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Abstract: Salmonella Infantis, a common contaminant of poultry products, is known to harbor

mobile genetic elements that confer multi-drug resistance (MDR) and have been detected in many

continents. Here, we report four MDR S. Infantis strains recovered from poultry house environments

in Santa Cruz Island of the Galapagos showing extended-spectrum β-lactamase (ESBL) resistance

and reduced fluoroquinolone susceptibility. Whole-genome sequencing (WGS) revealed the presence

of the ESBL-conferring blaCTX-M-65 gene in an IncFIB-like plasmid in three S. Infantis isolates. Multi-

locus sequence typing (MLST) and single nucleotide variant/polymorphism (SNP) SNVPhyl analysis

showed that the S. Infantis isolates belong to sequence type ST32, likely share a common ancestor, and

are closely related (1–3 SNP difference) to blaCTX-M-65-containing clinical and veterinary S. Infantis

isolates from the United States and Latin America. Furthermore, phylogenetic analysis of SNPs

following core-genome alignment (i.e., ParSNP) inferred close relatedness between the S. Infantis

isolates from Galapagos and the United States. Prophage typing confirmed the close relationship

among the Galapagos S. Infantis and was useful in distinguishing them from the United States

isolates. This is the first report of MDR blaCTX-M-65-containing S. Infantis in the Galapagos Islands

and highlights the need for increased monitoring and surveillance programs to determine prevalence,

sources, and reservoirs of MDR pathogens.

Keywords: Salmonella Infantis; multi-drug resistance; Galapagos; extended-spectrum β-lactamase

1. Introduction

Non-typhoidal Salmonella (NTS) comprises multiple serovars of Salmonella enterica
that can cause self-limiting or invasive enteric disease and are transmitted to humans
mainly through contaminated food [1,2]. The consumption of poultry products represents
a common route of NTS transmission to humans [3], and the increasing prevalence of
antimicrobial resistance (AMR) among NTS isolates has become a serious concern [4,5].
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Most gastrointestinal infections caused by NTS are self-limiting; however, complicated
infections can be treated by first-line antibiotics such as ampicillin, folic pathway inhibitors,
and chloramphenicol. Patients who are infected by multi-drug-resistant (MDR) NTS may
require fluoroquinolones, third-generation cephalosporins, or monobactams to resolve the
infection [1].

Antibiotic resistance is mediated by mutations in genes that are chromosomally en-
coded, or by genes carried by mobile genetic elements (MGE) such as plasmids, integrons,
and transposons that are acquired from other bacteria in the environment through horizon-
tal gene transfer [6]. Strains of AMR NTS are globally disseminated, and their emergence
has been linked to the overuse of antibiotics in agriculture and human medicine [7]. Euro-
pean countries have banned the sub-therapeutic use of antibiotics as growth promoters
in commercially farmed animals [8], and some member states have since reported a re-
duction in the prevalence of AMR bacterial pathogens in food animals [9]. However, the
practice continues in many developing, and some developed countries, serving as potential
reservoirs from which MDR strains of NTS emerge as a result of a sustained selection
pressure [9,10].

In some Latin American countries, antibiotics are routinely fed to commercially grown
and backyard chickens as growth promoters [11,12]. Unsurprisingly, the prevalence of
AMR NTS in live poultry and poultry products from countries such as Colombia [13],
Brazil [14,15], and Ecuador [16,17] is high. Extended-spectrum β-lactamase-producing
(ESBL) strains of NTS are resistant to extended-spectrum cephalosporins and are frequently
isolated from poultry sources in Latin America [16,18,19]. The blaCTX-M gene family codes
for a number of β-lactamase type enzymes that confer ESBL-producing properties to NTS
and are commonly found in poultry-associated isolates from developing regions such as
Latin America [18,20–22]. In Ecuador, S. Infantis is the most prevalent NTS associated
with poultry, and blaCTX-M-65 is frequently detected in ESBL-producing isolates from this
country [17,23]. The propensity of blaCTX-M-65-positive S. Infantis isolates to globally
disseminate was highlighted by Brown et al., who showed a strong clonal relationship
between strains detected in patients who traveled back to the United States from Peru
and Ecuador, and other strains from Peru [24]. Additionally, previous work by Tate
et al. revealed that blaCTX-M-65 was carried on a plasmid harbored by genetically similar S.
Infantis isolates originating from food and patients in the United States and a patient in
Italy [25].

The Galapagos Islands are an isolated territory of Ecuador that practices commercial
poultry production and receives all inputs (baby chicks, feed, and medication) from the
Ecuadorian mainland [26]. Some prevalence studies have reported the presence of drug-
susceptible NTS isolates in wild animals on the Galapagos Islands [27–29]. Unlike in
mainland Ecuador, where considerable information is available on the prevalence and
AMR status of NTS in commercially grown poultry [17], similar work has not yet been
reported for the Galapagos territory. The aim of this study was to genotypically and
phenotypically characterize NTS isolated from poultry farms in the Galapagos Islands,
using a WGS and antibiotic minimum-inhibitory concentration (MIC) approach.

2. Results

2.1. Determination of Serotype, AMR Phenotype, and Genotype

A total of seven NTS isolates, one per farm, was recovered from the 22 sampled farms.
Serotyping and WGS analysis determined that two isolates (G10A and G11A) belonged
to serotype S. Schwarzengrund. The remaining five isolates (G3A, G12A, G13A, G15A,
and G17A) were typed as S. Infantis. All S. Infantis isolates exhibited MDR phenotypes
(Table 1). All the isolates were susceptible to colistin (CL), azithromycin (AZM), tigecycline
(TGC), and meropenem (MEM), (data not shown). One S. Infantis isolate (G17A) could not
be recuperated for WGS analysis and characterization.
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Table 1. Minimum Inhibitory Concentration values (µg/mL) for various antibiotics against strains of Salmonella Infantis

and Salmonella Schwarzengrund.

Isolate Serotype SMX GEN CIP AMP CTX TAZ TET TMP CHL NAL

G3A Infantis (512) (8) (0.25) 1 0.25 0.5 (64) (32) (128) (128)
G12A Infantis (1024) (8) (0.12) (64) (4) (4) (64) (32) (64) (128)
G13A Infantis (1024) (8) (0.12) (64) (4) (4) (64) (32) (128) (64)
G15A Infantis (1024) (8) (0.25) (64) (4) (4) (64) (32) (128) (128)
G10A Schwarzengrund 64 1 (0.50) 1 0.25 0.5 2 0.25 8 16
G11A Schwarzengrund 64 2 0.02 1 0.25 0.5 2 0.25 8 4

Numbers in parenthesis indicate resistant phenotypes. All isolates were susceptible to colistin, azithromycin, tigecycline, and meropenem
(data not shown).

Genomic analysis revealed that the S. Schwarzengrund isolates lacked resistance
genes against most of the antibiotics tested in our panel and displayed the corresponding
drug-sensitive phenotypes (Table 2). The qnrB19 gene was present in both S. Schwarzen-
grund isolates; however, only G10A exhibited reduced susceptibility to ciprofloxacin
(CIP) (Table 2). All S. Infantis isolates possessed mutation D87Y in the gyrA gene con-
ferring decreased susceptibility to CIP. S. Infantis isolates possessing tetracycline (tetA),
trimethoprim (dfrA14), and sulfonamide (sul1) resistance genes displayed the correspond-
ing resistance phenotypes. Similarly, multiple aminoglycoside resistance genes, aph(4)-la,
aadA1, aac(3)-IVa, and aph(3′)-Ia, were detected in the S. Infantis genomes and corresponded
to gentamicin (GEN) resistant phenotypes. Three S. Infantis isolates (G12A, G13A, and
G15A) possessed the ESBL-producing blaCTX-M-65 gene and contigs mapped closely to the
316,160-bp IncFIB-like plasmid pCVM44454 (>298,000 identical bp), including the resis-
tance region (Figure 1). Plasmid replicons belonging to type Col440II were detected in the
genomes of both S. Schwarzengrund isolates.

Table 2. Genetic typing and determinants of antimicrobial resistance genes in Salmonella isolates from Galapagos Islands.

Isolate MLST Plasmid B-Lactam Quinolone Tetracycline Trimethoprim Sulfonamide Aminoglycoside

G3A ST-32 IncFIB-like - gyrA D87Y tet(A) dfrA14 sul1
aph(4)-la, aadA1,

aac(3)-IVa,
aph(3′)-Ia

G12A ST-32 IncFIB-like blaCTX-M-65 gyrA D87Y tet(A) dfrA14 sul1
aph(4)-la, aadA1,

aac(3)-IVa,
aph(3′)-Ia

G13A ST-32 IncFIB-like blaCTX-M-65 gyrA D87Y tet(A) dfrA14 sul1
aph(4)-la, aadA1,

aac(3)-IVa,
aph(3′)-Ia

G15A ST-32 IncFIB-like blaCTX-M-65 gyrA D87Y tet(A) dfrA14 sul1
aph(4)-la, aadA1,

aac(3)-IVa,
aph(3′)-Ia

G10A ST-96 Col440II - qnrB19 - - - -

G11A ST-96 Col440II - qnrB19 - - - -
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Figure 1. Plasmid map for isolates of Salmonella Infantis obtained from Galapagos Island containing antimicrobial. Diagram

created in Geneious Prime. Assembled contigs from each sequenced isolate were mapped to the closed reference plasmid

pCVM44454 (GenBank Accession CP016413), annotated using prokka (V1.14.0) and Galileo AMR (1, https://galileoamr.

arcbio.com/mara/ accessed on 5 March 2021). Green bars show identity between reference plasmid (above) and mapped

contigs (black bars) from each sequenced isolate. Two resistance regions are shown as larger images above. Resistance

genes and cassettes are labeled and shown as teal arrows, conserved segments of integrons (5′-CS and 3′-CS) as pink

arrows, insertion sequences as purple arrows, transposons as light green boxes, and direct repeats by blue labels. Position

numbering of the resistance regions in the reference plasmid is shown above.

2.2. MLST and SNP Analysis

Seven-gene (7-gene) MLST analysis revealed that the S. Schwarzengrund isolates (G10A
and G11A) clustered in ST96, while all S. Infantis isolates clustered as ST32 (Table 2). We then
used SNVPhyl to perform SNP-based phylogenetic analysis on the four S. Infantis isolates
from Galapagos and ten previously reported S. Infantis isolates from the United States
that were shown to carry blaCTX-M-65. The results indicated that the S. Infantis isolates
from Galapagos were highly related to each other (0 pairwise SNP differences) and were
also closely related to the S. Infantis isolates from the United States (1–3 pairwise SNP
differences; Supplementary Table S1). Five of the United States isolates were highly related
(0 pairwise SNP differences), while the remainder were as distantly related to each other,
and to the other United States isolates (2–5 pairwise SNP differences), as they were from
the Galapagos S. Infantis isolates.

A ParSNP analysis focusing on the S. Infantis isolates from the Galapagos and the
United States showed a more distinct branching of the Galapagos isolates. The United
States isolates split into two groups (veterinary/retail and human), of which the veteri-
nary/retail clustered together, while the remaining human isolates exhibited varying degrees
of uniqueness but were phylogenetically closer to the Galapagos isolates (Figure 2).

https://galileoamr.arcbio.com/mara/
https://galileoamr.arcbio.com/mara/
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Figure 2. Phylogenetic analysis of Salmonella Infantis isolates from the Galapagos and the United States using single

nucleotide polymorphism. Relationship among S. Infantis isolates from the Galapagos (n = 4) and the United States

(n = 10; [25]) were analyzed by ParSNP analysis to identify single-nucleotide changes following a rapid core-genome

multi-alignment of the genome sequences.

2.3. Prophage Analysis

Highly discriminatory prophage sequence typing further distinguished among the
Galapagos isolates while preserving major branching patterns previously reported by
Tate et al. for related S. Infantis isolates (Figure 3; Supplementary Table S2) [25]. The
distinguishing features of each isolate, regardless of location, were demonstrable by the
numbers and types of prophages present. Each of the S. schwarzengurd isolates possessed
four prophages, but they all differed either in identity (1 prophage) or sizes of the prophage
genomes (three phages). On the other hand, the four S. Infantis isolates had 5–7 prophages
with distinct features, whereas the United States isolates reported by Tate et al. had
8–10 prophages [25].



Antibiotics 2021, 10, 267 6 of 13

Figure 3. Phylogenetic analysis of Salmonella Infantis isolates from the Galapagos and the United States based on prophage

sequence typing. Prophage sequences were extracted from the genome sequences of S. Infantis isolates from the Galapagos

(n = 4) and the United States (n = 10; [25]).

3. Discussion

3.1. Potentially Pathogenic Clones of NTS Are Present in Poultry Farms in the Galapagos

There is some evidence that the global prevalence of AMR NTS isolates is partially
driven by the overuse of antibiotics in human and veterinary medicine, as well as the
movement of humans, animals and food commodities between different regions [30–33].
In this study, we identified MDR clones of S. Infantis in the Galapagos Island of Santa Cruz
that are genetically similar to strains isolated from the United States and Ecuador. Here,
we speculate that the importation of live poultry from Ecuador for commercial farming is a
potential route for the entry of MDR S. Infantis into the Galapagos Islands. Furthermore,
our study highlights the role of a large IncFIB-like plasmid in the global dissemination of
ESBL-producing and MDR strains of S. Infantis, through poultry production.

Despite the apparently low recovery of Salmonella in the sampled poultry farm envi-
ronments, both recovered serotypes (S. Schwarzengrund and S. Infantis) are known human
pathogens. Interestingly, neither serotype was detected in previous surveillance studies
of wildlife in several Galapagos Islands, including Santa Cruz [27–29]. As previously
highlighted, poultry production in the Galapagos Islands receives all inputs, including
day-old chicks, from Ecuador—a country in which S. Infantis has been reported to have
a prevalence rate of ~42% in broiler chicken farms [16]. In fact, S. Infantis was the most
abundant serotype contaminating chicken carcasses destined for retail in Ecuador [17,34].
In contrast, S. Schwarzengrund does not appear to be highly prevalent in Ecuador, but has
been isolated from poultry and multiple food sources in Brazil [18,35,36] and Argentina [37].
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To our knowledge, this is the first report on the occurrence of NTS in poultry from the
Galapagos Islands.

WGS revealed that the S. Infantis isolates from this study were closely related and
likely share a common ancestor. All isolates clustered into ST32, a globally disseminated
clone that is highly prevalent in poultry and has been associated with diarrheal disease in
affected humans [38]. Likewise, ST96 isolates of S. Schwarzengrund, also detected in this
study, have been isolated from poultry-related products and the associated environments
in Latin America and other countries [39–41]. Interestingly, SNP analyses showed a close
relationship between S. Infantis isolates from the Galapagos and previously reported
isolates originating from food sources in the US [25]. Additional resolution of the accessory
genome using PST further revealed distinguishing features in each S. Infantis isolates. The
high resolution provided by PST can be exploited to track the Galapagos isolates back to
their potential place of origin in Ecuador and may prove to be an important laboratory
support for future epidemiological investigations of the serovar S. Infantis (Table S2). We
observed that the genome of Salmonella phage SJ46 was only present in the S. Infantis
isolates from the United States, whereas the Salmonella phage g431c was present in both
groups of S. Infantis isolates but not in the S. Schwarzengrund isolates. Three of the
Galapagos S. Infantis had unique prophage sequences (Bacillus phage phi STI in G13A,
Clostridium phage phi CTC2A in G3A and Escherichia phage pro 483 in G15A). Similarly,
phage Entero P4 was unique to G12A among the Galapagos isolates. However, the majority
of the United States isolates also had this phage.

3.2. NTS Isolates from the Galapagos Exhibit a Reduced Quinolone Susceptibility Phenotype

The qnrB19 gene was the only AMR determinant detected in the genomes of the S.
Schwarzengrund isolates and encodes plasmid-mediated quinolone resistance (PMQR),
conferring reduced susceptibility to quinolones/fluoroquinolones by protecting the bac-
terial gyrase from interactions with the antibiotic [42]. The Col440II-like plasmid was
detected in the S. Schwarzengrund isolates; however, a recent study highlighted that
a small pPAB19-4-like plasmid plays an important role in the dissemination of qnrB19
throughout Chile [43]. Not surprisingly, NAL susceptibility was detected in both qnrB19-
positive S. Schwarzengrund isolates from this study, and one displayed an intermediate
CIP phenotype. The ability of qnrB19 to confer reduced quinolone/fluoroquinolone sus-
ceptibility in NTS of human and animal origin is well established [44–46]. Full resistance is
usually exhibited by isolates that bear multiple quinolone resistance genes, including muta-
tions within the quinolone-resistance-determining regions (QRDR) of the gyrA, gyrB, parC
and parE genes [47]. Nonetheless, NAL and CIP-resistant S. Schwarzengrund isolates that
possess qnrB19, but lack QRDR mutations, have been isolated from chicken by-products in
Brazil [48].

The S. Infantis isolates in this study were all resistant to NAL but displayed intermedi-
ate MIC to CIP. Although these isolates lacked qnrB19, they possessed the D87Y mutation
in the chromosomally encoded GyrA enzyme. Quinolones/fluoroquinolones target the
bacterial DNA gyrase and topoisomerase enzymes, and mutations within the QRDR of
gyrA can reduce their binding affinity for the antibiotics, rendering them ineffective [49].
Single-amino acid gyrA mutants display reduced quinolone susceptibility in multiple NTS
serotypes, and full resistance has been observed in double-mutants [50,51] and strains that
possess an additional PMQR such as qnrB [47]. All isolates from this study possessed the
D87Y mutation commonly observed in quinolone-resistant strains of NTS [49]. The contri-
bution of QRDR mutations to the rise of reduced quinolone/fluoroquinolone susceptibility
and resistance in Latin America is well documented. For example, a surveillance study
highlighted that the prevalence of quinolone-resistant NTS isolates, half of which possessed
the D87N mutation in gyrA, was twice as high in Latin America (~14%) compared to North
America (6.1%) [52].

MIC testing demonstrated that all S. Infantis isolates from the Galapagos Islands are
multi-drug resistant. This feature has been reported in other studies in Ecuador, where
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most S. Infantis isolates presented multi-resistant phenotypes [16,17]. Moreover, resistance
to third-generation cephalosporines mediated by the blaCTX-M-65 gene has been reported in
Latin American countries, the United States and Europe [22,53,54]. Recently, this phenotype
was reportedly associated with travel to South America [24], but more research is needed
to ascertain whether S. Infantis strains carrying the blaCTX-M-65 gene are now endemic in
countries where they are being increasingly detected.

3.3. S. Infantis Isolates Possess IncFIB-Like Plasmids That Encode for ESBL Production

ESBL-producing bacteria are characterized by resistance to AMP, extended-spectrum
third-generation cephalosporins and monobactams [55]. Three S. Infantis isolates from
this study possessed the blaCTX-M-65 gene that encodes a CTX-M β-lactamase. These
enzymes constitute the most globally disseminated ESBL subgroup found in Gram-negative
bacteria [56–59] and are often present in bacteria that contaminate live poultry and poultry
by-products [60]. We detected the blaCTX-M-65 gene in a resistance region that was genetically
similar to that in the IncFIB-like plasmid identified in ESBL-producing strains of S. Infantis
(Figure 1) isolated from chicken by-products and patients in the US and Italy [25].

Escherichia coli and Salmonella isolates that contain blaCTX-M genes have been reported
in Latin American countries including Brazil and Argentina [61]. Furthermore, blaCTX-M-65-
containing and ESBL-producing strains of S. Infantis have been isolated from poultry
in Ecuador [16,62]. The use of antibiotics as prophylactics during the first week of life
of chicks is a common practice in poultry production on Ecuador’s mainland; however,
this is rarely practiced in the poultry industry of the Galapagos. It is noteworthy that
cephalosporin antibiotics such as ceftiofur are often injected into fertile eggs at hatcheries
to prevent E.coli-induced omphalitis in day-old chicks [63]. Moreover, a Canadian study
revealed a strong correlation between this practice and the rise of ceftiofur-resistant strains
of Salmonella Heidelberg [64]. In addition, Dierikx et al. demonstrated that the prevalence of
ESBL-producing E. coli present in the poultry environment increased significantly after the
use of β-lactam antibiotics [65]. The CTX-M family of ESBL enzymes are highly prevalent
in E. coli [59], and the presence of E. coli strains that possess blaCTX-M-65 in Ecuadorian
broilers chickens [66] highlights a potential source for the horizontal transfer of the gene to
poultry-associated S. Infantis isolates in Ecuador. ESBL-producing strains of S. Infantis not
only occupy specific niches on the Latin American mainland but can also disseminate to
other localities. This was demonstrated when MDR clones that contained blaCTX-M-65 were
isolated from foods and patients in the United States and shown to be closely related to an
outbreak strain in Peru and Ecuador [24,25].

Taken together, the data from this study suggest that MDR strains of S. Infantis could
potentially be transmitted from Ecuador to the Galapagos Islands through the movement
of poultry-related inputs including day-old chicks, feed, personnel and other supplies
between both places. This observation has significant implications from a public health
standpoint, owing to the potential risk of transmission to humans and wildlife, and the
potential difficulty in treating MDR infections. Indeed, suggestions have been made to
construct hatcheries on the Galapagos Islands and to replace imported day-old chicks
with locally available chickens [26]. This would reduce the reliance on externally sourced
inputs, thus limiting potential incoming MDR NTS. However, further research is needed to
pinpoint the source of MDR NTS in the Galapagos, and some of the tools described in this
communication appear adequate to shed light on this need and thus provide optimism that
measures can be developed and instituted to stem MDR NTS propagation in the Galapagos
and elsewhere.

4. Materials and Methods

4.1. Sample Collection

Twenty-two broiler chicken farms stocked with the Cobb 500 breed, located on the
island of Santa Cruz, which represented 54% of the broiler chicken farms in the Galapagos
(n = 41), were sampled from February 2016 to April 2017. All farms were privately owned
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and reared between 6000 to 10,000 broiler chickens. Chickens were fed with compound
feed prepared in Ecuador’s mainland. No growth promotors nor antibiotics were used
during the rearing period, and chickens were between 35 to 42 days of age at the time of
sampling. Farms were sampled once, resulting in the collection of 22 samples during the
study period. Sampling was performed by walking twice inside and along the entire length
of one barn per farm while wearing sterilized disposable overshoes. The used overshoes
were then aseptically removed and stored in sterile bags on ice, then sent to a laboratory
in Quito (Ecuador) within 12 h. Salmonella was isolated from the samples using the ISO
6579-1:2007 protocol [67]. All isolates were serotyped according to the Kauffmann–White
scheme [68].

4.2. Resistance Phenotyping

The AMR phenotype of all confirmed NTS isolates was determined by evaluating
MIC values with broth microdilution EUVSEC plates (Thermo Scientific, West Palm Beach,
USA) according to the manufacturer instructions. The following antibiotics were evaluated:
sulfamethoxazole (SMX), trimethoprim (TMP), gentamicin (GEN), ciprofloxacin (CIP),
nalidixic acid (NAL), ampicillin (AMP), cefotaxime (CTX), ceftazidime (TAZ), tetracycline
(TET), chloramphenicol (CHL), colistin (CL), azithromycin (AZM), tigecycline (TGC) and
meropenem (MEM). E. coli ATCC 25922 was used as the quality control strain.

Epidemiological cutoff values (ECOFF) derived from EUCAST were used to deter-
mine the presence and level of phenotypic resistance in the Salmonella isolates [69]. For
those antibiotics for which ECOFF values are not published (SMX, CL and AZM), clinical
breakpoint values from the Clinical and Laboratory Standards Institute (CLSI) or previ-
ously recommended criteria were used [70]. All intermediate phenotypes obtained with
breakpoint values from CLSI were considered as resistant since they are expected to harbor
genetic determinants of antimicrobial resistance. Multi-resistant isolates were defined as
those having resistance to three or more antibiotics.

4.3. DNA Extraction and Whole-Genome Sequencing

Genomic DNA was extracted and purified using Qiagen DNeasy Blood & Tissue
Kit (Qiagen Sciences Inc., Germantown, Frederick, MD, USA). DNA concentrations were
measured using the Qubit® Fluorimeter for quantification of double-stranded DNA and
the Qubit dsDNA BR Assay kit (Invitrogen/Thermo Fisher Scientific, Waltham, MA, USA).
Additional quality assessments were made using the NanoDrop 2000 UV-Vis (Thermo
Fisher Scientific, Waltham, MA, USA) for determination of A260/280 values. Whole-genome
sequencing (WGS) was performed using the MiSeq platform (Illumina, San Diego, CA,
USA) according to the harmonized FDA GenomeTrakr/CDC PulseNet protocol (https:
//www.cdc.gov/pulsenet/pathogens/protocols.html; last accessed on 8 January 2018).

4.4. Bioinformatic Analyses

Raw reads were submitted to GenomeTrakr and assembled de novo using their
internal analysis pipeline. Genome assemblies were submitted to EnteroBase (https://
enterobase.warwick.ac.uk/species/index/senterica; last accessed on 15 January 2020) in
order to determine the 7-MLST profile of each isolate based on the Acthman scheme and
confirm serotype designation using the SISTR algorithm [71]; https://lfz.corefacility.ca/
sistr-app/; last accessed on 16 January 2020. Antimicrobial resistance genes were identified
using the ResFinder database (https://bitbucket.org/genomicepidemiology/resfinder_db;
last accessed on 17 January 2020, 90% ID and 60% gene coverage cutoffs). For mutational
resistance, gyrA and parC sequences were extracted from genome assemblies using a custom
Perl script and aligned to identify mutations. For plasmid analysis, the assembled contigs
from each sequenced isolate were annotated using Prokka (V1.14.0) and Galileo AMR
(https://galileoamr.arcbio.com/mara/; last accessed on 30 January 2020) and mapped to
the reference plasmid pCVM44454 (GenBank Accession CP016413), isolated from clinical S.
Infantis from the US [25]. Single-nucleotide variations among the S. Infantis Galapagos
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isolates were examined using two separate tools, namely SNVPhyl [72] and ParSNP [73]
and compared to another ten isolates of S. Infantis obtained from the US as previously
reported [25]. A fully assembled S. Infantis genome (4,710,675 bp, LN649235) was used
as a reference for the SNVPhyl analysis, while the auto-recruit option was used for the
choice of the reference genome for ParSNP analysis. The tools provided different degrees
of stringency for evaluating relatedness among the different isolates. To further evaluate
the relationship among the isolates, we used a highly discriminatory phage sequence
typing (PST) tool [74], capable of exploring changes in the mobile accessory genome of
Salmonella isolates, which usually contains prophages [75]. We identified the presence of
prophage sequences in the genome of each strain using PHASTER (https://phaster.ca/;
last accessed on 3 February 2020) and clustered related sequences CD-HIT-EST (http:
//weizhongli-lab.org/cd-hit/; last accessed on 3 February 2020) with sequence identity and
length parameter cut off set at 99%, and the relationships were displayed as a phylogenetic
tree by means of QIIME software (https://qiime2.org/; last accessed on 4 February 2020).

5. Conclusions

The present study highlights the global dissemination of poultry-associated isolates
of MDR NTS, even in an area that prohibits the non-therapeutic use of antibiotics in
poultry farming. The continuing spread of resistance to ESBL and fluoroquinolones, which
represents two important groups of antibiotics for human use, remains a cause of concern.
Careful analyses to track AMR spread are needed using informative tools that can shed
adequate light needed to mount effective control measures. Discriminatory phage-based
analysis can provide useful insight for understanding the epidemiology and spread of
MDR NTS isolates.
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