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Abstract—The recent paradigm shift in the architecture of a
smart grid is driven by the need to integrate renewable energy
sources, the availability of information via advanced metering
and communication, and an emerging policy of a demand
structure that is intertwined with pricing. By using smart grid
communication technologies that offer dynamic information, the
ability to use electricity more efficiently and provide real-time
information to utilities is expected to be significantly improved.
The introduction of both renewable energy sources as well as
efforts to integrate them through an information processing layer
brings in dynamic interactions between the major components
of a smart grid. In this paper, a dynamic model of the wholesale
energy market due to the network constraints is derived. This
dynamic model is fundamentally linked to one of the central
features of the energy market, of optimal power flow. Beginning
with a framework that includes real-time pricing, an attempt is
made in this model to capture the dynamic interactions between
generation, demand, locational marginal price, and congestion
price near the equilibrium of the optimal dispatch. Conditions
under which stability of the market can be guaranteed are
derived. Numerical studies are reported to illustrate the dynamic
model, and its stability properties.

NOMENCLATURE

θn Set of indices of generating units at node n
ϑn Set of indices of demands at node n

Ωn Set of indices of nodes connected to node n
Dq Set of indices of Consumers {1, 2, . . . , ND}
Gf Set of indices of generating units {1, 2, . . . , NG}
N Number of all buses
ND Number of demands
Nt Number of transmission lines
NG Number of generating units
A Bus incidence matrix(Nt ×N)
Ad Consumers incidence matrix where Adij = 1 if the ith

consumer is connected to jth bus and Adij = 0 if the
ith consumer is not connected to jth bus

Ag Generators incidence matrix where Agij = 1 if the ith

generator is connected to jth bus and Agij = 0 if the
ith generator is not connected to jth bus(N ×Ng)

Ar Reduced bus incidence matrix(Nt ×N − 1)
Bline Line admittance matrix with elements Bnm
Bnm susceptance of line n−m
Pmax Vector of maximum capacity limit whose elements are

Pmaxnm
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Pmaxnm Transmission capacity limit of line n−m
PDj Power k that the demand j is consuming
PGi Power that the generating unit i is producing
R Rotating matrix where Rx1 = [δ1...δN−1]
CGi Cost of Generator Company i
UDj Utility of of demand j
cd Diagonal matrix of consumers utility coefficient

diag{cDj}
cg Diagonal matrix of generators cost coefficient diag{cGi}
bd Vector of consumers cost coefficient whose elements

are{bDj}
bg Vector of generators cost coefficient whose elements

are{bGi}
τδ Diagonal matrix of voltage angle time constant diag{τδ}
τγ Diagonal matrix of congestion price time constant

diag{τγ}
τρ Diagonal matrix of Locational Marginal Price time

constant diag{τρ}
τd Diagonal matrix of demand time constant diag{τDj}
τg Diagonal matrix of generators time constant diag{τGi}
γnm Dual variable associated with the transmission capacity

constraint of line n−m
ρn Locational marginal price corresponding to the generat-

ing unit i or the demand j that is located at node n
δn voltage angle of bus n

I. INTRODUCTION

Motivated by the growing energy needs of the sustainability
amidst compelling sustainability and environmental concerns,
a new architecture for energy management, labeled Smart
Grid, is emerging where increasingly energy generation, trans-
mission and distribution are expected to be controlled by
cyber-enabled and cyber-secure components. The synthesis
and analysis of such a smart grid poses several challenges,
many of which are temporal in nature. The need to integrate
the emerging, varied sources of renewable energy has been
a major driver in the development of a smart grid. The
introduction of these renewable sources brings in intermittency
and hence dynamics that cannot be neglected.

Electricity market models have become a crucial tool for
analyzing and predicting the impact of diverse dynamic drivers
(e.g., weather, load, fuel prices, and wind supply), physical
constraints (e.g., ramping, transmission congestion), and gam-
ing behaviors (e.g., bidding strategies) on market efficiency
and prices [1]. Different market models have been used in
the literature to capture various aspects of power market dy-
namics from bilateral contracts, power exchanges, and Poolco
markets [2], [3], to databased time-series models [4], game-
theoretical formulations [5], [6], and dynamical modeling of
supply, (elastic) demand, and real-time pricing [7]. Among
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all these models, game-theoretical formulations enable one to
understand not only how instability might arise but also how
it can be prevented through better market designs. A game-
theoretical dynamic model of real-time market was proposed
in [8], [9], [10] that assume that the market players (e.g., sup-
pliers and consumers) bid recursively in time in the direction
that minimizes their marginal cost. A model based predictive
control concept was proposed in [11], [12], where ramping
constraints, short foresight horizons, and incomplete gaming
solutions are suggested as sources of market instability.

In this paper, we develop a dynamic market model that
incorporates the interaction between real-time pricing, physical
constraints, and demand response based loads. In contrast to
the papers above, this market model is directly linked with the
standard market clearing structure so that the relation between
the state-variables of the dynamic model and the primal
variables of the power dispatch model is transparent. Several
constraints that are inevitable in a power systems such as those
due to capacity limits on power generation and transmission
are explicitly included. And finally, stability of the resulting
dynamical model which consists of three main participants,
generating company, consumers company, and independent
system operator is investigated and the region of attraction
around the equilibrium of interest is established. The region
of attraction for which the real time market is asymptotically
stable places an implicit bound on the congestion price as
a congestion price cap. In particular, congestion constraints
restrict the bidding procedures and thus effect the overall
market performance and stability. In this paper, we proposed
a systematic approach to properly adjust the congestion price
cap such that Locational Marginal Price (LMP) will remain
bounded and rational in the presence of market uncertainties
without violating system reliability.

This paper has been organized as follows: In section II,
we present the necessary preliminaries. In section III, the
underlying dynamic model and its stability properties are
derived. Finally in section IV, numerical studies are presented.
A summary is presented in Section V.

II. PRELIMINARIES

We consider a convex optimization problem of the form:

Minimize f(x)

s.t. gi(x) = 0, ∀i = 1, . . . , N
N∑
i=1

Rjihi(x) ≤ cj , ∀j = 1, . . . L

(1)

where R is a matrix of constants, f , gi, hi are differentiable
functions and cj are constants.

A. Dual Decomposition

In order to derive the dual optimization problem, the La-
grangian function is defined as

L(x, λ, µ) = f(x)+

N∑
i=1

λigi(x)+

L∑
j=1

µj(Rjihi(x)−cj) (2)

where λi and µj ≥ 0 are (dual) Lagrangian multipliers for
the equality and inequality constraints, and x is the primal
variable. Denoting

D(λ, µ) = infxL(x, λ, µ) (3)

the dual optimization problem is formulated as

Maximize D(λ, µ)

s.t. µ ≥ 0, ∀j = 1, . . . , L.
(4)

Under the condition that the original problem (1) is strictly
feasible, then there is no duality gap (i.e. the original (1) and
the dual problems (4) have the same optimum). In this case, the
dual problem (4) can be solved instead of the original problem
(1). In addition, the constraint set for the optimization problem
is convex which allows us to use the method of Lagrange
multipliers and the Karush Kuhn Tucker (KKT) theorem in
[13], [14].

B. Subgradient Algorithm

Often it is simpler to determine the solution of the above
optimization problem in an iterative manner. For this purpose,
a gradient approach is often employed, and is briefly described
below. Since the ultimate goal of constraint optimization
problem in (1) is the minimization of a Lagrangian denoted as
L(x, λ, µ) in (2), we progressively change x, λ and µ so that
minima-Lagrange multiplier pairs λ and µ satisfy the KKT
conditions. We do this by using Primal-Dual interior point
method [14], [15] which is given by

x(t+ ε) = x(t)− kx∇xL(x, λ, µ)ε

λ(t+ ε) = λ(t) + kλ∇λL(x, λ, µ)ε

µ(t+ ε) = µ(t) + kµ [∇µL(x, λ, µ)]
+
µ ε

(5)

where kx, kλ and kµ are positive scaling parameters which
control the amount of change in the direction of the gradient
and [

h(x, y)
]+
y

=

{
h(x, y) if y > 0,
max(0, h(x, y)) if y = 0.

(6)

ensure that µj’s are always nonnegative. Letting ε → 0, we
get

τxẋ(t) = −∇xL(x, λ, µ)

τλλ̇(t) = ∇λL(x, λ, µ)

τµµ̇(t) = [∇µL(x, λ, µ)]
+
µ

(7)

where τy = 1/ky for y = x, λ, and µ.

III. WHOLESALE ENERGY MARKET STRUCTURE

The electricity market that we consider in this paper is
wholesale and is assumed to function as follows: First, each
generating company (GenCo) submits the bidding stacks of
each of its units to the pool. Similarly, each consumer (ConCo)
submits the bidding stacks of each of its demands to the
pool. Then, the ISO clears the market using an appropriate
market-clearing procedure resulting in prices and production
and consumption schedules.
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A. ISO Market-Clearing Model
The market-clearing procedure consists of optimizing a cost

function, subject to various network constraints. The most
dominant network constraints are due to line capacity limits
[16] and network losses [3]. The power flow through any line
is often limited due to technical constraints and is said to be
congested when it approaches its maximum limit [3]. This
constraint is explicitly included in our model below. For ease
of exposition, ohmic losses are not modeled in this paper.

The cost function that is typically used is referred to as
Social Welfare. Denoted as Sw, Social Welfare is defined as

SW =
∑
j∈Dq

UDj(PDj)−
∑
i∈Gf

CGi(PGi) (8)

where the first and second term denote the revenue due
to surpluses stemming from bids from GenCo and ConCo,
respectively. UDj(PDj) and CGi(PGi) correspond to utility
of consumers and cost of generators company and is defined
as:

CGi(PGi) = bGiPGi+
cGi
2
P 2
Gi; PminGi ≤ PGi ≤ PmaxGi (9)

U(PDj) = bDjPDj +
cDj
2
P 2
Dj ; PminDj ≤ PDj ≤ PmaxDj

(10)
where PminGi and PmaxGi are lower and upper bounds for GenCo
and PminDj and PmaxDj are lower and upper bounds for ConCo,
respectively. In summary, the market-clearing procedure is
given by

Maximize SW = Minimize − SW (11)

s.t.
−
∑
i∈θn

PGi+
∑
j∈ϑn

PDj +
∑
m∈Ωn

Bnm [δn − δm] = 0; ρn (12)

Bnm [δn − δm] ≤ Pmaxnm ; γnm,∀n ∈ N ;∀m ∈ Ω. (13)

The constraints (12) and (13) are due to power balance and
capacity limits, respectively. It can be seen that the associated
Lagrange multipliers, ρn and γnm, are indicated in each
constraint. The underlying optimization problem of the ISO
can therefore be defined as the optimization of (11) subject to
constraints (12) and (13).

The resulting solution can be determined, using KKT con-
ditions [13], as P ∗Gi, the amounts of power to be generated
by each generating unit i, P ∗Dj , the amounts of power to be
consumed by each consumer j, the locational marginal prices,
ρ∗n, and congestion price γ∗nm that satisfies the following
conditions:
d(CGi(PGi))

dPGi
|P∗
Gi
− ρ∗n(i) = 0 ∀i ∈ Gf (14a)

ρ∗n(j) −
d(UDj(PDj))

dPDj
|P∗
Dj

= 0 ∀j ∈ Dq (14b)∑
m∈Ωn

Bnm [ρ∗n − ρ∗m + γ∗nm − γ∗mn] = 0 ∀n ∈ N (14c)

−
∑
i∈θn

P ∗Gi +
∑
j∈ϑn

P ∗Dj +
∑
m∈Ωn

Bnm [δ∗n − δ∗m] = 0 ∀n ∈ N

(14d)
γ∗nm (Bnm [δ∗n − δ∗m]− Pmaxnm ) = 0 ∀n ∈ N ;∀m ∈ Ωn.

(14e)

B. Game-Theoretical Dynamic Model of Wholesale Market

The optimization problem in (11)-(13) can be viewed al-
ternately as a game between the GenCos, ConCos, and the
ISO, where each of these three players attempts to maximize
their own benefit. Instead of solving Eq. (14a)-(14e) as a static
optimization problem, we take a dynamic approach, inspired
by Eq. (7). Suppose that the underlying primal and dual
variables are perturbed from their corresponding equilibrium
to PGi, PDj , ρn, and γnm. Using (7) and (9), we can derive
a differential equation for the ith GenCo ∀i ∈ Gf as

τGi
˙PGi = ρn(i) − cGiPGi − bGi (15)

with the goal of driving its solution PGi to the equilibrium P ∗Gi
which solves (14a). Similarly, using (7) and (10), a differential
equation can be derived for the jth ConCo ∀j ∈ Dq as

τDj
˙PDj = cDjPDj + bDj − ρn(j) (16)

where τGi and τDj are time-constants that can be adjusted so
as to result in an optimal convergence of these solutions to
the equilibrium in (14a)-(14e). Finally, differential equations
for the LMPs, congestion price and phase angles can be
determined as

τδn δ̇n = −
∑
m∈Ωn

Bnm [ρn − ρm + γnm − γmn] (17)

τρn ρ̇n = −
∑
i∈θn

PGi +
∑
j∈ϑn

PDj +
∑
m∈Ωn

Bnm [δn − δm]

(18)

τnmγ̇nm = [Bnm [δn − δm]− Pmaxnm ]
+
γnm

. (19)

Equations (15)-(19) represent a dynamic model of the overall
wholesale energy market.

Two important points should be made regarding the
above model. The solution of this model PGi(t), PDj(t),
δn(t), ρn(t), and γnm(t) converges to the equilibrium in
(14a)-(14e), as t → ∞ if the overall system of equa-
tions is stable. At all other transient times, the trajecto-
ries PGi(t), PDj(t), δn(t), ρn(t), and γnm(t) represent the
specific path that these variables take, when perturbed, as
they converge towards the optimal solution. In other words,
(PGi(t), PDj(t), δn(t), ρn(t), γnm(t)) is distinct from the op-
timal solution (P ∗Gi, P

∗
Dj , δ

∗
n, ρ
∗
n, γ
∗
nm) and coincides with it at

infinity if the market is stable.
The second point that should be noted about the above

dynamic model is its decentralized nature. It can be seen that
given the LMP at node i, Equation (15) can be assembled
and solved completely by GenCo i and Eq. (16) by ConCo
j using the LMP at node j. That is, GenCo i decides their
generation quantities by estimating their own marginal profit,
as exemplified by cGi, and bGi. At any given iteration, if the
marginal profit of the GenCo is greater than zero, Eq. (15)
implies that the GenCo will increase PGi to obtain a greater
economic benefit; if the marginal profit of the GenCo is less
than zero, the Genco will decrease PGi. ConCo j updates
its consumption using Eq. (16) in a similar manner. These
players then transmit the information to the ISO, over a com-
munication network with low latencies, which then proceeds
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to solve Eqs. (17) to (19). Eq. (17) implies that the dynamic
of voltage angle of bus n depends on the corresponding
locational marginal price and also congestion price. Eq. (18)
describes the evolution of the locational marginal price, and
implies that every ρn at a node n is affected by the energy
imbalance at that node. Eq. (19) describes the evolution of the
congestion price, and implies that for each transmission line
from bus n to bus m, the congestion price is affected by the
empty capacity that is the difference of the line flow denoted
by Bnm [δn − δm] and maximum thermal capacity Pmaxnm .
If the overall system is stable, such an iterative procedure
between the market participants, GenCos, ConCos, and ISO,
evolving according to the strategies given by Eqs. (15)-(19),
will guarantee convergence to the optimal solution.

The above dynamic model is a significant departure from
the current practice where information is exchanged only
once between the GenCos and the ISO following which the
ISO clears the market and provides information regarding the
price. Our thesis here is that due to the huge volatility and
uncertainty of the dynamic drivers such as wind and solar
energy sources, and load in the market, such a single iteration
will not suffice, and stability cannot be ensured; continued
iteration as suggested by the dynamic model above is needed
in order to mitigate volatility in real-time price and ensure a
stable market design. In the subsequent sections, guidelines
for determining stability with such an iterative exchange of
information between the different players are discussed.

C. Equilibrium of Wholesale Market

Using Eqs. (15)-(19), the dynamic model of the wholesale
energy market can be written compactly as[

ẋ1(t)
ẋ2(t)

]
=

[
A1 A2

0 0

] [
x1(t)
x2(t)

]
+

[
b

f2(x1, x2)

]
(20)

where

x1(t) =
[
PGi PDj δn ρn

]T
(Ng+Nd+2N−1)×1

(21)

x2(t) =
[
γ1 . . . γNt

]T
Nt×1

(22)

A1 =
−τ−1

g cg 0 0 τ−1
g ATg

0 τ−1
d cd 0 −τ−1

d ATd
0 0 0 −τ−1

δ ATr BlineA
−τ−1

ρ Ag τ−1
ρ Ad τ−1

ρ ATBlineAr 0


(23)

A2 =
[
0 0 −BTlineArτ

−1
δ 0

]T (24)

Bline denotes the line admittance matrix (Nt by Nt diagonal
matrix) with elements Bnm and let A denote the Nt×N bus
incidence matrix. Let Ar denote the reduced bus incidence
matrix (Nt ×N − 1) which is A with column corresponding
to reference bus removed. Ag is generators incidence matrix
where Agij = 1 if the ith generator is connected to jth bus
and Agij = 0 if the ith generator is not connected to jth bus,
similarly for Ad which is load incident matrix where Adij = 1

if the ith consumer is connected to jth bus and Adij = 0 if
the ith consumer is not connected to jth bus. Finally

b =
[
bTg τ

−1
g bTd τ

−1
d 0

]T (25)

f2(x1, x2) =
[
τ−1
γ [BlineArRx1 − Pmax]

+
x2

]
(26)

where Rx1 = [δ1 . . . δN−1]T and R is rotating matrix (N−1×
Ng+Nd+2N−1) and Pmax denotes a vector with maximum
capacity limit of transmission lines (Nt × 1) whose elements
are Pmaxnm . Before we analyze the stability of the dynamic
market model in Eqs. (15)-(19), we evaluate its equilibria.

We denote the equilibrium set of the wholesale market given
by the game in Eqs. (15)-(19) as

E = {(x1, x2)|A1x1 +A2x2 + b = 0∧ f2(x1, x2) = 0} (27)

and (x∗1, x
∗
2) is an equilibrium point of the wholesale market

under the game given by Eqs. (15)-(19) if (x∗1, x
∗
2) ∈ E. The

goal of this paper is to study the stability of the game in (15)-
(19) around (x∗1, x

∗
2) ∈ E using Lyapunov stability. For this

purpose, we use the following definition.
Definition 1: The equilibrium point of the wholesale energy

market denoted as (x∗1, x
∗
2) ∈ E defined by the dynamical

game (15)-(19) is stable if for each ε > 0, there is σ =

σ(ε) that given
(
(x1(0)− x∗1)T (x2(0)− x∗2)T

)T ∈ Ω(σ) :=
{x| ||x|| < σ}, there exist the feasible sequences of PGi ,
PDj , and δn such that

(
(x1(t)− x∗1)T (x2(t)− x∗2)T

)T ∈
Ω(ε) ∀t ≥ 0.

D. Nominal Stability of Electrical Market

We now establish the stability property of the equilibrium
using the Lyapunov approach.

In what follows, it is assumed that strong duality holds and
there exists (x∗1, x

∗
2) ∈ E. The stability and region of attraction

around this equilibrium is established in Theorem 1.
Theorem 1: Let strong duality hold. Then the equilibrium

(x∗1, x
∗
2) ∈ E of the wholesale market defined by the dynamic

game (20) is asymptotically stable for all initial conditions in
Ωcmax = {(y1, y2) | V (y1, y2) ≤ c} for a cmax > 0 where
Ωcmax ( D = {(y1, y2) | ||y2|| ≤ d} with

d =
2λmin(P2)ψminλmin(Q)

τγmaxβ
2

,

if A1 is Hurwitz.
Proof: Since strong duality holds, it follows that the

dynamic game (20) has an equilibrium point denoted by
(x∗1, x

∗
2) ∈ E. We first establish stability of this equilibrium

point based on Definition 1 and then proceed to its asymptotic
stability.

(i) Stability: Differentiating positive definite Lyapunov func-
tion V (y1, y2) = yT1 P1y1+yT2 P2y2 with respect to time where
y1 = x1 − x∗1 , and y2 = x2 − x∗2 and due to the fact that
[BlineArRy1 − Pmax]

+
y2
≤ BlineArRy1 − Pmax, we have

V̇ (y1, y2) ≤ yT1 (P1A1 +AT1 P1)y1 + yT1 P1A2y2 + yT2 A
T
2 P1y1

+ yT2 P2

(
τ−1
γ BlineArRy1 − τ−1

γ Pmax
)

+(
τ−1
γ BlineArRy1 − τ−1

γ Pmax
)T
P2y2

(28)
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If A1 is Hurwitz, for any Q > 0, there exists a positive
definite matrix P1 such that P1A1 + AT1 P1 = −Q. Let
λmin(Q) denote the minimum eigenvalue of Q. Since P2

is a symmetric positive definite matrices, with a set of Nt
orthogonal, real and nonzero eigenvectors x1, ...xn, can be
written P2 =

∑Nt
i=1 λixix

T
i where λi > 0 is the eigenvalue

corresponding to xi. We can expand the vector Pmax using
the orthogonal vector wi as Pmax =

∑Nt
i=1 ψiwi, this implies

that

Pmax
T

τ−1
γ P2y2 ≥

λmin(P2)ψmin
τγmax

||y2|| (29)

where ψmin = min(ψi) ∀i = 1, ..., Nt.
Let ||P1A2 +RTATr B

T
lineτ

−1
γ P2|| ≤ β, we obtain that

yT1 (P1A2 +RTATr B
T
lineτ

−1
γ P2)y2+

yT2 (AT2 P1 + P2τ
−1
γ BlineArR)y1 ≤ 2β||y1||||y2||.

(30)

Using Eqs. (29)-(30), we have

V̇ (y1, y2) ≤ −λmin(Q)

(
||y1|| −

β

λmin(Q)
||y2||

)2

−||y2||
(

2
λmin(P2)ψmin

τγmax
− β2

λmin(Q)
||y2||

)
.

(31)

where τγmax = max(τγnm). For all Ωcmax ( D, it follows
that for all solutions beginning in Ωcmax , V̇ ≤ 0. Hence the
equilibrium is stable, and Ωcmax is the region of attraction.

(ii) Asymptotic stability: We now show that all solutions
beginning in Ωcmax will converge to the equilibrium point.
Eq. (31) can be rewritten as

V̇ (y1, y2) ≤ −a(||y1|| − b||y2||)2 − ||y2||(e− f ||y2||)

where a = λmin(Q), b = β
λmin(Q) , e = 2λmin(P2)ψmin

τγmax
, and

f = β2

λmin(Q) .

That is, V̇ can be zero if (||y1||, ||y2||) =
(
be
f ,

e
f

)
or if

(||y1||, ||y2||) = (0, 0). Note that ||y2|| = e
f implies that the

solution lies on D. However, since the initial conditions start in
Ωcmax and the latter is a strict subset of D, y2 cannot be equal
to e

f in Ωcmax . This in turn implies that (||y1||, ||y2||) = (0, 0)
is the only invariant set. Hence all solutions (y1, y2), starting in
Ωcmax converge to the equilibrium point (x1, x2) = (x∗1, x

∗
2),

which establishes asymptotic stability.
Remark 1: The region of attraction Ωmax for which stabil-

ity and asymptotic stability hold places an implicit bound on
the congestion price. In particular, it implies that the conges-
tion price needs to be smaller than d, which is proportional to
Pmax. We note that this is similar to the standard interpretation
of congestion price, that it is the marginal cost for relieving
one MW of congestion in a given constraint line [17]. This
condition also provides a warning signal for the ISO, that
the system reaches its stability limit as the congestion price
approaches the congestion price cap d.

IV. ILLUSTRATIVE EXAMPLE

We now numerically evaluate the stability of the equilibrium
of the energy market using a standard 4-bus network in [2].
The network includes two generating units located at node
1 which corresponds to a base-load generator with the low

cost coefficients cG1
= 0.25[$/MW 2h], bG1

= 47.2[$/MWh]

and has a slow dynamics corresponding to the higher time
constant τG1 = 48[$/MW ] and a peaking generator located
at node 2 has a fast dynamics corresponding to the lower
time constant τG2

= 10[$/MW ] but high cost coefficients
cG2

= 0.53[$/MW 2h], bG2
= 48.8[$/MWh]. The latter can

be assumed to be a spinning reserve to compensate for
demand fluctuations that may occur in bus 2. There are
power consumption at nodes 3 and 4 with the utility coef-
ficients cD1

= cD2
= −0.41[$/MW 2h], bD1

= 70[$/MWh],
bD2 = 73[$/MWh] and their respective time constants are
τD1 = τD2 = 5[$/MW ]. Transmission line parameters such as
Bnm and the line capacity limits Pmaxnm can be found in [2].
We assume that the market time constants τρ = 5MWh2/$,
and τδ = 5$/MW . We consider two cases, labeled Case 1 and
Case 2, different cases with the same parameters and all initial
conditions being the same except for δ2(0) (see Table I). The
results obtained are shown in Figures 1 to 4. Figures 1 and 2
show responses of the critical state variables, PG1, PG2, PD1,
PD2, and ρn ∀n = {1, ..., 4} for the initial conditions these
two cases. It can be seen in Figure 1 that PG1 supplies the
base-load consumption and PG2 is dispatched to follow up
load fluctuations. Since transmission lines are not congested,
Locational Marginal Prices (LMPs), ρn, converge to the same
value for all n buses, and the wholesale market is stable with
the given parameters. However, when δ2(0) is increased from
8deg to 12deg , the wholesale market exhibits instability, as
illustrated in Figure 2. The difference in the stable and unstable
solutions for Cases 1 and 2 is also illustrated in Figure 3 using
a projection of the phase-plane.

A more detailed study of the sensitivity to initial conditions
was also carried out. Starting with the initial conditions in
Case 1, we perturbed each of the fifteen state variables as
xi + ∆i while keeping all j 6= i constant, and determined the
maximum ∆maxi that led to instability. It follows that larger
the ∆maxi , the higher the robustness to perturbations in that
particular state xi. The values ∆maxi are shown in Figure 4
for each of the fifteen state variables. As Figure 4 shows, the
most sensitive states, i.e. the states that possess the smallest
set ∆maxi ’s correspond to the phase angles δn∀n = {1...4}.
These sensitivity studies can provide guidance for the design
of robust control.

V. SUMMARY

Increasing demand for electrical power generation and
the current energy crisis have created an urgent need in
incorporating renewable energy sources into the power grid,
using available information via communication networks and
regulating the overall active agents. In this paper, we begin
with the standard market clearing procedure and capture the
dynamics of the real-time market using Primal-Dual interior
point method. In particular, a gradient-based algorithm is used
to derive the dynamic evolution of the primal variables and
dual variables to reach the optimum solution of the real-time
market. The stability of the resulting dynamical model of the
real-time market is investigated and the region of attraction
around the equilibrium of interest is established. This region
for which the real-time market is asymptotically stable places
an implicit bound on the congestion price.
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Fig. 1. Market dynamic transients for GenCos PG1, and PG2, ConCo PD1,
and PD2, and Locational Marginal Prices ρn ∀n = 1, ..., 4 with initial
conditions in Table III, Case 1.

Fig. 2. Market dynamic instability after a sudden increase of load in bus 3
for GenCos PG1, PG2, ConCo PD1, PD2, and Locational Marginal Prices
ρn ∀n = {1, ..., 4} with initial conditions in Table III, Case 2.
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