (18). Reads were trimmed
on both on both 5= and 3= extremities using a quality (Q) threshold keep-
ing only bases with Q� � 30. All reads shorter than 101 bp were filtered
out, thus retaining only full-size reads of high quality. The data set was
controlled for quality using FastQC (http://www.bioinformatics.babraham
.ac.uk/projects/fastqc/), both before and after the filtering steps.

High quality paired-end reads were aligned to the KSHV genome
(GK18, accession number AF148805.2) using Bowtie2 version 2.2.1 (19).
First, reads were assembled one sample at a time using the Columbus
extension of Velvet 1.2.10 (20) and the corresponding initial alignment. A
k-mer size of 91 was found to produce the best results after multiple trials
of different values. Both average and minimum k-mer coverage were de-
termined on a sample-by-sample basis by first performing a “blank” as-
sembly with the “exp_cov” and “cov_cutoff” parameters set on “auto”
and then looking at the k-mer coverage of the largest contigs produced
matching the reference sequence. Afterward, the “cov_cutoff” parameter
was set on a tenth of the “exp_cov” value for the final Velvet assembly.
Next, a second assembly was produced for each sample using MIRA (21)
for correction purposes. The same reference sequence, mapping, and ac-
curate flags were described for Velvet assembly, and lossless digital nor-
malization (�ldn) was activated to reduce the data set to a memory-
manageable size.

Correction, scaffolding, and annotation. The viral contigs in both
assemblies were selected and ordered by aligning them to the reference
sequence using Mauve (22). We also manually merged neighbor contigs
in the Velvet assemblies exhibiting a 10- to 90-nucleotide overlap with
each other. For each sample, a multiple alignment comprising the GK18
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reference sequence, the Velvet assembly, and the MIRA assembly was
performed using Kalign2 (23). To generate the final sequences, conserved
regions between the Velvet and MIRA assemblies were accepted, and the
discrepancies were manually corrected by comparing the original read
alignments to input sequences. Gap regions were left as strings of NNNs
when none of the assemblies could resolve them. We then used Tablet (24)
and Jalview (25) for visualization of reads and genome alignment, respec-
tively.

After determining the final assembly, each new genome was anno-
tated. Given the close proximity to the KSHV reference sequence, the
annotation of each new genome was carried out by transferring the avail-
able KHSV annotation in GenBank using RATT (26). However, splicing
junctions were unsuccessfully transferred for the K8 and K15 genes. Man-
ual correction was therefore performed for both genes because the K8
exons/introns annotated in the GK18 GenBank entry do not accurately
reflect previously reported splicing (27), and the K15 gene features many
exons that RATT could not transfer.

Accession numbers. The final consensus sequence of each sample,
and its annotation, can be found at the following accession numbers:
KT271453 (ZM004), KT271454 (ZM027), KT271455 (ZM091),
KT271456 (ZM095), KT271457 (ZM102), KT271458 (ZM106),
KT271459 (ZM108), KT271460 (ZM114), KT271461 (ZM116),
KT271462 (ZM117), KT271463 (ZM118), KT271464 (ZM121),
KT271465 (ZM123), KT271466 (ZM124), KT271467 (ZM128), and
KT271468 (ZM130).

Comparative and phylogenetic sequence analysis. The assembled
KSHV genomes were aligned using Kalign2. The multiple alignment was
then used to generate whole-genome maximum-likelihood phylogenetic
trees using PhyML (28) with 1,000 bootstrap replicates, and the trees were
visualized using MEGA6 (29). Genome-wide mutations were visualized
using the mVista software (30), with a 100-bp scanning window. Multiple
amino acid alignments were generated for each KSHV gene and inspected
for high level of nonsynonymous mutations. Maximum likelihood phy-
logenetic trees were generated using PhyML and amino acid highlighter
plots were generated to visualize the specific mutations using the High-
lighter tool as part of the Los Alamos National Laboratory HIV sequence
database (www.hiv.lanl.gov). Reference sequences used for K1 genotyp-
ing were as follows: AF133038 (A1), AF130305 (A2), U86667 (A3),
AF133039 (A4), AF178823 (A5), AF133040 (B1), AY042947 (B2),
AY042941 (B3), DQ309754 (B4), AF133041 (C1), AF133042 (C3),
AF133043 (D1), AF133044 (D2), and AF220292 (E). The reference se-
quences used for K15 classification were AAD46505.1 (P) and
AAD45296.1 (M), as well as unpublished data from Gary Howard (N).

RESULTS

Summary of sequencing data. In the present study, we analyzed
the sequence diversity of KSHV whole genomes acquired from KS
skin biopsy specimens of 16 Zambian patients—11 males and 5
females. The clinical data collected for each patient are summa-
rized in Table 1. Total DNA was extracted from the biopsy samples
and KSHV burden in tumor tissue ranged from 0.21 to 17.16
copies per cell (Table 2). In order to efficiently sequence the KSHV
DNA, which was present as a small proportion of total tumor
DNA (0.0006 to 0.05%), we used a custom biotinylated RNA li-
brary (Agilent) to hybridize and selectively enrich the KSHV DNA
for sequencing with an Illumina HiSeq.

We first tested the efficiency of our whole protocol, from DNA
enrichment to genome sequencing, on three samples (ZM116,
ZM117, and ZM118). This process resulted in up to 12,107-fold
enrichment of KSHV DNA over cellular DNA with 62% of the
total sequence reads mapped to the KSHV reference sequence
(GK18). The GK18 sequence was selected because it is currently
the most comprehensively annotated KSHV sequence and also
served as the reference for generating the RNA bait library used in

the current study. After our initial results, we continued with the
remaining 13 samples in a second run of DNA enrichment and
deep sequencing. A total of 528,849,840 paired-end reads, 101 bp
long, were produced from both HiSeq runs with an average of
49% of the sequence reads mapped to KSHV. Together, we ob-
tained a mean enrichment of KSHV DNA over cellular DNA of
8,437-fold (range, 1,851- to 18,235-fold) (Table 2). Thus, we were
able to filter the data set at a high quality threshold and still main-
tain high depth of coverage (mean, 8,437-fold; range, 786- to
24,740-fold) (Table 2).

The assembly of each viral genome was conducted in a two-
step approach: first the sequence reads were assembled using Vel-
vet and the KSHV reference sequence; then, this initial assembly
was manually corrected with the help of a second assembly gener-
ated using MIRA. After manual fusion of contigs exhibiting large
overlaps in the initial Velvet assembly, each genome featured an
average of four contigs. This is consistent with the presence of
three major repeat regions in KHSV that were hard to resolve
using short-read sequencing technology alone. After manual cor-
rection with the MIRA assembly, we were able to reduce this value
to an average of two contigs per genome. All genomes were cor-
rectly sized with an average of 137 kb, corresponding to the size of
previously published KSHV genomes from Western sources.
Apart from the repeat regions, most genomes (12 of 16) had uni-
form read coverage. However, four genomes (ZM091, ZM095,
ZM116, and ZM124) showed a few regions with coverage of up to
three times the sample average. Nevertheless, these discrepancies
did not hinder the assembly process.

KSHV whole-genome variability analysis. The 16 newly as-
sembled and annotated KSHV genomic sequences, in addition to
the six previously sequenced KSHV genomes, were used for mul-
tiple alignment and analyzed phylogenetically. Gaps and/or re-
peated regions of each genome, including the reference sequence,
were masked. Figure 1 presents an unrooted maximum-likelihood
tree depicting the relative phylogenetic distance between samples.
Although the overall identity at the nucleotide level is very high
among the 22 genomes (see Fig. S1 in the supplemental material),
distinct phylogenetic clusters are evident. All previously published
KSHV genomes from Western countries clustered together, while
the isolates from Zambia appear to form two separate clusters and

TABLE 1 Clinical information for 16 KS patients

Patient Gender Age (yr) HIV status ART status

ZM004 F 35 	 	

ZM027 F 15 	 –

ZM091 M 30 	 	

ZM095 M 41 	 	

ZM102 F 45 	 NAa

ZM106 M 36 	 	

ZM108 M 33 	 	

ZM114 F 29 	 NA

ZM116 F 42 NA NA

ZM117 M 34 	 NA

ZM118 M 29 NA NA

ZM121 M 37 	 	

ZM123 M 30 	 	

ZM124 M 25 NA NA

ZM128 M 32 	 –

ZM130 M 33 	 –
a NA, not available.

Whole-Genome Sequencing of Zambian KSHV
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contain much more variability among isolates. Isolate ZM004 di-
verged substantially from all other sequences and therefore was
used to root subsequent whole-genome cladograms. The distinct
phylogenetic clusters with higher variability among Zambian iso-
lates can also be seen in the ZM004-rooted cladogram (Fig. 2A).

The K1 and K15 genes are known to vary greatly among KSHV
isolates and K1 subtypes are associated with specific geographical
regions. Therefore, we investigated whether variability in K1 or
K15 correlated with the KSHV whole-genome variability we de-
tected. To this end, we performed a multiple alignment of all 22

KSHV genomic sequences without the K1 or K15 genes and gen-
erated a ZM004-rooted cladogram. Despite removing the highly
variable genes, the topology of the phylogenetic tree remained
similar to that of the whole-genome KSHV cladogram (Fig. 2A
and B). The only difference was a slight restructuring among
the Western isolates, most likely because the BC-1 isolate con-
tains the K15 M allele. Moreover, when nucleotide phyloge-
netic trees were generated from the K1 and K15 sequences, the
tree topology and sample clustering did not correlate with the
whole-genome phylogenetic analysis (Fig. 2C and D). To-

TABLE 2 Summary of data from sequencing analysis

Patient

KHSV genome

size (bp)

Depth of

coverage

(fold)

Total no. of

mutations

No.
No. of KSHV

copies per

cell in biopsy

sample DNA

KSHV/human DNA ratio

(%)

Fold increaseInsertions Deletions Substitutions

Before

enrichment

After

enrichment

ZM004 136,691 4,507 1,344 63 58 1,223 1.43 0.0038 38.43 10,184

ZM027 137,054 9,160 1,289 63 61 1,165 5.51 0.0146 66.50 4,546

ZM091 136,919 4,448 1,063 53 61 949 0.76 0.0020 37.03 18,235

ZM095 137,610 9,886 1,714 104 104 1,506 17.16 0.0456 84.36 1,851

ZM102 136,629 8,228 1,214 53 68 1,093 3.84 0.0102 59.51 5,830

ZM106 137,026 7,570 1,032 67 66 899 9.68 0.0257 67.16 2,611

ZM108 136,568 7,758 1,196 62 63 1,071 2.72 0.0072 53.72 7,438

ZM114 137,071 3,861 1,237 61 42 1,134 1.40 0.0037 40.40 10,841

ZM116 136,969 24,740 862 39 39 784 1.95 0.0052 62.75 12,107

ZM117 137,143 15,517 1,183 55 61 1,067 2.07 0.0055 57.85 10,541

ZM118 137,429 19,961 859 58 18 783 NDa ND 45.21 ND

ZM121 137,279 1,023 1,250 119 63 1,068 ND ND 8.52 ND

ZM123 136,262 786 1,404 423 67 914 0.21 0.0006 7.08 12,768

ZM124 137,457 6,209 911 43 58 810 ND ND 73.84 ND

ZM128 137,272 6,740 1,858 200 89 1,569 2.75 0.0073 51.64 7,076

ZM130 136,908 4,603 1,259 54 72 1,133 1.14 0.0030 32.74 10,822
a ND, not determined.

FIG 1 Unrooted nucleotide maximum-likelihood phylogenetic tree of six previously published KSHV whole-genome sequences and sixteen new KSHV
whole-genome sequences from Zambian KS biopsy specimens. The phylogenetic tree was generated using PhyML with 1,000 bootstrap replicates and visualized
using MEGA6.
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FIG 2 Maximum-likelihood phylogenetic tree analysis of 22 KSHV whole genomes and the nucleotide sequences of K1 and K15 genes. All phylogenetic trees
were generated using PhyML with 1,000 bootstrap replicates and visualized using MEGA6. (A) KSHV whole-genome cladogram rooted on sample ZM004. (B)
ZM004-rooted cladogram of the KSHV whole genome with the K1 and K15 gene sequences removed. (C and D) Midpoint-rooted cladogram of KSHV K1 (C)
and K15 (D) sequences from 22 KSHV whole-genome sequences.
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gether, this indicates that the phylogenetic clustering detected
at the whole-genome level is a function of variability in the
central region of the KSHV genome.

We then sought to investigate whether variability in the central
region of the Zambian KSHV isolates could be accurately charac-
terized by individual genes or if consideration of the whole region
is required. The distribution of nucleotide variability among the
central region of all 22 KSHV genomes compared to GK18 was
visualized using mVista (Fig. 3). We did not find any areas of high
nucleotide variation, other than the K1 and K15 genes; rather, we
detected low-level variation throughout the central region when
the Zambian isolates were compared to GK18 (Fig. 3).

The total number of mutations compared to the GK18 se-
quence, including deletions, insertions, and substitutions, for
each of the 16 Zambian KSHV genomes is summarized in Table 2.
We did not identify any correlations between the Zambian KSHV
isolate sequence variation and clinical data. In addition, we did
not detect any intrasubject sequence variation, indicating that
KSHV within each KS tumor was clonal.

KSHV coding region mutations. Given that the phylogenetic
segregation between Western and Zambian KSHV genomic se-
quences was due to low-level variation across the central region of
the genome, we inspected all coding sequences for nonsynony-
mous mutations compared to the GK18 reference genome. Of the
84 annotated coding regions, we identified six KSHV genes with
high levels of nonsynonymous mutations—four within the cen-

tral conserved region (K4.2, K8.1, K11/vIRF2, and K12/Kaposin)
and two previously known to have high variability (K1 and K15).
Among the genes within the central region of the KSHV genome,
K4.2 contained the highest level of nonsynonymous mutations
compared GK18. Phylogenetic analysis of the K4.2 gene revealed
similar clusters for samples ZM004, ZM114, and ZM130 com-
pared to the whole-genome analysis, but not for the remaining
samples (Fig. 4A). ZM091, ZM095, and ZM118 were very similar
to GK18, with only three amino acid substitutions, whereas the
remaining K4.2 sequences contained more than 20 substitutions
and/or significant truncations at the C-terminal end of the coding
region (Fig. 4B). Sample ZM124 contained a 25 nucleotide dele-
tion in the K8.1 coding sequence resulting in a frameshift muta-
tion that produced a stop codon very early in the gene (Fig. 5B). In
addition, multiple amino acid substitutions, insertions, and dele-
tions were identified within the K11/vIRF2 and K12/Kaposin
genes (Fig. 5C and D).

Since K1 and K15 have previously been demonstrated to be
highly variable and are frequently used for KSHV genotyping, we
generated amino acid maximum-likelihood phylogenetic trees,
including reference sequences, to determine the K1 and K15 ge-
notypes of the 16 Zambian KSHV isolates (Fig. 6). All K1 se-
quences clustered with genotypes A5 (n � 1) or B (n � 15), con-
sistent with previous K1 genotyping of samples from Zambia (17).
Within the B genotype, nine samples clustered with the subgeno-
type B1, two with B3, and four with B4. The majority of the Zam-

FIG 3 Distribution of nucleotide variation within the central region of the KSHV genome compared to the reference sequence GK18. The figure was generated
using mVista software with a 100bp scanning window. The curve for each sequence represents up to 10% nucleotide variation within that window. Topological
phylogenetic tree of sequences was generated using PhyML and visualized using MEGA6. Of note, multiple regions within the DG-1 sequence appear to have
significant nucleotide diversity compared to GK18; however, these regions represent gaps in the published sequence due to low coverage that could not be
masked.
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bian KSHV isolates contained the K15 P allele; however, two iso-
lates (ZM095 and ZM128) contained the rare N allele. This is the
first time the K15 N allele has been identified in Zambia.

DISCUSSION

Exploring relationships between KSHV sequence polymorphism
and disease pathogenesis requires a more complete perspective of
the magnitude and breadth of viral sequence diversity in geo-

graphical regions with the highest KSHV disease prevalence.
However, little is known regarding the whole-genome diversity of
KSHV, since only six complete genomes have been sequenced.
Moreover, none of those previously published KSHV genomic
sequences derive from sub-Saharan Africa—where the prevalence
of KSHV and KS is the highest. In the present study, we report the
enrichment, sequencing, assembly, and analysis of 16 unique
Zambian KSHV genomes isolated from KS tumors in adults. This

FIG 4 Amino acid polymorphisms within the K4.2 gene. (A) Maximum-likelihood phylogenetic tree of K4.2 amino acid sequence generated using PhyML with
1,000 bootstrap replicates and visualized using MEGA6. (B) Amino acid highlighter plot of K4.2 generated using the Highlighter tool as part of the Los Alamos
National Laboratory HIV sequence database.

FIG 5 Amino acid polymorphisms of three other KSHV central region genes. (A) Amino acid highlighter plot coloring scheme. Amino acid highlighter plots
were generated for KSHV genes K8.1 (B), vIRF-2 (C), and K12 (D) using the Highlighter tool as part of the Los Alamos National Laboratory HIV sequence
database.
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study is the first to utilize SureSelect target capture technology to
enrich and sequence KSHV DNA from clinical KS biopsy speci-
mens. Using this approach, we were able to efficiently enrich and
sequence KSHV from all KS tumor biopsy sample DNA available,
including a sample with KSHV viral burden of only 0.21 copies per
cell, to obtain enough depth of coverage for sequence analyses.
The data generated represent the largest number of KSHV whole-
genomic sequences published to date. In addition, this is the first
study to compare multiple KSHV genomes from a common geo-
graphical region where KS is endemic.

Due to the low ratio of KSHV to human DNA in each tumor
preparation, targeted enrichment of KSHV DNA was required
prior to Illumina deep sequencing. The enrichment protocol we
used resulted in 1,851- to 18,235-fold KSHV enrichment. This
supported an average coverage depth of 8,437-fold, therefore al-
lowing high confidence in downstream polymorphism analyses.
To further improve the accuracy of our whole-genome assem-
blies, we used MIRA assembly software to corroborate the Velvet-
generated assemblies for each genome. Despite its overall accu-
racy, Velvet still produced a few clearly misassembled regions or

unjustified gaps. Therefore, the two-step assembly enabled us to
capitalize on Velvet’s accuracy while correcting nearly all misas-
sembled regions and gaps with MIRA.

Given the extremely low error rate of herpesvirus polymerases
(31), it is not surprising that previous comparisons of the six
KSHV whole genomes revealed a high level of sequence conserva-
tion (15). The genomic conservation might also be anticipated
because the sequences were all generated from U.S. or European
patient samples, despite derivation from distinct clinical presen-
tations. Multiple alignment of the 16 newly sequenced Zambian
KSHV genomes also showed high conservation. However, a low-
level variability across the central conserved region resulted in
distinct phylogenetic clustering between the genomic sequences
of Zambian KSHV isolates and those from Western countries.

For EBV, the divergent EBNA-3 alleles correlate with whole-
genome clustering and serve as adequate surrogates to distinguish
between EBV types 1 and 2 (16, 32), but this has not previously
been investigated for KSHV. The genes at either termini of the
KSHV genome, K1 and K15, have been previously shown to con-
tain higher levels of polymorphism than the rest of the genome.

FIG 6 KSHV K1 and K15 subtyping. Phylogenetic analyses using amino acid sequences for K1 (A) and K15 (B) from the 22 KSHV genomic sequences and
prototypic reference sequences. Maximum-likelihood phylogenetic trees were generated using PhyML with 1,000 bootstrap replicates and visualized using
MEGA6.
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Our Zambian KSHV sequence data also revealed high levels of
sequence diversity at these loci. Nevertheless, when K1 and K15
were excluded from the whole-genome multiple alignment and
subsequent phylogenetic analysis, the topology of the phyloge-
netic tree did not change. Moreover, the topology of the KSHV
whole-genome phylogenetic tree did not correlate with those of
phylogenetic trees generated from K1 or K15 alone, suggesting
that these genes are poor surrogates for measuring whole-genome
KSHV diversity. Conversely, K4.2 phylogenetic analysis showed
partial, but not full, correlation to whole-genomic clustering. This
suggests that K4.2 may contribute to viral genomic characteriza-
tion, but again, this single gene does not adequately characterize
the whole-genome diversity we detected. Taken together, our data
suggest that the whole KSHV genome should be taken into con-
sideration for accurate viral characterization.

Although single gene polymorphisms did not adequately rep-
resent the genome-wide KSHV diversity, we identified several
nonsynonymous mutations within KSHV protein coding regions
that could potentially affect the viral phenotype. Interestingly, all
six genes with significant levels of nonsynonymous mutations
were gene products uniquely encoded by KSHV. Five of the vari-
ant genes identified in the present study are directly immuno-
modulatory genes and therefore may lead to differential effects on
the host immune response. Of interest, the coding sequences of
K4.2 contained the highest level of nonsynonymous variation.
K4.2 interacts with pERP1 to inhibit immunoglobulin secretion
and increase calcium influx (33). The amino acid domains of K4.2
that are important for these functions are unknown; hence, the
newly identified variability may be important for interaction with
pERP1 or other cellular functions. This is under investigation.

K8.1 protein is not known to be directly immunomodulatory,
but this virion membrane-associated glycoprotein does have im-
portant effects on the KSHV viral life cycle. K8.1 is utilized for
KSHV attachment to target cells and induces VEGF expression
upon binding (34, 35). In addition, while K8.1 is necessary for
efficient virus egress from infected cells, a K8.1-null mutant virus
can still infect HEK293 cells, indicating that K8.1 function may be
dispensable for virus entry in vitro (35, 36). The nucleotide se-
quence from sample ZM124 predicted a truncation in the amino
acid sequence before the transmembrane domain of K8.1. If the
protein were expressed as predicted, it is not clear what effect a
K8.1-deficient virion and/or virion-independent, soluble K8.1
would have in the context of an in vivo infection. K8.1 is highly
immunogenic compared to other KSHV proteins (37), and exog-
enous expression of soluble K8.1 induces an interferon response
(38). Together, the ZM124 predicted K8.1 may elicit a modified
innate and humoral immune response.

Among the 16 newly sequenced KSHV genomes one isolate,
ZM091, contained an A5 K1 gene. The A genotype is primarily
found in Europe, while the B genotype is found only in sub-Saha-
ran Africa; therefore, previous analyses of KSHV molecular evo-
lution have suggested that the A5 genotype arose in sub-Saharan
Africa as a result of recombination. Although we cannot exclude
the possibility of this hypothesis, the sequence data obtained in the
present study does not provide evidence of chimeric boundaries
near the 5= terminus.

Three primary K15 alleles have been previously identified: P,
M, and N. There is little variation within allele groups but extreme
divergence across alleles. The P and M alleles, for example, have
only 30% identity (8). We identified, for the first time, two KSHV

isolates from Zambia that contain the rare K15 N allele. Although
the N allele is highly divergent from P and M, the signaling motifs
for SH2 and TRAF are conserved in all K15 alleles. Recently, it was
shown that the K15-P allele activates the alternative NF-
B signal-
ing pathway by direct recruitment of NF-
B inducing kinase
(NIK) to a distinct signal sequence (39). However, this sequence is
not conserved in either the M or N alleles. This genetic variation
may lead to altered levels of K15-induced NF-
B activation and
subsequently functional differences between alleles, thus further
functional analyses of these K15 alleles is warranted.

In summary, we successfully enriched KSHV from a back-
ground of human DNA from KS biopsy specimens using targeted
RNA baits. Analyses of the sequences identified a low-level vari-
ability across the KSHV central conserved region that resulted in
distinct phylogenetic clustering between the genomic sequences
of KSHV from Zambia and Western countries. Moreover, four
genes within this region had significant levels of polymorphisms
but did not adequately characterize the whole-genome diversity
we detected. Based on the new sequence data in the present study,
it is apparent that whole-genome KSHV diversity is greater than
previously appreciated. Although the observed phylogenetic clus-
tering between Western and Zambian KSHV genomic sequences
could represent distinct subtypes, more whole-genome sequences
are required from additional regions to infer distinct viral sub-
types specific to any geographical region. Continued investigation
of the KSHV genetic landscape is necessary in order to effectively
understand the role of viral evolution and sequence diversity on
KSHV gene functions and pathogenesis.
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