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ABSTRACT

It is universal to see people obtain knowledge on micro-blog
services by asking others decision making questions. In this
paper, we study the Jury Selection Problem(JSP) by utiliz-
ing crowdsourcing for decision making tasks on micro-blog
services. Specifically, the problem is to enroll a subset of
crowd under a limited budget, whose aggregated wisdom
via Majority Voting scheme has the lowest probability of
drawing a wrong answer(Jury Error Rate-JER).

Due to various individual error-rates of the crowd, the
calculation of JER is non-trivial. Firstly, we explicitly state
that JER is the probability when the number of wrong ju-
rors is larger than half of the size of a jury. To avoid the
exponentially increasing calculation of JER, we propose t-
wo efficient algorithms and an effective bounding technique.
Furthermore, we study the Jury Selection Problem on t-
wo crowdsourcing models, one is for altruistic users(AltrM )
and the other is for incentive-requiring users(PayM ) who
require extra payment when enrolled into a task. For the
AltrM model, we prove the monotonicity of JER on indi-
vidual error rate and propose an efficient exact algorithm
for JSP. For the PayM model, we prove the NP-hardness of
JSP on PayM and propose an efficient greedy-based heuris-
tic algorithm. Finally, we conduct a series of experiments to
investigate the traits of JSP, and validate the efficiency and
effectiveness of our proposed algorithms on both synthetic
and real micro-blog data.

1. INTRODUCTION
Crowdsourcing, partially categorized as human compu-

tation or social computation, is an emerging computation
paradigm. It provides fundamental infrastructure to en-
able online users to participate certain tasks as intellectual
crowds. Amazingly, the wisdom of crowds outperforms com-
puter programs at tasks involving creativity, human natural
interpretation and subjective comparison, etc. In curren-
t stage, typical crowdsourcing applications entail specially
designed platforms, like Amazon MTurk, to enroll crowd

Figure 1: Is Turkey in Europe or in Asia?

workers, control task flow and aggregate answers. On such
platforms, crowd workers select tasks according to their own
interests and reward requirement; on the other side, tasks
requesters publish their tasks and wait for crowd workers
accept and complete them in a random manner.

Will the magic power of crowdsourcing be confined solely
on specially designed platforms? Are crowd workers only ap-
pearing because of monetary rewards? The answer are both
negative. In this paper, we will introduce a long-existing
pattern of crowdsourcing on the platform of a micro-blog
network, that is, gathering answers for decision making ques-
tions from micro-blog followers.

Micro-blog services are popular social media, featuring
excellent brevity to broadcast observation of events and ex-
press users’ opinions. This brevity is brought forward by
the limited length of published content, e.g. 140 charac-
ters for Twitter, and a brief markup culture like “RT” and
“@”, which make it easy and even motivated for users to
express their thoughts. The simplicity of use of micro-blog
services encourages people to present their thoughts freely.
Moreover, as mobile and web techniques advance, it becomes
easier and easier for users to “tweet” via various ways. Be-
sides its high accessibility, the huge population and diversity
of users enable micro-blog services as a potential but pow-
erful knowledge-base.

For the reasons above, micro-blog service is born a plat-
form qualified not only for spreading message, but also for
crowdsourcing particular tasks, e.g. answering decision mak-
ing questions. Each day, people find it more and more con-
venient and reliable to seek answers from micro-blog users,
for example, “Is it true that iPhone5 will come before Au-
gust?” or “Is Doner Kebab available in Hong Kong?”, etc.
Such questions vary from minor problems as selection of
dressing for a banquet to serious issues such as the predic-
tion of macro markets trends. The magic point of such tasks
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Table 1: Genome of Decision Making Tasks with
Crowdsourcing [18]

Who Why What How
Anyone Altruism+Incentive Decision Group Decision

on micro-blog networks is that question holders can active-
ly choose their potential “workers” by simply mentioning
them using the markup operator ‘@’. Later on “workers”
return their product with the simple “Reply” button. Ta-
ble 1 describes the genome of such tasks as crowdsourcing
application.

Another type of formal application of such decision mak-
ing tasks is the discerning of rumorous messages [4]. Rumors
are spread on micro-blog network, such as political astrotur-
f and spam advertising[24], etc. And it is very difficult to
discover and identify them by automatic algorithms. The
main reason is that most of rumors look seemingly the same
as truth, or expressed with plenty of rhetoric or sarcasm.
To discern such rumors is thus a typical decision making
problem for online users, which has long been practiced by
micro-blog users. In practice, micro-blog users are utilized
to monitor and identify earthquake information during the
disasters in Japan and Chile [27][4].

Following the same terminology in proposing judgement
on court, which is one of the most typical decision making
scenarios, in this paper we denote crowdsourcing “workers”
as “jurors”, and the “crowds” as “jury”. Although “jurors”
in a jury all wish to achieve the same goal(to answer the
question correctly), each of them may make mistakes with a
probability ǫi. Meanwhile, some of them will not participate
in such a task unless a certain incentive ri is offered. Not
surprisingly, we hope to choose a most reliable and feasible
subset of all possible “jurors” to vote on a question. Most
reliable here means the possibility of giving wrong answer
under majority rule is minimized. Formal definition of the
problem will be given in Section 2, and a motivation example
is given as follows.

Motivation Example Suppose we are given a decision
task, with a set of candidate “jurors” S(i.e. all the users
in Figure 1), we have to decide whom we should ask for an
answer.

The first concern originates from the existence of defect,
i.e. the probability of making mistakes among users in a
jury. In Majority Voting(most classical Condorcet-like vot-
ing [9]), if more than half of the users vote wrongly, the
jury gives wrong answer. For the example in Figure 1, if
we choose C, D, and E, with error-rates 0.2, 0.3, and 0.3
respectively, as a crowd, the probability of getting a wrong
answer from the entire crowd is

0.2 ·0.3 ·0.3+(1−0.2) ·0.3 ·0.3+2 ·0.2 · (1−0.3) ·0.3 = 0.174

This jury performs better than any individual of them does
(e.g. 0.2 if only C is selected and 0.3 if select D or E is
selected). Intuitively, we expect that the best jury comes
from the best individuals. And indeed, with A, B, and C,
the overall error-rate becomes 0.072 , which is smaller than
with C, D and E. What if the size of jury expands with two
more individuals? After taking D, E into the jury, the error-
rate becomes 0.0704, which is even lower. Following such
intuition, when we take two more individuals F and G, we
find that the error-rate climbs to 0.085, which is worse than
that of the previously smaller jury with size 5. Regarding
such cases, we are interested in the problem of selecting

Table 2: Error-rate of Example in Figure 1
Crowd Individual Error-rate Jury Error-rate

C 0.2 0.2
A 0.1 0.1

C,D,E 0.2,0.2,0.3 0.174
A,B,C 0.1,0.2,0.2 0.072

A,B,C,D,E 0.1,0.2,0.2,0.3,0.3 0.0703
A,B,C,D,E,F,G 0.1,0.2,0.2,0.3,0.3,0.4,0.4 0.0805

A,B,C,F,G 0.1,0.2,0.2,0.4,0.4 0.104

members for a jury with the lowest error-rate.
The second concern is about how to promote activity and

productivity of the crowd. Financial rewards or other in-
centives(e.g. virtual commercial credits) are employed and
proved to be effective. Incentive requirements vary among
all the workers [13], so what if we cannot enroll the best
jury due to a limited budget? In the example of Figure 1,
because user D and E ask for rewards of $0.4 and $0.65 re-
spectively, the sum of which already exceeds the $1 budget,
the jury of A, B, C, D, and E cannot be formed. Should
we give up D and E or should we take two cheaper but less
reliable users F and G? The result in Table 1 shows that, in
such settings, the smaller and cheaper jury with error-rate
0.072 will perform better than the larger but more expensive
one with error-rate 0.104. This dilemma reveals the second
concern: how to select the best jury with a limited budget.

In this paper, we propose a framework to form such crowd-
sourcing function on micro-blog services, and particularly
investigate the power of crowds to tackle decision making
tasks with higher quality. In general, we have such contri-
butions:

1. We propose AltrM and PayM models to describe the
behavior of crowd workers in crowdsourcing applications,
and we formally propose the Jury Selection Problem(JSP)
on both models;

2. We explicitly state the complexity of calculating Ju-
ry Error Rate and propose efficient algorithms with lower
bounding criteria;

3. To solve JSP, we proved the monotonicity of JER with-
in a fixed size of jury, and propose an efficient algorithm to
tackle JSP on the AltrM model;

4. We prove that the Jury Selection Problem, under PayM
Model, is NP-hard, and provide a polynomial heuristic al-
gorithm to solve the problem.

5. We propose a method to retrieve users’ individual error
rates via constructing message forwarding graph and rank-
ing the users.

2. MODELS AND PROBLEM DEFINITION
In this section, we first introduce the concept of jury and

the fundamental voting scheme for a decision making task,
as well as two crowdsourcing models for selecting a jury.
Then we investigate the effect of careless jurors and the Jury
Error Rate drawn from them. At the end of this section, we
formally define the Jury Selection Problem.

2.1 Voting Scheme
Each online user of micro-blog services can serve as a ju-

ror, and the problem is how to select jurors and aggregate
their distributed opinions, so that the wisdom of crowds is
best utilized.

The term jury is used to denote a set of jurors that can
make decisions on court, and here we borrow the concept
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for our decision making problem and redefine it formally as
follows:

Definition 1 (Jury). A jury Jn = {j1, j2, · · · , jn} ⊆
S is a set of jurors with size n that can form a voting.

In most crowdsourcing applications, how to aggregate the
wisdom of crowds is an important issue. The expected re-
sult may be a predicted value, a rank of several items, labels
or annotations of to different items, etc. There are two main
schemes for aggregation of wisdom of crowds. On one hand,
synthesis, like market prediction, is in natural numerical and
can be aggregated arithmetically on the individual quanti-
ties. On the other hand, for decision making tasks where
there is “no natural way to ‘average’ the preference of in-
dividuals”[9], voting is a mainly adopted scheme. Voting
is also considered as one of the most suitable aggregating
mechanisms when intrinsic divergence exists among all in-
dividuals, but a hard group decision must be made after
synthesis.

We thus give the definition of a voting as follows:

Definition 2 (Voting). A voting Vn is a valid instance
of a jury Jn with size n, which is a set of binary values.

2.1.1 Majority Voting

A voting scheme defines how to aggregate a voting result
so that a specific decision can be made. Specifically, we
treat a voting scheme as a function defined on a voting(see
Definition 2), and the output is a decision.

Aggregating the opinions on a decision making task re-
sembles the procedure of drawing a consensus from jury in
the court. One most natural and clearest mechanism to
make a single decision is Majority Voting, which takes the
opinion that is supported by more than half of the jurors.
In order to give a clear answer, we assume the size of a jury
for Majority Voting is ODD. Formally, we define Majority
Voting as follows:

Definition 3 (Majority Voting - MV). Given a vot-
ing Vn with size n, Majority Voting is defined as

MV (Vn) =

{
1 if

∑
ji ≥ n+1

2

0 if
∑

ji ≤ n−1
2

2.1.2 Error-rate

The niche of collecting wisdom of crowds lies in the fact
that, although intrinsic divergence may exists among all par-
ticipants, their collaborative opinion is still reliable. Howev-
er, uncertainty remains pervasive across individuals due to
the lack of authoritative opinions and adequate background
information. Also, from a jurisdiction perspective, where
most jurors are expected to bear nearly the same judgemen-
t in mind, uncertainty may rise from the objective difference
of the accessibility to and processing of available informa-
tion. Decision making for online users is such a case. Ac-
cording to various history and backgrounds of individual, we
assume that one individual has a single error-rate ǫi, where
ǫi ∈ (0, 1), indicating the probability that this particular
participant will make a conflicting judgement to the latent
true value.

Definition 4 (Individual Error Rate - ǫi). The in-
dividual error rate ǫi is the probability that a juror conducts
a wrong voting. Specifically

ǫi = Pr(vote otherwise|a task with ground truth A)

Ground truth A can be 0(false) and 1(true), which is un-
known by the jury.

While utilizing the wisdom of crowds, another issue has to
be scrutinized further: how reliable these distributed judge-
ments are? In a voting, a subset of Jury may vote wrongly
due to the reasons we listed above, but there are an exponen-
tial number of cases where different sets of jurors can make
mistakes. So here we define the concept of Carelessness to
capture such cases.

Definition 5 (Carelessness - C). The Carelessness
C is defined as the number of mistaken jurors in a jury Jn

during a voting, where 0 ≤ C ≤ n.

Informally, we define a possible combination of mistaken ju-
rors in a Jury as Minority, and straightforwardly we can
find that there are an exponential number of such possible
Minorities for a particular C. To exactly measure the re-
liability of a crowd, we define the Jury Error Rate as the
probability that a Voting �v misses the true value because
more than half of the jurors are wrong:

Definition 6 (Jury Error Rate - JER(Jn)). The
jury error rate is the probability that the Carelessness C is
greater than n+1

2
for a jury Jn, namely

JER(Jn) =
n∑

k=n+1

2

∑

A∈Fk

∏

i∈A

ǫi
∏

j∈Ac

(1− ǫj)

= Pr(C ≥
n+ 1

2
|Jn)

where Fk is all the subsets of S with size k and ǫi is the
individual error rate of juror ji.

As shown in the definition, a naive method to calculate
JER is to enumerate all Minorities and accumulate their
probabilities. This method entails an exponential number
of product terms and renders any possible algorithm ineffi-
cient. We present two efficient algorithms to accelerate the
computation in Section 3.1

Note that as a decision making problem, we assume that
for each discerning task, there exists an objective and true
judgement which is latent for all the participants before the
crowd’s decision is aggregated.

2.2 Crowdsourcing Models
In most crowdsourcing and human computing application-

s, how to motivate users to participate is an interesting prob-
lem. In this section, we present two models to describe the
most prevailing phenomenon on crowdsourcing services.

2.2.1 Altruism Jurors Model

As cited in [12], people who spend a huge bunch of time
online are not a uniform sample from the real world; on the
contrary, white, educated people with middle and higher in-
come are the main part of the online community. Among
them, there exist plenty of altruistic workers who are mo-
tivated to participate in a task simply because they are in-
terested or they feel they are obligated to participate. In
this case, no matter how talented the worker is, he or she
requires no extra payment as incentive, which means that
any set of such users can form and function as a jury.

Definition 7 (Altruism Jurors Model - AltrM).
While selecting a jury J from all candidate jurors (choosing
a subset J ⊆ S), any possible jury is allowed.
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Table 3: Summary of Notations
Notation Description

ji a juror (with index i)
ǫi individual error rate of jury i
Jn a (candidate) jury with size n
C the number of wrong jurors

in a jury Jn during a voting
JER(Jn) the probability that the jury

Jn fails under a voting
AltrM Altruistic Jurors Model
PayM Pay-as-you-go Jurors Model

n the size of a formed Jury Jn

N the size of all candidate jurors

Note that, by terming “allowed”, we mean that this partic-
ular selection is legal and can be used to conduct a decision
making task. Next, we are going to investigate the case that
jurors ask for extra incentive, which may lead to a case that
a jury is not “allowed”.

2.2.2 Pay-as-you-go Model

The same thing happens on the U.S. court, that quite a
portion of citizens do not feel glorious when selected to at-
tend a trial or a hearing as a juror due to the loss of time and
income, or simply because they feel intrinsically reluctant on
particular issues. Meanwhile, most prevailing general pur-
pose crowdsourcing platforms, like Amazon Turk, promise
to pay the workers after they finish the task. With the
monetary incentive, the jury selection procedure encounters
more complicated problems. Financial incentive may also
incur anchoring effect, which makes the aggregation of dis-
tributed knowledge even more sophisticated. However, at
this stage, we only focus on the effect when a juror, or a
set of them, are too expensive to be selected into a jury.
Formally, we define the following model:

Definition 8 (Pay-as-you-go Model - PayM).
While selecting a jury J from all candidate jurors (choos-

ing a subset J ⊆ S), each candidate juror ji is associated
with a payment requirement ri where ri ≥ 0, the possible
jury J is allowed when the total payment of J is no more
than a given budget B, namely

∑

∀ji∈J ri ≤ B.

2.3 Problem Definition
Here we formally define the Jury Selection Problem as an

optimization problem.

Definition 9 (Jury Selection Problem - JSP).
Given a candidate juror set S with size |S| = N , a budget

B ≥ 0, a crowdsourcing model(AltrM or PayM), the Jury
Selection Problem(JSP) is to select a jury Jn ⊆ S with size
1 ≤ n ≤ N , that Jn is allowed according to crowdsourcing
model and JER(Jn) is minimized.

For brevity, please refer to Table 3 as a collection of all
the notations used in this paper.

3. JURY SELECTION ALGORITHM
Due to the existence of the variety of jurors’ individual

error-rates, it is non-trivial to form a best jury in terms of
JER. An intuitive thinking might be that the best jury is
selected from the best jurors, which means we can sort all the

individuals with respect to their error-rates before selection.
But how should we decide the size of a jury? As presented in
the example of Section 1, the 5-juror group performs better
than the 3-juror one, but when the size increases, a 7-juror
group does not show any superiority over the smaller jury.
Moreover, as we discussed in Section 2.1.2, even with a given
set of candidate jurors, the calculation of JER is not trivial,
let alone the optimal selection problem.

In this section, we will formally investigate calculation of
JER, and then discuss JSP with AltrM model, along with
two efficient algorithms. Then, we present a solution for JSP
under PayM model and discuss its complexity.

3.1 Calculation of JER
To select the best jury with the minimum JER, we first

have to calculate JER for a given jury. Theoretically, the
number of jurors who give wrong votes on a task(the C in
Definition 5) is a random variable which follows the Poisson-
Binomial distribution [21]. A naive method(used in the mo-
tivation example) to calculate this value is to enumerate all
the Minorities and calculate the overall error-rate for each
of them. Obviously this method is very inefficient and even
impractical when the number of candidate jurors becomes
large. Fortunately, we can speed up this calculation with
dynamic programming.

3.1.1 A Dynamic Programming Method

To simplify the illustration of calculating JER, we here
assign an ordering {j1, j2, · · · , jn} for the n jurors(not nec-
essarily sorted), and refer Jm to the set of {j1, j2, · · · , jm}.

The basic observation is that there are repeated calcula-
tions of JER from a smaller jury to a larger one. Given a
jury Jn with size n, if jn makes a wrong vote(actually it
can represent an arbitrary juror), the target JER(Jn) be-
comes the probability that n+1

2
− 1 jurors vote incorrectly

in the jury Jn\{jn} = Jn−1. Straightforward enough, when
this juror makes a correct decision, JER(Jn) becomes the
probability that still at least n+1

2
jurors are wrong, but in

the smaller jury Jn−1 excluding jn. Formally we have the
following lemma:

Lemma 1. The calculation of JER of Jury with size n can
be split into smaller ones:

Pr(C ≥ L|Jn)

=Pr(C ≥ L− 1|Jn−1) · ǫn + Pr(C ≥ L|Jn−1) · (1− ǫn)

where

Pr(C ≥ 0|Jm) = 1 ∀ 0 ≤ m ≤ n
Pr(C ≥ m|Jn) = 0 ∀ m > n

Proof. Straightforward from Definition 6

The initial conditions have a clear meaning: Pr(C ≥ 0|Jm) =
1 covers all situations given a jury, and Pr(C ≥ m|Jn) = 0
means the number of wrong jurors cannot exceed the size of
a given jury. Then, based on Lemma 1, we can propose the
following method to calculate JER(Jn).

We present a bottom-up implementation in Algorithm 1
by maintaining a two-dimension array E[i, j] in Line 2: S-
tarting from Pr(C ≥ 1|J1) = Pr(C ≥ 0|J0) · ǫ1 + Pr(C ≥
1|J0) · (1 − ǫ1), we can iteratively compute JER with an
increasing size of jury. Specifically, Pr(C ≥ 1|Jm) can be
calculated from ǫm and Pr(C ≥ 1|Jm−1) because all Pr(C ≥
1|Jm−1) is 0 by Lemma 1. After calculating from Pr(C ≥
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1|J1) to Pr(C ≥ 1|J
n−

n+1

2

), we can further calculate all

Pr(C ≥ 2|Jm) from Pr(C ≥ 1|Jm−1) and Pr(C ≥ 2|Jm−1)
in the same manner. In this way, we can finally obtain the
value of JER(Jn) after

n+1
2

rounds.

Algorithm 1 DP-based Algorithm

Input: A jury Jn

Output: The Jury Error Rate JER(Jn)
1: m ← ⌊(n+ 2)/2⌋;
2: create an array E[0, . . . ,m][0, . . . , n] with all value as 0;
3: for i = 0 ← n do
4: for j = 1 ← n−1

2
+ i do

5: if i == 0 then
6: E[i][j] ← 1;
7: else
8: E[i][j] ← E[i−1][j−1]∗ ǫj +E[i][j−1]∗ (1− ǫj);
9: end if
10: end for
11: end for
12: return JER(Jn) ← E[n][n+1

2
] ;

Note that in each iteration(a fixed size of l), we only need
to calculate (n − n+1

2
+ l = n+1

2
) times of JER because

Pr(C ≥ l|Jm) with larger l is not necessary. Then we have
following analysis.

Corollary 1. The calculation of JER(Jn) entails at
most O(n2) time and at most O(n) space using Dynamic
Programming.

Proof. There are in total n+1
2

rounds of iteration, and

within each iteration, there are at most (n − n+1
2

= n−1
2

)
times of simple calculation as to Lemma 1. Each simple
calculation entails O(1) time cost, and thus the calculation
of JER(Jn) needs O(n+1

2
· n−1

2
) = O(n2) time.

At any point, to calculate a particular Pr(C ≥ l|Jm), only
two vectors of previous calculated value are needed, i.e. one
vector for the JER with same l and one vector for the ones
with l − 1. Hence, the space cost is O(2 · n) = O(n).

3.1.2 A Divide and Conquer Method

Since the time complexity of the dynamic programming-
based algorithm is O(n2), we have to spend much time in
calculation when the size of jury is quite large, therefore we
need to improve the efficiency of calculating JER further.

In this subsection, we propose another more efficient algo-
rithm CBA(Convolution-based Algorithm), which is based
on the divide & conquer framework instead of the dynamic
programming strategy. In order to compute JER, it is e-
quivalent to obtain the probability distribution of C, which
is the number of jurors who give wrong votes on a task.
The main idea of this algorithm is stated as follows: the
algorithm first considers the probability distribution of C as
coefficients of a polynomial. Then, it divides the jury in-
to two parts and recursively calls this process. When the
jury has only one juror, the probability distribution of one
juror is considered as the coefficients of a one-order polyno-
mial. After partition, it uses the polynomial multiplication
to merge the probability distributions of juries with smaller
sizes and finally obtains the complete probability distribu-
tion of C. The process of divide & conquer will spend O(n2)
time. However, we can use Fast Fourier Transform (FFT)
method to speed up the process of polynomial multiplica-
tion. Thus, the final time complexity of CBA algorithm is

O(n log n). The pseudo-code of CBA is shown in Algorith-
m 2.

In Algorithm 2, we first address the special case that there
is only one candidate in Jn in Lines 2-4. Then from Line 6
to 8, the algorithm divides the computation of DC into t-
wo parts, and in Line 9, the convolution-based merging is
conducted via FFT. Note that the returned value in Line 11
is DC , the distribution of C, in order to support recursive
calling. JER(Jn) can be easily retrieved as

∑n

i=n+1

2

DC [i].

Algorithm 2 Convolution-based Algorithm(CBA)

Input: A jury Jn

Output: The JER(Jn)
1: if n = 1 then
2: DC [0] = 1− ǫ1 ;
3: DC [1] = ǫ1 ;
4: return DC ;
5: else
6: Dividing Jn into two parts: Jn1 and Jn2, where

|Jn1| =
⌊
n
2

⌋
and |Jn2| =

⌈
n
2

⌉
;

7: DC1 = CBA(Jn1);
8: DC2 = CBA(Jn2);
9: DC =convolution of DC1 and DC2 via FFT;
10: end if
11: return DC ;

3.1.3 Lower Bound-based Pruning

Both the dynamic programming-based and convolution-
based algorithms want compute JER efficiently. However,
computing JER for each Jn is redundant because there is
only one jury which is finally selected. Thus, it is important
to filter out insignificant candidate juries as early as possible.
A natural idea is to quickly find a tight lower bound of JER
to determine whether a new JER needs be computed. Based
on the Paley-Zygmund inequality [26], we can obtain a tight
lower bound of JER as follows.

Lemma 2 (Lower Bound-based Pruning). Given a
jury with size n, the lower bound of JER(Jn) is shown as
follows,

JER(Jn) ≥
(1− γ)2µ2

(1− γ)2µ2 + σ2

where µ =
∑n

i=1 ǫi,σ
2 =

∑n
i=1(1− ǫi)ǫi, and γ = (n+1

2
/µ) ∈

(0, 1).

Proof. According to the definition of JER, JER is the
following probability:Pr{C > n+1

2
}, where C is the num-

ber of jurors who give wrong votes on a task. Since C is
a random variable following Poisson Binomial distribution,
the expectation and variance of C are µ =

∑n
i=1 ǫi and

σ2 =
∑n

i=1(1− ǫi)ǫi respectively.
Based on the Paley-Zygmund inequality, we can know: for

a positive random variable C,

Pr{C ≥ γE(C)} ≥
(1− γ)2µ2

(1− γ)2µ2 + σ2

where E(C) means the expectation of the random variable
C. Hence, let γ = n+1

2
/µ,we can rewrite the formula of JER

as follows:

JER(Jn) = Pr(C ≥
n+ 1

2
) = Pr{C ≥ γ · µ} ≥

(1 − γ)2µ2

(1− γ)2µ2 + σ2
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According to Lemma 2, we can observe that the time com-
plexity of computing the lower bound of JER is only O(n),
where n is the size of the jury. Thus, the time cost of lower
bound calculation is smaller than that of both algorithms.
Therefore, the lower bound-based pruning should improve
efficiency of the algorithms computing JER.

3.2 JSP on AltrM

3.2.1 Monotonicity with Given Jury Size

Before we reach the final algorithm for selecting an op-
timal jury on AltrM, we firstly investigate whether JER
follows monotonicity on individual error-rate with a given
jury size.

Lemma 3. The lowest JER originates from the Jurors
with lowest individual error-rate among the candidate jurors
set S.

Proof. W.l.o.g, we pick one ji of the n jurors in a given
Jury Jn with size n. Then JER(Jn) can be transformed as
below:

JER(Jn) = Pr(C ≥
n+ 1

2
|Jn)

=ǫi(Pr(C ≥
n+ 1

2
− 1|Jn−1))

+ (1− ǫi) · (Pr(C ≥
n+ 1

2
|Jn−1))

=ǫi(Pr(C ≥
n+ 1

2
− 1|Jn−1)− Pr(C ≥

n+ 1

2
|Jn−1))

+ Pr(C ≥
n+ 1

2
|Jn−1)

=ǫi(Pr(C =
n+ 1

2
− 1|Jn−1) + (Pr(C ≥

n+ 1

2
|Jn−1))

=ǫi ·A+B

It is obvious that A = Pr(C = n+1
2

− 1|Jn−1) ≥ 0, so that
the JER is a monotone increasing function with respect to
individual error rate ǫi. In this way, given a jury with size n
and the candidate jurors set S with size N , we finally prove
Lemma 3 by contradiction:

Suppose a Jury J ′
n has the lowest JER, and juror j′i is

one of the members but with a rank higher than n in the
candidate juror set S in an ascending order with respect to
the individual error rate ǫ. Because J ′

n consists of n jurors,
there must be a juror ji which is not in J ′

n whose individual
error rate ǫi is lower than that of j′i. By substituting ji with
j′i into J ′

n, according to the monotone increasing property
above, J ′

n will have a lower JER, which contradicts with its
previous assertion as optimal.

3.2.2 Algorithm for AltrM

Based on Lemma 1 and Lemma 3, we can now propose
an efficient algorithm to solve JSP on AltrM model: firstly,
the algorithm sorts all jurors in the candidate juror set S in
an ascending order of ǫ; then varying the possible size n of
jury from 1 to N , we calculate JERV(Jn); finally we return
the jury with the lowest JER as solution.

In the Line 5, the algorithm first checks the condition
whether γ is less than 1 according to Lemma 2. If γ satisfies
the condition, the algorithm then runs a lower bounding
test in Line 6 as early-termination condition for JER. If γ
is larger than 1, the algorithm will calculate JER directly.

Algorithm 3 Framework of JSP on AltrM - (AltrALG)

Input: A subset of candidate juror set s ⊆ S
Output: A subset of candidate juror set S with lowest

JER( Definition 6);
1: s := j1, jc = j1; //jc is the largest juror in current set
2: sort �ǫ in ascending order into �ǫsorted;
3: for n = 1 : N with step of 2 do
4: form candidate Jury Jn by selecting the first n jurors

in �ǫsorted;
5: if γ(s ∪ {jctojn}) < 1 then
6: if JERlowerbound(s ∪ {jctojn}) ≤ JER(s) then
7: calculate JER(s ∪ {jctojn});
8: update s accordingly;
9: end if
10: else
11: calculate JER(s ∪ {jctojn});
12: update s accordingly;
13: end if
14: end for
15: return s ⊆ S as proposed jury

Note that we assume that Algorithm 2 is called to calculate
JER.

The time cost on Line 11 is O(N · logN) according to
Lemma 1, and there are in total N times of iterations. The
sorting in Line 2 costs O(N · logN) time, and comparison
in Line 16 costs O(1) time. Hence the algorithm for JSP
on AltrM model has time complexity of O(N · logN ·N) =
O(N2 · logN).

The algorithm for JSP on AltrM is denoted as AltrALG
for simplicity.

3.3 JSP on PayM
In PayM model, each candidate juror is associated with

a requirement fi, and the Jury Selection Problem is about
how to select the best jurors within a limited budget. In
such a setting, a candidate Jury may be rejected because of
excessive requirement of payments. And we will discuss how
to estimate the expected payment of each candidate juror
in Section 4.2.

3.3.1 NP-hardness

Compared to a traditional 0/1 Knapsack Problem(KP),
JSP on PayM features JER as an objective function, in-
stead of a simple summation of values of the selected items.
Although we have proved in Lemma 3 that the JER is low-
est when selecting individuals with the lowest error-rates,
given a fixed size of jury, we do not know its monotonicity
with respect to the size of a selected jury. These proper-
ties make the objective function a generally non-linear one,
which shows much more hardness than the general Knapsack
Problem. The general 0/1 Knapsack Problem is a classic
NP-complete problem [14], and we reduce one of its vari-
ant, the nth-order Knapsack Problem(nOKP), to the JSP
problem.

Lemma 4. JSP on PayM is NP-complete.

Proof (Sketch of Proof of Lemma 4). We reach the
proof of Lemma 4 by proving the np-completeness of its de-
cision version, the Decision JSP(DJSP), i.e. given a JSP
instance and a value v, decide whether a Jury Jn can be

1500



selected so that JER(Jn) is equal to v. According to Def-
inition 6, which is the objective function of JSP, this op-
timization problem is a nth-order Knapsack Problem. We
then follow the proof of NP-hardness of Quadratic Knapsack
Problem(QKP)given by H. Kellerer, et al. in [14] to prove
the hardness of nOKP.

A nth-order Knapsack Problem(nOKP) is a Knapsack
problem whose objective function has the form as follow:

optimize
∑

i1∈n

∑

i2∈n

. . .
∑

in∈n
︸ ︷︷ ︸

n

V [i1, i2, . . . , in] · x1x2 . . . xn

where V [i1, i2, . . . , in] is a n-dimensional vector indicating
the profit achieved if item [i1, in, . . . , in] are selected simul-
taneously.

Given an instance of traditional KP, we can construct an
nOKP instance by defining the profit n-dimensional vector
as V [i, i, . . . , i] = pi and V [otherwise] = 0 for all i, where
pi is the profit in traditional KP. The weight vector and
objective value remain the same.

3.3.2 Approximate Algorithm

Because of the complexity of JSP on PayM, we present a
heuristic algorithm to tackle this problem with best efforts.
The underlying idea of Greedy Heuristic is to sort all the
candidate jurors according to the product of their error rate
and requirement, i.e. ǫi · ri. Then we increase the size of a
jury from 1 to N with a growing pace of 2. Each time when
the enlargement still comply with the budget constraint, we
allow this enlargement after validation of improvement on
JER. The difference between this algorithm and the tradi-
tional greedy algorithm for 0/1 Knapsack Problem is that
when the algorithm considers a new candidate, not only the
weight, but also the benefit should be compared. This is
also the reason why JSP on JER is harder than traditional
KP. Formally we present the Greedy Heuristic Algorithm in
Algorithm 4:

Algorithm 4 Framework of JSP on PayM - (PayALG)

Input: A set of N candidate jurors S with the vector of
individual error-rates �ǫ and the vector of requirements
�r, and a non-negative budget B

Output: A subset of candidate juror set s ⊆ S
1: sort ǫi · ri in ascending order into �j = {j1, j2, . . . , jN};
2: r := 0, s := ∅, pair := 0;
3: while ri > B do
4: increase i in �j; //find the first ji in �j, s.t. ri ≤ B;
5: end while
6: select ji, s := s ∪ {ji} ;
7: update accumulated requirementr := ri;
8: for m = i+ 1 : N do
9: if pair = 0 and rm + r ≤ B then
10: set jm as pair, jpair := jm, rpair = rm;
11: set pair flag pair := 1;
12: else if pair = 1 and rm+ rpair + r ≤ B and JER(s∪

{jpair, jm}) ≤ JER(s) then
13: select jm and its pair, s := s ∪ {jpair, jm};
14: set pair flag pair := 0;
15: end if
16: end for
17: return s ⊆ S as the proposed jury

Note that in Line 1, r is the current accumulated require-
ment. Due to the requirement of odd size of a jury, the
greedy algorithm considers a pair of candidate jurors as one
enlargement. Then in Line 6, we find the first feasible juror
whose requirement is less budget B. And in each step, a
pair flag will be set(in Line 10) to indicate that one more
candidate should be admitted to examine the updated JER.

The algorithm for JSP on PayM is denoted as PayALG
for simplicity.

4. PARAMETER ESTIMATION
In this section we will further discuss several possible ap-

proaches to estimate the individual error-rate ǫi and expect-
ed payment requirement ri in PayM model from micro-blog
service data.

Note that to obtain person’s individual error-rate and ex-
pected cost is itself an emerging research topic, in the tide of
extending power of crowdsourcing from AMT to more gen-
eral platforms. Our work focuses on forming up best crowd
and aggregating answers, which is a fundamental step of this
trend. For complete illustration of the proposed frame work,
we propose a method to infer the requirement from the age
of an account. In fact, any other reasonable measures can
be smoothly plugged in to our framework.

4.1 Estimate Individual Error-rate
In this subsection, we propose a possible method to es-

timate error-rates according to their authority in terms of
knowledge where decision is made. Basically, our approach
is to construct a user-graph for Twitter data according to
their forwarding operation retweet “RT”, and ranking users
in the constructed graph. Each user is then assigned a rank-
ing score, or confidence score, which represents the quality
of the user and can be directly translated to an error-rate.
Details are explained as follows.

4.1.1 Graph Construction

The Twitter social network is modeled as a graph G(V, E),
where V is the set of nodes, each of which represents a us-
er, and E is the set of edges. Instead of making use of
the “following-and-follower” user relationship on Twitter,
we link two nodes or users based on their retweet action-
s. A retweet action is that a user quotes or re-broadcasts
another user’s tweet. Intuitively, the more a user’s tweets
are retweeted by other users, the more authoritative or in-
fluential the user is. Previous work [5] has adopted retweet
measurement for influence analysis on Twitter. It is also
indicated that mainstream news organizations and celebri-
ties are the major groups of people who often induce a high
level of retweet actions. Therefore, by building a retweet-
relationship-based graph and ranking users in the graph, we
can identify reliability or quality of users to a large degree.

More specifically, we define an ordered-pair of users (user1,
user2) if user1 has ever retweeted user2’s tweets, which
we call a retweet-relationship pair. In our Twitter data,
a tweet containing “RT @username” indicates that user-
name’s tweet is retweeted, where username is any legal
username on Twitter. There are two possible cases that
suggest the existence of a retweet-relationship pair in our
Twitter data:

1. A tweet t released by a user user1 contains one and
only one substring “RT @username”
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2. A tweet t released by a user user1 contains more than
one substrings “RT @username”

where username is any legal username.
In the first case, let user2 be the user with username in

the substring ”RT @username”, and then (user1, user2) is
a retweet-relationship pair. In the second case, let user2,
user3, ... userN be the users whose usernames are con-
tained in the substrings ”RT @username” and that ap-
pear in the order appearing in the tweet t. As a proto-
type, this t indicates a retweet-relationship chain: userN is
the original author, userN−1 retweetes userN ’s tweet, ...,
and user1 retweets user2’s tweets, which is released as t.
For this retweet-relationship chain, we extract N-1 retweet-
relationship pairs (user1, user2), (user2, user3), ..., and
(userN−1, userN).

In the set of retweet-relationship pairs we find in our Twit-
ter data, we link user1 to user2 once and only once for each
pair (user1, user2), which results in a directed user-graph.

Algorithm 5 Graph Construction

Input: Tweets dataset T . Each record r(t, author) in-
cludes the tweet’s content c and author author

Output: A directed graph G(V,E)
1: Set V = ∅
2: Set E = ∅
3: for each r(t, author) ∈ T do
4: last user = author
5: Add last user to V
6: while c contains substring str=’RT @[\w]+[\W]+’

do
7: Extract username user retweeted=’[\w]+’ from str
8: Add user retweeted to V
9: Add edge(last user → user retweeted) to E
10: Delete str from t
11: last user = user retweeted
12: end while
13: end for
14: return G(V,E);

4.1.2 User Ranking

In order to measure quality of users, we need to rank
users in the graph constructed. Popular webpage ranking
algorithms HITS [15] and PageRank [22] have been applied
to solve expert location problems in social networks [29].
Since our constructed graph is also a directed and connect-
ed user network that is suitable to run graph-base ranking
algorithms, we also employ HITS and PageRank on the user-
graph to obtain quality or confidence scores of users.

We can obtain authority scores and hub scores for users by
employing HITS. We adopt the authority scores as quality
scores. The page rank scores calculated by PageRank are
directly used as quality scores.

We generalize the framework of estimating user scores by
HITS in Algorithm 6 and by Pagerank in Algorithm 7. We
find in the real dataset that most top ranking users discov-
ered by Pagerank overlaps with the ones identified by HITS.

4.1.3 Error-rate

Due to the Power law distribution characteristics of social
network users, and also for the ease of differentiating the
qualities among all candidate users, we normalize the score

Algorithm 6 Quality Score Calculation with HITS

Input: A directed graph G(V, E)
Output: Quality scores Score for each user ∈ V
1: Initialize Score and Hub to 1
2: while iteration not ends do
3: Reset Score to 0
4: for each edge(u, v) ∈ E do
5: Score[v] = Score[v] +Hub[u]
6: end for
7: Normalize Score
8: Reset Hub to 0
9: for each edge(u, v) ∈ E do
10: Hub[u] = Hub[u] + Score[v]
11: end for
12: Normalize Hub
13: end while
14: return Score;

Algorithm 7 Quality Score Calculation with PageRank

Input: A directed graph G(V, E)
Output: Quality scores Score for each user ∈ V
1: Set damping factor d
2: n = |V |
3: for each user ∈ V do
4: Score[user] = 1

n
5: Out[user] = |{v|edge(user, v) ∈ E}|
6: In Set[user] = {u|edge(u, user) ∈ E}
7: end for
8: while iteration not ends do
9: for each user ∈ V do
10: New Score[user] = 1−d

n
+ d

∑

i∈In Set[user]

Score[i]
Out[i]

11: end for
12: Copy New Score to Score
13: end while
14: return Score;

of each user to range in (0, 1) as follows, where α and β are
normalization factors(setting are given in Section 5.2):

ǫi = β−α(scorei−min)/(max−min)

where min and max are the minimum and maximum score
values obtained from Algorithm 6 and Algorithm 7.

4.2 Integrated Cost Estimate in PayM Model
There are several works related to user profiling and com-

munity inferring on social networks [30], from all kinds of
information like online behaviors [20] or even user names
[28]. Based on these attributes of users, we can imply the
taste and preference of users [17].

The task of further determining the individual require-
ment for each user is a domain-specified procedure, and
needs careful designs according to different types of tasks
to be proposed. The detail of such mechanism is out of the
scope of this work, and we propose an optional indicator to
estimate the individual requirement ri.

Inferring from Account Age
Here we propose to use a single attribute as the indicator

of individual requirement: the age of a user account since
registration. We roughly assume that, the more experienced
a user is, the less he or she will be interested in a task.
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Figure 2: System Overview

In Section 4.1.2, after selecting a candidate set S accord-
ing to the individual error rate, we retrieve the age ti of
each user from his or her registration date. The value of
individual requirement can be estimated as follow:

ri =
(ti −min)

max−min

where min and max are the extremum values of the esti-
mated account age of all users.

4.3 System Overview
Although this study mainly focus on the modeling and

algorithmic solution of the practical jury selection problem,
we briefly present a conceptual system overview for better
illustration in Figure 2.

There are mainly two parts in the system, one is for esti-
mating individual error rate and requirement for a large set
of candidates, and the other is concerning about selecting
the best crowd. As illustrated in the upper part of Fig-
ure 2, a subset of candidates are selected to form a jury, and
this jury will achieve a final Yes/No decision via Majority
Voting scheme. For different situations, different parameter
estimation methods should be utilized to best capture the
candidates’ characteristics.

5. EVALUATION
In this section, we present our experimental evaluation of

the performance of AltrALG and PayALG, as well as an
experimental study of the JSP problem, namely the rela-
tionship among individual error rates, the optimal jury size
and given budgets.

In Section 5.1, we utilize synthetic datasets to evaluate
the performance of both algorithms, which follow the normal
distributions with varying mean values and variance values.
In Section 5.2, we retrieve candidate juror data from real
micro-blog service data(Twitter) by following the algorithms
described in Section 4.

All the experiments are conducted on an Intel(R) Core(TM)
i7 3.40GHz PC with 8GB memory, running on Microsoft
Windows 7.

5.1 Synthetic Data
To simulate individual error rates and requirements with-

out bias, in this section we produce synthetic datasets fol-
lowing normal distributions with varying mean values and
variance values. JSP characteristics are investigated both

on AltrM and PayM models. Then we evaluate the effi-
ciency of AltrALG on AltrM model and the effectiveness of
PayALG on PayM model.

5.1.1 Evaluation on AltrM

JSP Traits on AltrM

AltrM model can actually be interpreted as one special
case in PayM where all the requirements are zero or a un-
limited budget B is given. In such case, the only concern of
JSP is to determine the size of a jury whose JER is mini-
mized.

The synthetic dataset is generated as following: we gen-
erate 1, 000 candidate jurors, whose individual error rates
follow a normal distribution with mean values varying from
0.1 to 0.9, and variance values from 0.1 to 0.3. We then per-
form AltrALG on this dataset and record the performance
as shown in Figure 3(a). In this figure, var means variance
of the individual error rates.

It is straightforward to interpret our findings: when most
of the candidates are reliable, namely whose individual error
rates are less than 0.5, the optimization problem is conduct-
ed as searching in a very flat slope. This causes a randomized
distribution of a best jury size as shown in the left shoulder
of curves in Figure 3(a). On the other hand, when most of
the individuals are error-prone, which means individual er-
ror rate is larger than 0.5, a best jury has to reduce its size
to keep the jury as “the hands of the few”1. In addition,
under this synthetic dataset, the threshold of reducing the
jury size is around the point where the mean of individual
error rates is 0.5. This actually implies the turning point
where wisdom of crowd may malfunction.

Efficiency on AltrM

Because the AltrALG can always find the optimal solu-
tion, we then mainly evaluate its efficiency with a growing
data size. Specifically, we track the running time of AltrAL-
G with an increasing input size. In this setting, we gener-
ate dataset of individual error-rates with mean value of 0.1,
and vary the size of candidate jurors from 2,000 to 6,000
with variance of 0.05 and 0.1 respectively. The results are
shown in Figure 3(b). The line denoted by m(0.1) means the
dataset is with variance of 0.1 and the algorithm is conduct-
ed without lower-bounding checking in Line 6 of AltrALG;
the line with legend of m(0.1, b) means the lower-bounding
checking is conducted normally as in AltrALG.

1The case where “truth rests in the hands of a few.”
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Figure 3: Experiments Results

It can be noticed in Figure 3(b) that when the data size
is small(2000 to 3000), the enhancement of algorithm by
checking lower bounding entails unfortunately more running
time than the non-enhanced one, which is mainly caused by
the overhead of checking the condition of lower-bounding
pruning. When the size grows, we may easily generalize that
the running time of the enhanced algorithm increases slower
than the non-enhanced one with a ratio of O(1/ logN).

5.1.2 Evaluation on PayM

Since the greedy heuristic algorithm on PayM runs with
a linear time cost, instead of focusing on the efficiency issue,
in this subsection we investigate the relationship between
the quality of a selected jury and the given budget. More-
over, we evaluate the quality of our selection algorithm by
comparing JER and the total cost with ground truth.

JSP Traits on PayM

JSP on PayM is a classic situation where most crowd-
sourcing applications are conducted, and the influence of
budgeting is one of the essential factors in this setting. Thus,
we investigate the relationship among the budget posed and
the resulted JER, as well as the final cost.

We generate a candidate jurors set with individual error
rate mean of 0.2, variance of 0.05 and set size of 1,000;the
individual requirement is generated from the normal distri-
bution with mean value of 0.4, 0.5 and 0.6 respectively ,
variance value of 0.2. The given budget B varies from 0.1 to
0.5 and the results are shown in Figure 3(c) and Figure 3(d).
The line with m(0.3) as legend represents the performance
of jurors with mean error-rate of 0.3.

The results in Figure 3(c) again verifies the findings in
Section 5.1.1 that for jurors with individual error rate of
more than 0.5, the algorithm tends to reduce the size of the

selected jury but pay higher for each selected juror. From
Figure 3(d), we can generalize that a raising budget can
improve jury quality by reducing JER, and a candidate set
with lower individual error-rates(e.g. the one of m(0.3))
forms a better jury within same budget.

Effectiveness on PayM

By terming “Effectiveness”, we are to investigate the dis-
crepancy between the results obtained by PayALG and the
ground truth. Due to the NP-hardness of JSP on PayM,
we calculate the ground truth via enumerating all possi-
ble combinations of jurors and check whether a combination
achieves the lowest JER while satisfying the budget require-
ment. Since the running time increases exponentially with a
growing size of candidates in this enumeration method, we
generate a candidate jurors set with size of only 22. The
error-rates of these candidates follows the normal distribu-
tions with mean of 0.2 and variance of 0.05 and 0.1 respec-
tively; the individual requirement is also following a normal
distribution with mean of 0.05 and variance of 0.2. We vary
the budget from 1 to 3 with step of 0.2, and the results are
shown in Figure 3(e) and Figure 3(f). In the legend, “AP-
PX” represents the results from Algorithm 4, and “OPT”
represents the ones from ground truth.

The results from ground truth in Figure 3(e) show that
budget is indeed the constraint of forming better jury. In
Figure 3(f), its shows that the heuristic PayALG achieves
the optimal JER as ground truth 4 times out of 11. More-
over, the biggest discrepancy appears with the lowest budget
B = 0.5, and with an increasing budget, the JER given by
PayALG is getting closer to the one of ground truth, be-
cause a larger budget loosens the constraint of forming a
better though sub-optimal jury.
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5.2 Real Twitter Data
The dataset we use in this section is a previously pub-

lished collection of public twitter time-line messages, record-
ing random samples gathered in two days. We estimate in-
dividual error rate ǫi and ri from the data based on the
methods in Section 4, which use HITS and PageRank to es-
timate the error-rate of each users. The normalization of in-
dividual error-rates follows equation in Section 4.1.3. There
are in total 689,050 nodes but since most of them have very
sparse mutual ‘RT’ relationship, so we simply choose the
5,000 users with highest scores.

5.2.1 Evaluation on AltrM

For online services, efficiency is an important issue to be
considered. To evaluate whether the proposed algorithm is
a practical technique, we test it on both datasets generated
from HITS and PageRank. Both the datasets are normalized
according to the equation in Section 4.1.3 with parameter
α = 10, β = 10. We evaluate the running time by varying
size of candidate jurors from 1,000 to 5,000. The results are
shown in Figure 3(g). In the legend, “HT” stands for data
from HITS and “PR” stands for data from PageRank, and
“-B” stands for the results achieved with the lower-bounding
enhancement in Line 6, AltrALG.

As shown in Figure 3(g), the running time of the algo-
rithm without bounding enhancement on two datasets is
almost the same. But with bounding enhancement, the run-
ning time of the algorithm on data set generated by PageR-
ank(PageRank data in short) is largely reduced while that
of HITS increases. This is due to the difference between the
two datasets, that after normalization, a larger portion of
users in RageRank data has error-rates close to extremes(0
or 1) than the ones in HITS do. This distribution makes
more users in the PageRank data satisfy the condition of
using bounding enhancement: γ ∈ (0, 1) according to Lem-
ma 2 and thus avoid the unnecessary calculation of JER.
But for users in HITS, the overhead of checking condition
for lower bounding entails even more time cost.

5.2.2 Evaluation on PayM

We evaluate the performance of the approximation algo-
rithm on both HITS and PageRank datasets. Due to the
power law distribution of online user’s error-rates, the size
of the best jury converges quickly and the values of JER is
thus reduced to 0. Thus in this subsection, we focus to pro-
viding a precision and recall value of the approximation al-
gorithm. As previously mentioned, the ground truth comes
from enumeration of all possible combinations and thus en-
tails exponentially increasing time cost. Thus we retrieve
top 20 candidates via both HITS and PageRank algorithm,
and their error rates are normalized according to the equa-
tion in Section 4.1.3 with α = 10 and β = 10. To provide
meaningful budget testing variables, we vary the budget B
as 0.1%M, 1%M, 10%M and 20%M , where M is the aver-
age value of estimated requirement of all candidate users
multiplied by the number of candidate jurors. We present
the precision and recall values in Figure 3(h). In the legend,
“-Prec” stands for precision values and “-Rec” stands for
recall values.

It can be seen in Figure 3(h) that results from HITS data
have precision and recall with 1, but the results from PageR-
ank have lower resemblance with ground truth in terms of
precision and recall. As we discussed in Section 5.2.1, there

are a relatively larger number of jurors in PageRank who
have low error-rates than the ones in HITS, and this broad-
ens the feasible solution space for forming a jury and in turn
brings forward the low precision and recall values. In addi-
tion, as shown in Figure 3(i), the size of jury formed on
PageRank data is close to the one from ground truth; and
the size of jury formed on HITS always identical to ground
truth. However, despite such low precision and recall value,
the JER given by PayALG is still low enough(0.00075) for
as a credible jury.

6. RELATED WORK
Crowdsourcing Research on crowdsourcing overlaps with

several other topics like social computing, human comput-
ing, collective/collaborative intelligence, etc. It provides a
new problem-solving paradigm[2, 18] and has branched into
several areas. In database community, new types of queries
are developed to aggregate distributed knowledge. [19] pro-
poses “Qurk” to manage crowdsourced tasks as in relation-
al database. [10] propose “CrowdDB” to organize human
intelligence to solve problems that are naturally hard for
computers.

[23]considers the situation where humans are invited to
enhance a graph search procedure, and proposes an algo-
rithm to find the optimal target nodes for crowd participa-
tion. Thus the work in [23] has certain resemblance with
the problem studied in the sense of improving crowdsourc-
ing performance. Other works have also provided creative
usages of wisdom of crowd in multimedia annotation [6] and
document searching [1].

Worker Quality As illustrated in the previous sections,
crowdsourcing applications succeed when enough problem-
solvers are well organized and their efforts are harvested
intelligently. However, the overall quality of all individual
workers is also important for the quality of final output. A
well endorsed work by I., Panagiotis [13] proposes to use soft
labels to improve the quality of a task finished by crowds,
for that soft label can differentiate spam workers and bias
workers. The work in [25] provides a Bayesian model to use
maximum likelihood for inferring error rates of crowdsourc-
ing workers.

In the application of data sourcing from the crowd, [7]
proposes to use Markov Chain Monte Carlo to estimate the
error rate of the data from crowdsourcing activities. Hence,
work related to data cleaning can also be considered to rec-
oncile the confliction within a crowd [11].

In this paper, we discuss the relationship between individ-
ual worker quality and the quality of one special product,
the reliability of voting. And one major difference is that on
AMT task requesters cannot choose worker actively; how-
ever, to ask question on micro-blog service is intrinsically
equipped with the “@” markup, which enables the selection
of workers.

Expert Team Formation Another application resem-
bles the problem of finding a suitable set of users is Expert
Team Formation Problem [16]. In Expert Team Formation
Problem, the task normally has a specific requirement for
certain skills which are possessed by different candidate ex-
perts. At the same time, cost of choosing one expert is also
defined, e.g. communication cost or influence on personal
relationship etc. Therefore the Team Formation problem is
to minimize the cost while fulfilling the skills requirement.
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Besides using explicit graph constraints, Expert Team For-
mation problem based on communication activities is also
studied. In [3, 8], emails communication is used for exper-
tise identification.

7. CONCLUSION
In this paper, we study the Jury Selection Problem(JSP)

for decision making tasks on micro-blog services, whose chal-
lenges are calculating JER and finding the optimal subset
under a limited budget. We explicitly discuss the formation
of such probability and propose two efficient algorithms to
calculate it within O(n2) and O(n · log n) time respectively.

Models of altruistic users(AltrM ) and of incentive-requiring
users(PayM ) are proposed to capture characteristics of crowd-
sourcing applications. The AltrM model features the mono-
tonicity of JER on individual error rate, and JSP on AltrM
model is NP-hard. We propose an efficient algorithm for
JSP on both models.

We verified the proposed algorithms on both synthetic and
real datasets through extensive experiments.
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