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Whole-Genome Shotgun Optical

Mapping of Deinococcus

radiodurans

Jieyi Lin,1* Rong Qi,1 Christopher Aston,1† Junping Jing,1‡

Thomas S. Anantharaman,2 Bud Mishra,2 Owen White,3

Michael J. Daly,4 Kenneth W. Minton,4 J. Craig Venter,5

David C. Schwartz1,2§

A whole-genome restriction map of Deinococcus radiodurans, a radiation-
resistant bacterium able to survive up to 15,000 grays of ionizing radiation, was
constructed without using DNA libraries, the polymerase chain reaction, or
electrophoresis. Very large, randomly sheared, genomic DNA fragments were
used to construct maps from individual DNA molecules that were assembled
into two circular overlapping maps (2.6 and 0.415 megabases), without gaps.
A third smaller chromosome (176 kilobases) was identified and characterized.
Aberrant nonlinear DNA structures that may define chromosome structure and
organization, as well as intermediates in DNA repair, were directly visualized
by optical mapping techniques after g irradiation.

Detailed, structural knowledge of whole mi-

crobial genomes is of primary importance to

many genomic studies, but this information

has been difficult to obtain. Pulsed-field gel

electrophoresis (PFGE) plus Southern (DNA)

blot analysis (1) provides primary genome

information but does not confidently size

large circular genomes and frequently ob-

scures the analysis of large episomal ele-

ments. Although an eight-enzyme restriction

map of the Escherichia coli K12 genome was

constructed in 1987 by Kohara et al. (2), this

required a laborious approach involving par-

tial digestion of 3400 phage clones followed

by Southern blot analysis. Physical maps of

the Saccharomyces cerevisiae genome were

also prepared by painstaking restriction map-

ping of clones (3). Modern microbial genome

analysis uses shotgun sequencing, followed

by finishing efforts (4, 5). Whole-genome

restriction maps may become an indispens-

able resource for large-scale genome se-

quencing projects. They facilitate sequence

assembly by providing a scaffold for high-

resolution alignment and verification of se-

quence assemblies (contigs), accurate ge-

nome sizing, and discernment of extrachro-

mosomal elements (6).

Optical mapping is a system for the con-

struction of ordered restriction maps from

individual DNA molecules (7, 8) and has

been used to prepare restriction maps of a

number of clone types, including phage

clones (9), yeast artificial chromosomes (10),

bacterial artificial chromosomes (6), and,

more recently, an entire electrophoretically

separated chromosome (;1 Mb) from Plas-

modium falciparum (11). An optical mapping

approach for whole bacterial genome analysis

is feasible because we can now mount and

map extremely large, randomly sheared DNA

molecules (0.4 to 2.4 Mb) that are digested

with high cutting efficiency (70 to 90%).

These parameters critically control the suc-

cess rate of assembling the fragments and are

well modeled by prior probabilistic (Bayes-

ian) analysis (12). The contigs covering a

whole genome were initially assembled man-

ually, or later with the Gentig algorithm (13),

which automatically computes contigs of

genomic maps.

To efficiently collect such large mole-

cules, we developed a semiautomated image

acquisition system that collects successive

images and correctly assembles them into one

large superimage while maintaining proper

pixel registration between images. A new

image analysis system was developed [Vi-

sionade (14)] that enables markup of molec-

ular images, allows for editing, and automat-

ically calculates fragment masses and cutting

efficiencies. A l bacteriophage DNA sizing

standard was used as follows. First, the total

integrated fluorescence intensity of the stan-

dard was determined to be in the correct

range. Second, the size of each genomic frag-

ment in a particular image was calculated by

dividing the fluorescence intensity of the

DNA fragment by the average fluorescence

intensity of the standards in the image and

then multiplying this by the size of the stan-

dard. The images were not used as data if the

cutting efficiency along the length of the

molecule was less than 75%.

The development of Gentig enabled the

rapid assembly of raw maps into a complete

genome-wide map in minutes rather than

months, with negligible false positives. Con-

tigs of the E. coli genome were assembled

with Gentig into a consensus map, which

both reproduced the map constructed by hand

and correlated with the map predicted by

sequence. Gentig automatically generates

contigs from optical mapping data by repeat-

edly combining the two islands that produce

the greatest increase in probability density,

excluding any contigs whose false positive

overlap probability is unacceptable. The stan-
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dard deviation, digestion rate, false cut rate,

and false match rate are given as parameters

to Gentig and affect the false negative prob-

ability and hence the number and distribution

of contigs and gaps. Gentig also facilitates

assembly of whole-genome maps for much

larger eukaryotic genomes such as Plasmodi-

um falciparum (15). Here, Gentig assembled

a consensus map derived from 50 molecules

A

B

Deinococcus

radiodurans R1

2.6 Mb

Fig. 1.Optical mapping of D.
radiodurans genomic DNA
with Nhe I. (A) Representa-
tive DNA molecule, 0.7 mm
(2.4 Mb) in length, spanning
six microscope fields, used to
make an optical map. (B)
Large chromosome restric-
tion map generated by shot-
gun optical mapping. The
outer circle shows the con-
sensus map; the inner circles
show the contig from which
the consensus map was gen-
erated. The contig was as-
sembled from 100molecules
bymeans of the Gentig algo-
rithm. Nhe I fragment sizes
(in kilobases) can be mea-
sured from the figure (20).
Colors are arbitrarily as-
signed to homologous over-
lapping fragments.
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and found 147 out of the 150 cut sites pre-

dicted from the manually assembled map.

The three cuts that Gentig failed to call were

due to the lower depth of coverage applied in

this benchmarking exercise. Whereas manu-

ally constructed maps of E. coli and D. ra-

diodurans required several months to com-

pletely assemble, Gentig required only 20 to

30 min to generate contigs.

The radiation resistance of D. radiodurans

may be a serendipitous result of its ability to

survive periods of severe dehydration, which

also fragments DNA. Efforts to understand the

detailed mechanisms underlying this uniquely

effective feat of DNA repair are now centered

on the annotation results of a complete genome

sequence. We thought an optical map would

facilitate ongoing sequencing efforts, as a scaf-

fold for sequence assembly, and might identify

aberrant DNA structures associated with mech-

anisms of DNA repair. Before mapping the

uncharacterized D. radiodurans genome, we

benchmarked our genomic mapping system by

mapping the sequenced (4) E. coli K12 sub-

strain MG1665 (16). There was a ,1% size

difference in the optical versus sequence map

[the same error rate was then seen when a Nhe

I optical map of D. radiodurans was compared

with preliminary sequence information (17)].

Deinococcus radiodurans R1 (American Type

Culture Collection 13939) is a radiation-resis-

tant organism with a comparably sized genome

(18). A representative molecule is shown in Fig.

1A. The final map was assembled without gaps

at an average depth of 353, using 157 mole-

cules, with an average fragment size of 29 kb

(19). This depth of coverage gave the map very

low errors (20). Contigs were also assembled

with Gentig (Fig. 1B) (21). The genome size

was calculated to be 2.61 Mb by manual assem-

bly and 2.59 Mb by Gentig assembly. Gentig

assembled a consensus map derived from 100

molecules. Manual editing can assign more

molecules to the contig in a way that is not yet

modeled in Gentig. To further confirm our map,

we constructed a rare-cutter, Not I, map (mac-

ro) and aligned it, using Gentig, with the Nhe I

(micro) map, which was analyzed by Southern

blots (22).

Large extrachromosomal elements are noto-

riously difficult to characterize. For example,

circular DNA molecules (25 kb) identified in

Entamoeba histolytica (23) migrated as high

molecular weight bands on pulsed-field gels,

resembling chromosomes, and were only char-

acterized after single-molecule analysis with

electron microscopy. Optical mapping of the D.

radiodurans genome also provided insight into

the genomic structure of the organism. The

genome is reported to be 3.17 Mb in size, as

assessed by PFGE (24). We calculated the ge-

nome to be 2.6 Mb in size by optical means and

also discovered the presence of a large episome,

415 kb in size, that was previously considered

to be a part of a large single chromosome and

which accounted for the missing portion (Fig.

2). We believe this episome to be a second

(mini) chromosome, on the basis of its size and

1:1 stoichiometry with the large chromosome

as analyzed by PFGE. This second chromo-

some has been shown from sequence assembly

to contain genic regions critical to cell function

(25), and thus is not likely to have resulted from

a duplication event. In addition, we found no

map homology between the second chromo-

some and any other genomic region. Interplas-

midic and intrachromosomal recombination

have been found to occur in D. radiodurans at

high frequency after exposure to ionizing radi-

ation (26). Dessication may induce similar

changes. Consequently, the same type of chro-

mosomal architecture may not exist in all D.

radiodurans strains. We also saw images con-

taining a third circular molecule, which was

sized at 176 kb [SD 5 10 kb, n 5 8 (25)]. Nhe

I cut sites were apparent, but an insufficient

number of molecules were collected to enable

us to make Nhe I maps. Other smaller chro-

mosomes or large plasmids (27) may be

present in the D. radiodurans genome, al-

Fig. 2. Second (mini)
chromosome of D. ra-
diodurans identified by
optical mapping. The
image shows a represen-
tative second chromo-
some mapped with Nhe
I (fragment sizes for the
consensus map are 29.8,
4.6, 26.7, 35.4, 11.8,
145.0, 6.3, 69.8, and
85.5 kb). Second chro-
mosomes were also
mapped with Not I
(fragment sizes for the
consensus map are 11.5,
72.3, and 331.2 kb). Col-
ors are arbitrary and cor-
respond to fragment
sizes, starting at the
12 o’clock position.

Fig. 3. DNA repair after irradiation,
visualized by optical mapping. DNA
samples were extracted at different
time points from D. radiodurans R1
(wild type) cells. The irradiation and
recovery conditions (time interval
after irradiation) for each image
were: (A) 0 Gy, 0 hours; (B) 17.5 Gy,
0 hours; (C) 17.5 Gy, 2 hours; (D)
17.5 Gy, 4 hours; (E) 17.5 Gy, 6
hours; (F) 17.5 Gy, 16 hours; (G)
17.5 Gy, 24 hours. Scale bar, 20 mm.
Histogram analysis (34) showed
consistent elongation of DNA mol-
ecules into full-length genomic
molecules. The recA-deficient strain
(rec 30) showed no evidence of re-
pair, and the observable number of
molecules decreased with time as a
result of cell death (35).

R E P O R T S

3 SEPTEMBER 1999 VOL 285 SCIENCE www.sciencemag.org1560



though we did not map any such molecules.

Whereas the genomes of most organ-

isms are irreversibly shattered by the ef-

fects of high levels of ionizing radiation, D.

radiodurans is able to efficiently recon-

struct an intact genome through means that

are not yet fully understood. Dissecting its

ability to deal with severe DNA damage

may uncover new general mechanisms of

DNA repair. The postulated DNA repair

system of D. radiodurans is in part facili-

tated by multiple chromosome copies held

in register. According to this model, dou-

ble-stranded breaks are repaired by recA-

dependent recombination, with the undam-

aged DNA duplex acting as the template

(28, 29). One model for holding chromo-

some copies together in sequence align-

ment is by the presence of persistent Hol-

liday junctions (30, 31). We saw no evi-

dence of DNA molecules containing Holli-

day junctions, which might have been

visualized as bundles of DNA molecules or

molecules with a x-shape. We also saw no

evidence of back-to-back repeated regions

containing Nhe I sites. These would have

been noticeable as multiple ordered frag-

ments of the same size. We did, however,

see large repeated DNA molecules, which

shared the Not I digestion pattern of the

second chromosome (32). The pattern (10,

70, 340 kb) was repeated up to three times,

and 10 such molecules were observed. We

do not know the origin of such molecules,

but we speculate that these may be observ-

able replication intermediates.

Images of DNA extracted from cells

after g irradiation of 17.5 Gy (Fig. 3) were

examined from both wild-type and recA-defi-

cient [rec 30 (30)] strains. We have previously

shown that DNA fragments flanked by identical

4-kb sequences are efficiently circularized after

g irradiation in both wild-type and recA strains

(31). Deinococcus radiodurans contains hun-

dreds of short repeats (;150 base pairs) and

numerous long repeats, providing ample sub-

strate for circularization of large portions of the

genome. Such circles could be expected to

protect vulnerable DNA ends produced by

double-strand breaks from exonucleolytic

degradation. Furthermore, homologous re-

combination among these circles could pro-

gressively generate larger circles, ultimate-

ly restoring the circular chromosomes with-

out rearrangements. Optical mapping did

not show the presence of circles of any

dimension, although it should be noted that

the resolution of light microscopy would

not enable us to characterize circles smaller

than ;30 kb.

However, the imaging results graphical-

ly showed the repair of the genome in

wild-type cells, but not in recA cells, by

unbranched linear elongation of extracted

molecules from small kilobase fragments to

essentially intact chromosomes. Although

this is consistent with previous conclusions

based on gel electrophoresis and sucrose

gradient technologies, this finding elimi-

nates circular intermediates as a general-

ized mechanism of DNA repair. What pro-

tects the ends of these molecules from degra-

dation remains unknown. After irradiation we

estimated that the average fragment size was

;15 kb (Fig. 3B), corresponding to about 200

double-strand breaks per genome.

The complete restriction mapping of

whole genomes may catalyze the develop-

ment of new modes of genome analysis,

unhindered by the need to generate and

map large numbers of clones. Because en-

sembles of single molecules are analyzed,

small amounts of starting material are re-

quired, enabling mapping of microorgan-

isms that are problematic to culture. Shot-

gun mapping obviates the need for library

construction with its associated cloning ar-

tifacts, and also enables mapping of organ-

isms with DNA, which is difficult to clone.

Perhaps most important, optical mapping

renders new biological insight by readily

providing a picture of the basic organiza-

tion of an entire genome, revealing the

number of chromosomes and the presence

of extrachromosomal elements as well as

providing a means of directly examining

dynamic processes such as DNA repair. If

maps can be rapidly generated, microbial

populations can be analyzed at the whole-

genome level to reveal genotypic differenc-

es that can be linked to phenotype.
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Historical Genetics: The

Parentage of Chardonnay,

Gamay, and Other Wine Grapes

of Northeastern France
John Bowers,1* Jean-Michel Boursiquot,2 Patrice This,3

Kieu Chu,1 Henrik Johansson,1 Carole Meredith1†

The origins of the classic European wine grapes (Vitis vinifera) have been the
subject of much speculation. In a search for parental relationships, microsat-
ellite loci were analyzed in more than 300 grape cultivars. Sixteen wine grapes
that have long been grown in northeastern France, including ‘Chardonnay’,
‘Gamay noir’, ‘Aligoté’, and ‘Melon’, have microsatellite genotypes consistent
with their being the progeny of a single pair of parents, ‘Pinot’ and ‘Gouais
blanc’, both of which were widespread in this region in the Middle Ages.
Parentage analysis at 32microsatellite loci provides statistical support for these
relationships.

The wines of northeastern France, notably

those of the Burgundy and Champagne re-

gions, have been highly regarded for centu-

ries. Like most of the world’s finest wines,

they are made entirely from old cultivars of

Vitis vinifera L. The cultivars most strongly

associated with this part of France are ‘Pinot

noir’ and ‘Chardonnay’, which are used both

for Champagne (1) and also for the best red and

white wines, respectively, of the Côte d’Or in

the heart of Burgundy. These two grapes are

now grown in many of the world’s wine re-

gions. In the southern part of Burgundy, the red

wines of Beaujolais are made primarily from

‘Gamay noir’. Several other cultivars, including

‘Aligoté’, ‘Melon’, and ‘Sacy’, are used in

wines carrying regional Burgundy appellations.

Grapevines are propagated vegetatively, so

that the individual vines of a cultivar are genet-

ically identical to each other (except for somatic

mutations) and to the single original seedling

from which the cultivar originated. While some

cultivars may have originated in the regions

with which they are now associated, others are

thought to have been introduced by traders or

conquerors, most notably the Romans. Al-

though a few varieties have been produced by

controlled crosses since the mid-1800s, most V.

vinifera cultivars in existence today are centu-

ries old and are thought to have arisen by

several mechanisms—domestication of wild

vines, spontaneous crosses between wild vines

and cultivars, and spontaneous crosses be-

tween cultivars (2). Such a spontaneous cross

between two cultivated varieties gave rise to

‘Cabernet Sauvignon’, the most important

cultivar of Bordeaux and arguably the most

highly regarded red wine grape in the world

today (3).

Any wild vines that were parents of to-

day’s important wine grapes cannot be iden-

tified, because they no longer exist. Parents

that are themselves cultivars, however, may

still exist in collections if not in cultivation.

In a search for the parents of some important

French wine grapes, we analyzed 322 culti-

vars of V. vinifera (4), including most extant

old French cultivars.

Samples of 51 cultivars were obtained from

the vineyards at the University of California at

Davis and the rest were taken from the variety

collection maintained by Institut National de la

Recherche Agronomique at Domaine de Vas-

sal, near Montpellier, France. After an initial

screening of all cultivars at 17 microsatellite

loci (5), we compared microsatellite alleles

within all possible sets of three to identify pairs

of cultivars that could have contributed the

alleles of the third cultivar (6). A subset of

cultivars was then further analyzed at 15 addi-

tional loci (7).

On the basis of 32 loci, 16 cultivars had

microsatellite genotypes consistent with their

being the progeny of a single pair of parents—

‘Pinot’ and ‘Gouais blanc’ (Fig. 1) (8–10). For

each of the 16 putative ‘Pinot’ 3 ‘Gouais

blanc’ progeny, we calculated parentage indices

to compare the probability of the observed

progeny alleles if it had the putative parents to

the probability of those alleles, if it had two

random parents, or if the parents were close

relatives of the putative parents. We show the

detailed parentage indices for ‘Chardonnay’ in

Table 1 and summaries for all 16 progeny

cultivars in Table 2. The likelihood ratios show

that the putative parents are 1012 to 1015 times

1Department of Viticulture and Enology, University of
California, Davis, CA 95616, USA. 2Unité de Forma-
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Fig. 1. Inheritance of parental mi-
crosatellite alleles by progeny cul-
tivars for locus VVMD5 (top) and
VVMD28 (bottom). Microsatel-
lites were amplified from genomic
DNA, electrophoresed in poly-
acrylamide gels, and visualized by
silver staining. Lanes represent
(from left to right) (P) Pinot noir,
(G) Gouais blanc, (1) Aligoté, (2)
Aubin vert, (3) Auxerrois, (4) Ba-
chet noir, (5) Beaunoir, (6) Char-
donnay, (7) Franc noir de la Haute
Saône, (8) Gamay blanc Gloriod,
(9) Gamay noir, (10) Knipperlé,
(11) Melon, (12) Peurion, (13) Ro-
morantin, (14) Roublot, (15) Sacy,
(P) Pinot noir, and (G) Gouais
blanc.
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