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Abstract 

Background: Translating genomic technologies into healthcare applications for the malaria parasite Plasmodium fal-

ciparum has been limited by the technical and logistical difficulties of obtaining high quality clinical samples from the 

field. Sampling by dried blood spot (DBS) finger-pricks can be performed safely and efficiently with minimal resource 

and storage requirements compared with venous blood (VB). Here, the use of selective whole genome amplification 

(sWGA) to sequence the P. falciparum genome from clinical DBS samples was evaluated, and the results compared 

with current methods that use leucodepleted VB.

Methods: Parasite DNA with high (>95%) human DNA contamination was selectively amplified by Phi29 polymerase 

using short oligonucleotide probes of 8–12 mers as primers. These primers were selected on the basis of their differ-

ential frequency of binding the desired (P. falciparum DNA) and contaminating (human) genomes.

Results: Using sWGA method, clinical samples from 156 malaria patients, including 120 paired samples for head-to-

head comparison of DBS and leucodepleted VB were sequenced. Greater than 18-fold enrichment of P. falciparum 

DNA was achieved from DBS extracts. The parasitaemia threshold to achieve >5× coverage for 50% of the genome 

was 0.03% (40 parasites per 200 white blood cells). Over 99% SNP concordance between VB and DBS samples was 

achieved after excluding missing calls.

Conclusion: The sWGA methods described here provide a reliable and scalable way of generating P. falciparum 

genome sequence data from DBS samples. The current data indicate that it will be possible to get good quality 

sequence on most if not all drug resistance loci from the majority of symptomatic malaria patients. This technique 

overcomes a major limiting factor in P. falciparum genome sequencing from field samples, and paves the way for 

large-scale epidemiological applications.

Keywords: Malaria, Dried blood spot, Selective whole genome amplification, Field samples, Whole genome 

sequencing

© The Author(s) 2016. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Open Access

Malaria Journal

*Correspondence:  so1@sanger.ac.uk; s.oyola@cgiar.org;  

cristina.ariani@sanger.ac.uk 
†Samuel O. Oyola and Cristina V. Ariani contributed equally to this work 

1 Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK

Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12936-016-1641-7&domain=pdf


Page 2 of 12Oyola et al. Malar J  (2016) 15:597 

Background
The last decade has seen rapid advances in whole genome 

sequencing technologies helping to track disease out-

breaks and the spread of drug resistance genes [1]. 

Clinical and public health applications for Plasmodium 

falciparum sequencing rely on obtaining sequenceable 

material from samples collected in the field, often in 

resource-limited conditions. To date, the practical dif-

ficulties in sample collection, storage and transporta-

tion impose significant barriers to the use of genomic 

approaches for malaria surveillance.

The most practical and convenient method for sam-

pling clinical malaria parasites is through small blood 

volumes obtained from capillary blood using finger or 

heel-pricks [2, 3]. These small blood samples—about 

50 µl in volume—are blotted on filter papers for efficient 

transportation and storage without requiring refrigera-

tion; this is especially applicable to resource-deprived 

regions where the disease is endemic. Despite the con-

venience and ease of sampling, DNA extracted from 

dried blood spot (DBS) filter papers often has low para-

site DNA yield and an overwhelming host DNA contami-

nation, which poses serious limitations in downstream 

genetic analyses [4]. These technical bottlenecks have 

prevented analysis of large numbers of pathogen samples 

collected by DBS at whole genome resolution, including 

archived clinical specimens, using current high through-

put sequencing technologies.

Currently, whole blood from malaria patients used for 

P. falciparum sequencing is obtained through venous 

blood (VB) draws. This requires skilled phlebotomists or 

clinicians with appropriate training. Once collected, VB 

samples are processed by filtering out leucocytes using 

cellulose columns [5] and require refrigerated storage 

followed by centrifugation and blood pellet freezing or 

DNA extraction. These requirements limit the scope for 

sample collection in remote regions where healthcare 

infrastructure is already under strain. The cellulose filtra-

tion process, although very effective in parasite enrich-

ment, requires large volumes of blood (>2 ml) [6]. Such 

volumes can be difficult to obtain, especially from young 

children, who may already be anaemic as a result of P. fal-

ciparum infection [7] and who bear the heaviest disease 

burden globally.

To overcome the challenges of low sample quality and 

quantity, and to allow timely genetic analysis of clinical 

samples collected directly from patients without culture 

adaptation, an approach was used that selectively ampli-

fies parasite DNA from low blood volume clinical sam-

ples. The selective whole genome amplification (sWGA) 

strategy, originally described by Leichty and Brisson 

[8], uses computationally selected short oligonucleotide 

probes of 8–12  mers as primers that preferentially bind 

to the target genome, and this approach has been suc-

cessfully applied to Laverania parasites, including P. fal-

ciparum [9, 10]. The purpose of the present study was to 

undertake a detailed evaluation of sWGA approaches for 

sequencing the P. falciparum genome from dried blood 

spots.

Methods
Primer design and selection

In order to design probes that preferentially bind to the 

P. falciparum genome, a published PERL script [8] was 

used to select up to 100 (8–12 mer) primers with a pre-

dicted specified melting temperature (≤30  °C). The fre-

quency of these primer sequences in the desired (D) 

Plasmodium falciparum 3D7 genome were compared to 

the contaminating (C) human genome (Fig.  1a). Top 50 

primers with the highest desired/contaminating (D/C) 

ratios were selected for further analysis. From these 50, 

primers with more than three complementary nucleo-

tides at 3′ and 5′ ends were removed to prevent forma-

tion of hairpin structures. To prevent primer–primer 

dimerization, primer pairs with more than three com-

plementary nucleotides at their ends were also removed. 

A final 28 primers that passed the above quality control 

were ordered from Integrated DNA Technologies (Cor-

alville, IA) as standard desalting purification with a single 

modification of phosphorothioate bond between the last 

two 3′ nucleotides to prevent primer degradation by the 

Phi29 polymerase exonuclease activity. Individual prim-

ers were reconstituted in Tris HCl (pH 8.0) buffer and 

pooled into three sets (probes) following the D/C rank-

ing described above: the first set consisted of the first 

10 primers (Probe_10), the second set consisted of the 

first 20 primers (Probe_20), and the third set consisted 

of all 28 primers (Probe_28). Each set was evaluated to 

determine which should be taken forward for further 

assessment.

Mock samples to test the efficacy of sWGA

To test whether selected primers would successfully 

amplify the parasite genome, mock clinical samples 

were prepared by mixing culture-infected red blood cells 

(infected with P. falciparum strain 3D7) with uninfected 

human whole blood to obtain a simulated parasitaemia 

ranging from 0.0001 to 1%. P. falciparum strain 3D7 par-

asites for the mock samples were cultured in human O+ 

erythrocytes with heat-inactivated 10% pooled human 

serum, as described in [11]. All parasitaemia calculations 

were based on the estimation of approximately 4 million 

red blood cells per microlitre of whole blood. DNA was 

extracted from the samples (N = 8) without leucodeple-

tion. In addition, 6 other mock DNA samples were manu-

ally reconstituted by mixing P. falciparum genomic DNA 
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with host (human) genomic DNA to obtain parasite/host 

DNA mixtures of the ratio 1: 24 (4% parasite and 96% 

human DNA) that were used to investigate genome cov-

erage following sWGA.

Whole genomes from dried blood spots

To test the efficacy of sWGA in generating reliable 

genomic data from DBS, WGS datasets obtained from 

standard leucodepleted-genomic DNA (gDNA) were 

compared with sWGA-DBS samples. The gDNA samples 

were derived from two to three ml of venous blood which 

were then processed by CF-11 or MN filtration to remove 

leucocytes [5, 6] prior to DNA extraction. On the other 

hand, the DBS samples were collected by spotting (on fil-

ter paper) 50 μl of whole blood obtained by finger prick-

ing. In total, samples from 156 patients that were positive 

for P. falciparum clinical malaria based on rapid diag-

nostic test (RDT) with CareStart™ Malaria kit (Access 

Bio Inc, USA) were analysed. Eighty-four DBS were col-

lected from the Kassena-Nankana Districts of Upper 

East Ghana, of which 48 had matching VB pairs; and 72 

DBS were collected from Noguchi Memorial Hospital in 

Accra, Ghana, all of which had matching VB samples.

DNA extraction and quantification

Two to three ml of VB samples (mock blood or field) were 

used to extract DNA, using QiAamp DNA blood midi kit 

(Qiagen) following the kit manufacturer’s instructions. 

For DBS, DNA was extracted using QIAamp DNA Inves-

tigator Kit (Qiagen, Valencia, California, United States). 

Approximately 1.5 cm (0.6 in) diameter DBS circles from 

each filter paper were cut out into small pieces of 3 mm 

diameter using a single-hole paper punch. Punched 

pieces from each sample were placed into 2  ml micro-

centrifuge tubes from which DNA was extracted follow-

ing the manufacturer’s instructions except for the reagent 

volumes and incubation times, which were doubled to 

accommodate the increased amount of DBS used per 

sample. An average of 116  ng (standard deviation, SD, 

116.7) of DNA was obtained from the DBS extracts out 

of which at least 5  ng was used as template for sWGA 

amplification reaction.

Selective whole genome amplification (sWGA)

The sWGA reaction was performed in 0.2 ml PCR-tubes 

or plates. The reaction (50 µl total volume) containing at 

least 5 ng of template DNA, 1× BSA (New England Bio-

labs), 1  mM dNTPs (New England Biolabs), 2.5  µM of 

each amplification primer, 1× Phi29 reaction buffer (New 

England Biolabs), and 30 units of Phi29 polymerase (New 

England Biolabs), was placed in a PCR machine (MJ ther-

mal Cycler, Bio-Rad) programmed to run a “stepdown” 

protocol consisting of 35 °C for 5 min, 34 °C for 10 min, 

33 °C for 15 min, 32 °C for 20 min, 31 °C for 30 min, 30 °C 

for 16  h then heating at 65  °C for 15  min to inactivate 

the enzymes prior to cooling to 4  °C. Once the product 

Fig. 1 Primer selection analysis. a The frequency of each primer as ranked by the frequency of occurrence. The y-axis represents the calculated ratio 

of the frequency in the parasite (desired) genome against frequency in the human (contaminating) genome. The x-axis shows the order of ranking 

by the frequency of occurrence ratio. b DNA yield obtained following the selective whole genome amplification with different pools of probe sets. 

Probe_10 represent a pool of the first top 10 ranking primers. Probe_20 is a cumulative mixture consisting of all the Probe_10 primers plus the 

next 10 probes in that order. Probe_28 is a cumulative mixture of all the first 28 primers (Probe_10, Probe_20 and the next 8 probes in the order of 

frequency ranking)
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was amplified, it was quantified using Qubit® dsDNA 

high sensitivity (Thermo Fisher Scientific) to determine 

whether there was enough material for sequencing—

minimum required is 500 ng of product. Standard whole 

genome amplified (WGA) products of the test samples 

were also sequenced as control to determine the extent of 

enrichment [12].

Library preparation of amplified samples and short read 

high throughput sequencing

sWGA products (≥500 ng total DNA) were cleaned using 

Agencourt Ampure XP beads (Beckman Coulter) fol-

lowing manufacturer’s instructions. Briefly, 1.8 volumes 

of beads per 1 volume of sample were mixed and incu-

bated for 5  min at room temperature. After incubation, 

the tube containing bead/DNA mixture was placed on a 

magnetic rack to capture the DNA-bound beads while 

the unbound solution was discarded. Beads were washed 

twice with 200  µl of 80% ethanol and the bound DNA 

eluted with 60  µl of EB buffer. Cleaned amplified DNA 

products (~05–1 µg DNA) were used to prepare a PCR-

free Illumina library using the NEBNext DNA sample 

preparation kit (New England Biolabs) for high through-

put sequencing. DNA libraries were sequenced at the 

Wellcome Trust Sanger Institute using Illumina HiSeq 

2500 instruments and Illumina V.3 chemistry. Paired-

end sequencing was performed with 100-base reads and 

an 8-base index read. 12-multiplex sample libraries were 

loaded to target at least 20 million reads per sample.

Data analysis

Sequence data obtained from each sample was subjected 

to standard Illumina QC procedures and 20 million reads 

per sample was subjected to detailed analysis for enrich-

ment, quality, content, and coverage. Each dataset was 

analysed independently by mapping sequence reads 

to the 3D7 reference genome using BWA [13]. SAM-

tools [14] was used to generate coverage statistics from 

the BWA mapping output. For enrichment analysis, the 

number of reads mapping to either host, or P. falcipa-

rum reference sequences was counted. For genotype 

and concordance analysis, variant calls were generated 

using SAMtools mpileup (V0.1.1.19; with the follow-

ing parameters: -DSV -C50 -m2 -F0.0005 -d 10,000 -gu) 

and bcftools (V0.1.17; with the following parameters: -p 

0.99 -vcgN). A list of 1,241,840 (1.2 million) high-quality 

single-nucleotide polymorphism (SNP) positions, which 

were not filtered by gene class or region, but on indi-

vidual properties of SNPs (such as uniqueness of the sur-

rounding region and within an exon) [15, 16] was used. 

In silico genotyping of both the DBS (sWGA) and VB 

(leucodepleted and unamplified) samples was performed 

using mpileup to count alleles present in at least five 

reads (alleles with less than five reads were discarded). 

Although P. falciparum is haploid, it is common to find 

heterozygous calls due to the presence of multiple clonal 

infections in the same host. In order to genotype hete-

rozygous sites, the 5/2 rule was applied, which requires at 

least two reads in both reference and alternative alleles, 

and the sum of both has to be higher than five reads [15]. 

SNP call concordance analysis between matching DBS 

and VB samples was performed on sequenced data tar-

geting SNPS present in the core genome as well as key 

malaria drug resistance genes, such as crt (K76T involved 

in chloroquine resistance) [17], dhfr (N51I, involved in 

pyrimethamine resistance) [18], dhps (A581G, involved 

in sulfadoxine resistance) [19], mdr1 (N86Y, involved in 

multiple drugs including mefloquine) [20], and kelch13 

(C580Y, involved in artemisinin resistance) [1].

Results
sWGA primer selection and amplification yield

Selected 28 primers were analysed individually (Fig.  1a) 

to determine their expected binding sites and distribu-

tion pattern across the P. falciparum genome. Each 1 or 

2  kb block had at least one primer binding (Additional 

file 1: Figure S1). These 28 primers were pooled into three 

different sets (probes): Probe_10 (consisting of the first 

10 primers), Probe_20 (consisting of the first 20 primers), 

and Probe_28 (a pool of all the 28 primers). In separate 

reactions, the three probes were used to amplify 5  ng 

of simulated mock samples (a mix of 3D7-infected red 

blood cells with uninfected human whole blood; N = 8) 

to determine which set gives optimal genome amplifica-

tion and coverage. The amplified products were cleaned 

and the DNA quantified using Quant-iT™ PicoGreen® 

dsDNA assay kit (Invitrogen) to determine the yield for 

each primer pool (Fig. 1b). Different yields were observed 

between the three primer pools: Probe_10 produced 

the highest average yield (2.5  ±  0.87  µg) followed by 

Probe_20 (1.85 ±  0.81  µg) and Probe_28 (1.2 ±  1.0  µg) 

(Fig.  1b). Whole genome sequencing of the amplified 

products were used to compared the quality of genome 

coverage (number of bases with at least 5x coverage) 

by each set (pool) and no significant difference was 

found (Spearman’s correlation: Probe_10 and Probe_20, 

R2 = 0.97, p < 0.001; Probe_10 and Probe_28, R2 = 0.96, 

p < 0.001; Probe_20 and Probe_28, R2 = 0.97, p < 0.001). 

Probe_10 (Additional file 1: Table S2) was therefore cho-

sen for all subsequent sWGA reactions based on amplifi-

cation yield and cost.

Coverage profile of sWGA samples

To perform a more in-depth analysis on Probe_10, a 

mock sample containing a mixture of human (96%) and 

P. falciparum (4%) DNA was amplified and sequenced, 
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as described in Methods. Using the Illumina short read 

sequence data obtained, the primer binding positions as 

well as the short-read sequence alignments was plotted 

against the reference genome using Circos software [21] 

for data visualization. Figure 2 shows the probe binding 

sites (middle circle) as well as the sequence reads cov-

erage profile (outermost circle) on all 14 chromosomes 

(inner circle) of the P. falciparum genome. Probe_10 suc-

cessfully amplifies the majority of the parasite genome, 

but the variable subtelomeres are not adequately cov-

ered (Fig.  2; Additional file  1: Figure S1). However, the 

coverage profile is uneven and does not correlate prop-

erly with the primer binding sites (Pearson’s correlation 

R2 = −0.007, p = 0.3).

Previous analysis [15] revealed accessible and inac-

cessible regions in the P. falciparum genome. Inacces-

sible regions, mainly the telomeres, centromeres and 

sub-telomeres, are comprised of hypervariable and/or 

highly repetitive sequences that are difficult to assem-

ble or map. The remaining parts (core genome) consist 

of mainly the coding sequences of relatively balanced-

base composition, and are generally accessible in most 

genome analysis. In order to test whether sequences 

generated from sWGA samples would successfully cover 

the core genome, coverage profile of P. falciparum strain 

3D7 samples sequenced as gDNA (3 samples without 

amplification), WGA DNA (3 samples amplified using 

optimized whole amplification method [12]) or sWGA (3 

Fig. 2 Circos plot analysis of Probe_10 primer pool and P. falciparum genome coverage. The three rings represent, from innermost to outermost, the 

14 P. falciparum chromosomes and position in kb, the total number of primers binding in 1 kb windows (red lines), and the average read depth in 

1 kb windows (blue lines). The figure was generated using the Circos software [21]
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samples consisting of a mixture of 4% parasite and 96% 

human DNA, amplified using selective whole genome 

amplification method) was plotted. Figure  3 shows the 

coverage profile of the samples on chromosome 1, high-

lighting regions corresponding to the core genome. 

Unamplified DNA (gDNA) provided the most even and 

uniform coverage across the entire genome. Both WGA 

and sWGA samples produced relatively spiky and uneven 

coverage, with the sWGA producing higher coverage 

depths of uneven distribution.

sWGA enriches for Plasmodium falciparum sequence reads

The sequence data was analysed by comparing datasets 

from standard whole genome amplified (WGA) sam-

ples against their selectively amplified (sWGA) counter-

parts to determine the level of enrichment. An average of 

73.2% (sd 4.4; N = 5) of the reads in the sWGA-treated 

samples mapped to P. falciparum. More than 18-fold 

enrichment of parasite DNA was achieved, depend-

ing on the extent of host contamination in the original 

sample (Table 1; Fig. 4). In contrast, data obtained from 

DBS extracts and amplified by standard WGA (no selec-

tive amplification) had <1% of reads mapping to P. falci-

parum and the rest (>99%) mapping to the host genome 

(Table 1; Fig. 4), demonstrating the efficacy of sWGA in 

selective amplification of parasite DNA.

Parasitaemia and genome coverage threshold in mock 

samples

To investigate the sensitivity of the sWGA application, 

genome coverage threshold by sequence data generated 

from samples with different levels of parasitaemia was 

analysed. In  vitro infected red blood cells were mixed 

with human whole blood to simulate different levels of 

Fig. 3 Core genome coverage profile. Coverage depth of chromosome 1 by leucodepleted and unamplified (VB), whole genome amplified (WGA) 

and selective whole genome amplified (sWGA) DNA of P. falciparum strain 3D7. Black horizontal line shows positions corresponding to the core 

genome and red vertical line shows the centromere
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clinical parasitaemia ranging from 1.0 to 0.0001%. For 

samples with a parasitaemia of ≥0.005% [~6.25 para-

sites per 200 white blood cells (WBC)], ≥70% of the core 

nuclear 3D7 genome was covered at depth of ≥5× reads. 

However, the coverage dropped sharply for samples with 

parasitaemia below 0.005% (Fig. 5a; see Additional file 1: 

Figure S2 for detailed coverage distribution). The same 

dataset was used to analyse coverage of known impor-

tant drug resistant loci in the genome [22]. As shown in 

Fig.  5b, a similar coverage profile was observed where 

all the 7 specified drug resistant loci were covered 100% 

at depths of ≥5× reads for samples with parasitaemia 

≥0.005%.

sWGA allows whole genome sequencing directly 

from clinical dried blood spots

Having established sWGA efficacy in mock blood sam-

ples, DBS field isolates collected from two sites in Ghana, 

with a parasitaemia ranging from 0.001 to 8.9% (1.25–

11,125 parasites per 200 WBC or 40–356,000 parasites 

per µl of blood) were used to test the method. DNA was 

extracted from 205 DBS samples (average yield 116  ng, 

SD 116.7), which were subsequently subjected to sWGA 

(average yield 1399  ng, SD 502). From those, 156 (76%) 

passed the threshold of 500  ng for library preparation 

and were, therefore, whole genome sequenced.

A total of 156 DBS samples were analysed, excluding 

those with <50% of the core genome covered at 5× reads 

or less (N  =  25). On average only 2.3% (SD 2.3) of the 

core genome of the 131 DBS samples was not covered at 

all (Fig. 6a), whereas 85% (SD 13) of the core genome was 

covered at 5× or more (Fig. 6b). The median coverage of 

the core genome was 29× (Fig. 6c).

As expected, samples with higher parasitaemia (above 

0.1%) produced sequence data with better coverage 

at depths of ≥5×, whereas samples with parasitaemia 

lower than 0.03% had many positions covered at depths 

<5× (Fig. 7, F(1,150) = 135.5, p < 0.001). In this dataset all 

samples with parasitaemia lower than 0.03% (N  =  25) 

had more than 50% of the genome covered at 5× or less. 

There was one exception; a sample with 0.001% parasi-

taemia had 51.4% of the core genome covered at 5×. The 

samples with low parasitaemia had a much larger propor-

tion of missing bases in the core genome (Fig. 7). Cover-

age of genes that are either responsible for, or associated 

with, anti-malarial drug resistance (Additional file  1: 

Figure S3) were analysed, and a general tendency of bet-

ter coverage in samples of higher parasitaemia (>0.02%) 

was observed, while those with parasitaemia lower than 

0.01% showed poor coverage across the genes.

Table 1 sWGA enrichment analysis

Mock and field samples were amplified by either WGA or sWGA before sequencing. Proportions of reads mapping to either human or P. falciparum genomes were 

used to determine the level of parasite DNA enrichment by sWGA treatment. 3D7 represent mock samples prepared by mixing P. falciparum and human genomic DNA 

in the ratio of 1:24 (4% parasite and 96% human). Field represent clinical genomic DNA samples extracted from dried blood spot filter papers

Reads mapping to:

Sample P. falciparum (%) Human (%) Others (%) Fold 
enrich-
ment

WGA_3D7_1 3.30 96.20 0.50 N/A

WGA_field_1 2.90 95.83 1.27 N/A

sWGA_3D7_1 79.74 3.33 16.94 19.93

sWGA_3D7_2 74.64 4.82 20.54 18.66

sWGA_Field_1 73.50 4.45 22.04 N/A

sWGA_Field_2 69.26 4.81 25.93 N/A

sWGA_Field_3 68.84 5.51 25.61 N/A

Fig. 4 Selective whole genome amplification (sWGA) enrichment. 

Simulated clinical samples comprising 96% human DNA and 4% P. 

falciparum DNA (3D7) were amplified using either WGA or sWGA. 

Amplified samples were sequenced to determine the proportion of 

reads mapping to human or P. falciparum reference genomes
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Taken together, our data establishes 0.03% parasitae-

mia (40 parasites per 200 WBC) as the minimum thresh-

old on which sWGA technology is capable of generating 

quality sequence data with coverage suitable for most 

genetic analyses on DBS field samples (Fig.  7, vertical 

dotted line marks the 0.03% parasitaemia threshold). The 

data also show that at least 180 parasite genomes per 

sample is required for efficient sWGA processing.

Fig. 5 Assessing sWGA sensitivity and parasitaemia threshold. Clinical mock samples represent different levels of parasitaemia ranging from 0.0001 

to 1%. Data from sWGA-processed samples were analysed to determine coverage of P. falciparum genome. a Genome coverage by samples of dif-

ferent parasitaemia levels. b Coverage of important drug resistance loci by mock samples of different levels of parasitaemia

Fig. 6 Core genome coverage of 156 dried-blood spot (DBS) clinical samples subjected to sWGA. a Percentage of genome positions with no cover-

age. b Percentage of genome positions with at least 5× coverage. c Median genome coverage
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High concordance between dried blood spot samples 

and venous blood samples

In order to further evaluate sWGA efficiency and suit-

ability for genetic studies from DBS samples, a concord-

ance analysis was performed using the set of 120 field 

samples with matched pairs of VB and DBS filter papers. 

Sequence data from both VB and DBS samples were ana-

lysed in parallel and genotyped against the ~1.2 million 

high quality SNP positions previously identified in the P. 

falciparum genome [15]. Genotype calls from matching 

VB (gDNA) and DBS (sWGA) sample pairs were ana-

lysed. In the gold standard VB samples, a median of more 

than 98% (N = 1,217,003) of SNPs were called in all the 

samples (Fig.  8). Overall, 93% (N  =  1,154,911) of SNPs 

were called in the DBS samples, with a slight reduction 

at a lower parasitaemia (Fig. 8). The accuracy of the SNPs 

called was investigated by performing a concordance 

analysis between SNP calls made from VB and DBS sam-

ples. Samples that had <50% of the genome covered at 5× 

(N = 7) as well as all missing calls of the remaining DBS 

samples (total samples analysed N = 113) were excluded 

from this analysis. There was high concordance between 

the SNPs called in both VB and DBS samples, with an 

average of more than 99.9% (out of 1,241,840 SNPs, SD 

10.97%) of calls being concordant (either Ref/Ref or Alt/

Alt; Table  2). Only 0.04% (out of 1,241,840 SNPs, SD 

0.08%) of calls were discordant (Ref/Alt or Alt/Ref ).

The accuracy of SNP calls from sWGA-generated data 

was further tested using allele frequency concordance 

metrics. Using the VCF files targeting the 1.2 million 

high quality-biallelic SNPs, the population-level allele 

frequencies was analysed from matching VB and DBS 

samples, and strong correlation of non-reference allele 

frequencies (NRAF) was found between VB (gDNA) 

and DBS (sWGA) samples (Fig.  9; Pearson’s correlation 

Ρ  =  0.99, p  <  0.001). For more detailed analysis, allele 

frequencies of specific mutations for key malaria drug 

resistance genes—dhfr, mdr1, crt, dhps and kelch13—

were analysed. Once again, high concordance between 

VB and DBS samples was observed (Fig.  9; Additional 

file 1: Table S1). In summary, after excluding lower qual-

ity samples with missing calls, very high concordance in 

Fig. 7 Field DBS samples with higher parasitaemia have a higher pro-

portion of genome positions covered at depth >5×. (F(1,150) = 135.5; 

p = 0.001). The parasitaemia threshold to obtain at least 50% of the 

genome covered at 5× is 0.03% (dotted red line)

Fig. 8 Single nucleotide polymorphism (SNP) calls from matching 

venous blood samples (VB) and dried blood spots samples (DBS). The 

percentage of SNPs called in DBS samples decreases as parasitaemia 

decreases

Table 2 SNP concordance analysis of  dried blood spots 

(DBS; sWGA) and  venous blood (VB; leucodepleted 

and unamplified) samples (N = 113)

Genotype calls across ~1.2 million biallelic typable SNPs from matching VB 

and DBS (sWGA) sample pairs were analysed to obtain SNP concordance 

between the two sample processing methods. Ref, reference genotype call; Alt, 

alternative genotype call; Het, heterogeneous calls; Miss, missing calls

Ref/Ref Alt/Alt Ref/Alt Alt/Ref

Average 1,130,936.8 
(99.82%)

1,391.3 (0.12%) 288.4 (0.02%) 283.4 (0.02%)

SD 124,553.8 
(10.9%)

848.6 (0.07%) 477.8 (0.04%) 498.3 (0.04%)

Median 1,179,088 
(99.9%)

1,026 (0.08%) 0 0
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population genetic data between VB and DBS samples 

was observed.

Discussion
Using sWGA to amplify parasite DNA from dried blood 

spots has immediate and important implications for pub-

lic health. This work has comprehensively evaluated the 

potential of sWGA method. Collecting clinical malaria 

samples as DBS on filter paper is field-friendly and has 

several advantages for both patient and researcher over 

the venous blood (VB) draw methods currently used for 

parasite whole genome sequencing [23]. Finger-prick 

sampling requires less advanced training than VB draws, 

collects ~50× less blood, and is more convenient for most 

patient groups. Unlike VB draws, DBS samples also do 

not require special facilities for transportation, refrigera-

tion, and storage, since the blotted paper is stabilized by 

the membrane that preserves genetic integrity [23, 24]. 

VB sampling is thus relatively limited in geographic range, 

restricted to locations with well-established and resourced 

clinics. Sequencing from DBS samples would break this 

technical bottleneck, allowing significant expansion of 

sample collection to include very remote regions, increas-

ing sampling density and coverage [23, 24].

The data presented show that ~110  ng of genomic 

DNA can be extracted from a 20–40  µl DBS, of which 

over 98% is host material. Isolating sequenceable para-

site DNA from a DBS sample that is highly contaminated 

with host DNA has hindered applications of genetic tools 

in malaria research and control programmes. Previous 

studies have identified various methods to overcome 

the challenges of host DNA contamination in pathogen 

sequencing [4, 25]. However, most of these techniques 

require relatively large quantities of starting DNA mate-

rial that is impossible to obtain from DBS samples. The 

approach described here provides a timely solution to 

this challenge, creating opportunities for both large-scale 

field isolate sequencing studies and analysing archived 

clinical samples that would otherwise be too contami-

nated and low yield for whole genome sequencing.

To thoroughly evaluate the quality and accuracy of 

sWGA sequence data for genetic analysis of clinical 

malaria samples, 156 DBS collected from clinical malaria 

patients was sequenced and analysed using sWGA. 120 

of these had their corresponding VB counterparts col-

lected simultaneously, allowing direct comparison 

between DBS (sWGA) and VB (leucodepleted and unam-

plified) WGS data from an identical patient cohort [5, 6]. 

More than 75% of the P. falciparum genome was covered 

at ≥5× in 117 (97.5%) DBS samples for which parasitae-

mia was ≥0.03%. The sWGA-derived genome sequences 

show a less uniform coverage profile compared to data 

generated from unamplified genomic DNA (VB-derived, 

Fig.  3). This is typical of whole genome amplified data 

[12]. However, the core genome was adequately covered 

at depths suitable for most downstream analysis includ-

ing variant detection and SNP genotyping. Further opti-

mization is required to amplify and successfully genotype 

regions outside the core genome, such as telomeres and 

mitochondria.

The high concordance of SNP calls and allele frequen-

cies between the DBS and VB paired samples indicates 

that samples that were subjected to sWGA are suit-

able for population genetic studies. Significantly for the 

potential applicability of this technology to public health 

surveillance projects, important malaria drug resistance 

loci were successfully sequenced and showed very similar 

allele frequencies for both DBS and VB samples (Fig. 9; 

Additional file 1: Table S1).

Conclusion
In summary, this work shows that processing DBS sam-

ples using sWGA method produces reliable sequence 

data, provided that: the sample has ≥180 P. falciparum 

genomes (parasitaemia threshold ~0.03%, or ~40 para-

sites per 200 WBC); the threshold for library preparation 

is met (≥500 ng of DNA post-sWGA); and the sequence 

Fig. 9 Population-level allele frequency of venous blood (VB) and 

DBS (sWGA) samples are strongly correlated. Using variant calls from 

the 1.2 million high quality-biallelic SNP positons, non-reference 

allele frequencies (NRAF) were compared from matching VB and 

DBS samples, and a strong correlation between the two sample sets 

was obtained. Coloured dots represent specific mutations of drug 

resistance genes. Green dots represent dhfr (N51I, C59R, S108N); blue 

dots represent mdr1 (N86Y, Y184F); red dots represent crt (M74I, N75D, 

N75K, K76T, A220S, Q271E, I356T, R371I); yellow dots represent dhps 

(S436A, G437A, K540E, A581G, A613S)
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data obtained covers at least 50% of the genome at a 

depth of 5× or more. Samples with much a lower para-

sitaemia, for example those collected from asympto-

matic patients or during the low transmission season, 

will require further optimization to improve sensitivity 

and coverage. Using sWGA technology, genomic data 

from larger sample sizes with geospatial resolution could 

provide useful information to public health bodies, for 

example through rapid detection of emerging patterns in 

parasite evolution in response to control initiatives such 

as anti-malarial drugs.
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