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Abstract

Background

Mycobacterium africanum, made up of lineages 5 and 6 within theMycobacterium tubercu-

losis complex (MTC), causes up to half of all tuberculosis cases in West Africa, but is rarely

found outside of this region. The reasons for this geographical restriction remain unknown.

Possible reasons include a geographically restricted animal reservoir, a unique preference

for hosts of West African ethnicity, and an inability to compete with other lineages outside of

West Africa. These latter two hypotheses could be caused by loss of fitness or altered inter-

actions with the host immune system.

Methodology/Principal Findings

We sequenced 92 MTC clinical isolates from Mali, including two lineage 5 and 24 lineage 6

strains. Our genome sequencing assembly, alignment, phylogeny and average nucleotide

identity analyses enabled us to identify features that typify lineages 5 and 6 and made clear

that these lineages do not constitute a distinct species within the MTC. We found that in

Mali, lineage 6 and lineage 4 strains have similar levels of diversity and evolve drug resis-

tance through similar mechanisms. In the process, we identified a putative novel streptomy-

cin resistance mutation. In addition, we found evidence of person-to-person transmission of

lineage 6 isolates and showed that lineage 6 is not enriched for mutations in virulence-asso-

ciated genes.
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Conclusions

This is the largest collection of lineage 5 and 6 whole genome sequences to date, and our

assembly and alignment data provide valuable insights into what distinguishes these line-

ages from other MTC lineages. Lineages 5 and 6 do not appear to be geographically

restricted due to an inability to transmit between West African hosts or to an elevated num-

ber of mutations in virulence-associated genes. However, lineage-specific mutations, such

as mutations in cell wall structure, secretion systems and cofactor biosynthesis, provide

alternative mechanisms that may lead to host specificity.

Author Summary

Mycobacterium africanum consists of two lineages, lineages 5 and 6, within theMycobacte-

rium tuberculosis complex (MTC) that cause human tuberculosis in West Africa, but are

found rarely outside of this region. Our analysis of the whole genome sequences of 26 line-

age 5 and 6 isolates, and 66 isolates from other lineages within the MTC, reveal thatM.

africanum does not meet modern criteria to be considered an independent species. We

analyzed drug resistance-associated genes and found that drug resistance evolves within

these lineages through similar mechanisms as observed for the rest of the MTC in Mali.

Though we did not see an elevated number of mutations in virulence-associated genes in

these two lineages, we identified a number of lineage-specific mutations, pseudogenes and

changes in gene content that may impact virulence and host specificity, and improve, over-

all, our understanding of what make these lineages unique.

Introduction

Mycobacterium africanum is a member of theMycobacterium tuberculosis complex (MTC)

that causes up to half of all tuberculosis cases in West Africa [1]. First identified by Castets in

1968, it was originally characterized as having biochemical characteristics intermediate

betweenMycobacterium tuberculosis, which consists of lineages 1, 2, 3, 4, and 7 and is the main

cause of human tuberculosis, andMycobacterium bovis, an animal-adapted lineage that causes

bovine tuberculosis [2]. Later work dividedM. africanum into two lineages,M. africanum

West African type I andM. africanumWest African type II, which became known as lineages 5

and 6, respectively, within the MTC [3, 4].

Lineages 5 and 6 cause a disease similar to classically definedM. tuberculosis, although it has

been suggested that human disease caused by these lineages may differ compared to that caused

by lineages 1–4. For example, patients with lineage 6 disease have been reported to show atten-

uated ESAT-6 responses compared to patients with classicalM. tuberculosis lineage disease [5,

6]. In addition, in liquid culture systems it has been reported thatM. africanum has a slower

growth rate with a larger bacillary size thanM. tuberculosis [7, 8]. While some studies have

found thatM. africanum is less virulent thanM. tuberculosis, both in animal models and

human patients [7, 9–11], others show that there is no difference [12]. Though these contra-

dicting results may be due to differences in the study populations, they underscore how little is

known about lineages 5 and 6.

Contributing to this lack of knowledge, while lineages 1–4 are widely distributed around the

globe, lineages 5–7 are limited to certain regions of Africa [13]. Lineage 7 has only been found
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in Ethiopia [14], and lineages 5 and 6 are found almost exclusively in patients living in West

Africa, with very few cases occurring outside of this region, mostly involving recent immigrants

fromWest Africa [1]. The reason for the apparent geographic restriction of lineages 5 and 6 is

unknown. One hypothesis is the presence of an undiscovered animal reservoir endemic to

West Africa, which is supported by the close relationship between lineages 5 and 6 and the ani-

mal-adapted lineages of the MTC [15, 16]. Another hypothesis is that lineages 5 and 6 have a

unique predilection for humans with genetic backgrounds common in West Africa. In fact,

using a retrospective epidemiological study of the MTC in Ghana, Asante-Poku et al. showed

that lineage 5 is associated with the Ewe ethnic group [17]. A third hypothesis is that lineages 5

and 6 are unable to compete with other lineages outside of West Africa, either due to loss of fit-

ness or decreased transmissibility, thus explaining their limited global distribution [7].

Historically, mycobacterial subspecies were defined by biochemical assays, but, as genetic

tools became more readily available, it is now possible to identify genomic regions that define

MTC lineages [18]. The publication of the whole genome sequence ofM. africanum

GM041182, a single lineage 6 strain, provided valuable insights into the genetics of this lineage

[19]. For instance, the authors identified lineage 6-specific pseudogenes, a novel region not

present inM. tuberculosis, and single nucleotide polymorphisms (SNPs) in key genes, all of

which may play a role in the geographic restriction of lineage 6. A later study sequenced four

additional lineage 6 isolates and was able to confirm many of these findings, but also showed

that not all mutations identified inM. africanum GM041182 are shared by other members of

this lineage [8]. To our knowledge, no study has closely analyzed the genetics of lineage 5.

From these studies, it is clear that more sequenced isolates are needed to fully characterize

the genetics of lineages 5 and 6 and to illuminate mechanisms that may explain its geographic

isolation. Toward this end, we sequenced 92 clinical MTC isolates fromMali, a country in

West Africa in which 26.2% and 1.6% of tuberculosis cases are caused by lineage 6 and lineage

5, respectively [20] [1]. Using these and previously published data, we performed both align-

ment- and assembly-based comparative analyses to further refine our understanding of line-

age-specific genomic features that might explain the geographic distribution of lineages 5 and

6. To our knowledge, this is the largest collection of lineage 6 strains sequenced to date, and the

first in depth whole genomic characterization of lineage 5.

Materials and Methods

Samples

101 strains were selected from clinical isolates collected in Bamako, Mali [20], and included all

strains identified by spoligotyping asM. africanum,M. tuberculosis T1, orM. bovis. Of these

strains, 92 were still viable and were submitted for whole genome sequencing. These 92 strains

will be referred to as the “Mali Collection” (S1A Table). In addition, to improve MTC lineage

representation, we selected additional whole genome assemblies that matched the quality of

our assemblies. These included four finishedM. bovis genomes available from GenBank (M.

bovis AF2122/97 [21],M. bovis BCGMexico [22],M. bovis BCG Pasteur 1173P2 [23], andM.

bovis BCG Tokyo 172 [24]), a set of 40M. tuberculosis strains (9 lineage 1 strains, 12 lineage 2

strains, 7 lineage 3 strains, and 12 lineage 4 strains) from South Africa [25], the finishedM.

africanum genome from Genbank (M. africanum GM041182) [19], and our outgroup,M.

canettii CIPT 140010059 [26]. Combined with the Mali Collection, these 137 strains will be

referred to as the “Assembly Collection” (S1B Table). Finally, all 161 strains (122 lineage 2, two

lineage 3, and 37 lineage 4) from a study in China were included in the variant analysis to

improve geographical and lineage representation [27]. The samples from the China study (S1C
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Table) combined with the samples from South Africa and Mali (for a total of 289 strains) will

be referred to as the “Alignment Collection”.

Ethics statement

The study protocols for the Mali samples were approved by the Ethics Committee of the Uni-

versity of Bamako and the Institutional Review Board of the National Institute of Allergy and

Infectious Diseases, National Institutes of Health (NIAID/NIH), Bethesda, MD, USA. For all

samples, written informed consent was obtained from study participants prior to cohort enroll-

ment [20]. For the South African samples, Biomedical Research Ethics Council (BREC)

approval from the University of KwaZulu-Natal was granted for collection of sputum speci-

mens from study participants and for whole genome sequencing of clinical strains. Written

informed consent was obtained from study participants prior to cohort enrollment, or waived

by BREC [25].

Drug susceptibility testing

Drug resistance to isoniazid, rifampicin, ethambutol and streptomycin was tested for all Mali

strains as previously described [20]. We confirmed those results by submitting 17 strains to

National Jewish Health in Colorado for agar proportion testing of isoniazid, rifampicin, etham-

butol, ofloxacin, niacin, kanamycin, ethionamide, capreomycin, amikacin, cycloserine and

para-aminosalicylic acid, as well as radiometric testing of ciprofloxacin and pyrazinamide. The

agar proportion results confirmed the mycobacterial growth indicator tube (MGIT) tests per-

formed in Mali. Genotypic drug resistance was determined for rifampicin, isoniazid, ethambu-

tol, streptomycin, ofloxacin, kanamycin and ethionamide using genetic markers from line-

probe assays (S2 Table).

Genome sequencing

Extraction of genomic DNA was performed on 10 mL cultures grown in 7H9 broth using the

CTAB-lysozyme method as previously described [28]. Library preparation and whole genome

sequencing (WGS) were performed as previously described [29–31]. GenBank accessions for

all strains used in this analysis can be found in S1B Table, along with assembly statistics for the

new sequences generated at the Broad Institute (92 sequences fromMali generated for this

study, and 40 sequences from South Africa).

Annotation

All genomes in our Assembly Collection were uniformly annotated by transferring annotations

fromM. tuberculosisH37Rv. The referenceM. tuberculosisH37Rv genome (accession

CP003248.2) was aligned to draft assemblies using Nucmer [32]. This alignment was used to

map reference genes over to the target genomes. Using this methodology, annotations were

successfully transferred onto all 137 strains for 3466 of theM. tuberculosisH37Rv genes; the

rest of theM. tuberculosisH37Rv genes transferred to a subset of the genomes.

For those genes not cleanly mapping toM. tuberculosis H37Rv, the protein-coding genes

were predicted with the software tool Prodigal [33]. tRNAs were identified by tRNAscan-SE

[34] and rRNA genes were predicted using RNAmmer [35]. Gene product names were

assigned based on top blast hits against the SwissProt protein database (> = 70% identity and

> = 70% query coverage), and protein family profile search against the TIGRfam hmmer

equivalogs. Additional annotation analyses performed include Pfam [36], TIGRfam [37],

Kyoto Encyclopedia of Genes and Genomes (KEGG) [38], clusters of orthologous groups
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(COG) [39], Gene Ontology (GO) [40], enzyme commission (EC) [41], SignalP [42], and

Transmembrane Helices; Hidden Markov Model (TMHMM) [43].

Digital spoligotyping

Reads from each isolate were aligned against the 43 spacer sequences traditionally used in wet

lab spoligtyping [28, 44]. From these alignments, the number of matching reads was used to

determine if the spacer was present. The spacer was considered absent if the read count total

was in the lowest quartile of counts. Spacers were defined as present by using a Bonferroni cor-

rected p-value based on an exponential distribution of the average absent spacer counts. If the

p-value was<0.01 the spacer was considered to be present. The spacer pattern was matched to

the SITVITWEB database to generate a named spoligytpe for each isolate and to determine the

spoligotype international type (SIT) [45].

Orthogroup clustering and phylogenetic trees

SYNERGY2 [46–48], available at http://sourceforge.net/projects/synergytwo/, was used to

identify cluster-based orthogroups across our Assembly Collection of 137 genomes, which we

will refer to as “SYNERGY orthogroups”. In addition, for eachM. tuberculosisH37Rv gene, we

defined a second set of annotation transfer-based ortholog groups as the set of genes for which

annotations were transferred from thisM. tuberculosisH37Rv gene in our annotation protocol,

which we will refer to as “M. tuberculosisH37Rv-based orthologs”. Genes withoutM. tubercu-

losisH37Rv orthologs were manually examined in the context of their SYNERGY orthogroups

to identify lineage-specific novel genes.

Phylogenetic trees were generated by applying RAxML [49] to a concatenated alignment of

3343 single-copy core SYNERGY orthogroups (excluding orthogroups with paralogs) across

all 137 organisms. Bootstrapping was performed using RAxML’s rapid bootstrapping algo-

rithm (1000 iterations).

Average nucleotide identity analysis (ANI)

Calculations of ANI were done as previously described [50, 51] using the SYNERGY

orthogroups calculated from the Assembly Collection.

Gene content analysis

PAUP [52] was used to reconstruct gain and loss ofM. tuberculosisH37Rv-based orthologs at

ancestral nodes of the Assembly Collection phylogenetic tree using parsimony. In order to ana-

lyze changes in gene content, we used a cost matrix with values of 10 for a gene gain, 5 for a

gene loss, and 0.2 for an increase or decrease in copy number. We looked for orthologs found

within all members of one clade, and absent in other clades. As a further filter, we also required

that orthogroups be found in>80% of the clade of interest, and<20% of other strains. We per-

formed this analysis for four key clades: lineage 5, lineage 6, the clade includingM. bovis and

lineage 6, and the clade including lineages 5, 6 andM. bovis.

In addition, we selected the Pfam gene categories most expanded or reduced in each clade of

interest. We determined significance using Fisher’s test (Q<0.05). For each of the clades

described above, we compared the strains below this node versus all other strains in our

analysis.
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Identification of SNPs

For our Alignment Collection, reads were mapped onto a reference strain ofM. tuberculosis

H37Rv (GenBank accession number CP003248.2) using BWA version 0.5.9.9 [53]. In cases

where read coverage of the reference was greater than 200x, reads were down-sampled using

Picard [54] prior to mapping. Variants, including both single nucleotide polymorphisms

(SNPs) and multi-nucleotide polymorphisms, were identified using Pilon version 1.5 as

described [29] and were used to construct phylogenetic trees using FastTree [55].

We defined lineage-specific variants for lineage X, as those occurring in at least 95% of the

strains of lineage X (true positive rate>95%), missing in less than 5% of strains of lineage X

(positive predictive value>95%), occurring in less than 5% of the strains that do not belong to

lineage X (true negative rate>95%) and not occurring in at least 95% of strains not belonging

to lineage X (negative predictive value>95%). The absolute number of true positives must

exceed seven. Formulas are schematically presented in S3 Table.

Mutations were consideredM. africanum-specific (lineage 5 and 6-specific, identified as

LIN-Maf in S4 and S5 Tables) if they met these cutoffs for lineage 5 and 6 combined, and were

present in both lineage 5 strains. Similarly, mutations were consideredM. tuberculosis-specific

if they met these cutoffs for lineages 1–4 combined. NoM. tuberculosis-specific mutations were

identified. Due to inclusion of only two lineage 5 strains in our dataset, no lineage-specific vari-

ants were identified in lineage 5. Thus, for this lineage only, we used a less stringent require-

ment to define lineage-specific variants: we required that variants be present in both lineage 5

strains and in<5% of the strains in each other lineage. We classified each gene containing a

lineage-specific variant into functional group categories, including GO [40], KEGG [38], Pfam

[36], and COG [39]. We then evaluated enrichment using Fisher's Exact test and corrected for

multiple comparisons using the Storey method for functional group categories [56].

Identification of pseudogenes

A pseudogene was defined as any gene that had a loss of function mutation anywhere within

the coding sequence. Loss of function mutations were defined as nonsense mutations, or inser-

tions or deletions with lengths that were not multiples of 3 base pairs or were greater than 30

base pairs. Lineage-specific pseudogenes were determined using the same definitions as for var-

iants on a per gene basis (positive predictive value> 95%, negative predictive value>95%, true

positive rate>95%, true negative rate>95%, number of true positives>7, with the exception

of lineage 5, which used the SNP cutoffs of pseudogene in both lineage 5 strains and in<5% in

each other lineage).

Computational gene function assessments

The effect of select non-synonymous mutations on protein function was assessed using the

online version of SIFT at default settings [57], unless there was low confidence in the predic-

tion, in which case SIFT was run for each of the four available databases (UniRef90 from April

2011 [default], UniProt-SwissProt 57.15 from April 2011, UniProt-TrEMBL fromMarch 2009

and NCBI nonredundant fromMarch 2011). Peptide binding was predicted using the NetMH-

CII online tool with default settings [58].

Results

M. africanum andM. tuberculosis lineages are part of the same species

Our collection of 92 clinical MTC strains was isolated from patients presenting with pulmo-

nary tuberculosis at Point G, Bamako, Mali between 2006 and 2010 as part of a cross-sectional

Whole Genome Sequencing ofM. africanum fromMali
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study to analyze the diversity of the MTC in Mali [20]. All patients were Mali natives, with the

exception of one patient born in central Africa (S1A Table). We sequenced this collection

using the Illumina sequencing platform, and the resulting reads were both assembled into con-

tigs and aligned against theM. tuberculosisH37Rv reference genome. Based on our phyloge-

netic reconstructions, our collection included one lineage 1, two lineage 2, zero lineage 3, 63

lineage 4, two lineage 5 and twenty-four lineage 6 strains (Fig 1). The spoligotype distribution

of our collection is representative of what has previously been observed in West Africa, except

that we had a higher proportion of SIT53 (T1) strains and a lower proportion of SIT181

(AFRI_1) strains (Figs 1 and S1) [45]. In order to perform statistical comparisons of theM.

tuberculosis,M. africanum andM. bovis lineages, our newly sequenced dataset (the “Mali Col-

lection”) was combined with data from additional strains from GenBank and South Africa

(“Assembly Collection”, Fig 2), as well as data from China (“Alignment Collection”; see Materi-

als and Methods and S1 Table). These additional comparator genomes enabled us to examine

in detail the distinguishing characteristics of lineages 5 and 6 that might explain their geo-

graphic restriction.

Since this represents the largest collection of whole genome sequences of lineage 5 and 6

strains to date, we used our Assembly Collection to conduct a detailed examination of their

phylogeny and characteristics in relation to other members of the MTC, includingM. bovis

andM. tuberculosis.M. bovis is considered an animal strain that mainly infects cattle and rarely

humans, whileM. tuberculosis is human adapted, and lineages 5 and 6 are thought to be inter-

mediate between the two [1, 15]. Using our Assembly Collection, we constructed a high-resolu-

tion phylogenetic tree using 3,343 single-copy core orthogroups (sets of orthologs) conserved

across all 137 strains (Materials and Methods). This tree was rooted using the outgroupM.

canettii and agreed with phylogenies observed in other studies, including the fact that each of

the lineages was clearly separated from the other, with lineage 5 being more closely related to

human-adapted strains and lineage 6 being more closely related toM. bovis (Fig 2) [13, 15].

It has been previously shown, using average nucleotide identity (ANI) analysis, that separate

bacterial species share<65–90% of genes and have no more than 94–95% ANI among shared

genes [50, 51]. Using gene content and nucleotide variation among shared genes, we examined

the genetic distances between strains within the Assembly Collection to understand how myco-

bacterial species fit within this framework. In agreement with previous studies showing the

close relationship between MTC subspecies, includingM. africanum, we observed that there

was little diversity between the lineages analyzed [61]. Strikingly, values from inter-lineage

comparisons ofM. tuberculosis,M. bovis, andM. africanum strains overlapped those from

intra-lineage comparisons, showing very little separation, with>99% ANI and>94% fraction

of shared genes (Fig 3). These results are in agreement with previous observations that these

different organisms should not, in fact, be named different species [61].

In contrast, MTC pairwise comparisons withM. canettii revealed a clear separation between

the two groups, suggesting that they occupy distinct niches (Fig 3).M. canettii is a smooth

tubercle bacilli that causes human tuberculosis in East Africa and is considered an emerging

pathogen in some parts of the world, but its natural host(s) and reservoirs remain unknown

[62]. Thus, it might be argued, based on these data and the traditional cutoffs set by ANI analy-

sis, that all MTC members should be named the same species, and that evenM. canettii should

be included since pairwise identities with MTC exceeded these thresholds (Fig 3). However, as

Smith et al. have previously discussed [61] changes in nomenclature can cause confusion in the

literature, and so we will continue to refer toM. africanum-associated lineages as either lineage

5 or 6 within the MTC.

Whole Genome Sequencing ofM. africanum fromMali

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0004332 January 11, 2016 7 / 28



Whole Genome Sequencing ofM. africanum fromMali

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0004332 January 11, 2016 8 / 28



Lineage 6 is as diverse as lineage 4 strains and involved in recent
person-to-person transmission

Despite the fact that lineages 5 and 6 are so closely related to lineages 1–4, as demonstrated by

Fig 3, they are still unique in being geographically restricted compared to these other lineages.

One hypothesis for this restriction is that they are less fit, unable to compete with other lineages

within the MTC. To examine this possibility, we looked within the Mali Collection for clues

that lineage 6 strains were not as diverse as strains from lineage 4, the other predominant line-

age within the region. We analyzed the breadth of pairwise diversity within lineage 6 using the

ANI output and compared this diversity to that of lineage 4 strains isolated within Mali. ANI

diversity was not statistically different when comparing these two groups of strains (Fig 4).

Although this result does not eliminate the possibility of differing ecologies, such as an animal

reservoir for lineage 6, as has previously been hypothesized [16], it does suggest that lineage 6

has not undergone a recent selective sweep or population bottleneck that would make lineage 6

populations circulating within Mali less diverse than lineage 4 populations [63].

In addition to being diverse, we also observed highly similar lineage 6 strains among this

collection. Three pairs of lineage 6 strains were separated by less than 10 SNPs relative toM.

tuberculosisH37Rv (Fig 1B; see Materials and Methods), including isolates from both HIV-

positive and immunocompetent patients. There were also six such clusters within lineage 4. A

cutoff of 12 SNPs has previously been used to determine recent transmission [64]. Thus, strains

separated by less than 10 SNPs provide evidence of transmission, suggesting that 6 of 24 (25%)

of our lineage 6 strains and 13 of 63 (21%) of our lineage 4 strains were involved in recent

transmission events, confirming previous observations based on alternative genotyping

approaches that there is robust ongoing transmission of lineage 6 within this region [9].

Lineages 5 and 6 are not enriched for mutations in genes associated
with virulence

Given the reports of lineages 5 and 6 strains having decreased virulence [7, 9–11], we hypothe-

sized that altered virulence may contribute to geographical restriction, either due to changes in

host requirements or to a reduction in fitness. To test this hypothesis, we examined lineage-

specific pseudogenes (truncated genes) and non-synonymous SNPs in known essential genes,

slow growth genes, and genes required for virulence in mice and growth in macrophages to

determine whether lineages 5 and 6 had an enrichment of defects in these genes that might

contribute to overall altered virulence [65–67]. Although both lineages 5 and 6 had lineage-spe-

cific mutations in these gene categories, so did other lineages (S4A and S5 Tables), and the pro-

portion of mutated genes in lineage 6 was not significantly different from that of the other

MTC lineages [8] (Fig 5). Lineage 4 was not included on this graph because it only had one

lineage-specific mutation in an intergenic region when aligned toM. tuberculosisH37Rv,

which is a member of lineage 4, and lineage 5 was excluded due to low sample size. We per-

formed a similar analysis on the full length of genes encoding known T cell antigens as defined

by Comas et al. [4] to explore whether alterations in these genes might be restricting host speci-

ficity, but again we observed no significant difference in the proportion of lineage 6-specific

Fig 1. M. africanum andM. tuberculosis drug resistance is genetically similar. A) SNP-based phylogenetic tree of 92 newly sequenced strains from
Mali (the Mali Collection), constructed using FastTree [55]. B) Groups differing by 10, 20, 30, or 50 SNPs are connected with black bars, as calculated in
Cohen et al. [25]. C) Comparison of genotypic and phenotypic DST (drug susceptibility testing). Genotypic drug resistance was calculated using a list of
mutations known to confer drug resistance (S2A Table) [59, 60]. D) Drug resistance category (mono-DR, poly-DR, MDR, or pre-XDR) based on genotype. E)
Digital spoligotype clade and F) digital spoligotype international type (SIT), colored by lineage. F) The SIT is blank if the SITVITWEB database [45] did not
contain a SIT for that strain’s digital spoligotype pattern.

doi:10.1371/journal.pntd.0004332.g001
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Fig 2. Phylogenetic tree of 92 newly sequenced strains fromMali, together with 45 additional strains
with whole-genome assemblies (the Assembly Collection). Nodes, lineages, and newly-sequenced Mali

Whole Genome Sequencing ofM. africanum fromMali
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mutations that fell within these genes as compared to lineages 1, 2 and 3 (Fig 5). Similarly, we

looked for enrichment of lineage-specific mutations in COG, GO, KEGG, Pfam and TIGRfam

gene categories, but found no enrichment in any of these categories, either for pseudogenes or

non-synonymous SNPs (Q> 0.05). These results corroborate our observations from ANI that

the lineages of the MTC are very similar in their overall genetic composition and suggest that

lineage 6 is not enriched for mutations in virulence genes relative to other lineages. However,

while the overall number of mutations in virulence genes was not enriched, we identified muta-

tions in these genes that might have an impact on virulence that will be discussed below.

Lineage 6 evolves drug resistance through similar mechanisms to other
MTC lineages

Studies have shown that lineages 5 and 6 evolve drug resistance less often compared to other

MTC lineages, including the study from which these sequenced strains were obtained [20, 68].

Thus, one hypothesis for the limited geographic range of lineages 5 and 6 could be decreased

fitness relative to strains better able to evolve antibiotic resistance. In this case, we might expect

that mutations driving drug resistance in these two lineages would be different from those

evolving in more successful lineages. Thus, we analyzed our newly sequenced strains fromMali

strains are indicated. All key nodes separating the major lineages had bootstrap values of 100%, except for
the node separatingM. tuberculosis lineage 1 andM. africanum lineage 5, which had a bootstrap value of
83%. Letters indicate key nodes analyzed in detail: (A) lineage 6, (B) the clade includingM. bovis and lineage
6, (C) lineage 5, and (D) the clade including lineages 5, 6 andM. bovis.

doi:10.1371/journal.pntd.0004332.g002

Fig 3. Average nucleotide identity (ANI) analysis indicatesM. africanum andM. tuberculosis are not separate species. A) ANI values when
comparingM. africanum andM. tuberculosis do not cross the ANI species threshold of 94–95%. In fact, this comparison shows that the distribution ofM.
africanum/M. tuberculosis comparisons (red) overlaps that of inter-lineageM. tuberculosis comparisons (purple), indicating thatM. africanum should be
considered another lineage ofM. tuberculosis. B) Similarly, ANI values when comparingM. bovis andM. tuberculosis also overlap with inter-lineageM.
tuberculosis, and indicate thatM. bovis should also be considered another lineage ofM. tuberculosis. C) ANI values comparingM. africanum andM. bovis
(pink) also overlap inter-lineageM. tuberculosis comparisons (green).

doi:10.1371/journal.pntd.0004332.g003
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for the presence of mutations known to confer drug resistance and used in common nucleic

acid-based commercial tests [59, 60] for the detection of drug resistance [69–75] (S2A Table).

Forty (60%) strains in lineages 1–4 and only four (15%) of the lineage 5 and 6 strains were phe-

notypically resistant to at least one of the four tested drugs. We observed that mutations used

in commercial tests were sensitive in detecting phenotypic resistance to rifampicin, isoniazid

and ethambutol (S2B Table and Figs 1 and S1).

Streptomycin resistance mutations were not included among our list of known resistance

mutations (S2A Table). Therefore, we searched for potential resistance mutations in a set of

genes previously known to affect streptomycin resistance, including rrs, rpsL, and gidB [76–

78]. We identified a point mutation in gidB that caused a non-synonymous change (leucine to

serine at residue 79) that is predicted to affect protein function [57] (S1D Fig; see S1 Text for

more details). This mutation was found in 23 streptomycin resistant strains and no streptomy-

cin susceptible strains in our dataset and likely represents a previously uncharacterized muta-

tion that confers resistance to this drug. Previous studies have identified loss of function

mutations in gidB affecting streptomycin resistance [77], as well as point mutations in the

region of gidB close to residue 79, including at residues 75 and 82 [78].

In addition, we identified known mutations in genes associated with resistance to drugs that

were not phenotypically assessed, including ofloxacin, kanamycin, and ethionamide. Using the

list of mutations in S2A Table, we found that 25 (38%) of the Mali strains belonging to lineages

1, 2 or 4 could be classified as MDR (multi-drug resistant; resistant to isoniazid and rifampi-

cin), and two (3%) could be classified as pre-XDR (pre-extensively drug resistant; resistant to

isoniazid, rifampicin, plus either ofloxacin or kanamycin). In contrast, three (11%) of the line-

age 5 and 6 strains could be classified as MDR, and one (4%) could be classified as pre-XDR.

The presence of these pre-XDR strains is of particular concern, as XDR has not been reported

in Mali, and testing is not currently performed routinely for second line antibiotics [79, 80].

Fig 4. Diversity in Mali lineage 4 and lineage 6 strains. ANI values for comparisons (A) within all Mali
lineage 4 isolates and (B) within all lineage 6 isolates. Blue lines indicate mean ± standard deviation. The
means of these two groups was not significantly different using the Mann-Whitney test.

doi:10.1371/journal.pntd.0004332.g004
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Similar resistance-conferring mutations were found among the lineages (S2 Fig). Although

we cannot eliminate the possibility of cross resistance and other alternate genetic mechanisms

of lineage 5 and 6 drug resistance, or of differences in drug tolerance or rates of persister cells,

it appears that the mechanism of genetic drug resistance was similar between lineages 2, 4, 5

and 6. Thus, although the sample size was small, our results suggest that drug resistance, while

less frequent in lineage 6, evolves through acquisition of similar mutations as observed in line-

ages 2 and 4 in Mali, including combinations of mutations leading to pre-XDR, and that this

resistance could be detected using current molecular diagnostic approaches.

Individual lineage-specific features suggest additional mechanisms that
could be involved in geographic restriction

Previous analyses pinpointing lineage 6-specific genomic features have compared limited num-

bers of strains, which might have caused these studies to miss important features or to identify

features that are not actually found in a broader set of lineage 6 strains [8, 19]. Also, these stud-

ies have not examined genomes of lineage 5 in detail. Using both our Alignment and Assembly

Collections, containing representatives from lineages 1 through 6 andM. bovis, we sought to

robustly identify distinguishing features of lineages 5 and 6, focusing on traits that could have

caused geographic restriction. Using our Assembly Collection, at each node labeled A-D in Fig

Fig 5. Percentage of lineage-specific mutations in virulence associated genes. A) Percentage of lineage-specific mutations in coding sequences of the
genes in each category. Sassetti virulence genes are genes that were identified in [66] as being required for virulence in mice. Sassetti essential and slow
growth genes were identified by Sassetti et al. under in vitro conditions using TraSH [65]. Rengarajan macrophage genes were identified by Rengarajan et al.
as being required for growth in macrophages [67]. Comas antigen genes were genes identified by Comas et al. as containing T cell epitopes [4]. The color of
the bar indicates type of mutation. B) Percentage of lineage-specific pseudogenes falling into the above defined categories. Missing categories had no
pseudogenes in any lineage. Lineage is indicated by the number below each bar, while ‘af’ indicates mutations found in both lineages 5 and 6 (bothM.
africanum lineages).

doi:10.1371/journal.pntd.0004332.g005
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2 (representing genetic diversification events that may correlate with ecological specialization),

we identified gene gains and losses (Table 1; Materials and Methods). Many of our findings

agreed with previous observations describing regions of difference, as determined through

genomic hybridizations [3, 18]. However, we also identified a small number of genes that were

not previously identified as being part of these known regions of difference (see S1 Text for full

details), including a gain of genes encoding a PE-PGRS and hypothetical protein at the last

common ancestor of lineage 6 andM. bovis, the loss of Rv1523 (a methyltransferase) and

Rv3514 (PE-PGRS57) in lineage 5, and the loss of a gene encoding a TetR family regulator and

the gain of one PPE protein-encoding gene at the last common ancestor of lineages 5, 6 andM.

bovis.

In addition, using our alignments toM. tuberculosis H37Rv, we identified a number of

lineage-specific mutations, including pseudogenes that affect protein function (Tables 2, S4,

S5 and S6). From these data, we identified 681 lineage 6-specific mutations shared across all

lineage 6 strains, including eight truncated pseudogenes. These data also provided the first

in-depth analysis of lineage 5 assemblies, which revealed 952 lineage-specific mutations and

43 pseudogenes as shared by our two lineage 5 strains (see S1 Text). The larger number for

lineage 5 compared to other lineages likely results from our small sample size. Key categories

of lineage-specific mutations and pseudogenes that might contribute to the geographic

restriction of lineages 5 and 6 are discussed below, and in more detail in the S1 Text.

Mutations affecting ESX secretion could contribute to differing immune
responses elicited by lineages 5 and 6

One distinguishing clinical characteristic of lineage 6 is an attenuated T cell response to ESAT-

6, one of the proteins secreted through the ESX secretion system, as compared to patients

infected with lineages 1–4 [5]. This altered immune response supports the hypothesis that line-

age 5 and 6 have specificity for a particular host immunogenic background. Although our data

cannot address whether ESAT-6 production has been affected, we observed non-synonymous

polymorphisms, including indels, in genes encoding ESX secretion systems that could contrib-

ute to the different immune responses of lineage 6-infected patients (Table 3). Furthermore, we

observed lineage-specific mutations in ESX-encoding genes in all lineages, suggesting that each

lineage may have unique interactions with the host (Table 3; S1 Text).

Alterations in cofactor biosynthesis pathways could impact many cellular
functions in lineages 5 and 6

Lineages 5 and 6 had lineage-specific mutations, including pseudogenes, in genes encoding

multiple components of cofactor biosynthetic pathways, including molybdenum, vitamin B12,

and vitamin B3 (S1 Text and Tables 3, S4 and S5). Molybdenum cofactors are key catalysts for

redox reactions, and are hypothesized to have played an important role in the evolution of

pathogenic mycobacteria [81]. In addition, mycobacteria are one of the few bacterial pathogens

with the ability to synthesize vitamin B12 [82]. Thus, both of these cofactors have specifically

evolved in mycobacteria and loss of these cofactor biosynthetic pathways could affect the func-

tion of proteins that use these cofactors, which include proteins that are important for many

cellular functions. These mutations may affect the host range of lineages 5 and 6, supporting

the hypothesis of a unique host preference.
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Table 1. Orthologs identified in gene content analysis as lost or gained at nodes A-D. For some regions of difference (RD), the first and/or last gene in
the region was not identified in our analysis because enough of the gene remained to align to H37Rv, and thus was not considered absent. Gene names start-
ing with an O were identified through our SYNERGY orthogroup analysis. Nodes A-D were identified in Fig 2.

A: root node of lineage 6 C: root node of lineage 5

loss Annotation RD loss Annotation RD

Rv0124 PE-PGRS family protein PE_PGRS2 RD701 Rv1334 hydrolase RD711

B: root node of lineage 6 and M. bovis Rv1335 sulfur carrier protein CysO RD711

loss Annotation RD Rv1523 methyltransferase

Rv0222 enoyl-CoA hydratase EchA1 RD10 Rv1978 hypothetical protein RD713

Rv1965 ABC transporter permease YrbE3B RD7 Rv1979c permease RD713

Rv1966 MCE-family protein Mce3A RD7 Rv1993c hypothetical protein RD743

Rv1967 MCE-family protein Mce3B RD7 Rv1994c ArsR family transcriptional regulator CmtR RD743

Rv1968 MCE-family protein Mce3C RD7 Rv1995 hypothetical protein RD743

Rv1969 MCE-family protein Mce3D RD7 Rv3514 PE-PGRS family protein PE_PGRS57

Rv1970 MCE-family lipoprotein LprM RD7 D: root node of lineages 5 and 6 and M. bovis

Rv1971 MCE-family protein Mce3F RD7 loss Annotation RD

Rv1972 MCE-associated membrane protein RD7 Rv2073c oxidoreductase RD9

Rv1973 MCE-associated membrane protein RD7 Rv2074 pyridoxamine 5'-phosphate oxidase RD9

Rv1974 membrane protein RD7 Rv2084 hypothetical protein

Rv1975 hypothetical protein RD7

Rv1976c hypothetical protein RD7 gained Annotation RD

Rv3617 epoxide hydrolase EphA RD8 O850451604 PPE family protein

Rv3618 monooxygenase RD8

Rv3619c ESAT-6 like protein EsxV RD8

Rv3620c ESAT-6 like protein EsxW RD8

Rv3621c PPE family protein PPE65 RD8

Rv3622c PE family protein PE32 RD8

gained Annotation RD

O850447630 hypothetical protein

O850450572 PE-PGRS family protein

doi:10.1371/journal.pntd.0004332.t001

Table 2. Summary of the lineage-specific mutations and pseudogenes detected for each lineage.

Mutations Pseudogenes

Lineage Average ± SD Lineage Specific Average ± SD Lineage Specific

LIN-1 2527.2 ± 39.2 536 189 ± 21.5 5

LIN-2 1774.4 ± 64.9 308 183.5 ± 43.1 23

LIN-3 1740.0 ± 52.9 406 157.9 ± 46.5 5

LIN-4 1050.0 ± 143.9 1 99.5 ± 28.8 0

LIN-5 2540.5 ± 4.9 952* 190.5 ± 0.7 43*

LIN-6 2605.8 ± 82.0 681 201.5 ± 26.4 8

LIN-5 and LIN-6 2600.4 ± 80.5 90 200.5 ± 25.4 5

LIN-1, LIN2, LIN-3, and LIN-4 1355.4 ± 400.0 0 148.4 ± 55.4 0

LIN-1, LIN2, and LIN-3 1803.4 ± 161.9 NA 182.3 ± 42.5 NA

*Due to low lineage 5 sample size (only two lineage 5 strains), there is low confidence in which mutations were lineage 5-specific.

doi:10.1371/journal.pntd.0004332.t002
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Mutations that could cause distinct cell size, morphology and growth of
lineages 5 and 6

It has been shown previously thatM. africanum GM041182 has a distinct physiology as com-

pared to that ofM. tuberculosisH37Rv, including a larger cell size and slower growth rate [7].

Possibly explaining these differences, we identified lineage 6-specific non-synonymous SNPs in

Table 3. Summary of lineage-specific mutations highlighted in the results and discussion. Each cell indicates the number of lineage-specific muta-
tions in that category (see Materials and Methods). “Indel” indicates an insertion or deletion; “synonymous” indicates a SNP that does not change the amino
acid sequence; “non-synonymous” indicates a SNP that alters the amino acid sequence; and “non-synonymous and affects protein function” is the subset of
non-synonymous SNPs that were predicted by SIFT [57] to affect protein function. Each column heading refers to the gene category, each of which is dis-
cussed in more detail in the results section. Due to low lineage 5 sample size (only two lineage 5 strains), there is low confidence in which mutations were line-
age 5-specific.

Category: ESX
Secretion

molybdenum,
riboflavin and
cobalamin

L,D
transpeptidase

adenylate
cyclase

drug-resistance
associated genes

mammalian cell
entry (MCE)

Lineage 1

Indel 0 1 0 0 0 0

Synonymous 3 2 0 1 0 1

Non-synonymous 4 3 0 1 1 1

Non-synonymous &
affects protein
function

1 2 0 0 1 1

Lineage 2

Indel 1 1 0 0 0 0

Synonymous 2 2 0 0 0 0

Non-synonymous 7 0 0 0 0 0

Non-synonymous &
affects protein
function

3 0 0 0 0 0

Lineage 3

Indel 0 0 0 0 0 0

Synonymous 2 1 0 2 1 2

Non-synonymous 3 0 0 0 1 1

Non-synonymous &
affects protein
function

0 0 0 0 0 1

Lineage 5

Indel 3 1 0 0 0 1

Synonymous 10 7 0 2 1 0

Non-synonymous 16 8 1 2 2 6

Non-synonymous &
affects protein
function

7 4 1 2 2 4

Lineage 6

Indel 2 0 0 1 0 0*

Synonymous 1 7 0 0 0 1

Non-synonymous 7 7 2 2 3 3

Non-synonymous &
affects protein
function

1 3 1 0 0 1

Lineage 5
& 6

Indel 0 2 0 0 0 0

Synonymous 2 0 0 0 0 0

Non-synonymous 0 0 0 0 0 1

Non-synonymous &
affects protein
function

0 0 0 0 0 1

*Table does not include the 8 genes completely deleted in RD7

doi:10.1371/journal.pntd.0004332.t003
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genes encoding the L,D transpeptidases, ldtA and ldtB (Rv0166c and Rv2518c), previously

shown to form cross-linkages within peptidoglycan (Tables 3 and S4A) [83] and to be key driv-

ers of cell shape, size, surface morphology, growth and virulence [84]. Lineage 5 also contained

a non-synonymous SNP predicted to affect LdtA protein function (Tables 3 and S4A). No

other lineages had a lineage-specific mutation in an L,D-transpeptidase.

Mutations affecting cAMP signaling in lineages 5 and 6 could affect
virulence

We observed that lineages 5 and 6 had lineage-specific mutations in genes encoding adenylate

cyclases, the enzymes that synthesize cyclic AMP (cAMP), an important cell signaling mole-

cule. Although the affected genes were different between the two lineages, no other lineage had

lineage-specific mutations predicted to affect adenylate cyclase function. Deletion of one of the

17 adenylate cyclases inM. tuberculosis, Rv0386, has been shown to reduce virulence and alter

the immune response [85]. Bentley et al. also previously found that this gene was a pseudogene

inM. africanum GM041182, although here we find that pseudogenization of Rv0386 was not

lineage specific (S6A Table). Nevertheless, given the number of affected adenylate cyclases,

there may be differences in cAMP signaling within lineages 5 and 6, leading to altered

pathogenicity.

Distinct mutations in drug resistance-associated genes in lineages 5
and 6

In order to shed light on the reported lower rates of drug resistance in lineages 5 and 6, we

screened our lineage-specific mutations to investigate if there were any changes in known drug

resistance genes that were not on the list of mutations used before and that might affect the

development of antibiotic resistance [20, 68]. In lineage 6, we observed two lineage-specific

non-synonymous mutations in rpoB, and one lineage-specific non-synonymous mutation in

embC (S1A and S1C Fig and Tables 3 and S4A) not previously implicated in antibiotic resis-

tance. Lineage 5 strains had non-synonymous mutations in genes encoding AtpH (Rv1307)

and AtpG (Rv1309), both of which are subunits of ATP synthase [86] (S4A Table), and a target

of bedaquiline, a new antibiotic reserved for the treatment of drug resistant tuberculosis [87].

Both of these mutations were predicted to affect protein function by SIFT [57], and may affect

bedaquiline efficacy in countries with a high proportion of patients infected with lineage 5.

Thus, both of these lineages have non-resistance conferring mutations in genes associated with

drug resistance that might influence the frequency at which drug resistance develops in these

lineages.

Mutations in mammalian cell entry genes that could affect virulence in
lineages 5 and 6

M. tuberculosisH37Rv contains four mammalian cell entry (MCE) operons, which play an

important role in mycobacterial virulence [88]. In addition to confirming earlier reports that

lineage 6 strains lacked one of these four operons (operon 3; Table 1) [18], we observed line-

age-specific mutations in several of the other MCE operons (lineage 6 had mutations in oper-

ons 1 and 2; lineage 5 had mutations in operons 1 and 3). We also observed a non-synonymous

mutation inmce1B that was shared by lineages 5 and 6 strains and was predicted by SIFT to

affect Mce1B protein function [57]. In comparison, the other lineages had nearly identical

MCE operons as compared toM. tuberculosisH37Rv (Tables 3 and S4A).
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Discussion

Our study describes the largest collection of sequenced lineage 6 isolates to date, and, to our

knowledge, the first in-depth analysis of the genetics of lineage 5. Through our work, we have

characterized the genetic basis of antibiotic resistance in lineage 6 strains from Mali, shown

thatM. africanum andM. tuberculosis are part of the same species, and better defined the

mutations and changes in gene content that typify these lineages. Collectively, this work pro-

vides insights into these understudied lineages and provides testable hypotheses as to why they

are geographically restricted.

We evaluated 92 Mali MTC isolates using both assembly and alignment-based approaches.

Our assemblies revealed several new regions of difference and our alignments identified smaller

lineage-specific changes. In addition to our conclusion thatM. africanum is not a separate spe-

cies, we observed that someM. africanum-M. tuberculosis pairs of strains have greater average

nucleotide identity than some pairs of strains from within the same lineage. Furthermore, our

ANI data demonstrated that there is comparable diversity in lineages 4 and 6, suggesting that

lineage 6 has not undergone a recent population bottleneck. This emphasizes the extremely

close relationship between all MTC lineages, highlighting the role that small changes within

the MTC have played in geographical restriction and altering host preferences. Since our

assemblies were of very high quality, we were able to observe changes in genes that previous

studies could not, thus providing a prioritized list of genes for investigating lineage 5 and 6

characteristics.

One hypothesis for the geographical restriction of lineages 5 and 6 is the presence of an

unknown non-human reservoir.M. africanum has been found in animals, including monkeys,

cows, pigs and hyrax [89–94]. Unfortunately, given genomic data from human clinical isolates

alone, we cannot address this hypothesis directly. However, given the similar level of diversity

between lineage 4 and 6 in Mali and the evidence of person-to-person transmission, a non-

human reservoir seems unlikely to explain the geographic restriction, as lineage 6 appears well

adapted to spread in humans living in this geographic setting, unlikeM. bovis in this and other

settings [95–97].

Another hypothesis for why lineages 5 and 6 occur almost exclusively in West Africa is a

preference for hosts of West African ethnicity, supported by previous evidence, including a

study linking lineage 5 to the Ewe ethnic group [17]. We identified lineage-specific mutations

in ESX genes in every lineage, indicating that each lineage may interact uniquely with the host

immune system. Mycobacteria have five ESX secretion systems, also known as type VII secre-

tion systems, which secrete small proteins across the bacterial cell envelope and are important

to mycobacterial virulence [98, 99]. For example, ESX-1 secretion is lost as part of RD1 inM.

bovis BCG vaccine strains, resulting in loss of ESAT-6 and CFP-10 secretion, and thus attenua-

tion of the bacterium [100, 101]. The lineage-specific mutations in ESX genes could lead to

alterations in the pathogen-host immune interaction, resulting in a requirement in lineages 5

and 6 for the West African immune system. In fact, an altered response to ESAT-6 in patients

infected by lineage 6 has previously been reported [5]. Thus, the specific ESX mutations in line-

ages 5 and 6 could represent adaptations to the niche of the West African host.

Lineage-specific mutations in cobalamin biosynthesis could also contribute to adaptation of

these lineages to the specific ecological niche of the West African host. The hypothesis of adap-

tation to a different host cofactor environment for lineages 5 and 6 is supported by several

studies that have found increased levels of vitamin B12 plasma concentrations in West Africans

compared to Europeans and Mexicans [102, 103]. One unique characteristic of mycobacteria

compared to many other bacterial genera is that they are capable of synthesizing vitamin B12.

Furthermore, vitamin B12 may play a crucial role inM. tuberculosis infection [82, 104, 105].
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Thus, the lineage-specific mutations in cobalamin pathways in lineages 5 and 6 may alter these

strains’ ability to synthesize vitamin B12, which may be tolerated in West African hosts with

higher levels of plasma B12. Adaptation to this B12-rich West African niche might prevent

these lineages from infecting other ethnic groups with lower B12 bioavailability; however, fur-

ther studies would be required to confirm this hypothesis.

A third hypothesis for the geographic restriction of lineages 5 and 6 is that they are less fit,

either for transmission or in-host virulence, resulting in a decreased ability to survive outside

of West Africa. Several papers have shown no difference in transmission rates betweenM.

tuberculosis-associated strains andM. africanum-associated strains [5, 9, 106, 107]. In agree-

ment with previous findings, our Mali Collection revealed three pairs of lineage 6 strains sepa-

rated by 10 or fewer SNPs when aligned toM. tuberculosisH37Rv, suggesting recent

transmission of strains between patients within the ethnic backgrounds prevalent in Mali [64].

That these transmission events were not exclusive to HIV positive patients suggests that a com-

promised immune system is not required for a transmission event. These results indicate that

lineages 5 and 6 do not have a reduced ability to transmit.

A decrease in fitness could also be reflected in a decrease in virulence. It has been hypothe-

sized thatM. africanum is less virulent within humans, mice and guinea pigs than isM. tuber-

culosis [7, 9–11]. However, lineage 6 was not enriched for mutations in virulence and growth-

related genes compared to lineages 1, 2 and 3, suggesting that lineage 6 does not contain an

overall numerical loss of virulence or growth-associated genes. Despite this, individual muta-

tions can still greatly affect disease outcome, and analysis of lineage-specific mutations identi-

fied several potential mechanisms that could lead to changes in how lineages 5 and 6

proliferate and cause disease. The lineage-specific mutations discussed above that could relate

to a niche adaptation in hosts of West African ethnicity, including the lineage-specific muta-

tions in ESX genes and cofactor biosynthesis genes, are also involved in virulence.

Another key set of virulence genes with lineage 5 and 6-specific mutations are the MCE

operons. The MCE operons play an important role in the virulence ofM. tuberculosis, particu-

larly in mycobacterial growth in macrophages [67]. Antibodies to MCE1 proteins have been

identified in patients [108], and operons 1–3 are required for virulence in mice [88]. Despite

this apparent role in virulence, lineage 6 contains mutations that affect protein function in

operons 1–3, while lineages 1–3 have nearly identical MCE operons toM. tuberculosisH37Rv,

suggesting one potential mechanism of decreased virulence.

Another set of virulence-related genes with lineage-specific mutations are adenylate

cyclases, which synthesize cAMP, an important second messenger [109].M. tuberculosis

encodes 17 adenylate cyclases, and deletion of one of them (Rv0386) has been shown to affect

virulence and host response [85], highlighting the importance of this set of genes to pathoge-

nicity. Both lineages 5 and 6 contained lineage-specific mutations predicted to affect the pro-

tein function of several adenylate cyclases, suggesting altered cAMP signaling in these strains,

and a potential effect on the virulence of lineages 5 and 6.

Another pathway that affects bacterial growth and host response is the synthesis of the cell

wall. Both lineage 5 and 6 contained lineage-specific mutations in L,D-transpeptidases. L,D-

transpeptidases are critical to the structure of mycobacterial peptidoglycan and are involved in

bacterial structure and growth [84], providing a possible explanation for the reported changes

in cell size and doubling time inM. africanum GM041182 compared toM. tuberculosisH37Rv

[7]. An altered cell wall could support either the hypothesis of decreased virulence, or suggest

the need for a specific host immune system.

In addition, we saw high variability in PE, PPE and PE-PGRS genes, including changes in

gene content. These repetitive regions are difficult to sequence and are often ignored, but may

play a crucial role in antigenicity and the host-pathogen interaction [110, 111]. Using our high
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quality assemblies and alignments, we were able to identify lineage-specific mutations in these

genes, as well as altered gene content. These mutations highlight the possibility of a critical role

for these proteins in host-pathogen interactions and emphasize the need for a more detailed

analysis of these regions. Furthermore, there were also a number of mutated hypothetical pro-

teins and proteins of unknown function, all of which may play a critical as yet undiscovered

role.

In addition to exploring mechanisms of geographic restriction, we also identified mutations

that may have clinical implications for the region. We found that in Mali,M. africanum-associ-

ated andM. tuberculosis-associated strains evolved antibiotic resistance through similar muta-

tions, and thus standard line-probe assays can still be utilized in West Africa. However, we also

found a gidB polymorphism not previously described which might account for much of the

streptomycin resistance in Mali. Also of concern, we identified several cases of pre-XDR in

Mali, suggesting that Mali may need to begin testing for XDR cases. Furthermore, we identified

lineage 5 or 6-specific mutations that may affect the evolution of drug resistance, particularly

bedaquiline. Thus, whole genome sequencing surveys like this one are useful in revealing new

mechanisms for drug resistance, informing development of molecular diagnostics.

One weakness of our study was that we were limited in our sample size for lineage 5 andM.

bovis strains. Our collection was not representative ofM. bovis genomic diversity, as three of

the fourM. bovis strains in our analysis were attenuatedM. bovis BCG vaccine strains. How-

ever, we only used theM. bovis strains in our ANI and gene content analysis, and required that

any observations be consistent with wild-typeM. bovis sequence, AF2122/97, and our results

corroborated all previous findings ofM. bovis regions of difference. Another weakness of our

study was that our observations may be specific to Mali, since all lineage 5 and 6 isolates

sequenced for our study were isolated in Mali, although these lineages are found throughout

West Africa. However, our lineage 6 isolates were genetically diverse, and represented multiple

spoligotypes, and our isolates from other lineages did not cluster separately on the phylogenetic

tree from strains isolated from South African patients. Thus, our collection reflected substantial

diversity and did not originate from a clonal outbreak. In fact, the study from which we selected

our samples found a wide diversity of strains in Mali, which covered 55% of all known spoligo-

typed strains [20]. Furthermore, based on spoligotyping, many similar strains can be found in

neighboring countries [54, 68, 112–115]. And, finally, studies that employ genomic data alone

are insufficient to address causality. However, we believe that this in-depth genomics analysis

of the neglected pathogen, “M. africanum”, provides a strong foundation from which causal

relationships between lineage-specific variation and geographic restriction can be made.

This collection provides valuable insights into the distinguishing genomic features ofM.

africanum. Here, we have analyzed in detail the genomes of lineage 5 and 6 isolates fromMali

and identified several potential genetic reasons for the geographical restriction of lineages 5

and 6, such as alterations in vitamin B12 pathways and genes associated with virulence, which

provide a guide to future studies focusing on the effects of specific genes. Although we cannot

specifically point to a single reason why these lineages are geographically restricted, we have

found mutations that support the hypothesis of a unique requirement for a host of West Afri-

can ethnicity and for the hypothesis of loss of bacterial fitness. These hypotheses are not mutu-

ally exclusive, and we anticipate that these observations will be able to inform and fast-track

experiments on mycobacterial pathogenicity and virulence, particularly with regard to this

unique member of the MTC.
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less than 1% in either group were excluded from the figure.
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S2 Fig. Mutations in drug-resistance associated genes. Plots showing details of mutations

identified in genes known to confer drug resistance. Light blue or red horizontal shaded bars
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assembly-based analyses, including 91 newly sequenced strains from Mali, 40 strains from

South Africa [25], and six strains from Genbank. C) Sequence Read Archive identifiers for

each of the 161 additional strains from China used in our SNP analysis as part of the Alignment
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(XLSX)

S2 Table. Drug resistance analysis. A) Drug resistance mutations analyzed. B) Table showing

true positives, false positives, true negatives, false negatives, sensitivity, and specificity for the

four drugs for which we have phenotype information for all strains.

(XLSX)

S3 Table. Schematic overview of key metrics for lineage specificity calculations.
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S4 Table. Lineage-specific mutations. All lineage-specific mutations (A) in coding sequences

and (B) in intergenic regions. Maf indicates mutations shared between lineages 5–6, but not

found in lineages 1–4. No mutations were shared between lineages 1–4 but not lineages 5–6.
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S5 Table. Lineage-specific pseudogenes.Maf indicates mutations shared between lineage 5

and 6 but not found in lineages 1–4. No mutations were shared between lineages 1–4 but not
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S6 Table. Comparison of pseudogenes to previous analysis. A) Comparison of pseudogenes

identified differently by our study to those identified by Bentley et al [19]. This table compares

lineage 4, lineage 6 orM. africanum-specific pseudogenes identified in our study to pseudo-

genes identified by Bentley et al. as belonging to lineage 4, lineage 6, lineage 6 and animal

strains, or lineages 5–6 and animal strains. A “0” indicates that the gene is not a pseudogene in

that strain, while “1” indicates that it is, and “2” indicates an ambiguous call. Genes with a light

blue background were identified in this study and not by Bentley et al., while genes with a light

green background were identified by Bentley et al., but not by this study, and genes with a pur-

ple background were identified by both studies. B) Table summarizing the differences between

our study and Bentley et al. [19].
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