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Abstract

Background: Proteogenomic mapping is an approach that uses mass spectrometry data from proteins to directly

map protein-coding genes and could aid in locating translational regions in the human genome. In concert with

the ENcyclopedia of DNA Elements (ENCODE) project, we applied proteogenomic mapping to produce

proteogenomic tracks for the UCSC Genome Browser, to explore which putative translational regions may be

missing from the human genome.

Results: We generated ~1 million high-resolution tandem mass (MS/MS) spectra for Tier 1 ENCODE cell lines K562

and GM12878 and mapped them against the UCSC hg19 human genome, and the GENCODE V7 annotated protein

and transcript sets. We then compared the results from the three searches to identify the best-matching peptide

for each MS/MS spectrum, thereby increasing the confidence of the putative new protein-coding regions found via

the whole genome search. At a 1% false discovery rate, we identified 26,472, 24,406, and 13,128 peptides from the

protein, transcript, and whole genome searches, respectively; of these, 481 were found solely via the whole

genome search. The proteogenomic mapping data are available on the UCSC Genome Browser at http://genome.

ucsc.edu/cgi-bin/hgTrackUi?db=hg19&g=wgEncodeUncBsuProt.

Conclusions: The whole genome search revealed that ~4% of the uniquely mapping identified peptides were

located outside GENCODE V7 annotated exons. The comparison of the results from the disparate searches also

identified 15% more spectra than would have been found solely from a protein database search. Therefore, whole

genome proteogenomic mapping is a complementary method for genome annotation when performed in

conjunction with other searches.
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Background

The human genome holds many secrets – the deeper
we peer, the more we uncover. In 2003, the National
Human Genome Research Institute (NHGRI) launched
a pilot project called the ENCyclopedia Of DNA Ele-
ments (ENCODE) to analyze 44 euchromatic regions of
the human genome. The pilot project revealed surpris-
ing results, such as pervasive intragenic and intergenic
transcription, new intronic and intergenic exons, over-
lapping transcripts, and distant transcriptional start

sites, challenging the conventional model of genes and
their transcription [1].
Following these successes, the NHGRI expanded

ENCODE to study the entire human genome, to pro-
vide the scientific community with a comprehensive
list of functional elements including protein-coding
and non-coding transcripts, transcriptional regulatory
regions, histone marks, and more. In the production
phase, the ENCODE Consortium produced deep data
via extensive high-throughput experiments in combin-
ation with both novel and existing computational
techniques [2,3].
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Despite these efforts, the transcribed regions of the
genome that are translated into proteins, versus those
that serve some other role, remain elusive. GENCODE,
a sub-project of ENCODE, has performed an exhaustive
manual annotation of the human genome to identify
protein-coding transcripts, and though this is likely the
most comprehensive human genome annotation to
date, the evidence for protein-coding capacity has come
mostly from indirect sources, not from the measure-
ment of proteins themselves. About 50% of human tran-
scripts are classified as non-protein-coding [2]. While
many do not resemble known protein-coding tran-
scripts, some do not appear to be non-coding functional
RNAs either, hence their roles remain unclear.
Proteogenomic mapping is a process that has been used

for various organisms to help identify protein-coding
regions and transcripts, by mapping mass spectrometry
(MS) data from biologically-derived proteins directly to
genomic and/or transcript sequences [4-8]. This approach
has been used to identify new genes, new alternative splice
variants, new translational start sites, new upstream open
reading frames (ORFs), and has also been used to classify
pseudogenes as protein-coding [4-6,8-17]. For instance,
Menon et al. conducted a large-scale analysis of MS data
from the plasma proteome of a mouse model of human

pancreatic cancer. The study employed a non-redundant
database containing a 3-frame translation of Ensembl
transcripts and gene models from the ECgene database,
which identified 92 novel protein variants [14]. Recently,
Brosch et al. performed proteogenomic mapping using
Augustus-predicted transcripts from the mouse genome.
They discovered 10 novel protein-coding genes, novel
alternative splice forms for 53 genes, and classified 9
pseudogenes as protein-coding [9].
Bottom-up proteomics is the most widespread means of

proteogenomic mapping. Briefly, cells are collected or cul-
tured then lysed, often followed by subcellular fraction-
ation. Proteins are extracted then cleaved proteolytically
into peptides, either by direct in-solution digestion, or
after gel-based separation followed by in-gel digestion.
The proteolytic peptides are separated to reduce sample
complexity before introduction into the mass spectrom-
eter [18]. In tandem MS (MS/MS), the mass spectrometer
measures the mass-over-charge (m/z) of each peptide ion,
sequentially breaks it along the peptide backbone, then
measures the m/z of the resulting pieces. The series of
fragment masses provides a signature that can then be
used to identify the peptide from a database search
[19-25] or by de novo sequencing [26,27]. When the
reference database used to identify peptides (and

Figure 1 Overview of bottom-up proteomics and proteogenomic mapping. After cell lysis, proteins are extracted from a biological sample

and are proteolytically digested into peptides. The peptide mixture is commonly separated by liquid chromatography and introduced into a

tandem mass spectrometer, which produces MS/MS spectra. The resulting spectra are matched against an in silico translation and proteolytic

digestion of genomic DNA sequences in all six reading frames to identify peptides. The matched peptides are then mapped back to the DNA

sequences to identify the genomic loci for the analyzed proteins.
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therefore proteins) contains DNA sequences (genome,
transcripts, predicted transcripts, etc.), the process is
termed proteogenomic mapping [8] (Figure 1).
Prior proteogenomic mapping efforts of the human gen-

ome relied primarily on databases of putative ORFs, full-
length cDNAs, or a combination of various predicted
transcripts [11,16,17,28]. However, our ability to correctly
predict protein-coding transcripts is limited, and hence
the approaches that rely on predictions may also be lim-
ited. To our knowledge, the most recent human gen-
ome proteogenomic work was done by Bitton et al.,

which identified 346 novel peptides at a 5% FDR [29].
However, they first performed a series of pre-screening
searches which dramatically reduced the database size
before beginning the human genome proteogenomic
mapping process.
Whole genome proteogenomic mapping is an alter-

native approach that does not rely on transcript or gene
prediction. It has the drawback that the larger genome
database reduces sensitivity, yet it has one significant
strength: its ability to find putative protein-coding
exons outside of known or predicted genic regions. As
such, it can be seen as a complementary method to
protein or transcript database searches: the methods
performed in conjunction with one other will likely
yield maximal coverage of the proteo-genome. The ap-
plications and challenges of proteogenomic mapping
have been reviewed in a recent publication [30].
In this manuscript, we describe an effort to perform

proteogenomic mapping of the human genome as part of
the ENCODE project. We produced proteomic data using
the ENCODE Tier 1 cell lines K562 and GM12878. Pro-
teins from each cell line were derived via front-end sample
preparation protocols including subcellular fractionation,
GELFREE fractionation [31], filter-aided sample prep-
aration (FASP) [32], and microwave-assisted tryptic
digestion [33]. Peptides were analyzed on an LTQ
Orbitrap Velos mass spectrometer (Thermo Scientific)
to produce ~1 million high-resolution MS/MS spectra. We
mapped these spectra against the UCSC hg19 whole hu-
man genome, and against GENCODE V7 protein and tran-
script databases, and then compared the results from all
three searches to identify the best-matching peptide for
each spectrum. This comparison increased the confidence
of the identification of the putative new protein-coding
exons found from the whole genome search and also aug-
mented the total number of spectral identifications.

Results
We performed shotgun proteomic analyses for two
ENCODE Tier 1 cell lines and mapped the resulting
998,570 MS/MS spectra against the GENCODE V7
protein and transcript databases, as well as the whole
human genomic sequence (UCSC hg19). We then

compared the results from all three searches to iden-
tify the best-matching peptide for each spectrum. The
complementary nature of this comparative analysis
provided confidence for the identification of non-
exonic peptides located outside the GENCODE V7 an-
notation, in addition to identifying 15% more spectra
than would have been identified solely from a protein
database search.

GENCODE V7 protein and transcript search results

We searched the 998,570 MS/MS spectra against the
GENCODE V7 annotated protein set. We enzymatically
digested each of these proteins in silico and scored the
resulting peptides against each MS/MS spectrum using
the HMM_Score algorithm [22]. The search resulted in
identifying 20,051 proteins from 26,591 distinct peptides
matching to 115,164 MS/MS spectra, at a 1% false dis-
covery rate (FDR) (Table 1). The distribution of peptide
identifications for these proteins is shown in Figure 2.
We also performed proteogenomic mapping against

GENCODE V7 annotated transcripts using the same
set of spectra. We performed a 3-frame translation of
84,408 GENCODE V7 transcripts (which only included
mRNAs) and constructed a protein database where each
stop codon represented the end of one protein and the be-
ginning of another. We then enzymatically digested those
proteins in silico and scored the resulting peptides against
each MS/MS spectrum. The search resulted in finding
translational evidence for 21,032 transcripts, by identifying
24,503 distinct peptides from 111,138 MS/MS spectra, at
a 1% FDR (Table 1 and Figure 2).

Whole human genome search results

In whole genome proteogenomic mapping, spectra are
matched to peptides produced from an in silico transla-
tion and proteolytic digestion of genomic sequences in
all six reading frames [7]. The matched peptides are then
mapped back to the DNA sequences to identify the gen-
omic loci for the analyzed proteins. The whole genome
search identified 13,143 distinct peptide sequences,
matching to 62,308 MS/MS spectra, at an estimated 1%
FDR. These peptides corresponded to 16,832 distinct
genomic loci. Because many different spectra can match
to a single peptide, and because a given peptide se-
quence can reside in different places in the genome, the
number of peptides and the number of genomic loci dif-
fer from the number of spectra.

Comparison of GENCODE V7 protein, transcript, and hg19

whole genome search results

One of the goals of this study was to explore what per-
centage of proteins may be missing from the current
protein database annotation, and therefore how many
additional MS/MS spectra could be identified from an
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unbiased, whole human genome proteogenomic map-
ping effort. To increase the confidence of all identifica-
tions, we compared the results from the three different
searches and identified the best-matching peptide for
each MS/MS spectrum, regardless of which search
yielded that best peptide-spectrum match (PSM). For
a given spectrum, if two different best-ranking pep-
tides from two different databases were identified,
then the PSM with the highest HMM_Score was taken
as the ‘correct’ identification, and the others were re-
moved from the results.
This comparison resulted in finding 1,036 spectra that

matched to different top-ranking peptides in the differ-
ent databases. Scrutiny of these results revealed that 546
spectra identified from the protein database search had
better matches from either the genome or the transcript
searches, and 400 spectra from the transcript search had
better matches from either the genome or the protein

database searches. Similarly, 90 spectra identified from
the genome search had better matches in the protein or
transcript database searches.
We considered only the best-matching peptides from all

three searches, i.e., those retained after removing the 546,
the 400 and the 90 spectral hits from the protein, transcript
and genome searches, respectively. After removal, the
GENCODE V7 protein search identified 26,472 distinct
peptides belonging to 20,013 proteins from 114,618 MS/
MS spectra; the transcript search identified 24,406 distinct
peptides belonging to 20,985 transcripts from 110,738 MS/
MS spectra; and the whole genome proteogenomic search
identified 13,128 peptides from 62,218 MS/MS spectra cor-
responding to 16,808 distinct loci (Table 1). The combin-
ation of the results of all three searches identified 28,530
peptides from a total of 131,586 MS/MS spectra, at a 1%
FDR. The combination and comparison of results identi-
fied 16,968 additional MS/MS spectra and 2,058 additional

Table 1 Total spectra searched and identified from whole genome, GENCODE V7 transcript and protein searches

Total spectra
searched

Databases (size)

# of distinct spectra mapped
(# of distinct spectra mapped

when only best match
considered)

# of distinct peptides
identified (# of distinct
peptides when only best

match considered)

# of distinct genomic loci/proteins/
transcripts identified (# of distinct loci/
transcripts/proteins when only best

match considered)

998570 whole genome
(~3.2 GB)

62308 (62218) 13143 (13128) 16832 (16808)

998570 GENCODE V7
transcript (~200 MB)

111138 (110738) 24503 (24406) 21032 (20985)

998570 GENCODE V7 protein
(~44 MB)

115164 (114618) 26591 (26472) 20051(20013)

Results presented are at a 1% FDR. The bracketed numbers represent the number of identifications after comparing the results from the three searches and

keeping only the best match.

Figure 2 The distribution of the number of peptide hits per protein/transcript. The x-axis represents the number of protein/transcripts and

the y-axis represents the number of peptides that matched to that number of protein/transcripts. Only proteins/transcripts matched to 2 or more

peptides are considered in the distribution. The points in blue represent the peptide hits from the GENCODE V7 annotated proteins, while the

red points represent those from the GENCODE V7 annotated transcripts.
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peptides which would not have been found from a protein
database search alone.
When we performed a cross comparison, the same

12,177 unique peptides were identified from all three
searches. There were 3,628 best-matching peptides iden-
tified solely from the protein database search, 1,122
identified solely from the transcript search, and 481
identified solely from the whole genome search. A Venn
diagram of these peptide identifications is shown in
Figure 3, which shows that 1,577 peptides were identi-
fied from the transcript search but were not identified
from protein database search. We closely examined
these 1,577 identified peptides to ascertain whether they
were due to frame shift or non-coding transcript transla-
tion. We found that 77 of 1,577 (~5%) identified pep-
tides were products of frame shifting, while 313 (~20%)
were due to the translation of non-coding transcripts.
The remaining 1,187 (~75%) peptides belong to novel
alternative spliced forms of known protein-coding tran-
scripts, and were located in untranslated regions (UTRs)
or in UTR-exon boundary regions.
For the purpose of this investigation, we believed the

best-matching peptide should be taking as the ‘correct’
identification, though within the 1% FDR, occasionally
the peptide identified by the algorithm as the second- or
third-best match may actually represent the ‘correct’

match. To mitigate this possibility, we kept the FDR ap-
propriately conservative (1%); however, we acknowledge
the fact that the peptide ranked highest by the algorithm
may not always represent the ‘correct’ identification.

Analysis of unique proteogenomic matches against

wgEncodeGencodeCompV7

To provide a more precise picture of what can be gained
from a proteogenomic search, we focused on our unique
matches – matches for which the identified peptide ap-
pears at only one site in the genome. The subset of
unique matches was composed of 48,012 distinct MS/
MS spectra, which matched to 11,540 unique peptide se-
quences, hence 11,540 genomic loci. Several spectra
matching to the same peptide lends extra support for
the validity of the match, and can be used as an approxi-
mate relative quantitative measure of protein abundance
[34]. We uploaded our uniquely mapping proteogenomic
results from the whole genome search as a custom track
to the UCSC Table Browser to compare them against
GENCODE V7 annotated genes.
When these 11,540 unique peptides were compared

against the GENCODE V7 annotation, 11,120 were found
to be exonic and the remaining 420 were non-exonic. In
this paper, we take the terms ‘exonic’ and ‘non-exonic’ to
mean exonic/non-exonic according to the GENCODE V7
annotation. We performed an analysis and found that of
those 420 non-exonic matches, 72 corresponded to in-
tronic regions and 348 corresponded to intergenic regions.
Figure 4 shows unique proteogenomic mapping

matches outside the GENCODE V7 annotation. The lo-
cation was identified from multiple MS/MS spectra from
two distinct precursor m/z sets. The same location has
RNA-Seq evidence from ENCODE/Caltech.

Other evidence related to unique, non-exonic matches

The 420 unique, non-exonic matches could represent new
genic regions, new isoforms of known genes, or false dis-
coveries that fall within the 1% FDR. We attempted to de-
termine whether there was other supporting evidence for
these matches by searching for expression data and pre-
dicted exons.
Using the UCSC Table Browser, we examined all

unique, non-exonic matches for evidence of transcrip-
tional activity and/or predicted exons, using: HAIB
RNA-Seq data (wgEncodeHaibRnaSeqA549Dex100nm
RawRep1); GENSCAN gene predictions (genscan); Hu-
man ESTs (all_est); Burge RNA-Seq data (burgeRnaSeq
GemMapperAlignBT474); Ensembl exons (acembly);
UW Affy Exon Array data (wgEncodeUwAffyExonArray
Gm12878SimpleSignalRep1v2); and Duke Affy Exon
Array data (wgEncodeDukeAffyExonGm12878SimpleSig
nalRep1). Information about each of these datasets can
be found with their individual tracks on the UCSC

Figure 3 Venn diagram of distinct peptide identifications from

the protein, transcript, and whole genome searches. The deep

red segment in the center represents the 12,177 peptides identified

from all three searches. The segment in red represents the 3,628

peptides identified solely from the GENCODE V7 protein search; the

blue segment represents the 1,122 peptides identified solely from

the GENCODE V7 transcript search; and the brown segment

represents the 481 peptides identified solely from the whole

genome search.
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Genome Browser. Of the 420 unique, non-exonic
matches, 268 overlapped with the HAIB RNA-Seq data;
215 overlapped with GENSCAN predicted exons; 175
overlapped with human ESTs; 120 overlapped with Burge
RNA-Seq data; 281 overlapped with Ensembl exons; 196
overlapped with WU Affy Exon Array data; and 221 over-
lapped with the Duke Affy Exon array data (Table 2).

The union of intersection between our unique non-
exonic matches and all seven datasets is 368, i.e., each of
these 368 unique hits had at least one other piece of sup-
portive evidence, either transcriptional evidence or pre-
dicted exons. Similarly, the central intersection from all
seven datasets, i.e. the matches for which all seven datasets
overlapped, was 14. The results indicate that ~88% (368/

Figure 4 An example of unique GENCODE V7 intergenic proteogenomic matches. Panel A shows that these unique proteogenomic

matches overlap with a protein-coding exon predicted by NScan. Blue boxes represent proteogenomic matches, green boxes represent predicted

protein-coding exons, and black lines represent introns. Panel B summarizes the total MS/MS spectral support for each of the two matches in this

region, where each vertical dark blue bar represents a distinct spectral match for the same peptide, with the height of the bar showing the E-

value for the identification (E-values ranging from 1.0×10-1 to 1.0×10-4). More and/or taller bars indicate stronger support. Panel C shows

ENCODE/Caltech RNA-Seq evidence and other transcriptional data for the same region. Both matches are identified from multiple spectra,

indicating relatively strong support.

Table 2 Unique GENCODE V7 non-exonic peptides and their overlap with different expression data and predicted

exons

Total non-exonic peptides Data types Number of distinct peptides that overlap

420 HAIB RNA-Seq 268

GENSCAN gene predictions 215

Human ESTs 175

Burge RNA-Seq 120

Ensembl exons 281

UW Affy Exon Array 196

Duke Affy Exon Array 221

Results presented are at a 1% FDR. Information about each dataset can be found with its individual track on the UCSC Genome Browser.
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420) of our unique proteogenomic matches were sup-
ported by either predicted exons or by the presence of
transcriptional activity. When we examined the remaining
52 matches for which there was no corroborating evidence,
we found that 3 were intronic and 49 were intergenic.

Proteogenomic tracks to UCSC genome browser

To facilitate the interpretation of proteogenomic data
within a genomic context, we produced UCSC bed tracks.
The ENCODE proteogenomic tracks were submitted to
the ENCODE Data Coordination Center (DCC) at UCSC
in accordance with ENCODE data standards. Though only
the best-matching peptides at a 1% FDR are presented in
this manuscript, the uploaded results include first-,
second- and third-ranked peptides at a 5% FDR, to con-
form to ENCODE standards. The tracks can be browsed
to see where and how proteogenomic data line up with
other types of evidence, such as human ESTs, RNA-Seq,
etc. (Figures 4 and 5), and can be accessed at http://gen-
ome.ucsc.edu/cgi-bin/hgTrackUi?db=hg19&g=wgEncode
UncBsuProt. Figure 5 shows a UCSC Genome Browser
screen shot illustrating the alignment between our
proteogenomic mapping loci and several other annota-
tion sets for chromosome 1.

Discussion

We produced MS/MS spectra from two ENCODE Tier 1
cell lines and searched them against GENCODE V7 anno-
tated protein and transcript sets, as well as against the
standard human genome sequence (UCSC hg19). To
achieve as complete proteomic coverage as possible, we
used spectra from two cell lines, rather than from a single
line: this approach provided us with ~1 million high-quality

spectra to facilitate large-scale proteogenomic analysis. We
also employed a combination of strategies to increase the
coverage of the analyzed proteins, such as filter-aided sam-
ple preparation, microwave-assisted in-filter digestion, and
subcellular fractionation. We also used a state-of-the-art
Eksigent Ultra-LTQ Orbitrap mass spectrometer which im-
proved the accuracy of mass measurements and provided a
more complete fragmentation pattern.
In addition, we compared the results from the three

different database searches to identify which PSM from
which search was scored highest by the HMM_Score al-
gorithm. We found that though whole genome mapping
is a less sensitive method, it identified 481 putative novel
peptides because they do not belong in annotated exons.
These peptides could come from protein isoforms whose
corresponding mRNAs have either not yet been captured
in an expression database, or whose mRNAs are not cur-
rently annotated as protein-coding. These results indicate
that a search using a set of annotated transcripts or a
standard protein database may miss crucial supporting evi-
dence for new alternative splices and possibly for un-
annotated genes. Performing proteogenomic mapping
using both transcript and whole genome sequences identi-
fied ~15% more MS/MS spectra than would have been
found solely by the protein database search. These searches
are complementary: when performed in conjunction with
one another, they improve the total coverage of proteomic
identifications.
We uploaded browsable bed files to the UCSC Genome

Browser, which offers a unique opportunity to inspect
proteomic data within the context of other genomic data.
From the alignment between our proteogenomic mapping
results and different annotation sets, researchers can now

Figure 5 A UCSC Genome Browser screenshot showing proteogenomic coverage across chromosome 1, with several annotation sets.

The red line at the top represents our proteogenomic matches. The annotation sets shown here include GENCODE V7, Ensembl, RefSeq, and the

UCSC annotation. The black line at the bottom shows the human mRNAs from GenBank.
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identify which annotated protein-coding transcripts have
confirmatory protein evidence, or if any sequences anno-
tated as introns act as protein-coding exons in some dis-
ease states. These new proteogenomic mapping tracks
could help researchers answer many other questions that
could not otherwise be addressed without direct protein
evidence.

Future applications of human genome proteogenomic

mapping work

Proteogenomic mapping has been used previously to aid
in human genome annotation [11,16,17,28]. Whole gen-
ome mapping could also be used to further explore
many of the unexpected results that have been found
using large transcriptional databases. For example, there
is evidence that a large number of human cDNAs have
an upstream start codon (ATG) preceding the start
codon of the longest known ORF [35-37]. A serial ana-
lysis of gene expression tags revealed that antisense tran-
scripts are far more widespread than previously known
[38]. In addition, the ENCODE Consortium found many
intergenic, antisense, and chimeric transcripts [1,3].
These novel transcripts require further study to deter-

mine whether they encode proteins. Performing an un-
biased whole genome proteogenomic mapping could
provide support for the translation of small ORFs, anti-
sense transcripts, non-coding RNAs, or sites annotated
as introns [39]. Whole genome proteogenomic mapping
could also aid in biomarker discovery as aberrant splice
isoforms and amplicons are known to be associated with
many cancers [40-42].

Limitations of whole genome proteogenomic mapping

Whole genome proteogenomic mapping can offer new
insights about the translational regions of the human
genome; however, the method has some limitations.
First, a whole human genome search reduces sensitivity
and specificity due to the increased size of the database.
Furthermore, incorporating every splice site in an un-
biased manner (i.e. between every GT-AG) and consider-
ing post-translationally modified peptides would create
an unmanageably large database, ultimately increasing
false positive assignments.
Moreover, protein expression depends on different cel-

lular and developmental conditions, as well as different
cell types [43]. We used only one standard genomic se-
quence (UCSC hg19) and two different cell cultures not
directly related to that genome. Single nucleotide poly-
morphisms, copy number variants, and other genetic
differences exist between individuals, which produce dif-
ferent proteomic profiles. Minor sequencing errors could
produce different theoretical proteomic profiles, affect-
ing the correctness of the PSMs identified. Both Tier 1
cell lines are cancer-derived, which may present

additional somatic mutations, further complicating pro-
tein expression. Therefore, additional proteomic analyses
are needed which consider different cellular, develop-
mental and genetic variations, as well as different cell
types.

Conclusions
In summary, we mapped proteomic data against three dif-
ferent databases (protein, transcript, and whole human
genome) to confidently identify putative new translational
regions of the human genome, and thereby increase the
total proteomic coverage. We used a very tight precursor
mass tolerance (0.02 Da) and an FDR of 1% to reduce the
chance of false positive identifications. The comparison of
search results found that ~4% of the peptides identified
from the whole genome search were outside GENCODE
annotated exons; the approach also identified ~15% more
spectra than would have been identified solely from a pro-
tein database search.
At present, whole genome proteogenomic mapping of-

fers the opportunity to identify peptides that would not be
found solely from a protein database search. However,
whole human genome proteogenomic mapping is still in
its infancy and its current value is only in pinpointing new
genomic areas of focus. As improvements are made in
mass spectrometry and computer technologies, and once
different cellular/developmental conditions and genetic
variations are considered, we speculate that proteogenomic
mapping, performed in conjunction with other database
searches, could significantly increase knowledge about the
translational regions of the human genome.

Methods

Mass spectrometry data generation

Cell culture, subcellular fractionation, and sample

preparation

Human ENCODE cell lines K562 and GM12878 were
cultured in Roswell Park Memorial Institute Medium
1640, supplemented with 10% fetal bovine serum, peni-
cillin (100 units/ml), and streptomycin (100 mg/ml).
Cells were maintained in a humidified incubator with
5% carbon dioxide at 37°C.
Subcellular fractionation was performed on both cell

lines following a common protocol, producing nuclear,
mitochondrial, cytosolic, and membrane fractions [44].
For SDS-PAGE separation and in-gel digestion, a standard
procedure was followed [45]. For GELFrEE separation, a
GELFREE 8100 Fractionation System (Protein Discovery,
Knoxville, TN) was used according to the manufacturer’s
protocol. The collected protein fractions were further
processed using filter-aided sample preparation (FASP)
[32] or the GOFAST method [33].

Khatun et al. BMC Genomics 2013, 14:141 Page 8 of 11

http://www.biomedcentral.com/1471-2164/14/141



RPLC-MS/MS analysis

Reversed Phase Liquid Chromatography (RPLC) MS/
MS analysis was performed on a nanoLC-Ultra system
(Eksigent, Dublin, CA) coupled with an LTQ Orbitrap
Velos mass spectrometer (Thermo Scientific, San Jose,
CA). ProteoPep™ II C18 column (75 μm× 15 cm, 300 Å,
5 μm, New Objective, MA) and linear gradient was run
from 100% buffer A (0.1% formic acid in H2O) to 40%
buffer B (0.1% formic acid in ACN) in 150 minutes, and
then to 80% buffer B for another 30 minutes. Eluted pep-
tides were ionized and analyzed in a data-dependent
manner using XCalibur software (version 2.1, Thermo
Scientific). The top five most abundant precursor ions
were selected for further MS/MS analysis. Collision-
induced dissociation (CID) was used to fragment pep-
tides and then each fragment’s m/z was measured.

Data sets produced

We produced MS/MS spectra for four fractions (nuclear,
mitochondrial, cytosolic, and membrane) of both cell lines
K562 and GM12878 using SDS-PAGE and GELFrEE. The
spectra from the GM12878 cytosolic fraction did not meet
quality control standards, so we omitted that fraction from
our searches. MS/MS spectra from a duplicate membrane
fraction of cell line K562 was also generated using the
GOFAST method. Therefore, we obtained eight different
sets of data totaling 998,570 MS/MS spectra. All MS/MS
spectra in dta format and the proteogenomic mapping re-
sults were uploaded to Proteome Commons, accessible via
http://giddingslab.org/data/encode/proteome-commons.

Proteogenomic mapping

Databases used

We performed proteomic searches against the GENCODE
V7 translated protein set, consisting of 84,408 annotated
protein sequences . We also used a 3-frame translation and
proteolytic digestion of the GENCODE V7 annotated tran-
scripts (mRNA of 84,408 annotated protein sequences).
Both of these sequences were annotated by the Wellcome
Trust Sanger Institute and are available at http://www.
gencodegenes.org/releases/7.html. The database sizes for
the protein and transcript databases were ~44 MB
and ~200 MB, respectively.
We also used a 6-frame translation and proteolytic di-

gestion of the whole human genome for our proteo-
genomic mapping (UCSC hg19, 2009, available at http://
hgdownload.cse.ucsc.edu/goldenPath/hg19/chromosomes/),
resulting in a database size of ~3.2 GB.

Mapping procedure

We used the newly developed Peppy to perform all sear-
ches. Peppy is an integrated software capable of processing
the whole human genomic sequence in a single run, as well
as protein and transcript databases [Risk B and Giddings

MC: Peppy: an all-in-one tool for proteogneomic searching
of MS/MS spectra. Manuscript in preparation]. For the
whole genome search, Peppy performed an in silico

6-frame translation and proteolytic digestion of DNA se-
quences to create a database ‘on the fly’. For all searches,
we used the HMM_Score algorithm to match and score
peptides to spectra [22]. A common proteomic search en-
gine such as Mascot or Sequest could have been used to
match and score peptides to spectra; however neither pro-
gram was designed to easily handle a six-frame translation/
digestion and search of a whole human genome.
For all searches, we used a precursor mass tolerance of

0.02 Da, a fragment mass tolerance of 0.5 Da, allowed one
missed cleavage for tryptic digestion, chose mono-isotopic
masses for amino acids, and did not consider modifica-
tions. The E-value was calculated for each PSM using the
method described by Fenyö et al. [46]. The decoy data-
bases were derived from the original databases (target da-
tabases) by reversing the target sequences for each of the
three databases. The E-value threshold for each search
was calculated for a 1% FDR using the decoy database
search according to Kall et al. [47].
The thresholds for a specific FDR were calculated for

each database individually; these separate calculations
were necessary to create FDRs that were meaningful for
the varying sizes of each database. For example, the
database resulting from the 6-frame translation and di-
gestion of the human genome was more than 1000 times
as large as that of the protein database, therefore the
FDR threshold for the human genome search was higher
than that of the protein database. It is important to note
that though the thresholds differed based on database
size, the resulting FDR was 1% for all three searches.
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