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Abstract 

Background: Bovine mastitis is an important cause of economic loss in dairy farms. Streptococcus uberis is among the 
most frequently isolated bacterial species isolated from cows with mastitis. The aim of this study was to perform an in-
depth genetic assessment of S. uberis strains isolated from bovine clinical mastitis (CM) and to perform a phylogenetic 
analysis to represent the evolutionary relationship among S. uberis sequences.

Results: A total of 159 isolates was genetically characterized using whole genome sequencing. According to the 
virulence determinants, all strains harbored the hasC, leuS, perR, purH, and purN virulence genes. Thirty-four resistance 
genes were identified in at least one strain. In terms of acquired genes, we observed that 152 (95.6 %) strains had 
a resistance gene to lincosamine (lnuD), 48 (30.2 %) to tetracycline (tetM), 4 (2.51 %) to tobramicine (ant6), and 1 to 
lincosamide (lsa(E)). MLST detected the Sequence Type (ST)797 (n = 23), while 85.5 % of the strains did not match to 
known STs.

Conclusions: Then, eleven distinct ST were identified after we submitted the new alleles to assign new STs. The other 
prevalent STs observed were ST1215 (n = 58), ST1219 (n = 35), and ST1213 (n = 15). And it was not possible to identify 
the MLST of four strains. Phylogenetic lineages indicated a high genomic diversity of S. uberis in our collection, con-
firming that most strains isolated from bovine mastitis have different reservoirs, typical of environmental pathogens.
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Background

Bovine mastitis is one of the major concerns for the dairy 

industry being associated with direct and indirect eco-

nomic losses. Direct losses include the increased costs 

with veterinary services, milk discard, mortality and 

culling of animals, and reduction of milk quality. On 

the other hand, indirect losses are considered the most 

substantial one, which include the reduction of milk 

production, changing in milk composition, pre-term dry-

ing-off, impairment of reproductive performance, animal 

welfare aspects, and other associated health issues [1, 2].

Many microbial species were described as the cause 

of bovine mastitis and among them, Streptococcus spp. 

is among the most isolated genera in dairy herds, being 

associated with both clinical and subclinical forms of the 

disease [3, 4]. Within the Streptococcus genus, Streptococ-

cus uberis is the most prevalent species envolving with 

bovine mastitis [5]. S. uberis is a Gram-positive pathogen 

inducing both clinical and subclinical mastitis, causing 

reduction of milk production, changes in milk compo-

sition and increase of somatic cell count (SCC) in dairy 

Open Access

*Correspondence:  ncirone@unicamp.br
2 Department of Food Science and Nutrition, Faculty of Food Engineering 
(FEA), University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, SP 
13083-862 Campinas, Brazil
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12917-021-03031-4&domain=pdf


Page 2 of 15Silva et al. BMC Vet Res          (2021) 17:321 

cows [6–8]. �e high polymorphism of strains isolated 

from bovine mastitis indicates that the environment (e.g. 

bedding used in housing facilities and pastures) is the 

main reservoir of S. uberis [9]. However, recent studies 

have shown evidences that certain strains might be trans-

mitted from cow to cow during milking [10, 11]. S. uberis 

was also associated with persistent intramammary infec-

tions, which could be related to its ability to internalize in 

the mammary gland [12], along with its increased resist-

ance to antimicrobials [13, 14]. Despite several studies 

evaluating S. uberis have been published in recent years, 

the role of this species in the epidemiology of mastitis is 

not completely understood. With the advent of powerful 

molecular methods, such as whole genome sequencing, 

it is now possible to detect genetic antimicrobial resist-

ance determinants and virulence factor genes [15]. �e 

advance of knowledge about the genetic features associ-

ated with S. uberis causing mastitis associated with clini-

cal outcomes such as cure after antimicrobial treatment, 

death/culling due mastitis, mammary quarter loss and 

disease reoccurrence, can contribute to the developing 

of efficient strategies for prevention and control of this 

pathogen in dairy herds.

�e aim of this study was to perform an in-depth 

genetic assessment of S. uberis isolated from bovine clini-

cal mastitis (CM) and to perform a phylogenetic analy-

sis to represent the evolutionary relationship between S. 

uberis sequences.

Results and discussion

Descriptive data

A total of 159 S. uberis strains were selected from 151 

cows. Isolates identified from the same cows were iso-

lated from clinical mastitis occurred in different mam-

mary quarters. Cows from which the strains were isolated 

had an average number of lactation of 2.6 (SD = 1.4) 

and DIM of 119.7 (SD = 89.8). In total, 83 % of the iso-

lates (n = 132) were recovered from mild cases (i.e., only 

changes in the milk appearance) of clinical mastitis, while 

17 % where either moderate (i.e., changes in milk appear-

ance associated with inflammatory symptoms in the 

udder) or severe (i.e., changes in the milk and udder asso-

ciated with systemic inflammatory symptoms).

According to cow-level records, the following out-

comes were recorded from cows after CM caused by 

the S. uberis isolates selected herein: mortality after CM 

(19.5 %), bacteriological cure (44.65 %), mammary quarter 

loss (10.7 %), clinical cure (87.4 %) and reoccurrence of 

clinical mastitis (23.9 %).

In Figs.  1 and 2, we demonstrate the relative risk of 

each encoding gene and the probability of mortality and 

bacteriological cure after 14 days for cows, respectively. 

We present the risk, significance, prevalence of positive 

bacteria and cows infected by them which dye and which 

alive, and total prevalence of genes in cows.

Virulence factors

All strains presented five virulence genes: hasC, leuS, 

perR, purH, and purN. �ey were reported to encode 

hyaluronic acid capsule (hasC), Leucyl-tRNA synthetase 

(leuS), peroxide stress regulator (per), and are involved 

with the purine biosynthesis (purH and purN [16–18] 

(https:// www. unipr ot. org/ unipr ot/ P67514, www. patri 

cbrc. org). �e genes distribution according to the clini-

cal outcome status of cows from which the strains were 

isolated is presented on Table 1.

Some genes had low prevalence (less than three cows 

infected by the isolates positives for each gene). Among 

the genes statistically associated with reoccurrence of 

CM were atmB, ccpA, clpP, cpsY, luxS, sodA, SP_0095, 

SP_0320, SP_0829, SP_0916, SP_2086, Spy_1633, and 

vicK. �e genes SP_1970 and SP_0916 were associated 

with death/culling of the cow during lactation. For clini-

cal cure, cpsY, lepA, sodA, SP_0095, SP_0829, SP_0916, 

SP_1970 were associated with no cure. No virulence 

genes were associated with the bacteriological cure. Only 

the gene SP_0916 was associated with more than two 

outcomes (risk of reoccurrence, clinical cure and death/

mortality). �e genes sodA, cpsY, SP_0829, SP_0095 were 

associated with reoccurrence and clinical cure. Finally, 

the gene SP_1970 was associated with mortality and clin-

ical cure (Fig. 3). �e Venn diagram (Fig. 3) for virulence, 

resistance genes and drug target genes was done with the 

genes that showed statistical significance (P < 0.05) for 

any clinical outcome.

S. uberis has several virulence genes that have an 

important role in its pathogenicity. Among them we can 

highlight the hyaluronic acid capsule genes (hasA, hasB, 

and hasC), the plasminogen activator A gene (pauA), and 

the S. uberis adhesion molecule gene (sua) [16, 19, 20]. In 

our study, all strains presented hasC, and just one hasA.

�e putative membrane-bound protein transports 

essential amino acids across the cytoplasmic membrane 

and it is a virulence factor that promote growth of bac-

teria in milk [21]. �e vru cluster co-ordinate the expres-

sion of many putative virulence-associated genes during 

growth of S. uberis in milk [22]. �ese genes and other 

genes (pauA, opp, mtuA), singly or as a group, have not 

been shown to be specifically associated with masti-

tis; however, there is evidence that certain host-adapted 

strains of S. uberis have enhanced ability to cause clinical 

mastitis [23–25].

Strains of S. uberis isolated from cases of bovine 

mastitis display variable amounts of hyaluronic acid 

capsule. Capsule production is dependent of the has 

operon, which consists of the hasAB gene cluster and 

https://www.uniprot.org/uniprot/P67514
http://www.patricbrc.org
http://www.patricbrc.org
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hasC gene [16]. The has operon comprises the hasA 

(encoding the hyaluronan synthase), hasB (encoding 

the UDP-glucose dehydrogenase), and hasC, which 

encodes the UDP-glucose pyrophosphorylase [26]. 

The hasA gene product is essential for capsule produc-

tion in S. uberis [16]. Some studies have reported that 

because of the capsule absence, S. uberis is able to sup-

port the bactericidal effect of bovine neutrophils and 

induce mastitis in dairy cows [27].

The genes purN e purH, which were identified in 

100 % of our isolates, are reported to be involved with 

the purine biosynthesis. These genes are involved with 

the de novo purine biosynthetic pathway responsible 

for the synthesis of inosine monophosphate. Stud-

ies showed that mutations in purine biosynthetic 

genes attenuate virulence in Brucella abortus, and it 

was demonstrated the importance of these genes for 

growth of several pathogens, as Salmonella enterica 

and Bacillus anthracis, in human serum [17, 18].

Resistance factors

�e emergence of drug resistance by bacteria has been 

associated with the overuse of antibiotics [28]. At the 

same time, mastitis is recognized as the main cause for 

antimicrobial use in dairy farms [2, 29, 30]. Although 

S. uberis is one of the most important cause of bovine 

mastitis in dairy herds [31, 32], the resistome of isolates 

from cows with mastitis demands further understanding. 

Herein, thirty-four resistance genes were identified in 

at least one strain. All strains presented rlmA (II), rpoB, 

rpoC genes, although no mutation was observed. For 

acquired resistance genes, we observed that 152 (95.6 %) 

strains had a resistance gene to lincosamine (lnuD), 48 

(30.2 %) to tetracycline (tetM), 4 (2.51 %) to tobramicine 

(ant6), 1 to lincosamide (lsa(E)).

�e distribution of the genes according to the clini-

cal outcome following the CM diagnosis is presented in 

Table 2. �e gene pgsA, which is reported to be associ-

ated with daptomycin resistance when have a mutation 

Fig. 1 Relative risk for mortality based on gene enconding belonging of bacteria which cause mastitis. * - significant difference
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[33], significantly decreased the risk of death/culling. 

A study identified that the substitution in two enzymes 

involved in the cardiolipin biosynthesis pathway, i.e., 

CdsA (phosphatidate cytidylyltransferase) and PgsA 

(CDP-diacylglycerol-glycerol-3-phosphate-3-phosphati-

dyltransferase), were associated with no production of 

phosphatidylglycerol and cardiolipin from cell mem-

branes [34]. Furthermore, the risk of mastitis reoccur-

rence significantly increased with the presence of several 

genes (ddl, folP, gdpD, gldB, gyrA, gyrB, liaF, liaR, liaS, 

lnuD, murA).

Previous studies have reported the resistance of S. 

uberis and they demonstrated that it is higher than S. 

dysgalactiae, which is another important Streptococ-

cus causing mastitis in dairy cows [14, 35]. Despite the 

importance of bacterial resistance, few studies assessed 

the association between antimicrobial resistance genes of 

mastitis-causing streptococci and clinical outcomes after 

intramammary infections [15].

A total of 95.6 % of isolates enrolled in our study pre-

sented the gene lnuD, although it was not associated with 

clinical outcomes of cows affected with clinical mastitis. 

�e gene lnuD was reported to be associated with resist-

ance to lincomycin [36]. �e mechanism of action of lin-

cosamides, including lincomycin, is to prevent protein 

synthesis by inhibiting the peptidyltransferase to several 

nucleotides of 23 S rRNA in the 50 S subunit of the bac-

terial ribosome. Along with the gene lnuD, other genes 

were reported to confer to streptococci resistance to 

lincosamides, such as lnuB and linB [15, 37, 38]. In our 

study only two strains presented the InuB and none had 

the linB gene.

�e gene lsa(E), identified in one of our strains, was 

also reported to confer resistance to lincosamide besides 

streptogramin A and pleuromutilin antibiotics [39]. �is 

gene was also identified in Enterococcus faecalis and 

Staphylococcus aureus strains, and were reported be 

located on a multiresistance gene cluster, suggesting that 

the intra- and inter-genus dissemination and exchange 

of resistance genes could occur via the plasmids [40]. 

�erefore, monitoring this gene in gram-positive patho-

gens causing mastitis, such as S. uberis can be relevant to 

Fig. 2 Relative risk for bacteriological cure after 14 days of treatment based on gene encoding belonging of bacteria which cause mastitis.  * 
- significant difference



Page 5 of 15Silva et al. BMC Vet Res          (2021) 17:321  

T
a

b
le

 1
 D

is
tr

ib
ut

io
n 

of
 v

iru
le

nc
e 

fa
ct

or
s 

ge
ne

s 
of

 1
59

 S
tr

ep
to

co
cc

u
s 

u
b

er
is

 is
ol

at
ed

 fr
om

 c
lin

ic
al

 m
as

tit
is

 a
cc

or
di

ng
 to

 c
lin

ic
al

 o
ut

co
m

es
 re

co
rd

ed
 d

ur
in

g 
th

e 
fo

llo
w

-u
p

 p
er

io
d

V
ir

u
le

n
ce

 f
a

ct
o

r
P

ro
d

u
ct

M
o

rt
a

li
ty

 (
%

 o
f 

co
w

s 
in

fe
ct

e
d

 b
y

 
p

o
si

ti
v

e
 s

tr
a

in
s)

B
a

ct
e

ri
o

lo
g

ic
a

l 
cu

re
C

li
n

ic
a

l c
u

re
L

o
ss

 o
f 

m
a

m
m

a
ry

 
q

u
a

rt
e

r 
fu

n
ct

io
n

.
R

e
o

cc
u

rr
e

n
ce

 
o

f 
C

M
To

ta
l s

tr
a

in
s

D
e

a
d

A
li

v
e

N
o

Y
e

s
N

o
Y

e
s

N
o

Y
e

s
N

o
Y

e
s

n
%

n
%

n
%

n
%

n
%

n
%

n
%

n
%

n
%

n
%

h
a

sC
U

TP
–g

lu
co

se
-1

-p
ho

sp
ha

te
 u

rid
yl

yl
tr

an
sf

er
as

e 
(E

C
 2

.7
.7

.9
)

31
19

12
8

81
88

55
71

45
20

13
13

9
87

14
2

89
17

11
12

1
76

38
24

15
9

le
u

S
Le

uc
yl

-t
RN

A
 s

yn
th

et
as

e 
(E

C
 6

.1
.1

.4
)

31
19

12
8

81
88

55
71

45
20

13
13

9
87

14
2

89
17

11
12

1
76

38
24

15
9

p
er

R
Pe

ro
xi

de
 s

tr
es

s 
re

g
ul

at
or

 P
er

R,
 F

U
R 

fa
m

ily
31

19
12

8
81

88
55

71
45

0
00

15
9

10
0

14
2

89
17

11
12

1
76

38
24

15
9

p
u

rH
IM

P 
cy

cl
oh

yd
ro

la
se

 (E
C

 3
.5

.4
.1

0)
 /

 P
ho

sp
ho

rib
os

yl
am

in
o

-
im

id
az

ol
ec

ar
b

ox
am

id
e 

fo
rm

yl
tr

an
sf

er
as

e 
(E

C
 2

.1
.2

.3
)

31
19

12
8

81
88

55
71

45
20

13
13

9
87

14
2

89
17

11
12

1
76

38
24

15
9

p
u

rN
Ph

os
p

ho
rib

os
yl

gl
yc

in
am

id
e 

fo
rm

yl
tr

an
sf

er
as

e 
(E

C
 2

.1
.2

.2
)

31
19

12
8

81
88

55
71

45
20

13
13

9
87

14
2

89
17

11
12

1
76

38
24

15
9

cy
d

A
C

yt
oc

hr
om

e 
d

 u
b

iq
ui

no
l o

xi
da

se
 s

ub
un

it 
I (

EC
 1

.1
0.

3.
-)

31
20

12
7

80
87

55
71

45
20

13
13

8
87

14
1

89
17

11
12

0
76

38
24

15
8

g
id

A
tR

N
A

-5
-c

ar
b

ox
ym

et
hy

la
m

in
om

et
hy

l-2
-t

hi
ou

rid
in

e(
34

) 
sy

nt
he

si
s 

p
ro

te
in

 M
nm

G
31

20
12

7
80

88
56

70
44

20
13

13
8

87
14

1
89

17
11

12
0

76
38

24
15

8

p
u

rB
A

de
ny

lo
su

cc
in

at
e 

ly
as

e 
(E

C
 4

.3
.2

.2
) @

 S
A

IC
A

R 
ly

as
e 

(E
C

 
4.

3.
2.

2)
30

19
12

7
81

86
55

71
45

20
13

13
7

87
14

0
89

17
11

11
9

76
38

24
15

7

SP
_0

12
1

Ri
b

on
uc

le
as

e 
J1

 (e
nd

on
uc

le
as

e 
an

d 
5’

 e
xo

nu
cl

ea
se

)
31

20
12

5
80

87
56

69
44

20
13

13
6

87
13

9
89

17
11

11
8

76
38

24
15

6

SP
_0

49
4

C
TP

 s
yn

th
as

e 
(E

C
 6

.3
.4

.2
)

31
20

12
5

80
86

55
70

45
20

13
13

6
87

13
9

89
17

11
11

8
76

38
24

15
6

fb
a

Fr
uc

to
se

-b
is

p
ho

sp
ha

te
 a

ld
ol

as
e 

cl
as

s 
II 

(E
C

 4
.1

.2
.1

3)
31

20
12

4
80

85
55

70
45

20
13

13
5

87
13

8
89

17
11

11
7

75
38

25
15

5

g
ln

A
G

lu
ta

m
in

e 
sy

nt
he

ta
se

 ty
p

e 
I (

EC
 6

.3
.1

.2
)

30
19

12
5

81
86

55
69

45
20

13
13

5
87

13
8

89
17

11
11

7
75

38
25

15
5

rp
o

E
D

N
A

-d
ire

ct
ed

 R
N

A
 p

ol
ym

er
as

e 
de

lta
 s

ub
un

it 
(E

C
 2

.7
.7

.6
)

31
20

12
4

80
85

55
70

45
20

13
13

5
87

13
8

89
17

11
11

7
75

38
25

15
5

a
tm

B
M

et
hi

on
in

e 
A

BC
 tr

an
sp

or
te

r s
ub

st
ra

te
-b

in
di

ng
 p

ro
te

in
29

19
12

3
81

83
55

69
45

20
13

13
2

87
13

5
89

17
11

11
4

75
38

25
15

2

cc
p

A
C

at
ab

ol
ite

 c
on

tr
ol

 p
ro

te
in

 A
30

20
12

2
80

82
54

70
46

20
13

13
2

87
13

5
89

17
11

11
4

75
38

25
15

2

lu
xS

S-
rib

os
yl

ho
m

oc
ys

te
in

e 
ly

as
e 

(E
C

 4
.4

.1
.2

1)
 @

 A
ut

oi
nd

uc
er

-2
 

p
ro

d
uc

tio
n 

p
ro

te
in

 L
ux

S
30

20
12

2
80

84
55

68
45

20
13

13
2

87
13

5
89

17
11

11
4

75
38

25
15

2

SP
_0

32
0

2-
de

hy
dr

o
-3

-d
eo

xy
-D

-g
lu

co
na

te
 5

-d
eh

yd
ro

ge
na

se
 (E

C
 

1.
1.

1.
12

7)
 @

 2
-d

eo
xy

-D
-g

lu
co

na
te

 3
-d

eh
yd

ro
ge

na
se

 (E
C

 
1.

1.
1.

12
5)

29
19

12
3

81
85

56
67

44
10

07
14

2
93

13
5

89
17

11
11

4
75

38
25

15
2

cl
p

P
AT

P-
de

p
en

d
en

t C
lp

 p
ro

te
as

e 
p

ro
te

ol
yt

ic
 s

ub
un

it 
C

lp
P 

(E
C

 
3.

4.
21

.9
2)

30
20

12
1

80
83

55
68

45
20

13
13

1
87

13
4

89
17

11
11

3
75

38
25

15
1

Sp
y_

16
33

29
19

12
2

81
83

55
68

45
20

13
13

1
87

13
4

89
17

11
11

3
75

38
25

15
1

vi
ck

 H
is

tid
in

e 
ki

na
se

29
19

12
0

81
81

54
68

46
20

13
12

9
87

13
2

89
17

11
11

1
74

38
26

14
9

SP
_2

08
6

Ph
os

p
ha

te
 A

BC
 tr

an
sp

or
te

r, 
p

er
m

ea
se

 p
ro

te
in

 P
st

A
 (

TC
 

3.
A

.1
.7

.1
)

29
20

11
9

80
81

55
67

45
20

14
12

8
86

13
1

89
17

11
11

0
74

38
26

14
8

SP
_0

09
5

Rh
od

an
es

e 
do

m
ai

n 
p

ro
te

in
 U

PF
01

76
, F

irm
ic

ut
es

 s
ub

gr
ou

p
30

21
11

5
79

82
57

63
43

20
14

12
5

86
12

8
88

17
12

10
7

74
38

26
14

5

le
p

A
Tr

an
sl

at
io

n 
el

on
ga

tio
n 

fa
ct

or
 L

ep
A

30
21

11
4

79
79

55
65

45
20

14
12

4
86

13
0

90
14

10
10

7
74

37
26

14
4

so
d

A
Su

p
er

ox
id

e 
d

is
m

ut
as

e 
[M

n]
 (E

C
 1

.1
5.

1.
1)

30
21

11
4

79
81

56
63

44
20

14
12

4
86

12
7

88
17

12
10

6
74

38
26

14
4

cp
sY

M
et

hi
on

in
e 

b
io

sy
nt

he
si

s 
an

d 
tr

an
sp

or
t r

eg
ul

at
or

 M
ta

R,
 

Ly
sR

 fa
m

ily
30

21
11

0
79

79
56

61
44

20
14

12
0

86
12

6
90

14
10

10
3

74
37

26
14

0



Page 6 of 15Silva et al. BMC Vet Res          (2021) 17:321 

T
a

b
le

 1
 

(c
on

tin
ue

d)

V
ir

u
le

n
ce

 f
a

ct
o

r
P

ro
d

u
ct

M
o

rt
a

li
ty

 (
%

 o
f 

co
w

s 
in

fe
ct

e
d

 b
y

 
p

o
si

ti
v

e
 s

tr
a

in
s)

B
a

ct
e

ri
o

lo
g

ic
a

l 
cu

re
C

li
n

ic
a

l c
u

re
L

o
ss

 o
f 

m
a

m
m

a
ry

 
q

u
a

rt
e

r 
fu

n
ct

io
n

.
R

e
o

cc
u

rr
e

n
ce

 
o

f 
C

M
To

ta
l s

tr
a

in
s

D
e

a
d

A
li

v
e

N
o

Y
e

s
N

o
Y

e
s

N
o

Y
e

s
N

o
Y

e
s

n
%

n
%

n
%

n
%

n
%

n
%

n
%

n
%

n
%

n
%

SP
_0

82
9

Ph
os

p
ho

p
en

to
m

ut
as

e 
(E

C
 5

.4
.2

.7
)

30
21

11
0

79
79

56
61

44
20

14
12

0
86

12
6

90
14

10
10

3
74

37
26

14
0

ci
a

R
Tw

o 
co

m
p

on
en

t s
ys

te
m

 re
sp

on
se

 re
gu

la
to

r C
ia

R
29

21
11

0
79

78
56

61
44

19
14

12
0

86
12

3
88

16
12

10
3

74
36

26
13

9

SP
_0

91
6

A
rg

in
in

e 
de

ca
rb

ox
yl

as
e 

(E
C

 4
.1

.1
.1

9)
30

22
10

9
78

79
57

60
43

20
14

11
9

86
12

4
89

15
11

10
2

73
37

27
13

9

g
u

a
A

G
M

P 
sy

nt
ha

se
 [g

lu
ta

m
in

e-
hy

dr
ol

yz
in

g]
, a

m
id

ot
ra

ns
fe

ra
se

 
su

b
un

it 
(E

C
 6

.3
.5

.2
) /

 G
M

P 
sy

nt
ha

se
 [g

lu
ta

m
in

e-
hy

dr
ol

yz
-

in
g]

, A
TP

 p
yr

op
ho

sp
ha

ta
se

 s
ub

un
it 

(E
C

 6
.3

.5
.2

)

28
20

11
0

80
77

56
61

44
19

14
11

9
86

12
3

89
15

11
10

2
74

36
26

13
8

SP
_1

97
0

A
sp

ar
ta

te
–a

m
m

on
ia

 li
g

as
e 

(E
C

 6
.3

.1
.1

)
30

22
10

8
78

78
57

60
43

20
14

11
8

86
12

4
90

14
10

10
2

74
36

26
13

8

SP
_1

39
6

Ph
os

p
ha

te
 A

BC
 tr

an
sp

or
te

r, 
AT

P-
b

in
d

in
g

 p
ro

te
in

 P
st

B 
(T

C
 

3.
A

.1
.7

.1
)

28
21

10
8

79
76

56
60

44
19

14
11

7
86

12
0

88
16

12
10

1
74

35
26

13
6

SP
_1

39
8

Ph
os

p
ha

te
 A

BC
 tr

an
sp

or
te

r, 
p

er
m

ea
se

 p
ro

te
in

 P
st

A
 (

TC
 

3.
A

.1
.7

.1
)

28
21

10
8

79
76

56
60

44
19

14
11

7
86

12
0

88
16

12
10

1
74

35
26

13
6

SP
_0

85
6

Br
an

ch
ed

-c
ha

in
 a

m
in

o 
ac

id
 a

m
in

ot
ra

ns
fe

ra
se

 (E
C

 2
.6

.1
.4

2)
28

21
10

7
79

76
56

59
44

18
13

11
7

87
12

1
90

14
10

10
0

74
35

26
13

5

SP
_1

78
0

O
lig

oe
nd

op
ep

tid
as

e 
F-

lik
e 

p
ro

te
in

4
22

14
78

12
67

6
33

3
17

15
83

15
83

3
17

13
72

5
28

18

cp
s4

L
U

D
P-

N
-a

ce
ty

l-L
-f

uc
os

am
in

e 
sy

nt
ha

se
 (E

C
 5

.1
.3

.2
8)

3
30

7
70

4
40

6
60

1
10

9
90

9
90

1
10

8
80

2
20

10

Sp
yM

3_
00

13
C

at
io

ni
c 

am
in

o 
ac

id
 tr

an
sp

or
te

r -
 A

PC
 S

up
er

fa
m

ily
1

11
8

89
5

56
4

44
1

11
8

89
8

89
1

11
8

89
1

11
9

p
sa

C
 A

BC
 tr

an
sp

or
te

r m
em

b
ra

ne
-s

p
an

ni
ng

 p
er

m
ea

se
-m

an
ga

-
ne

se
 tr

an
sp

or
t

0
00

6
10

0
2

33
4

67
1

17
5

83
5

83
1

17
5

83
1

17
6

h
u

p
A

Pu
ta

tiv
e 

D
N

A
-b

in
di

ng
 p

ro
te

in
 H

U
-b

et
a 

(A
C

LA
M

E 
29

0)
0

00
2

10
0

1
50

1
50

20
10

0
1

50
2

10
0

0
00

1
50

1
50

2

p
b

p
1A

 D
D

-t
ra

ns
p

ep
tid

as
e

0
00

2
10

0
2

10
0

0
00

0
00

2
10

0
2

10
0

0
00

1
50

1
50

2

p
o

lC
 D

N
A

 p
ol

ym
er

as
e 

III
 P

ol
C

-t
yp

e
1

50
1

50
2

10
0

0
00

0
00

2
10

0
2

10
0

0
00

2
10

0
0

00
2

fb
p

54
Fi

b
ro

ne
ct

in
/fi

b
rin

og
en

-b
in

d
in

g 
p

ro
te

in
0

00
1

10
0

0
00

1
10

0
0

00
1

10
0

1
10

0
0

00
1

10
0

0
00

1

g
ln

P
G

lu
ta

m
in

e 
A

BC
 tr

an
sp

or
te

r, 
su

b
st

ra
te

-b
in

di
ng

 p
ro

te
in

 
G

ln
H

 /
 G

lu
ta

m
in

e 
A

BC
 tr

an
sp

or
te

r, 
su

b
st

ra
te

-b
in

di
ng

 
p

ro
te

in
 G

ln
H

 /
 G

lu
ta

m
in

e 
A

BC
 tr

an
sp

or
te

r, 
p

er
m

ea
se

 
p

ro
te

in
 G

ln
P

1
10

0
0

00
1

10
0

0
00

1
10

0
0

00
1

10
0

0
00

0
00

1
10

0
1

h
a

sA
 H

ya
lu

ro
na

n 
sy

nt
ha

se
0

00
1

10
0

1
10

0
0

00
0

00
1

10
0

1
10

0
0

00
1

10
0

0
00

1

n
eu

B
 P

ut
at

iv
e 

N
-a

ce
ty

ln
eu

ra
m

in
ic

 a
ci

d 
sy

nt
ha

se
0

00
1

10
0

1
10

0
0

00
0

00
1

10
0

0
00

1
10

0
1

10
0

0
00

1

n
o

x
 N

A
D

H
 o

xi
da

se
0

00
1

10
0

0
00

1
10

0
0

00
1

10
0

1
10

0
0

00
1

10
0

0
00

1

p
ep

C
A

m
in

op
ep

tid
as

e 
C

 (E
C

 3
.4

.2
2.

40
)

0
00

1
10

0
0

00
1

10
0

20
20

0
1

10
0

1
10

0
0

00
1

10
0

0
00

1

p
u

rL
Ph

os
p

ho
rib

os
yl

fo
rm

yl
gl

yc
in

am
id

in
e 

sy
nt

ha
se

, s
yn

th
et

as
e 

su
b

un
it 

(E
C

 6
.3

.5
.3

)
0

00
1

10
0

1
10

0
0

00
0

00
1

10
0

1
10

0
0

00
1

10
0

0
00

1

SP
_0

84
2

0
00

1
10

0
1

10
0

0
00

0
00

1
10

0
0

00
1

10
0

1
10

0
0

00
1



Page 7 of 15Silva et al. BMC Vet Res          (2021) 17:321  

T
a

b
le

 1
 

(c
on

tin
ue

d)

V
ir

u
le

n
ce

 f
a

ct
o

r
P

ro
d

u
ct

M
o

rt
a

li
ty

 (
%

 o
f 

co
w

s 
in

fe
ct

e
d

 b
y

 
p

o
si

ti
v

e
 s

tr
a

in
s)

B
a

ct
e

ri
o

lo
g

ic
a

l 
cu

re
C

li
n

ic
a

l c
u

re
L

o
ss

 o
f 

m
a

m
m

a
ry

 
q

u
a

rt
e

r 
fu

n
ct

io
n

.
R

e
o

cc
u

rr
e

n
ce

 
o

f 
C

M
To

ta
l s

tr
a

in
s

D
e

a
d

A
li

v
e

N
o

Y
e

s
N

o
Y

e
s

N
o

Y
e

s
N

o
Y

e
s

n
%

n
%

n
%

n
%

n
%

n
%

n
%

n
%

n
%

n
%

SP
_1

39
9

Ph
os

p
ha

te
 A

BC
 tr

an
sp

or
te

r, 
p

er
m

ea
se

 p
ro

te
in

 P
st

C
 (

TC
 

3.
A

.1
.7

.1
)

0
00

1
10

0
1

10
0

0
00

0
00

1
10

0
1

10
0

0
00

1
10

0
0

00
1



Page 8 of 15Silva et al. BMC Vet Res          (2021) 17:321 

prevent resistance to antimicrobials used to treat mastitis 

[40].

Herein, the gene tetM, which is associated with resist-

ance to tetracycline, decreased the risk of bacteriological 

cure after 14 days of CM diagnosis. In total, 30.2 % of all 

enrolled strains had the tetM gene. Recent studies have 

reported low in vitro susceptibility of S. uberis to tetra-

cycline [13, 41], which may be attributed to the exces-

sive use of these antimicrobials by the systemic route 

for treatment of infections in dairy cows and as growth 

promoter in other species. However, we were not able 

to indicate any plausible explanation why cows with CM 

caused by S. uberis having the tetM gene had lower risk 

of bacteriological cure, especially because tetracycline 

was not used for CM treatment on the selected herd. Fur-

thermore, this antimicrobial is not labeled for treatment 

of bovine mastitis in US. Tetracycline is an antimicrobial 

frequently used systemically to treat respiratory and hoof 

infection in cattle [30], which may explain the presence of 

resistant S. uberis strains among our bacteria collection.

Four strains presented the gene ant6 which confers 

resistance to a tobramycin, an aminoglycoside with a 

broad antibacterial spectrum in vitro, and pharmacoki-

netic properties similar to gentamicin [42]. �e resistance 

to aminoglycosides has clinical importance, since combi-

nation of penicillin G with an aminoglycoside has been 

recommended for severely ill patients [43]. In addition, 

penicillin-based products are among the antimicrobials 

approved to be used for treatment of mastitis in US [44].

�e use of antibiotics in food-producing animals can 

promote the bacterial resistance and allow the presence 

of antibiotic residues in derived products from animals 

consumed by human [45].

MLST

Multi Locus Sequence Type (MLST) is a technique used 

to analyze constitutive genes based on single nucleotide 

polymorphism (SNP) (https:// pubml st. org/ bigsdb? db= 

pubml st_ suber is_ seqdef ).

High genetic diversity was observed in our collection 

of isolates, which was reflected by a large number of 

sequence types (STs). In total, eleven distinct STs were 

observed in our study. Twenty-three strains were clas-

sified ST797, which is the only known sequence type 

among our isolates. Of those, 8 (34.8 %) had bacteriologi-

cal cure, and 6 (26.1 %) died or were culled during the fol-

low up period. �e remained 136 strains did not match 

with any ST and received a new number.

Fig. 3 Venn diagram presenting the frequency of virulence genes of Streptococcus uberis isolated from clinical mastitis that were associated with 
the clinical outcomes recorded during the follow-up period. REOC: reoccurrence of CM

https://pubmlst.org/bigsdb?db=pubmlst_suberis_seqdef
https://pubmlst.org/bigsdb?db=pubmlst_suberis_seqdef
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In addition to the ST797, the most identified MLST-

types were ST1215 (n = 58) and ST1219 (n = 35). ST1215 

was isolated from 58 cows, of which 30 (54.5 %) had 

bacteriological cure, 8 (14.5 %) died or were culled, and 

5 (8.6 %) lost the functionality of the affected mam-

mary quarter. Of the 35 isolates identified as ST1219, 

13 (37.1 %) had bacteriological cure, 6 (17.1 %) died or 

were culled. Other types identified from our bacteria 

collection were ST1213 (n = 15 isolates), ST1216 (n = 8), 

ST1221 (n = 7), ST1214 (n = 2), ST1217 (n = 2), ST1218 

(n = 2), ST1220 (n = 2) and ST1212 (n = 1). It was not 

possible to identify the MLST of four strains.

�e STs found did not belong to any clonal complex 

(https:// pubml st. org/ bigsdb? db= pubml st_ suber is_ 

seqdef ). �e most commons MLST types found were 

ST1215, ST1219, and ST797. Among them, the cows 

infected by ST797 showed higher prevalence of death, 

whereas cows isolated with the ST1215 had higher preva-

lence of bacteriological cure.

�e route of transmission of S. uberis has been dis-

cussed. Various aspects are related with the routes of 

transmission, being important to consider the interaction 

host-pathogen and infection pressure [10]. Although S. 

uberis is one of the main pathogens causing mastitis, its 

epidemiology is not totally understood. �e understand-

ing of epidemiological aspect associated with mastitis-

causing S. uberis can help in the development of focused 

strategies to control this pathogen in dairy farms.

In our study, we observed 10 new STs and one already 

known. Davies et al., 2016 reported 195 different STs of 

S. uberis in 52 herds. Only in 10 herds, eleven or more 

sequence types per herd were observed, showing that in 

general few STs are related with mastitis within a herd. 

71 % of cows were infected by the three more prevalent 

STs (ST1215, ST1219 and ST797), suggesting that spe-

cific strains are more likely to cause mastitis than others 

are. Although the transmission of S. uberis occur mainly 

by the environmental route, the transmission from cow 

to cow can be facilitated in herds with inadequate prac-

tices for prevention of contagious pathogens of mastitis 

(e.g., poor milking routine) [37].

Phylogenetic analysis

�e pangenome of 6,547 unique protein-coding 

sequences was performed using 159 S. uberis strains 

enrolled in the study. A total of 29,518 SNPs extracted 

from the 1,421 core genes was used to infer the ML 

phylogeny. �e results revealed a deep branching and 

scattered population structure that was broadly clas-

sified into distinct phylogenetic lineages, indicating a 

high genomic diversity of S. uberis isolates studied. �e 

prevalence of ST1215 contributed to the emergence of 

the unique dominant phylogroup. �is lineage included 

strains isolated from all four mammary quarters, mainly 

associated with mild clinical score of CM, and with cows 

with more than 2 lactations. However, two cows infected 

by the isolates within this phylogroup have died or were 

culled after clinical mastitis caused by S. uberis. Accord-

ing to clinical outcomes, the isolates were unclustered 

and intermingled among strains associating with various 

clinical responses (Fig. 4).

�e phylogenetic tree showed that the strains are 

diverse and, even when they are considered similar, it 

could yield similar (e.g., strains 186 M and 198 M) or dif-

ferent clinical outcomes (e.g., strains 95 M and 66 M).

Conclusions

In the present study, 159 S. uberis isolates were obtained 

from cows with clinical mastitis and their genomes were 

successfully investigated. Virulence and resistance genes 

were widely identified among isolates and associated with 

clinical outcomes. Interestingly, from eleven STs identi-

fied only one was previously reported, the other ten new 

STs were documented through this work. Although the 

strains were isolated from a single herd, they were highly 

diverse, which confirms S. uberis as an environmental 

pathogen. Our results can be used as reference for under-

standing the epidemiology of S. uberis causing mastitis, 

and also, in future studies targeting the development 

of new strategies for control and prevention of mastitis 

caused by this pathogen in dairy herds.

Materials and methods

Origin of isolates

S. uberis were isolated from cases of clinical mastitis 

identified in a large commercial dairy farm located near 

Ithaca, New York. �e farm milked approximately 4,100 

Holstein cows 3 times daily in a 100-stall rotary milking 

parlor. �e animals were housed in freestall barns, with 

concrete stalls covered with mattresses and bedded with 

manure solids. �e farm had an average milk production 

per cow of 40.4 Kg (42.2 Kg of energy corrected milk) and 

bulk milk SCC of 135.330 cells/mL during the period of 

bacteria isolation.

Farm personnel recorded the severity scores of masti-

tis as mild (changes in the milk appearance), moderate 

(changes in the milk appearance associated with udder 

edema) or severe (presence of systemic signs such as 

fever, dehydration, prostration) and the distribution of 

scores was extracted from the farm management soft-

ware (Dairy Comp 305; Valley Agricultural Software, 

Tulare, CA).

Strains were identified in a contemporary clinical trial 

evaluating the efficacy of four protocols for treatment of 

clinical mastitis caused by Gram-positive pathogens [46]. 

Briefly, all clinical mastitis cases identified on the farm 

https://pubmlst.org/bigsdb?db=pubmlst_suberis_seqdef
https://pubmlst.org/bigsdb?db=pubmlst_suberis_seqdef
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had two milk samples collected using aseptic methods. 

One milk sample was collected by the herdsmen as part 

of the farm’s selective treatment program of CM, which 

was submitted for aerobic culture using the guidelines of 

National Mastitis Council (2017). �e second milk sam-

ple was collected by the researchers and cultured only if 

the first sample had identification of S. uberis. In this step, 

analysis of total Gram-positive bacteria count was per-

formed using the technique of Agar droplets [47] using 

a selective and differential culture medium (Accutreat®, 

FERA Diagnostics and Biologicals,, Ithaca, NY). Results 

of bacterial counts are published elsewhere [46]. A sin-

gle colony was selected from the aforementioned culture 

plate and streaked onto a CHROMagar Streptococcus 

base (CHROMagar, France) plate followed by incuba-

tion overnight at 37 °C. �is procedure was repeated two 

more times to ensure purity and a single colony was used 

for further analysis. �e strains used in this study were 

isolated during the aforementioned procedure using the 

milk samples collected before CM treatment.

�e cows were treated with antibiotics within 48  h 

after CM identification. As our study was performed 

contemporarily with another study [48], cows identified 

with Gram-positive mastitis were randomly allocated to 

three treatment groups: amoxicillin (label use), 3 infu-

sions with 62.5  mg of amoxicillin (Amoxi-Mast, Merck 

Animal Health, Millsboro, DE) performed at 12 ± 2  h 

apart; amoxicillin (extra-label), 5 infusions once a day 

Fig. 4 Phylogeny of core genome SNPs in 159 genomes of Streptococcus uberis isolates from dairy cows with clinical mastitis and according to the 
clinical data recorded for each case. The RAxML program was used to calculate the phylogenetic tree to construct a maximum likelihood phylogeny
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with 62.5  mg of amoxicillin (Amoxi-Mast, Merck Ani-

mal Health); or ceftiofur (label use), 5 infusions once a 

day with 125 mg of ceftiofur hydrochloride (Spectramast, 

Zoetis, Kalamazoo, MI) [46].

Follow up outcomes for cows from which the S. uberis 

strains were originated were registered using the data-

set of Tomazi et al. [48]. Briefly, clinical cure was defined 

as the return of milk to normal appearance according 

to a clinical examination performed 14 ± 3 days after 

CM diagnosis. Bacteriological cure was defined as the 

absence of bacterial growth in milk cultures performed 

at 14 ± 3 days after CM diagnosis. A recurrent case of 

CM was defined when a new case occurred in the same 

quarter from 15 to 90 d after identification of CM and the 

milk culture yielded the same bacterial species isolated at 

diagnosis. A quarter loss was defined as the loss of mam-

mary quarter physiological function due to the damage 

caused by the mastitis case. And the culling or death of 

cows was based on the farm records up to 90 days of CM 

diagnosis [46].

Bacterial identi�cation

�e DNA was extracted from each bacterial isolate using 

DNAasy Power food Microbial Kit (Qiagen, Valencia, 

CA, USA) following the manufacturer’s instructions. 

NanoDrop ND-1000 spectrophotometer (NanoDrop 

Technologies, Rockland, DE) was used for DNA quanti-

fication. �en, a PCR for the 16 S ribosomal DNA gene 

amplification was performed using a mix constituted 

of: 10 pmol of each fD1 forward and rP2 reverse prim-

ers [48], Econo-Taq Plus Green 1× Master Mix (Lucigen, 

Middleton, WI), 280 to 350 ng of template DNA, and 

ultrapure distilled water (added to complete the volume 

to 100 µL). �e parameters used for amplification were 

94 °C for 5 min, 57 °C for 2 min, and 72 °C for 2 min fol-

lowed by 29 cycles of 94 °C for 2 min, 57 °C for 30 s, and 

72 °C for 2 min, with a final extension of 72 °C for 10 min 

[49]. �e presence of PCR products was confirmed by 

agarose gel electrophoresis (1.2 % wt/vol) with 0.5  µg/

mL ethidium bromide. �e PCR products were purified 

using Gel/PCR Fragments Extraction Kit (IBI Scientific, 

Peosta, IA) following the manufacturer’s recommenda-

tions. �e purified DNA samples were submitted to the 

Cornell University Institute of Biotechnology for Sanger 

sequencing using 8 pmol of primer fD1 and 300 ng of 

PCR products. For identification of species, we compared 

our FASTA sequences with the sequences stored in Gen-

Bank, using the BLAST algorithm (http:// blast. ncbi. nlm. 

nih. gov/ Blast. cgi).

Whole-genome sequencing

Samples were diluted by adding UltraPure Water (Inv-

itrogen, Waltham, MA) until a concentration of 0.2 ng/

µl, measured using a Qubit fluorometer (�ermo Fisher 

Scientific, Waltham, MA). After normalization, the sam-

ples were used as an input to the Nextera XT DNA Sam-

ple Prep Kit (Illumina Inc. San Diego, CA). �e library 

preparation was done according to the manufacturer’s 

protocol (Nextera® DNA Library Prep Reference Guide). 

Tagmentation of samples was done using 1 ng of tem-

plate, then PCR amplification was done using a unique 

combination of barcode primers (provided by manufac-

ture). �e purification of libraries was performed using 

Mag-Bind Totalpure NGS (Omega BioTek - Norcross, 

GA) bead purification and then normalized through 

Library Normalization beads/additives. For preparation 

of cluster generation and sequencing, equal volumes of 

normalized libraries were combined, diluted in hybridi-

zation buffer and heat denatured. Finally, we performed 

pair-end sequencing using a MiSeq Reagent Kit v3 (600 

cycles) in the Illumina MiSeq platform.

Genome sequence analyzing

�e quality of the original reads was evaluated using 

FASTQC. �e potential contamination of sequences was 

checked by Kraken2 (Taxonomic sequence classification 

system) [50].

�e sequencing reads were submitted to the com-

prehensive genome analysis service using Pathosys-

tems Resource Integration Center (PATRIC 3.2.96) [51]. 

�e reads were assembled using SPAdes [52] and the 

genomes were annotated using the Rast tool kit avail-

able in the PATRIC system, as part of the all-bacteria 

Bioinformatics Resource Center available online [53]. In 

silico multilocus sequence typing (MLST) was performed 

by MLST 1.8 (https:// cge. cbs. dtu. dk/ servi ces/ MLST/). 

Acquired antibiotic resistance genes (ARGs) were iden-

tified using ABRicate version 0.5 (https:// github. com/ 

tseem ann/ abric ate) by aligning genome sequences to the 

ResFinder database [54]. Virulence genes were identified 

using VFDB database [55]. Plasmid replicon types were 

detected using PlasmidFinder v1.3. [56]. �e IS elements 

were confirmed by searching in ISFinder (https:// www- 

isfin der. bioto ul. fr).

Phylogenetic analysis

For each de novo assembly, coding sequences were pre-

dicted using Prodigal v. 2.6 [57] and annotated using the 

rapid prokaryotic genome annotation tool, Prokka [58]. 

�e core genes were identified and used to build the 

core genome using Roary [59] with the –e –mafft set-

ting to create a concatenated alignment of core genomic 

CDS. SNP-sites (https:// github. com/ sanger- patho gens/ 

snp- sites) was used to extract the core genomic SNPs 

[60]. To construct a maximum likelihood phylogeny 

of the sequencing isolates, RAxML was used with the 

http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://blast.ncbi.nlm.nih.gov/Blast.cgi
https://cge.cbs.dtu.dk/services/MLST/
https://github.com/tseemann/abricate
https://github.com/tseemann/abricate
https://www-isfinder.biotoul.fr
https://www-isfinder.biotoul.fr
https://github.com/sanger-pathogens/snp-sites
https://github.com/sanger-pathogens/snp-sites
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generalized time-reversible model and a GTRGAMMA 

distribution to model site-specific rate variation [61]. 

Support for the ML phylogeny was assessed by 100 boot-

strap pseudo-analyses of the alignment data. We used 

iTOL [62] and FigTree (www. tree. bio. ed. ac. uk/ softw are/ 

figtr ee/) to visualize and edit the phylogenetic tree.

Statistical analysis

Descriptive analysis of gene frequency and distribution of 

genes according to treatment outcomes was performed 

using JMP PRO 14 (SAS Institute Inc., Cary, NC). Using 

JMP Pro 14, we selected 30 most important encoding 

gene through of Predictor Screening and we used 100,000 

trees to make the analyzes. We used this to predict the 

most important genes for variables mortality and bacte-

riological cure in 14 days. Med Calc was used to calculate 

risk relative of each variable and prism (GraphPad) was 

used for plot data.

�e Venn diagram was performed using the website: 

http:// bioin forma tics. psb. ugent. be/ webto ols/ Venn/ .
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