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Abstract

Background: Understanding Mycobacterium tuberculosis (Mtb) transmission is essential to guide efficient tuberculosis
control strategies. Traditional strain typing lacks sufficient discriminatory power to resolve large outbreaks. Here, we tested
the potential of using next generation genome sequencing for identification of outbreak-related transmission chains.

Methods and Findings: During long-term (1997 to 2010) prospective population-based molecular epidemiological
surveillance comprising a total of 2,301 patients, we identified a large outbreak caused by an Mtb strain of the Haarlem
lineage. The main performance outcome measure of whole genome sequencing (WGS) analyses was the degree of
correlation of the WGS analyses with contact tracing data and the spatio-temporal distribution of the outbreak cases. WGS
analyses of the 86 isolates revealed 85 single nucleotide polymorphisms (SNPs), subdividing the outbreak into seven
genome clusters (two to 24 isolates each), plus 36 unique SNP profiles. WGS results showed that the first outbreak isolates
detected in 1997 were falsely clustered by classical genotyping. In 1998, one clone (termed ‘‘Hamburg clone’’) started
expanding, apparently independently from differences in the social environment of early cases. Genome-based clustering
patterns were in better accordance with contact tracing data and the geographical distribution of the cases than clustering
patterns based on classical genotyping. A maximum of three SNPs were identified in eight confirmed human-to-human
transmission chains, involving 31 patients. We estimated the Mtb genome evolutionary rate at 0.4 mutations per genome
per year. This rate suggests that Mtb grows in its natural host with a doubling time of approximately 22 h (400 generations
per year). Based on the genome variation discovered, emergence of the Hamburg clone was dated back to a period
between 1993 and 1997, hence shortly before the discovery of the outbreak through epidemiological surveillance.

Conclusions: Our findings suggest that WGS is superior to conventional genotyping for Mtb pathogen tracing and
investigating micro-epidemics. WGS provides a measure of Mtb genome evolution over time in its natural host context.

Please see later in the article for the Editors’ Summary.
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Introduction

Mortality due to infectious diseases remains a major burden,

especially in low- and middle-income countries. In an increasingly

globalized world, the free movement of humans favors the

continuous spread of human pathogens such as Mycobacterium

tuberculosis (Mtb), which is still among the most devastating

pathogens [1,2]. To detect this spread, understand the dynamics

of the disease, and develop optimized tuberculosis (TB) control

strategies, accurate tracing of pathogen transmission in the host

population is of outmost importance [3]. For this purpose, various

strain typing methods have been established and used in molecular

epidemiological studies.

Concerning Mtb, three reliable typing methods are used most

often: IS6110 RFLP (restriction fragment length polymorphism)

[4], spoligotyping (interspaced palindromic repeats; CRISPRs) [5],

and MIRU-VNTR (mycobacterial interspersed repetitive unit–

variable number of tandem repeats) typing [6] of up to 24 loci.

These methods have been successfully applied to a wide variety of

research questions, e.g., investigation of laboratory cross-contam-

inations, investigation of outbreaks, and population-based analysis

of recent transmission in metropolitan settings or country-wide [7–

9]. We employed genotyping to investigate the epidemiology of

Mtb in longitudinal population-based studies in the city-state of

Hamburg and its neighboring state Schleswig-Holstein [8,10,11].

However, although IS6110 DNA fingerprinting revealed interest-

ing aspects of actual transmission dynamics, we found that only

approximately 50% of the resulting clusters could be confirmed by

contact tracing documenting transmission links ([8], unpublished

data). Among several reasons that might account for this,

transmission can occur during short contacts or in high risk

populations (e.g., homeless or alcoholic populations), leading to

situations in which epidemiological links are difficult to establish

based on patient interviews.

Furthermore, although these typing techniques target especially

polymorphic genetic targets, they interrogate less than 1% of the

genome and have therefore an intrinsically restricted discrimina-

tory power. Hence, they cannot optimally detect and resolve

recent transmission chains [12,13]. This limitation could be

overcome by the application of next generation whole genome

Table 1. Sociodemographic and disease-related characteristics of the 86 patients in the studied cluster.

Variable All Patients
Number of Patients with
Hamburg Clone, n = 72a

Number of Patients with
non-Hamburg Clone, n = 14a p-Valueb

Age (years)

Mean age (6 standard deviation) 45.03 (614.9) 44.0 (615.4) 50.4 (610.8) 0.14

Range 2–83 2–83 31–71

Sex

Female 16 (18.6) 14 (19.4) 2 (14.3) 0.94

Male 70 (81.4) 58 (80.6) 12 (85.7)

Place of birth

German-born 67 (77.9) 56 (77.8) 11 (78.6) 0.77

Foreign-born 19 (22.1) 16 (22.2) 3 (21.4)

Sputum smear for acid-fast organisms

Positive 36 (41.9) 31 (43.1) 5 (35.7) 0.83

Negative 50 (58.1) 41 (56.9) 9 (64.3)

Alcohol dependence 50 (58.1) 41 (56.9) 9 (64.3) 0.83

Known injecting drug use 6 (4.4) 6 (8.4) 0 (0.0) 0.58

Substance abuse (any) 55 (40.1) 46 (63.9) 9 (64.3) 0.78

Unemployment 58 (67.4) 50 (69.7) 8 (57.1) 0.56

Previous TB 11 (12.8) 9 (12.5) 2 (14.3) 0.80

Domestic accommodation

Permanent residence 69 (80.2) 58 (80.6) 11 (78.6) 0.84

Homelessness 17 (19.8) 14 (19.4) 3 (21.4)

Resident at the bar 3 (3.5) 3 (4.1) 0 (0.0) 0.99

Affiliation to alcohol-consuming milieu/street
scene

65 (75.6) 53 (73.6) 12 (85.7) 0.53

Spontaneously reported symptoms 49 (57.0) 40 (55.6) 9 (64.3) 0.76

Contact tracing 8 (9.3) 7 (9.7) 1 (7.1) 0.84

HIV seropositive 5 (5.8) 5 (6.9) 0 (0.0) 0.70

Resistance to any drug 0 (0.0) 0 (0.0) 0 (0.0) —

aData are given as number (percent) unless otherwise indicated.
bThe mean ages of the two patient groups were compared using the Wilcoxon rank sum test. All other data were compared using Pearson’s x-squared (or Fisher’s exact)
test.
doi:10.1371/journal.pmed.1001387.t001
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sequencing (WGS) for genome-based epidemiology [14]. WGS

can provide comprehensive genetic information including all

possible genomic targets, as well as additional valuable informa-

tion on drug resistance, virulence determinants, and genome

evolution. As ongoing technological developments are rapidly

decreasing costs, WGS has the potential to become the ultimate

tool for diagnostics and pathogen typing, and to dramatically

amplify the impact of molecular diagnostics on clinical microbi-

ology [15]. Although the potential of WGS-based Mtb genotyping

has started to be explored [12,13,16], its precise potential for

accurately tracing particular outbreak clones has remained largely

undefined.

To address this question, we evaluated WGS-based genotyping

for tracking the continuous spread of Mtb in a metropolitan

setting, and for precisely calibrating the short-term evolution of the

genome of Mtb by following its clonal expansion over more than a

decade. The strain involved was first detected within the

longitudinal molecular epidemiological study that we initiated in

Hamburg in 1997 [10]. Initial analyses in 2004 revealed that the

strain spread predominantly in a local bar and in associated high

risk groups, such as alcoholic and homeless individuals [10]. Of

note, unlike other outbreaks related to barhopping, no super

spreader was identified among source cases. Instead, it was the bar

milieu with a high turnover of occasional visitors (including

homeless men from a neighboring hostel) that seemed to have

favored the continuous, long-term spread of the strain by alcoholic

individuals without influence of HIV co-infection. Although the

Hamburg public health offices made considerable efforts to

address the outbreak and the bar closed in 2006, the strain

continued spreading in Hamburg and Schleswig-Holstein, finally

causing 86 transmissions by the end of the year 2010.

In this study, we performed WGS of all 86 isolates to reveal the

pattern of spread of the cluster strain defined by conventional

genotyping over time. We tested whether WGS-based typing

would provide a higher resolution than traditional typing of the

outbreak, and fit better to its spatio-temporal distribution and the

available contact tracing data. The data obtained were also used to

measure the level of genome variation of Mtb in definite

transmission chains, as a key parameter for calibrating WGS data

for future genome-based molecular epidemiology.

Methods

Study Population
Long-term prospective population-based molecular epidemio-

logical surveillance has been conducted in Hamburg and

Schleswig-Holstein since January 1, 1997, and January 1, 2006,

respectively. All patients with culture-confirmed TB, obligatorily

reported on the basis of the German Infection Protection Act to

the Hamburg Public Health Department and the Regional District

Public Health Departments of Schleswig-Holstein, were prospec-

tively enrolled in the study until December 31, 2010. Overall,

isolates from 2,301 patients were subjected to classical strain typing

over this period. Of these, 86 belonging to the largest strain cluster

identified were included in this investigation.

The molecular epidemiological studies were embedded in

mandatory routine surveillance and contact investigation work

performed by the public health offices according to the legal

mandate of the German Infection Protection Act. They were

approved by the Hamburg and Schleswig-Holstein Commissioners

for Data Protection.

Experimental Datasets
Case data were collected prospectively by trained public health

staff using a standardized questionnaire. The following informa-

tion was obtained via patient interview: the patient’s sex, date and

country of birth, nationality, immigration status (if applicable),

number of years of residence in Hamburg (Germany), current

address (or whether the patient was homeless), whether the patient

was living in a health-care or any public institution, education level

and/or professional training (as far as this could be ascertained),

the nature of the patient’s current employment (if any), details of

any previous known exposure to other persons with TB (especially

within the 6 mo before the first appearance of symptoms), and the

Figure 1. Minimum spanning tree analysis. Minimum spanning tree
allowing hypothetical nodes of the Mtb outbreak in Hamburg and
Schleswig-Holstein. The year of isolation is coded by color. HH, Hanseatic
City of Hamburg; SH, Schleswig-Holstein. Asterisk indicates the root of
the tree determined through comparison with an outgroup (H37Rv).
doi:10.1371/journal.pmed.1001387.g001
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names of the patient’s household contacts and/or any close

contacts in occupational or crowded settings.

To acquire clinical data, the following were also included in the

questionnaire: date of first onset of illness (if possible, the time

interval between the most recent suspected exposure date and the

onset of symptoms, and, if available, the time interval between the

first contact tracing and the onset of symptoms), nature of

symptoms, date and reason for the diagnostic investigation, latency

due to the patient’s delay in seeking medical help, the first date of

case report to a public health office, associated medical problems

(especially HIV infection), result of tuberculin skin testing (or

interferon gamma release assay), chest radiographic findings and

results of microbiological analyses, and presence of alcoholism

(defined as a maladaptive pattern manifested by meeting three or

more criteria of the World Health Organization ICD-10

classification at any time in the same 12-mo period). The

sociodemographic and clinical data of each index person acquired

from standardized patient questionnaires in the first interview were

reassessed immediately after the interview—independently of the

cluster study and before the patient’s isolate was subjected to

RFLP fingerprinting—in order to determine the patient’s epide-

miologic context, especially his/her possible membership in a high

risk group. This profile was intended to help clarify the route of

infection and to establish whether the patient’s contact informa-

tion was adequate and whether further Mtb infection could have

been transmitted but remained undetected through the omission

of probable contact persons. When a patient was recognized to be

a cluster member, additional interviews were conducted if possible,

i.e., if one or more patients of the same clusters diagnosed earlier

were still alive and with known domicile.

Statistical Analysis
Categorical data were compared by the Pearson’s x-squared test

(or Fisher’s exact test, when expected cell sizes were smaller than

five). The Wilcoxon rank sum test was used to determine whether

the distribution of continuous variables differed between two

groups; a two-tailed p-value,0.05 was taken as statistically

significant.

Genotyping
Extraction of genomic DNA from mycobacterial strains, DNA

fingerprinting using IS6110 as a probe, spoligotyping, and 24-

locus MIRU-VNTR genotyping were performed by standardized

protocols, as described previously [4–6]. Overall, only three

isolates had slightly different (one additional band) IS6110

fingerprint patterns. MIRU-VNTR typing revealed only a few

differences, consisting of single-locus variations, discriminating the

isolates into one large (n = 75) and four smaller (n = 11) groups

(Figure S1).

Genome Sequencing
Isolated genomic DNA of the Mtb strain 7199/99 was

sequenced using 454 pyrosequencing with both standard and

paired-end runs. Assembly with GS De Novo Assembler software

yielded 124 contigs in five scaffolds. Gap closure was achieved by

PCR and Sanger sequencing of the amplicons. The closed genome

was corrected for sequencing errors using reads generated by the

Illumina platform, and the refined sequence was automatically

annotated using the annotation system GenDB [17] and H37Rv as

the reference genome (GenBank ID: NC_000962.2) [18]. All

detected differences from the H37Rv annotation were curated

manually. The genome was submitted to the ENA EMBL-Bank

(accession number HE663067).

Whole Genome Alignments
For a genome-wide alignment of Mtb strains, we employed the

program Mauve [19], using the progressive Mauve algorithm with

default settings.

Resequencing
Isolated genomic DNA of individual strains was sequenced on

the Illumina platform. Resulting reads were mapped to the Mtb

H37Rv genome (GenBank ID: NC_000962.2) using the exact

alignment program SARUMAN [20]. Genomic coverage by at

least one read ranged from 92.7% to 99.9% (mean: 96.4%), with a

coverage of 99.2% for isolate 7199/99. Single nucleotide

polymorphisms (SNPs) were extracted from mapped reads by

customized Perl scripts using a minimum coverage of ten reads

and a minimum allele frequency of 80% as thresholds for

detection. We screened for SNPs present in at least one but not

all clinical isolates (i.e., variants discriminating the outbreak

isolates). The drop of sequencing quality in genomic regions

featuring high GC content or repetitive elements can lead to false

positive detection of polymorphisms. Therefore, 15 predicted

SNPs in repetitive regions such as genes of the PPE, PE_PGRS,

and ESX gene families, with allele frequency or coverage above or

below chosen thresholds, were tested as a control, and were found

to be false positive by resequencing PCR fragments.

Calculation of Evolutionary Rates
Evolutionary rates and divergence times were computed on the

basis of an alignment of 3,663,090 sequenced base pairs from each

of 86 Mtb isolates using the BEAST software [21]. Sequences

were dated based on the dates of isolation of Mtb isolates. We used

the HKY model of nucleotide substitution and a strict clock model.

The strict clock was justified because a likelihood ratio test did not

indicate a statistically significant difference between likelihood

scores for maximum-likelihood trees calculated using PAUP with

or without a strict clock enforced [22]. BEAST ran for 108

iterations after a burn-in of 106 iterations. Usage of alternative tree

priors (i.e., prior probability distributions) in the Bayesian analysis

resulted in very similar mutation rates and divergence times. In

contrast, when analyses were run on an empty alignment to

sample from the prior distribution, divergence times were strongly

inflated, suggesting that our results were not an artifact reflecting

the priors. Linear regression of root-to-tip distances from a

maximum-likelihood tree against dates of isolation was performed

by using Path-O-Gen software (available at http://tree.bio.ed.ac.

uk/software/ pathogen/).

Calculation of Reproductive Fitness in the Human
Population

Relative reproductive fitness of Mtb lineages in the human

population was estimated by calculating selection coefficients as

the slopes of a least-squares linear regression of the number of

cases through time in each lineage. The ratio of two lineages’

slopes (aA/aB) provides the relative fitness. The selection

coefficient estimates (slopes) were compared using the Student’s

t-test and were significantly different (p,0.05).

Results

In a population-based epidemiological study in the city-state of

Hamburg involving approximately 2,000 patients conducted over

14 y, we identified an unusually large cluster caused by a strain of

the Haarlem lineage by using classical strain typing, initially based

on IS6110 DNA fingerprinting and later confirmed by 24-locus

MIRU-VNTR typing (see Methods and Figure S1). This cluster

WGS of TB Outbreak
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also encompassed cases in the neighboring federal state of

Schleswig-Holstein, resulting in a total of 86 patients. A detailed

description of the first 38 cluster cases observed up to 2004 has

been published previously [10]. The characteristics of all 86

patients are shown in Table 1. The 86 patients comprised 70

(81.4%) men and 16 women with fully drug-susceptible TB. Only

19 were foreign-born; the remaining (77.9%) were born in

Germany and possessed German citizenship.

Classical typing data did not correlate with the spatial

distribution of the cases and contact tracing data, which indicated

the involvement of multiple source cases. These cases seemed to

have been part of several separate transmission chains that were

not distinguished by IS6110 typing or by 24-locus MIRU-VNTR

typing (Figure S1) [10]. Therefore, we evaluated whether WGS-

based genotyping allowed better resolution of this cluster and

analyzed the correlation with epidemiological data.

Upon analysis of WGS data, SNPs and small deletions

subdivided 53% of the 86 cluster isolates. In total, we detected

85 SNPs between individual outbreak isolates, which were all

verified by Sanger sequencing (Table S1). This validated the strict

thresholds we chose for both polymorphism frequencies and

genomic coverage to exclude false positives (see Methods). Seven

SNPs were identified outside of coding sequences. The remaining

78 polymorphisms could be divided into 47 non-synonymous and

31 synonymous SNPs. Overall, the majority of SNPs turned out to

be non-synonymous (55%), indicating a relaxed purifying selection

in Mtb over short time periods, as previously reported [12].

The detailed population structure and precise spreading of the

Haarlem strain from 1997 until today could be visualized on a

minimum spanning tree based on an alignment of the 85 verified

SNPs (Figures 1 and S2A). WGS disclosed the presence of distinct

genotypes separated by up to 11 SNPs in 1997, indicating

erroneous clustering by classical genotyping of the isolates from the

first years.

The isolates were subdivided into 36 singletons with unique

SNP profiles and seven clusters, comprising from two to 24

isolates. The majority of isolates (n = 72, 84%) were grouped in a

single clade, which we termed the ‘‘Hamburg clone’’ (Figure 1). The

Hamburg clone was first isolated in 1998, then generated several

clusters (including the largest one, with 24 isolates), and was

continuously isolated until the very end of the study (Figure S2A).

In contrast, clones unrelated to the Hamburg clone expanded less

and caused only a single cluster with two isolates. They stopped

spreading after 2002. Furthermore, in 2006, the Hamburg clone

was transmitted to Schleswig-Holstein for the first time, in the city

of Kiel. Independently, a second major spillover to Schleswig-

Holstein occurred in 2010, in the city of Pinneberg. These two

events were resolved both by the SNP-based tree and the detection

of different small deletions specific to each event (Figure S2B).

These data revealed that WGS-based analysis resolved the 86

isolates at a much higher discriminatory level than classical

genotyping, and was, in addition, in accordance with the temporal

and spatial expansion pattern. Then we considered whether this

higher resolution correlated with contact tracing data and

determined the level of variation observed in confirmed transmis-

sion chains. Contact tracing revealed definite transmission links

among 31 patients (33%), which could be assembled into eight

different chains (Figure 2). A high proportion of strains (19 out of

31, 61%) that underwent at least one human-to-human transmis-

sion had no SNP differences under the strict conditions we used for

variant calling. The remaining 39% (n = 12) displayed SNP profiles

differing by three SNPs at most (Figure 2), thus defining a

maximum level of genome variation among isolates from

confirmed transmission chains.

Based on the observed accumulation of sequence variation in

86 Mtb genomes reflecting clonal expansion over at least 14 y

(Figure S3, upper panel), we determined a time scale for the

evolution of Mtb in its natural host. Coalescence-based analyses

estimated the nucleotide substitution rate at 161027 substitutions

per nucleotide site per year (95% confidence interval, 0.661027 to

1.561027), i.e., approximately 0.4 mutations per Mtb genome per

year. When analyses were rerun on datasets with sampling dates

permutated across isolates, divergence dates were much older and

credible intervals much larger (Figure S3, middle panel),

suggesting our rate calculations were based on a genuine temporal

signal in the sequence data. The rate calculations were also

supported by a linear regression of root-to-tip distances from a

maximum-likelihood tree against dates of isolation (Figure S3,

lower panel).

WGS analysis revealed preferential expansion of one specific

clone (i.e., the Hamburg clone) in the patient population (Figure 3A).

Therefore, we attempted to calculate the apparent relative

reproductive fitness of this clone. For this purpose, we made an

approximation where the number of cases per year represented an

estimate of the average number of surviving progeny of a specific

genotype or lineage. Of note, both the Hamburg clone and

unrelated strains exhibited linear growth over time (Figure 3B).

However, their slopes differed significantly (Figure 3B). According

to the ratio of the two slopes, the apparent relative fitness of the

less successful strains is approximately two times lower (0.462)

compared to the Hamburg clone. To assess whether these observed

differences in spreading behavior might be due to differences in

the social environment of the respective index patients, we

performed an in-depth investigation of social background charac-

teristics of all patients based on well-designed contact tracing

approaches using a standard, field-tested questionnaire (see

Methods). We found that patients infected by the Hamburg clone

or by unrelated strains did not differ by age, HIV infection,

substance abuse, homelessness, or social milieu (the last charac-

terized by precarious households and alcohol abuse; see Table 1).

Thus, we did not identify contrasting social or environmental

parameters that would obviously favor preferential transmission of

a specific clone. Overall, 76% of all patients affected by this

outbreak could be considered to belong to the same milieu

(Figure 3C; Table S2). Only a total of five patients—7% of the 56

patients infected by the Hamburg clone—were HIV-positive;

however, the Hamburg clone started to spread among patients

who were not part of this HIV-positive group. Most importantly,

in the first 2 y (1997 and 1998) all patients could be assigned to the

same social setting in Hamburg.

To fully characterize the genomic background of the preferen-

tially transmitted Hamburg clone, we completed the whole genome

sequence of one of its isolates, designated strain 7199/99, and

generated a manually curated genome annotation (Figure S4),

Figure 2. Contact tracing analysis. Contact tracing data received from health authorities as mapped on the minimum spanning tree shown in
Figure 1. Identified transmission chains were termed G1 to G8 (right panel), and information about nationality (N), being part of the bar milieu (M;
black boxes indicate ‘‘yes’’), residential situation (R; white boxes indicate homeless persons), alcoholism (A; black boxes indicate ‘‘yes’’), and drug
abuse (D; black boxes indicate ‘‘yes’’) are included. Different SNP patterns are indicated in the right panel. Identical patterns within single transmission
chains were marked with 0. DE, Germany; PL, Poland; TR,Turkey.
doi:10.1371/journal.pmed.1001387.g002
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using strain Mtb H37Rv as reference. Compared to H37Rv, the

genome of 7199/99 was slightly larger (4,421,197 bp). Pairwise

whole genome alignments of H37Rv to strain 7199/99, and the

sequenced isolates F11 and CDC1551 [23,24], revealed large-

scale genomic rearrangements, mainly due to transposable

elements (42%) and PPE/PE_PGRS genes (38%; Table 2). A

small number of polymorphisms affected coding regions, e.g., the

loss of esxR (Rv3019c) and esxS (Rv3020c), or consisted of a single-

nucleotide deletion, as in mmpl2 (Rv0507). This deletion resulted in

the truncation of mmpl2, which is a member of a transmembrane

protein family; some of the coding regions are potentially involved

in fatty acid transport [25]. However, these variations were present

in all 86 outbreak isolates, thus underlining the prominent role of

SNPs in driving genome evolution during transmission.

Discussion

Our study demonstrates that WGS-based typing provides

epidemiologically relevant resolution of large, longitudinal Mtb

outbreaks much more efficiently than classical genotyping.

Genome-based analysis correlated better with contact tracing

information and spatio-temporal patterns of the pathogen’s

spread. In addition, we were able to determine a timescale of

evolution of Mtb during clonal expansion over more than a

decade, in a population of .80 patients. We estimated a

maximum variation of three SNPs in definite human-to-human

transmission events as a benchmark for interpreting WGS data for

future genome-based molecular epidemiology.

The efficiency of TB surveillance relies on the capacity to

accurately detect outbreaks in the community and to track ongoing

transmission chains, which requires the characterization of clinical

isolates with high discriminatory power, at strain level [9]. Classical

genotyping techniques have been used for more than 20 y now to

assist TB surveillance. However, their value for accurate delineation

of transmission chains or for charting the spread of particular strains

has been questioned by recent genome-based analyses [12,13]. We

showed that isolates with identical IS6110 patterns differed by as

many as 130 SNPs, not supporting direct transmission [12].

In contrast to classical IS6110 DNA fingerprinting and 24-locus

MIRU-VNTR typing, genome sequencing identified a specific clone,

named the ‘‘Hamburg clone,’’ as the major causative agent of the

studied outbreak in Hamburg and Schleswig-Holstein. In addition,

genome-wide polymorphisms revealed several clusters within the

outbreak that correlated well with contact tracing data and the known

spatio-temporal spread to Schleswig-Holstein in two independent

instances, as seen by two distinct clusters (see Figure S2). Importantly,

precise delineation of these transmission chains would have been

nearly impossible using classical contact tracing alone, without

retrospective guidance based on the WGS data, as the majority of

the patients (see Figure 3 and Table 1) were associated with socio-

economic conditions conducive to transmission to unknown contacts

[26]. Our data thus show, as suggested by a previous investigation

[13], the power of WGS-based genotyping for molecular-guided TB

surveillance and control, even in problematic settings.

Figure 3. Spread of the Mtb outbreak in Hamburg and
Schleswig-Holstein. (A) Members of this outbreak have been
continuously isolated over the past 14 y. Isolates of the two
distinguishable parts, the ‘‘Hamburg clone’’ and the remaining
unsuccessful strains, are shown. Black arrows indicate the first isolations
of strains at different sites in Schleswig-Holstein in 2006 (Kiel [K]) and

2010 (Pinneberg [P]). (B) Time course of the Mtb cases and their least-
squares regressions. Upper and bottom plots correspond to the
Hamburg clone and unsuccessful strains, as shown in (A). Solid and
dotted lines represent calculated regression lines and 95% confidence
interval boundaries, respectively. Note that both the Hamburg clone
and the unrelated strains did not significantly depart from linear growth
on this temporal scale, implying that selection coefficients during the
epidemic were fairly constant. (C) Explored environmental settings were
mapped on the minimum spanning trees shown in Figure 1.
doi:10.1371/journal.pmed.1001387.g003

WGS of TB Outbreak

PLOS Medicine | www.plosmedicine.org 7 February 2013 | Volume 10 | Issue 2 | e1001387



Table 2. Genomic regions larger than 20 bp in Mtb H37Rv that were absent (denoted by ‘‘6’’) in at least one aligned strain.

Coordinates Locus Gene Product Strain

7199/99 CDC1551 F11

32350–32386 Rv0029 Hypothetical protein 6

334632– Rv0278c PE_PGRS3 6

338633 Rv0279c PE_PGRS4 6 6

361956–362258 Rv0297 PE_PGRS5 6

370889–372356 Rv0304c PPE5 6 6

428187–428246 Rv0355c PPE8 6

569875–569930 — Repeat 6

577331–577427 Rv0487 Hypothetical protein 6 6

580772–580797 — Repeat 6 6 6

839078–840213 Rv0747 PE_PGRS10 6 6

886542–887415 Rv0792c–Rv0794c GNtR family TF, hypothetical protein, lpdBa 6

889020–890378 Rv0795 IS6110 transposase 6 6 6

926900–926944 Rv0833 PE_PGRS13 6

1093912–1093987 Rv0978c PE_PGRS17 6

1212097–1212703 Rv1087 PE_PGRS21 6 6 6

1217494–1218147 Rv1091 PE_PGRS22 6

1263094–1263123 Rv1135c PPE16 6

1267172–1267229 — Repeat 6

1502787–1503886 Rv1334–Rv1336 Hypothetical protein, CFP10A, cysM 6

1541947–1543304 Rv1369c, Rv1370c IS6110 transposases 6 6 6

1618611–1618611 Rv1441c PE_PGRS26 6

1633507–1636902 Rv1450c–Rv1452c PE_PGRS27, ctaB, PE_PGRS28 6 6 6

1637088–1637214 Rv1452c PE_PGRS28 6

1779279–1788525 Rv1572c–Rv1587c phiRv1 phage proteins 6

1895353–1895583 — Repeat 6 6 6

1983034–1983267 Rv1753c PPE24 6

1987697– Rv1756c, Rv1757c Transposases 6 6

1989052 Rv1758 cut1a 6

1990684–1990713 Rv1759c wag22a 6

1996131–1997452 Rv1763–Rv1765c Transposases 6 6 6

2025848–2025892 Rv1787 PPE25 6

2062012–2062105 Rv1818c PE_PGRS33 6

2074454–2074614 — Repeat 6 6 6

2163731–2165512 Rv1917c PPE34 6 6

2180797–2180818 Rv1928c Dehydrogenasea 6 6

2347527–2347585 Rv2090 Exonuclease 6

2361910–2363682 Rv2101, Rv2102 helZa, hypothetical proteina 6

2365192–2366771 Rv2105 Transposase 6 6 6

2367359–2367834 Rv2107, Rv2108 PE22, PPE36 6

2372464–2372520 Rv2112c Hypothetical protein 6

2381411–2383684 Rv2123, Rv2124c PPE37, metH 6

2430114–2431471 Rv2168c IS6110 transposase 6 6 6

2461398–2461454 — Repeat 6 6 6

2531912–2532123 — Repeat 6

2532107–2532159 — Repeat 6

2545197–2551675 Rv2270–Rv2280 lppNa, cyp121a, and othersa 6

2550009–2551366 Rv2277c, Rv2278 IS6110 transposases 6 6 6

2635579–2636929 Rv2353c, Rv2354 PPE39, transposase 6 6
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An additional major finding of our work is that, while whole

genome variability detected among the outbreak isolates was high

enough to resolve the outbreak, the level of genome-wide variation

in definite transmission chains was very low, limited to no more

than three SNPs. From a more specific perspective, this finding

clearly differs from that of the only other comparable study known

to us, by Gardy and colleagues [13]. These authors analyzed 32

isolates from a 3-y outbreak in British Columbia and found that all

of them (including those with direct epidemiological links) were

separated by at least 18 SNPs. However, many of those SNPs were

found in repetitive DNA regions such as of the PPE/PE_PGRS

gene family and IS elements (40%), which are generally difficult to

map and analyze with short-read sequencing technologies [27].

Likewise, initial inclusion of these regions in our own analyses

suggested more SNPs, but none of the variants found in these

regions were confirmed by subsequent Sanger sequencing. Thus,

our results also define the genome part (i.e., excluding repetitive

regions) that can be interrogated with a minimal risk of false

positive detection of variation, which is an essential parameter to

control when analyzing strains that are intrinsically closely related

in a clonal outbreak.

Our data reveal a time-dependent accumulation of genome

variation when Mtb spreads in its natural human host population.

It shows that Mtb evolves approximately 10-fold more slowly than

methicillin-resistant Staphylococcus aureus [22,28,29]. Considering a

recently determined mutation rate for Mtb in a macaque model of

2.5610210 per generation, regardless of the disease state [30], our

substitution rate for Mtb suggests an average generation time of

Table 2. Cont.

Coordinates Locus Gene Product Strain

7199/99 CDC1551 F11

2704307–2704806 Rv2406, Rv2407 Hypothetical protein, ribonuclease Za 6

2784612–2785975 Rv2480c IS6110 transposase 6 6 6

2972106–2973466 Rv2648 IS6110 transposase 6 6 6

2990585–2990639 Rv2673 Membrane protein 6

3054701–3054914 Rv2741 PE_PGRS47 6

3119998–3120435 — Repeats 6

3120520–3121953 Rv2815c Transposase 6

3121879–3122084 — Repeats 6

3122088–3123538 — Repeats 6

3122585–3122880 — Repeats 6 6

3171498–3171605 Rv2859c Amidotransferase 6 6

3194706–3194791 Rv2885c Transposase 6

3232706–3232761 — Repeat 6

3239590–3239668 — Repeat 6

3378001–3380439 Rv3018A–Rv0321c PE27A, PPE46, esxR, esxS, PPE47 6

3501335–3501664 Rv3135 PPE50 6 6

3551227–3552584 Rv3184 IS6110 transposase 6 6 6

3552710–3554070 Rv3186 IS6110 transposase 6 6 6

3663853–3663940 Rv3281 Hypothetical protein 6 6 6

3690951–3691008 — Repeat 6

3710382–3711736 Rv3325 Transposase 6 6

3730950–3736274 Rv3343c PPE54 6 6 6

3738213–3739889 Rv3345c PE_PGRS50 6 6

3760795–3760837 Rv3350c PPE56 6

3795055–3796412 Rv3380c, Rv3381c IS6110 transposases 6 6 6

3842278– Rv3425–Rv3428c PPE57, PPE58, transposases 6 6

3847203 Rv3429 PPE59 6

3890776–3892133 Rv3474 IS6110 transposase 6 6 6

3933515–3936298 Rv3508 PE_PGRS4 6 6 6

3942041–3948322 Rv3513c, Rv3514 fadD18, PE_PGRS7 6

3943059–3943427 — Repeats 6

3947449–3949941 Rv3514 PE_PGRS7 6 6 6

3955465–3956103 Rv3518c, Rv3519 cyp142, hypothetical protein 6

4375626–4375708 Rv3892c PPE69 6

aFound to be at least partially deleted in clinical isolates according to Tsolaki et al. [38].
doi:10.1371/journal.pmed.1001387.t002
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22 h (95% confidence interval, 13 h to 33 h), or 400 generations

per year. Intriguingly, these estimates are very close to doubling

times previously measured for growth in nutrient-rich culture

conditions in the laboratory [31]. Based on the measured

substitution rate, we estimated that the most recent common

ancestor of the Hamburg clone existed in 1995 (95% confidence

interval, 1993 to 1997), hence a few years before the outbreak was

discovered. We note, however, that the actual generation time

may be even shorter in the natural population than is indicated

here, as our estimate of the evolutionary rate does not include an

unknown proportion of mutations possibly removed from the

population via selection and drift over 14 y [32].

A final interesting finding revealed by our WGS-based analysis

was that the Hamburg clone caused an increased number of cases,

including several clusters, compared to the other clones, indicating

more effective transmission over a long time period. Given the

complex interaction between bacterial, human, and environmental

factors influencing TB transmission, several explanations might

account for such differential expansion, such as socio-environ-

mental factors, or intensity and duration of exposure to, or

characteristics of, source cases [33,34]. The presence of a super

spreader could accelerate Mtb transmission [13]. Of note, we did

not find statistically significant differences in socio-environmental

characteristics between patients of the Hamburg clone group and

patients infected with other isolates (see Table 1). Both patient

groups consisted mainly of individuals associated with an alcoholic

and homeless milieu, as already detected very early, close to the

onset of the outbreak [26]. Although the possibility of a particular

super spreader giving rise to the larger cluster detected in the first

years by the WGS-based tree (see Figure 1) cannot be excluded,

this hypothesis is not supported by the fact that even this largest

cluster comprised at least four definite independent transmission

chains. Such involvement of a single (super) spreader at the onset

of the outbreak would also be difficult to reconcile with the linear

increase of the number of cases over time that was observed for

both the Hamburg clone and the non-Hamburg clone groups (see

Figure 3). Therefore, we hypothesize that the increasing number of

cases caused by the Hamburg clone might have resulted from some

of the small genetic changes that accumulated before the initial

spread (six SNPs, of which three are non-synonymous and might

therefore have functional consequences at the protein level), which

possibly enhanced the fitness of this particular clone. However, this

hypothesis would be difficult to prove, even using available

experimental models of infection [35,36].

In conclusion, our study demonstrates the potential of WGS for

improved molecular-guided TB surveillance and control. We

envision that its progressive effective implementation will be

accelerated by the continuously decreasing sequencing costs,

broader distribution of so-called bench top genome sequencers

[37], and upcoming bioinformatics developments to facilitate

quick and relevant interpretation of the resulting data in public

health and medical contexts.

Supporting Information

Figure S1 IS6110 DNA fingerprint, spoligotype, and 24-
locus MIRU-VNTR typing patterns of all outbreak
strains analyzed. The IS6110 band positions were normalized,

so that banding patterns of all strains are mutually comparable.

The repeat unit numbers of 24 MIRU loci are shown in yellow

shades, with cutoffs ranging from 0 (white) to 35 (red) units. Strains

were clustered on the basis of IS6110 fingerprint patterns. Single

differences of 24-locus MIRU-VNTR are indicated by asterisks.

(TIF)

Figure S2 Minimum spanning trees of all outbreak
isolates specified by the year of isolation. (A) Newly

collected isolates were clustered in minimum spanning trees

allowing hypothetical nodes. Color codes correspond to Figure 2.

(B) Mapping of small deletions on the minimum spanning tree

shown in Figure 2. Different shades of violet correspond to specific

small deletions.

(TIF)

Figure S3 Maximum-likelihood tree displaying se-
quence variations among outbreak isolates. Each isolate

had a specific distance to the root (upper panel). Nomenclature of

strains corresponds to the internal laboratory keys. The middle

panel illustrates the effect of randomly switching dates across

isolates (permutations 1 to 5) on the estimate of divergence time

(time since the most recent common ancestor [tmrca]; means and

95% confidence intervals are shown). Root-to-tip distance was

plotted against the date of isolation (lower panel).

(TIF)

Figure S4 Circular representation of the Mtb genome
7199/99. The outer rim displays the base-pair scale; the second

circle represents all identified coding sequences on either the

forward or the reverse strand. The third circle indicates the

distribution of large deletions (red), the fourth circle bears all

insertions (black), and the fifth shows the positions of IS6110

elements. The sixth circle gives the GC content; the seventh,

innermost circle visualizes GC skew.

(TIF)

Table S1 Single nucleotide polymorphisms determined
in the isolates investigated.

(PDF)

Table S2 Demographic characteristics of the 86 pa-
tients.

(PDF)
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(2002) Epidemiology of tuberculosis in Hamburg, Germany: long-term

population-based analysis applying classical and molecular epidemiological
techniques. J Clin Microbiol 40: 532–539.

9. Schürch AC, van Soolingen D (2012) DNA fingerprinting of Mycobacterium

tuberculosis: from phage typing to whole-genome sequencing. Infect Genet Evol
12: 602–609. doi:10.1016/j.meegid.2011.08.032
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Editors’ Summary

Background. Tuberculosis—a contagious bacterial disease
that usually infects the lungs—is a major public health
problem, particularly in low- and middle-income countries. In
2011, an estimated 8.7 million people developed tuberculo-
sis globally, and 1.4 million people died from the disease.
Tuberculosis is second only to HIV/AIDS in terms of global
deaths from a single infectious agent. Mycobacterium
tuberculosis, the bacterium that causes tuberculosis, is readily
spread in airborne droplets when people with active disease
cough or sneeze. The characteristic symptoms of tuberculo-
sis include persistent cough, weight loss, fever, and night
sweats. Diagnostic tests for the disease include sputum
smear analysis (examination of mucus coughed up from the
lungs for the presence of M. tuberculosis), mycobacterial
culture (growth of M. tuberculosis from sputum), and chest X-
rays. Tuberculosis can be cured by taking several antibiotics
daily for at least six months, although the recent emergence
of multidrug-resistant M. tuberculosis is making tuberculosis
harder to treat.

Why Was This Study Done? Although efforts to reduce
the global burden of tuberculosis are showing some
improvements, the annual decline in the number of people
developing tuberculosis continues to be slow. To develop
optimized control strategies, experts need to be able to
accurately track M. tuberculosis transmission within human
populations. Because M. tuberculosis, like all bacteria,
accumulates genetic changes over time, there are many
different strains (genetic variants) of M. tuberculosis. Geno-
typing methods have been developed that identify different
bacterial strains by examining specific regions of the
bacterial genome (blueprint), but because these methods
examine only a small part of the genome, they may not
distinguish between related transmission chains. That is,
traditional strain genotyping methods may not be able to
determine accurately where a tuberculosis outbreak started
or how it spread through a population. In this longitudinal
cohort study, the researchers compare the ability of whole
genome sequencing (WGS), which is rapidly becoming
widely available, and traditional genotyping to provide
information about a recent German tuberculosis outbreak.
In a longitudinal cohort study, a population is followed over
time to analyze the occurrence of a specific disease.

What Did the Researchers Do and Find? During long-
term (1997–2010) population-based molecular epidemiolog-
ical surveillance (disease surveillance that uses molecular
techniques rather than reports of illness) in Hamburg and
Schleswig-Holstein, the researchers identified a large tuber-
culosis outbreak caused by M. tuberculosis isolates of the
Haarlem lineage using classical strain typing. The researchers
examined each of the 86 isolates from this outbreak using
WGS and classical genotyping and asked whether the results
of these two approaches correlated with contact tracing data
(information is routinely collected about the people a patient
with tuberculosis has recently met so that these contacts can
be tested for tuberculosis and treated if necessary) and with
the spatio-temporal distribution of outbreak cases. WGS of
the isolates identified 85 single nucleotide polymorphisms
(SNPs; genomic sequence variants in which single building
blocks, or nucleotides, are altered) that subdivided the

outbreak into seven clusters of isolates and 36 unique
isolates. The WGS results showed that the first isolates of the
outbreak were incorrectly clustered by classical genotyping
and that one strain—the ‘‘Hamburg clone’’—started expand-
ing in 1998. Notably, the genome-based clustering patterns
were in better accordance with contact tracing data and with
the geographical distribution of cases than clustering
patterns based on classical genotyping, and they identified
eight confirmed human-to-human transmission chains that
involved 31 patients and a maximum of three SNPs. Finally,
the researchers used their WGS results to estimate that the
Hamburg clone emerged between 1993 and 1997, shortly
before the discovery of the tuberculosis outbreak through
epidemiological surveillance.

What Do These Findings Mean? These findings show
that WGS can be used to identify specific strains within
large tuberculosis outbreaks more accurately than classi-
cal genotyping. They also provide new information about
the evolution of M. tuberculosis during outbreaks and
indicate how WGS data should be interpreted in future
genome-based molecular epidemiology studies. WGS has
the potential to improve the molecular epidemiological
surveillance and control of tuberculosis and of other
infectious diseases. Importantly, note the researchers,
ongoing reductions in the cost of WGS, the increased
availability of ‘‘bench top’’ genome sequencers, and
bioinformatics developments should all accelerate the
implementation of WGS as a standard method for the
identification of transmission chains in infectious disease
outbreaks.

Additional Information. Please access these websites via
the online version of this summary at http://dx.doi.org/10.
1371/journal.pmed.1001387.

N The World Health Organization provides information (in
several languages) on all aspects of tuberculosis, including
the Global Tuberculosis Report 2012

N The Stop TB Partnership is working towards tuberculosis
elimination; patient stories about tuberculosis are available
(in English and Spanish)

N The US Centers for Disease Control and Prevention has
information about tuberculosis, including information on
tuberculosis genotyping (some information in English and
Spanish)

N The US National Institute of Allergy and Infectious Diseases
also has detailed information on all aspects of tuberculosis

N The Tuberculosis Survival Project, which aims to raise
awareness of tuberculosis and provide support for people
with tuberculosis, provides personal stories about
treatment for tuberculosis; the Tuberculosis Vaccine
Initiative also provides personal stories about dealing
with tuberculosis

N MedlinePlus has links to further information about
tuberculosis (in English and Spanish)

N Wikipedia has a page on whole-genome sequencing (note:
Wikipedia is a free online encyclopedia that anyone can
edit; available in several languages)
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