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Abstract 

Background:  Many human disease phenotypes manifest differently by sex, making the development of methods for 
incorporating X and Y-chromosome data into analyses vital. Unfortunately, X and Y chromosome data are frequently 
excluded from large-scale analyses of the human genome and epigenome due to analytical complexity associated 
with sex chromosome dosage differences between XX and XY individuals, and the impact of X-chromosome inac-
tivation (XCI) on the epigenome. As such, little attention has been given to considering the methods by which sex 
chromosome data may be included in analyses of DNA methylation (DNAme) array data.

Results:  With Illumina Infinium HumanMethylation450 DNAme array data from 634 placental samples, we investi-
gated the effects of probe filtering, normalization, and batch correction on DNAme data from the X and Y chromo-
somes. Processing steps were evaluated in both mixed-sex and sex-stratified subsets of the analysis cohort to identify 
whether including both sexes impacted processing results. We found that identification of probes that have a high 
detection p-value, or that are non-variable, should be performed in sex-stratified data subsets to avoid over- and 
under-estimation of the quantity of probes eligible for removal, respectively. All normalization techniques investigated 
returned X and Y DNAme data that were highly correlated with the raw data from the same samples. We found no dif-
ference in batch correction results after application to mixed-sex or sex-stratified cohorts. Additionally, we identify two 
analytical methods suitable for XY chromosome data, the choice between which should be guided by the research 
question of interest, and we performed a proof-of-concept analysis studying differential DNAme on the X and Y 
chromosome in the context of placental acute chorioamnionitis. Finally, we provide an annotation of probe types that 
may be desirable to filter in X and Y chromosome analyses, including probes in repetitive elements, the X-transposed 
region, and cancer-testis gene promoters.

Conclusion:  While there may be no single “best” approach for analyzing DNAme array data from the X and Y chromo-
some, analysts must consider key factors during processing and analysis of sex chromosome data to accommodate 
the underlying biology of these chromosomes, and the technical limitations of DNA methylation arrays.

Keywords:  X chromosome, Y chromosome, Sex differences, X-chromosome inactivation, Sex chromosomes, DNA 
methylation, Array, Illumina DNA methylation, Batch-correction

Introduction
Many human phenotypes and diseases vary in association 
with sex chromosome complement and/or relative levels 
of gonadal hormones such as estrogens and androgens 
[1]. The earliest known sex differences arise when XY 
conceptuses grow more rapidly during preimplantation 
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cell divisions than XX conceptuses, as reported in some 
in vitro fertilization studies [2–5]. Rates of certain preg-
nancy complications such as early-onset preeclampsia 
and intrauterine growth restriction also differ by fetal 
sex [6]. After birth, health outcomes continue to vary by 
sex throughout the lifespan [1]. Thus, the consideration 
of sex differences in genomic and epigenomic studies is 
essential to deepen our understanding of human health 
and disease, however, the study of sex as a biological 
variable is complicated by many factors, including the 
availability of validated methods for analyzing the sex 
chromosomes [7].

DNA methylation (DNAme) is an epigenetic modi-
fication involving the addition of a methyl group to the 
5’ carbon of cytosine residues, usually in the context of 
cytosine-guanine dinucleotides (CpGs). In many genomic 
contexts, DNAme is associated with gene expression pat-
terns, and DNAme alterations have been identified in 
association with numerous phenotypes and diseases. The 
Illumina Infinium HumanMethylation450 (450K) and 
MethylationEPIC (EPIC) BeadChip arrays, which assess 
DNAme at  > 450,000 and > 850,000 CpGs genome-wide, 
respectively, have been particularly popular for use in 
studies interrogating human DNAme. These arrays pri-
marily assess DNAme in regions of functional relevance, 
such as promoters, gene bodies, CpG islands, and other 
regulatory regions [8]. Published DNAme analyses that 
investigate sex as a primary outcome variable are lim-
ited, but have demonstrated a strong signature of sex 
at autosomal DNAme loci [9–16]. Despite this grow-
ing body of evidence suggesting widespread sex-biased 
DNAme in the human genome, direct investigations into 
the DNAme profiles of the sex chromosomes are lim-
ited [17–22]. In fact, as many as 36% of publicly available 
450K samples on the Gene Expression Omnibus public 
data repository do not report sample sex [23], and more 
often than not, sex chromosome data are excluded from 
processed datasets [24]; both of these factors preclude 
much investigation into sex differences.

DNAme array analyses of the X and Y chromosome 
are likely uncommon due to the analytical challenges 
presented by dosage inequality and X-chromosome inac-
tivation (XCI). DNAme arrays quantify DNAme at each 
CpG as an average of both alleles, which has little bearing 
on the analysis of autosomal loci as both alleles typically 
have similar DNAme statuses, except at imprinted loci 
[25, 26]. However, in cells with more than one X chro-
mosome, the process of XCI leads to the active and inac-
tive X chromosomes having distinct DNAme profiles, 
especially at CpG island promoters where the active X 
(Xa) is lowly methylated and the inactive X (Xi) is highly 
methylated [21, 27]. Outside of gene promoters, Xi tends 
to have lower DNAme levels than Xa [27]. Thus, in XX 

samples, X chromosome DNAme quantified by array will 
be an average of two distinct molecular landscapes. By 
contrast, when the X and Y are present in single copies as 
in XY samples, there will be no DNAme signal averaging 
effect, other than theoretically in the pseudoautosomal 
regions if covered by the DNAme array. These differ-
ences complicate the data processing, analysis, and inter-
pretation of X and Y chromosome results as compared 
to autosomal data. Analysts must be aware of how data 
collection by array leads to observed DNAme values, and 
must also consider the biological validity of downstream 
statistical comparisons. Similar signal-averaging effects 
apply to the female X chromosome signatures obtained 
by other genomic analysis techniques that lack allele-
specificity, including but not limited to non-phased RNA 
sequencing, chromatin immunoprecipitation (ChIP) 
sequencing, and chromatin conformation studies such as 
Hi-C [28, 29].

Here we investigate the impact of standard process-
ing, normalization, and batch correction steps on X and 
Y chromosome DNAme data. To do this we assembled a 
cohort of Illumina Infinium HumanMethylation450 array 
data from 634 normative term human placentas from 
public datasets with raw data available in the form of 
IDAT files. We determine which processing steps should 
be done differently or in a sex-stratified manner when 
working with sex chromosome data. We also develop a 
set of biology-informed recommendations for X and Y 
chromosome DNAme data analysis, for which the analyt-
ical method of choice depends on the research question 
under study. We tested this framework by interrogating 
differential X and Y chromosome DNAme in acute-cho-
rioamnionitis-affected placental samples. Our findings 
apply to both 450K and EPIC array data as the underly-
ing probe chemistry is shared, and are also generalizable 
beyond the tissue investigated (placenta) as XCI is a pan-
tissue process.

Results
Sex mismatches or unexpected karyotypes should be 
identified and removed from datasets before processing 
and analysis
This study was conducted on human placental samples. 
As an organ originating from cells of the conceptus, the 
placenta shares the same genotype as the fetus and can 
be treated similarly to other single-donor tissues meas-
ured with Illumina’s DNAme arrays. When working 
with placenta, though, it is necessary to apply sampling 
methods designed to reduce the potential for contami-
nation with maternal tissue, such as sampling from the 
fetal side of the placenta and washing thoroughly to 
remove any traces of maternal blood. For a description 
of how maternal contamination is avoided in sampling, 
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see Methods. Contaminated samples can further be rig-
orously identified and removed from public datasets 
using the 65 SNP genotyping probes present on the 
450K array. In a cohort of 711 placental  samples with 
450K array data, 72 samples were excluded for possible 
contamination using these 65 genotyping probes; see 
Additional file  1: Figure S1. Similar genetic contami-
nation checks should be done in all tissues regardless 
of origin, but are particularly important when working 
with prenatal tissue.

Confirming that sex chromosome complement 
matches the metadata-annotated sex is a critical first 
step when the sex chromosomes will be analyzed 
downstream. Imputing sex from DNAme array data 
can also serve as a valuable quality control step to iden-
tify unintentional sample mix-ups during processing, 
inter-sample contamination, or biological conditions 
including unknown aneuploidy or disorders of sexual 
development; this step is further useful when sample 
sex is not annotated. Several sex-imputation tools are 
available for use with Illumina DNAme array data; see 
Additional file  1: Table  S1. In the present dataset,  we 
removed four samples from the dataset as the metadata 
disagreed with data-derived sex. One additional sam-
ple was identified to be likely mosaic for both 45,X and 
46,XX cells and was also removed; see Additional file 1: 
Figure S1. The demographics for the final cohort of 634 
samples are presented in Table 1.

Average XY beta values vary with chromosome 
complement
The overall distribution of DNAme on the X chromo-
some showed chromosome-wide sex differences, as 
expected. The X in XX samples exhibited higher average 
CpG island promoter DNAme than in XY samples, repre-
senting CpGs that are highly methylated on Xi and lowly 
methylated on Xa, typical of promoters undergoing XCI-
mediated DNAme. At the promoters of genes silenced 
by XCI, the combined signature of Xa and Xi DNAme 
has previously been termed “MeXiP” for Methylation of 
Xi Promoters [21]. At gene bodies, the average DNAme 
across the X chromosome was more similar between 
XX and XY samples, see probe-filtered, non-normalized 
DNAme distributions in Fig. 1.

The landscape of Y chromosomal DNAme in XY sam-
ples exhibited a range of DNAme beta values; see Fig. 1. 
While there was a peak at low DNAme values, this was 
less pronounced than seen for autosomes or for the X 
in XY cells and there was also not a clear peak at high 
DNAme values. A similar pattern was observed in blood, 
but with a slightly larger hypermethylated peak, likely 
owing to the fact that placenta tends to have less DNAme 
than other tissues; see Additional file 1: Figure S2 [30]. In 
general, the Y chromosome may exhibit more DNAme 
inter- and intra-individual variability, which could be an 
interesting area of future investigation.

Identifying probes for removal with high detection 
p‑value, but not low bead count, should be sex‑stratified 
for the Y chromosome
Probes on Illumina’s DNAme arrays with a high detection 
p-value or low bead count are typically identified and 
removed from datasets, as these metrics indicate poor 
probe performance [31, 32]. In XX samples, Y chromo-
some probes are expected to have higher average detec-
tion p-values than in XY samples, because in the absence 
of Y chromosome genetic material these probes will only 
measure background fluorescence (high detection p) [31, 
33].

We found that probe filtering in a mixed-sex cohort led 
to excessive removal of Y chromosomal probes with high 
detection p-values (359/416, or 86%), as compared to the 
proportion of probes removed from the autosomes or 
X chromosome (1.1% and 1.3%, respectively). However, 
when Y chromosome detection p-values were assessed 
in only XY (male) samples, the proportion of Y chromo-
some probes failing at this stage (0.72%) was consistent 
with the proportion of autosomal probes that fail detec-
tion p-value filtering; see Fig. 2 and Table 2. We found no 
difference in X chromosome filtering of high detection 
p-value probes with sex-stratification as compared to a 

Table 1  Cohort demographics

Demographics of the 634-sample cohort with Illumina Infinium 
HumanMethylation450 BeadChip data in IDAT format, used to evaluate effect of 
processing and analysis on X and Y chromosome DNAme signatures
* p-values are from Fisher’s exact test for categorical variables and t-tests for 
continuous variables
† EPIC normative term samples deposited in projects GSE100197, GSE108567, 
GSE98224, and GSE74738

Female (XX) Male (XY) p-value*

N 309 325

Gestational age 
[weeks, mean (SD)]

39.43 (1.12) 39.46 (1.05) 0.663

Cohort (n) 0.770

EPIC† 25 28

NHBC (GSE71678) 144 159

RICHS (GSE75248) 140 138

PlaNET ancestry

 Coordinate 1 0.28 (0.21) 0.28 (0.18) 0.968

 Coordinate 2 0.37 (0.25) 0.37 (0.21) 0.780

 Coordinate 3 0.36 (0.25) 0.35 (0.22) 0.759
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mixed-sex cohort (n = 4,979, and n = 4,979). Therefore, 
we recommend that probe filtering by detection p-value 
always be conducted in a sex-stratified manner for the Y 
chromosome in mixed-sex cohorts. 

Bead count is another commonly used quality con-
trol metric, and probes with a fluorescent signal 
reported by < 3 beads in more than a user-defined 
percentage of samples are commonly removed from 

datasets prior to analysis [32, 34]. We did not expect 
bead count calling to depend on the chromosome 
under study, as the ability of a probe to be detected by 
the scanner is independent of its fluorescence signal 
or hybridization. We found that the relative propor-
tions of low bead count probes did not differ for the X 
and Y chromosome by sex, confirming that there was 
no need to stratify by sex during this filtering step; see 
Table 2 and Fig. 2.

X Chromosome Y Chromosome

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
0

1

2

3

DNAme β value

D
en

si
ty

Sex XX XYA.

-0.25

0.00

0.25

0 50 100 150
chrX Coordinate (Mb)

β 
XX

 - 
β 

XY

All X Chromosome CpGsB.

CGI Promoter Gene Body

0 50 100 150 0 50 100 150
-0.4

-0.2

0.0

0.2

0.4

chrX Coordinate (Mb)

β 
XX

 - 
β 

XY

C.

Fig. 1  DNA methylation profiles of the X and Y chromosome. All plots show raw (non-normalized) data after probe filtering. A Density plot of X 
and Y chromosome beta values by sex. XX sample beta value densities are shown in blue, XY sample beta value densities are shown in dashed 
green. B Difference in DNAme between XX and XY samples at all CpGs along the X chromosome in the filtered dataset, difference in DNAme β 
values between the sexes (XX-XY) is plotted on the Y axis, hg19 X chromosome coordinates are plotted along the x axis. Blue highlights indicate 
PAR1 (chrX:60001–2699520), the X-transposed region (chrX:88400000–92000000), and PAR2 (chrX:154931044–155260560). C Difference in DNAme 
between XX and XY samples along the X chromosome using hg19 chrX coordinates. Plots are separated into CpGs associated with CpG island (CGI) 
promoter or gene body regions, blue highlights indicate PAR1, the X-transposed region, and PAR2
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Non‑variable probe filtering should be sex‑stratified 
for the Y chromosome
Non-variable probes, or those with very similar DNAme 
profiles across all samples within a cohort, are often 
removed in DNAme analyses as it is assumed that they 
will be uninformative in downstream differential meth-
ylation testing. The removal of non-variable probes is 
advantageous as it reduces the multiple test correction 
penalty [35].

We hypothesized that non-variability calling would 
need to be stratified by sex for the Y chromosome as 
the Y chromosome beta value in XX  samples does not 
reflect DNAme status. When indexing the variability of 

beta values per probe, Y chromosome probes in XX sam-
ples show average beta values of roughly 0.5, as both the 
methylated and unmethylated channels have similarly 
near-zero fluorescence at Y chromosome probes, and 
beta values are calculated as the ratio of methylated over 
total intensity. In contrast, in XY samples, the Y chro-
mosome displays a range of beta values. Accordingly, in 
our mixed-sex cohort no probes on the Y chromosome 
were non-variable across all samples. In contrast, when 
assessing non-variable Y chromosome probes in XY sam-
ples alone, multiple probes qualified as non-variable on 
the Y chromosome (79 probes, 19% of chrY probes), see 
Table 2; this was similar to the proportion of non-variable 
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Fig. 2  Probes failing detection p-value but not bead count steps vary by sex and chromosome. A Significantly more Y chromosome probes have 
high detection p-values on average in XX (blue) as compared to XY (green) samples. No sex difference in detection p-values was observed at 
autosomal or X chromosomal probes. B No sex difference was observed between bead counts of probes from the autosomes or X/Y chromosome

Table 2  Number of probes indexed as failing during detection p-value, bead count, and non-variable probe checks

Detection p-value indexes probes with a detection p > 0.01 in > 1% of samples, bead count refers to probes with a bead count of  < 3 in > 1% of samples, and non-
variable refers to the number of probes with a range of DNAme beta values of  < 5% across samples
* p-values from Fisher’s exact tests for categorical variables

Probe filtering step Chromosome n probes on 450k n probes filtered 
(full cohort)

n probes filtered 
(sex-stratified)

Full cohort versus sex-
stratified p-value*

Comment

Detection p-value Auto 473.864 4979 4979  < < 0.00001 Sex-stratify

X 11.232 143 143

Y 416 359 3

Bead count Auto 473.864 4805 4805 0.76 Do not stratify

X 11.232 94 94

Y 416 3 1

Non-variable Auto 473.864 154.976 154.976 0.0005 Sex-stratify

X 11.232 725 725

Y 416 0 79
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probes identified on the autosomes and X chromosomes 
(Fisher’s exact test, p  > 0.05). Thus, we concluded that 
the identification of non-variable probes on the Y chro-
mosome should be assessed only in XY samples. The 
subsequent step of overlapping a cohort-specific list of 
non-variable probes with independent probe exclusion 
lists can then be performed.

Non‑specific and polymorphic probe databases vary widely 
in coverage of X and Y chromosome
Several published lists exist to index probes on Illu-
mina’s DNAme arrays that should be removed due to 
design flaws (underlying polymorphisms or potentially 
non-specific probe sequences) [33, 36–38]. We investi-
gated several common non-specific probe resources, and 
found that (i) all indexed probes for removal from the X 
and Y chromosome, and (ii) the magnitude of X and Y 
non-specific probes indexed by each resource was quite 
similar; see Table  3. As such, we find that non-specific 
probes can be indexed on the X and Y using the same 
probe exclusion lists usually applied to the autosomes. In 
contrast, the coverage of the X and Y chromosome var-
ies widely among commonly used polymorphic probe 
exclusion lists; see Table  3. This discrepancy between 

resources appears attributable to the version of SNP 
database used to create the polymorphic probe annota-
tion, with more recent versions providing better X and Y 
chromosome coverage. The overlaps between the mul-
tiple resources indexing non-specific and polymorphic 
probes are presented in Additional file 1: Figures S3 and 
S4. Accordingly, we recommend using the most updated 
polymorphic probe exclusion lists available when work-
ing with X and Y chromosome DNAme data to ensure 
comprehensive sex chromosome coverage. Alternative 
methods to probe exclusion lists are also available; see 
Discussion.

The common polymorphic probe resources listed in 
Table  3 do not index many polymorphic probes on the 
Y chromosome, particularly those resources based on 
older SNP references. To test whether this is an artifact of 
substandard coverage of the Y chromosome by common 
SNP resources, we downloaded the complete list of Y 
chromosome SNPs (n = 611 at all allele frequencies) from 
the Y Chromosome Consortium [39] and overlapped the 
hg19 coordinates for these loci with the 50-nucleotide 
hg19 coordinates of the 450K and EPIC Y chromosome 
probes. We found that none of the Y Chromosome Con-
sortium SNPs overlapped with any Y chromosome probe 

Table 3  X and Y chromosome coverage of common resources indexing non-specific probes, and polymorphic probes

SBE indicates single base extension site

Annotation Citation Definition of non-specificity X Y

450K array non-specific probe annotations

 Zhou et al. 2017 [36] High-quality sequence match to intended target (based on internal score), with unique 30 
nucleotide 3ʹ subsequence (MASK.mapping & MASK.sub30.copy)

1267 174

 Price et al. 2013 [37]  > 40 nucleotide match with  > 90% identity and no gaps, must match at position 50 1202 146

 Chen et al. 2013 [38]  ≥ 47 nucleotide match with no gaps and a match at position 50, only best match retained 819 116

EPIC array non-specific probe annotations

 Zhou et al. 2017 [36] High-quality sequence match to intended target (based on internal score), with unique 30 
nucleotide 3ʹ subsequence (MASK.mapping & MASK.sub30.copy)

2018 217

 Pidsley et al. 2016 [8]  ≥ 47 nucleotide homology with at least one off-target locus 962 221

Annotation Citation SNP reference Definition of polymorphic X Y

450K array polymorphic probe annotations

 Zhou et al. 2017 [36] dbSNPv147 + 1KGP.phase3 MAF > 0.01 within last 5 nucleotides of probe including CpG or SBE, 
or SNPs that cause a color switch for Type I probes. (MASK.extbase, 
MASK.typeINextBaseSwitch, & MASK. snp5.GMAF1p)

145 2

 Illumina [84] dbSNPv147 Polymorphism at CpG or SBE (MAF > 0.01) 181 0

 Illumina [84] dbSNPv132 Polymorphism at CpG or SBE (MAF > 0.01) 48 0

 Price et al. 2013 [37] dbSNPv131 Polymorphism at CpG (any MAF, heterozygosity > 0.1 greater effect) 164 9

 Chen et al. 2013 [38] 1KGP.phase1 Polymorphism at CpG (any MAF) 0 0

EPIC array polymorphic probe annotations

 Zhou et al. 2017 [36] dbSNPv147 + 1KGP.phase3 MAF > 0.01 within last 5 nucleotides of probe including CpG or SBE, 
or SNPs that cause a color switch for Type I probes. (MASK.extbase, 
MASK.typeINextBaseSwitch, & MASK. snp5.GMAF1p)

253 7

 Illumina [84] dbSNPv147 Polymorphism at CpG or SBE (MAF > 0.01) 166 0

 Illumina [84] dbSNPv132 Polymorphism at CpG or SBE (MAF > 0.01) 45 0
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on either the 450K or EPIC arrays, and more importantly, 
none overlapped within the critical last five base pairs of 
a probe sequence, which Zhou et  al. found to be most 
sensitive to technical interference by sequence polymor-
phisms [36]. As such, polymorphic probe annotations 
appear to be accurate for the Y chromosome despite few 
probes being indexed for removal as compared to the 
autosomes or X chromosome; this may change in the 
future as more SNPs are indexed on the Y chromosome 
[39].

Other probe types on the X chromosome that can be 
removed based on the question of interest
When working with autosomal DNAme array data, probe 
filtering is typically restricted to poor quality, polymor-
phic, and non-specific probes. However, given the evolu-
tion of the sex chromosomes from a pair of homologous 
autosomes, the X and Y chromosomes have very high 
sequence identity at several regions, coupled with dis-
tinct sex differences in DNAme profiles. The sequence 
similarity means that more probe categories should be 
considered for removal when working with X and Y chro-
mosome data from the 450K and EPIC arrays. We first 
investigated how many probes targeted regions of high 
homology between the X and Y, including the pseudo-
autosomal regions (PAR) and the X-transposed region 
(XTR) [40, 41]. Using PAR coordinates from the UCSC 
hg19 build, we found that no probes on either the 450K or 
EPIC array targeted PAR1 or PAR2 sequences on either 
the X or Y chromosome. These PAR regions seem to have 
been excluded entirely from the Illumina DNAme array 
platforms. However, 25 probes (X chromosome) and 31 
probes  (Y chromosome) targeted the XTR on the 450K 
array; see Table 4.

Most probes that overlapped the XTR on the 450K 
array were reported to be non-specific in Zhou et  al. 
[36] (31/38), Price et  al. [37] (27/38) and Chen et  al. 
[38] (27/38) [36–38]. All probes on the 450K and EPIC 
arrays that overlap the XTR are indexed in Additional 
file  2: Table  S2 and Additional file  3: Table  S3 if users 
wish to evaluate them for non-specificity in particu-
lar datasets with packages such as UMtools [33], or to 

investigate their DNAme patterns post hoc. We suggest 
that if these probes arise in differential DNAme analyses, 
users should BLAT or BLAST [42] the individual probe 
sequences to identify and report on the confidence of the 
hybridization locations.

Probes in the promoters of cancer testis genes should 
also be considered for removal when working with X 
chromosome data, particularly if users want to evaluate 
XCI by considering promoter DNAme levels [22, 43]. 
Members of the cancer-testis gene family are normally 
expressed only in testis or cancer cells, and these genes 
tend to have high promoter DNAme in all other tissues in 
both sexes [44]. As many cancer testis genes are located 
on the X and Y chromosomes, Cotton et al. [43] recom-
mended removing these probes if evaluating X-chromo-
some inactivation as their promoter DNAme level does 
not generally correlate with XCI status [43]. We over-
lapped the 450K and EPIC probe coordinates with a 
complete list of cancer testis gene locations indexed by 
the Cancer Testis database (http://​www.​cta.​lncc.​br/) and 
identified 553 (450K) and 622 (EPIC) X and Y chromo-
some probes that target the promoters of cancer testis 
genes and should be considered for removal; see Addi-
tional file 2: Table S2 and Additional file 3: Table S3.

Finally, repetitive elements are abundant in the genome, 
and are relevant to XCI. Long interspersed nuclear ele-
ments (LINE repeats), in particular, are roughly twofold 
more abundant on the X chromosome than in the auto-
somal genome [45]. Similar to the cancer testis probes, 
in studies of XCI by promoter DNAme, CpGs in repeti-
tive elements are typically excluded from analyses due to 
cross-hybridization potential [43]. Considering all classes 
of repetitive elements indexed by RepeatMasker [46, 47], 
we identified 688 (450K) and 1975 (EPIC) probes, respec-
tively, that overlapped repetitive elements on the X and Y 
chromosome. Many of these probes are also indexed as 
non-specific in common resources [36–38], though not 
all. We provide an annotation for all X and Y chromo-
some probes indicating whether they overlap repetitive 
elements, and what type/family of repetitive element is 
overlapped for both the 450K and EPIC arrays in Addi-
tional file 2: Table S2 and Additional file 3: Table S3. For 

Table 4  Probe coverage of the 450K and EPIC arrays in areas of high X–Y chromosome homology

Category Coordinates (hg19) Coordinate source n Probes 450K n Probes EPIC

PAR1 chrX 60001–2699520 [85] 0 0

PAR2 chrX 154931044–155260560 [85] 0 0

PAR1 chrY 10001–2649520 [85] 0 0

PAR2 chrY 59034050–59363566 [85] 0 0

XTR chrX 88400000–92000000 [41] 25 59

XTR chrY 3440000–5750000 [41] 13 31

http://www.cta.lncc.br/
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probes in repetitive elements that are not flagged for 
removal by non-specific probe annotations, we recom-
mend a similar process as suggested for treatment of 
XTR probes: if these probes arise as significantly differ-
entially methylated in association with a phenotype of 
interest, users should report BLAT or BLAST results to 
provide transparent estimates of probe specificity.

Normalization effect on X and Y chromosome DNAme 
distributions does not differ between algorithms
Normalization algorithms attempt to harmonize the data 
from the Infinium I and Infinium II type probes included on 
the 450K and EPIC arrays [11, 48, 49]. Users must choose 
between several available normalization algorithms based on 
parameters such as the existence of known technical batch 
effects, or the number of tissues included in a study [50]. 
As normalization transforms beta value distributions, it has 
been posited that sex differences in the distribution of X and 
Y chromosome beta values may interact with normaliza-
tion [51]. Here, we assessed the extent to which raw X and 
Y chromosome data (pre-normalization) differed from data 
post-normalization to assess potential damage inflicted by 
unsuitable normalization procedures, and to understand 
whether the impact on X and Y chromosome data should be 
an important consideration in the choice of normalization 
algorithm.

We applied seven commonly used normalization algo-
rithms to our full dataset: functional (with and with-
out noob) [52], beta-mixture quantile (BMIQ) (with 
and without noob) [53], dasen (with and without noob) 
[32], and noob alone [54]. Each of these algorithms was 
applied to the full dataset. For each sample, we calculated 
Spearman’s rho and the root mean square error (RMSE) 
of (i) the X chromosome and (ii) the Y chromosome beta 
values before versus after normalization.

For both the X and Y chromosome, all methods 
returned high Spearman correlation coefficients and 
low RMSE values between raw and normalized DNAme 
values; see Additional file 1: Figure S5 and Table S4. For 
the female X, all normalization methods yielded high 
intrasample correlation values between 0.9959–0.9996; 
for the male X the range was 0.9842–0.9994, for the Y, the 
range was 0.9933–0.9979. The RMSE ranges were very 
similar and low for all normalization methods: female X 
0.023–0.059, male X 0.019–0.068, Y 0.033–0.063. These 
findings support overall similarity between methods and 
suggest that between-algorithm effects of normalization 
on X and Y chromosome DNAme distributions may not 
need to be a primary consideration when selecting a nor-
malization method. See Discussion for a further com-
mentary on the selection of normalization algorithm 
in analyses of autosomal sex differences or the X and Y 
chromosome.

Batch correction with sva ComBat does not substantially 
differ with sex‑stratification
Several methods have been proposed to correct DNAme 
data for systematic technical variation or batch effects, 
most of which rely on statistical adjustment or estimation 
and removal of batch effects prior to statistical analy-
ses, using tools such as sva ComBat [55, 56]. Proper use 
of ComBat requires (i) provision of a model describing 
all variables of interest, and (ii) application to only bal-
anced datasets where batch variables are not confounded 
with variables of interest [57–59]. In studies where the X 
and Y data will be analyzed, sex must be considered as 
a potential confounding variable in all applications of 
ComBat batch correction. We therefore sought to evalu-
ate whether X and Y chromosome DNAme distribu-
tions were altered before and after ComBat correction in 
mixed-sex and sex-stratified cohorts.

We applied ComBat to adjust for the cohort of origin 
batch variable (EPIC, NHBC, or RICHS), see Table  1, 
in: (i) the full 634-sample cohort, (ii) sex-stratified XX 
female-only (n = 309) and XY male-only (n = 325) data-
sets, and (iii) a randomly stratified cohort that was bal-
anced by sex (n = 322, n = 312). We confirmed that the 
cohort of origin variable was balanced across all dataset 
splits (sex-stratified Fisher’s exact test p = 0.78, randomly 
stratified dataset Fisher’s exact test p= 0.87). The ran-
domly stratified cohort served as a negative control to 
assess whether effects on DNAme distributions before 
versus after batch correction were due to halving the 
dataset during sex-stratification (dataset size) rather than 
the sex-stratification itself. Spearman’s rho and the RMSE 
were calculated for the beta values of each sample before 
versus after batch correction.

The beta values at sex chromosomal and autosomal loci 
after Combat  adjustment were very similar to the pre-
ComBat beta values for the same chromosomes, indi-
cated by high average Spearman’s rho and RMSE values. 
The similarity of the data pre- and post-ComBat data-
set held across all cohort splits: i.e., the full cohort, sex-
stratified, or randomly-stratified cohorts for the X or Y 
chromosome in either sex; see Additional file 1: Table S5 
and Figures S5 and S6. These results suggest that ComBat 
adjustment for a sex-balanced batch variable can be per-
formed without sex-stratifying the data while preserving 
the distributions of X and Y chromosome DNAme data.

Analytical methods for X and Y chromosome data should 
vary based on research question
DNAme data analysis typically takes the form of testing 
for differences in mean DNAme values associated with a 
phenotype of interest. However, given the sex differences 
in DNAme associated with XCI and sex chromosome 
complement, it is not biologically meaningful to directly 
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compare X chromosome DNAme array data between 
male and female samples. Additionally, Y chromosome 
DNAme data should only be analyzed in samples pos-
sessing a Y chromosome [33].

Recently, a classification scheme was proposed by Beltz 
et al. [60] to guide analysts in structuring studies of bio-
logical sex or sex differences; their recommendations are 
based on the underlying structures of the data being ana-
lyzed [60]. Under this scheme, DNAme patterns on the 
X and Y chromosome would be characterized as a major 
qualitative sex difference, and consequently, only within-
sex comparisons (i.e., sex-stratified analyses) are bio-
logically valid for X and Y DNAme data. In practice, this 
means that samples of the same sex can validly be com-
pared across disease status, or with respect to a pheno-
type of interest, see Table 5. In addition, the involvement 
of DNAme in the process of XCI allows for a second type 
of analysis: evaluating the extent of DNAme-associated 
silencing by XCI in XX female samples. For examples of 
XCI-based analyses, see [22, 43].

Application of revised processing workflow enables 
investigation of X and Y chromosome DNAme alterations 
associated with acute chorioamnionitis
For practical application of our recommended modifi-
cations to DNAme processing pipelines, we have devel-
oped a straightforward R workflow which enables the 
appropriate integration of X and Y chromosome data in 
processing mixed-sex DNAme cohorts; see Fig.  3 and 
available code at https://​github.​com/​amy-​inkst​er/​XY_​
Proce​ssing_​Analy​sis (Additional file 4).

As a proof-of-principle, we applied our workflow to re-
analyze a previously published placental DNAme dataset, 
see Table 6, to test for differential X and Y chromosome 
DNAme in acute chorioamnionitis (aCA), an inflamma-
tory condition characterized by infiltration of maternal 
neutrophils across the chorioamniotic membranes [61]. 
Our original analysis of this 44-sample cohort in Konwar 
et al. [61] focused on autosomal DNAme alterations [61]. 
Here, DNAme associated with aCA status was evaluated 
on the X and Y chromosome using sex-stratified linear 
models, adjusting for gestational age at birth. After mul-
tiple test correction, no CpGs were differentially meth-
ylated at FDR < 0.05 on the male X or Y with respect to 
aCA status. One CpG in the gene body of NKAP was 

differentially methylated with aCA on the female X 
(Δβnon-aCA – aCA = 0.048, FDR < 0.05); see Fig. 4. This gene 
encodes an activating protein for nuclear factor kappa 
beta (NF-кβ), which is a regulator of the innate immune 
response [62, 63].

Discussion
A growing body of evidence suggests that autosomal 
DNAme sex differences are abundant in human tissues 
[9, 10, 14, 64, 65]. Unfortunately, few studies to date have 
investigated DNAme profiles of the X or Y chromosome, 
especially in large population-based cohorts [17–20]. 
This exclusion is an analytical choice, as data from all 
chromosomes including the X and Y are de facto col-
lected by all genome-wide assays, including DNAme 
array, reduced-representation bisulfite sequencing, and 
whole-genome bisulfite sequencing. There is ample evi-
dence from animal models that the sex chromosomes 
specifically, as opposed to gonadal hormones, drive a 
large amount of variability in phenotypic sex differ-
ences in a variety of tissues and disease contexts [66, 67], 
underscoring the importance of including the X and Y 
chromosomes in all classes of biomedical ‘omics studies.

This work demonstrates how the X and Y chromosome 
can be incorporated into DNAme array studies going 
forward. An important finding was the requirement to 
assess probe failure by high detection p-value thresh-
olding only in XY samples for the Y chromosome. If this 
step is conducted in all samples of a mixed-sex cohort 
simultaneously, the majority of Y chromosome probes 
on the 450K array fail this step. However, when assessed 
only in male (XY) samples, only 3 out of 416 Y chromo-
some probes failed, allowing many more Y chromosome 
probes to be retained for downstream analysis. Several 
automated methods exist to simplify detection p-value 
calling and removal into single R functions: these meth-
ods in most cases would excessively exclude Y chromo-
some probes if applied to mixed sex cohorts. As such, 
detection p-value filtering  should be undertaken with 
caution, particularly if using single-step functions during 
processing.

We also found that a large degree of variability in 
resources indexing non-specific and polymorphic 
(SNP) probes, with respect to their coverage of the X and 
Y chromosomes. For non-specific probes lists, a recent 

Table 5  Statistical comparisons that can be made with X and Y chromosome DNAme array data

Study design Method

Case vs. control Sex-stratified (e.g., X chromosome DNAme in XX female case versus unaffected XX female controls)

X-chromosome inactivation Use average CpG island promoter DNAme to evaluate whether X linked genes escape or are 
subject to XCI, as demonstrated in [22, 43]

https://github.com/amy-inkster/XY_Processing_Analysis
https://github.com/amy-inkster/XY_Processing_Analysis
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annotation based on empirical evidence has increased 
the stringency for indexing cross-hybridization, and rec-
ommended more probes be excluded than previously 
indexed [36]. The authors of this resource, Zhou et  al. 
[36], found evidence for non-specificity with as little as 
a 13-nucleotide homology. Accordingly, we strongly 

recommend selecting and using empirically validated 
non-specific probe lists such as this [36].

Regarding polymorphic probes, variable X and Y chro-
mosome coverage appeared to be mainly mediated by the 
age of the respective annotations or probe exclusion lists. 
Though using up-to-date polymorphic probe resources 

Legend

Use updated methods and resources 

Stratify by sex

New step (will depend on analysis) 

X chromosome data 
from XX

Analyze
Differential DNAme by group

XCI investigation

X chromosome data
from XY

Analyze
Differential DNAme by group

Y chromosome data 
from XY

Analyze
Differential DNAme by group

Raw Data 
.IDATs or intensity data

Processed Data
β or M values

Sample Quality Control
Check sample identity

Check sample sex (X/Y intensity)

Probe Filtering 
Detection p-value

Beadcount

Polymorphic

Non-specific

Non-variable

Repetitive elements

X-transposed region

Cancer testis genes

Normalization

Batch Correction

Fig. 3  Suggested pipeline for processing and analysis of X and Y chromosome DNAme array data. Overview of all stages of processing from raw 
data through to processed β or M values. Colors are used to indicate where updated methods should be used for best results (dark red), which 
steps need to be stratified by sex (light red), and where new processing/analysis steps are proposed to enable informative sex chromosome 
investigations (yellow)
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improves coverage of the X and Y chromosome, this is 
not an ideal solution. An improved approach is offered by 
the UMtools package, which was developed to capitalize 
on patterns in the underlying fluorescence intensity data 
reported by Illumina’s DNAme probes [33]. The data-
driven tools available in this package enable discernment 
between genetic interference with DNAme probes and 
likely true genetically-influenced DNAme (i.e., methyla-
tion quantitative trait loci). Further, identifying genetic 
interference within the dataset itself enables population-
specific calling of polymorphic probes, offering a sub-
stantial advantage over previous probe exclusion lists 
when the sample size is large, or includes populations 
that have been historically underrepresented in polymor-
phism databases [33].

Normalization and ComBat batch correction were 
evaluated in this cohort to assess any potential unsuit-
ability of applying these techniques to X and Y chromo-
some DNAme distributions. We found no evidence for 
significant alteration of the X or Y chromosome DNAme 
distributions before versus after ComBat treatment in a 
mixed-sex cohort, which is reassuring as several reports 
have highlighted the potential for ComBat to introduce 
false positives when applied other than as intended by 
the package authors [57–59]. This is particularly relevant 
when studying the X and Y chromosome, as sex must be 
considered as a potential confounder, and should there-
fore be balanced by all other variables of interest for 
appropriate application of ComBat.

We similarly found no large differences between raw 
and normalized DNAme data distributions for the X and 
Y chromosome. These findings suggest similarity between 
algorithms, but are independent of consistent  effects 
that may be induced by all methods at autosomal or sex 
chromosome loci when retaining the X and Y chromo-
some in a dataset during normalization or ComBat, 
which is an active area of research [51]. Adjusted meth-
ods are now available for both dasen and functional 
normalization that normalize the sex chromosomes and 
autosomes independently and with a revised technique, 
intended to prevent subtle systematic alteration of data 
induced at both autosomal and X chromosome loci 

during normalization of mixed-sex cohorts, particularly 
when sample size is small [51]. These adjusted methods 
should be considered for use in all studies of the X or Y 
chromosome, and in studies of autosomal sex-associ-
ated DNAme. However, in cases where raw data are not 
available and choice of normalization algorithm is thus 
restricted to older methods that can be applied without 
IDAT files or fluorescent intensities, such as BMIQ, our 
results suggest limited between-algorithm differences in 
effect on X and Y DNAme distributions.

The sex-differential DNAme distributions observed on 
the X and Y chromosome restrict the number of statisti-
cally valid analytical approaches that can be conducted at 
these loci to sex-stratified and XCI-based studies. These 
analytical approaches would apply both to the analysis 
of single CpG sites to identify differentially methylated 
CpGs (DMCs), and to the analysis of differentially meth-
ylated regions (DMRs) that comprise multiple CpGs. 
When regions are defined prior to statistical testing such 
as in the discovery of co-methylated regions (CMRs) [68], 
it could be interesting to identify CMRs in a mixed sex 
cohort, to enable the study of functional units of DNAme 
that behave similarly in both sexes with respect to a phe-
notype of interest, perhaps even if the analysis will be 
sex-stratified.

The ability to analyze X and Y chromosome DNAme 
data could prompt extensive reanalysis of existing data-
sets, and opens a variety of novel research avenues for 
future investigation. In particular, the X and Y should be 
considered in analyses of any conditions which exhibit 
sex-differences, such as many immune-related processes 
[66, 69, 70]. Additional investigations into genetically-
mediated DNAme on the sex chromosomes may also 
prove interesting. For example, very few SNPs on the Y 
chromosome are proximal to CpGs covered by the 450K 
or EPIC arrays [36, 37], though literature indicates that Y 
chromosome DNAme may be strongly genetically medi-
ated in blood, regardless of SNP proximity [17]. Future 
research should also investigate the extent to which X 
chromosome DNAme profiles are affected by within-
tissue heterogeneous XCI versus skewed XCI (preferen-
tial inactivation of one parental allele), if at all. Should 
DNAme patterns at certain loci vary with degree of 
skewing, this would have implications for studies of clon-
ally derived tissues, and tissues for which XCI skewing 
naturally increases with age, including blood and buccal 
swab [71–73].

Conclusions
In summary, our study highlights the usability of X and Y 
chromosome DNAme array data. Importantly, with care-
ful consideration of sample sex during the probe filtering 
and analysis stages, most Illumina DNAme array datasets 

Table 6  Acute chorioamnionitis dataset demographics

Demographics of 44 chorionic villus samples from GSE115508 used for proof-of-
principle analysis
* p-values are from Fisher’s exact test for categorical variables and t-tests for 
continuous variables

Female (XX) Male (XY) p-value*

N 20 24

aCA diagnosis [n (%)] 9 (45.0%) 13 (54.2%)

Gestational age [weeks, 
mean (SD)]

31.00 (2.13) 31.67 (2.82) 0.390
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will be suitable for sex chromosome analysis. This is 
a young area of  research that will continue to evolve as 
new discoveries are made. We hope that this method will 
facilitate the deeper investigation of sex chromosome 
DNAme profiles in human phenotypes and diseases, par-
ticularly in those contexts in which sex differences are 
abundant.

Methods
All analyses were performed in R version 4.1.2 [74]. The 
color-blind friendly palettes used in all plots are from Tol 
2021 [75].

Cohort assembly
Illumina DNAme array data were assembled from 
949 human placental samples with publicly avail-
able Illumina Infinium HumanMethylation450 array 
data (GSE71678, GSE74738 GSE75248, GSE98224, 
GSE100197, GSE108567). We prioritized  selection of 

our own datasets, where samples were taken from the 
fetal facing side of the placenta, avoiding any potentially 
contaminating maternal decidua tissue, and washed sev-
eral times to eliminate the potential for contaminating 
maternal blood. Any suspected contamination in public 
datasets was identified and excluded during subsequent 
quality control steps. Inclusion criteria were: data availa-
ble in IDAT format, no preeclampsia, birth  > 37 weeks of 
gestation. After applying inclusion criteria, 711 samples 
remained for analysis.

Quality control and probe filtering
Sample sex was assessed using methods from the 
ewastools R package [76]. Sample contamination was 
identified using the ewastools call_genotypes() function, 
and samples with a high probability of contamination 
based on a snp_outliers() value of > −4 were removed, as 
recommended in the original publication [76]. Follow-
ing quality control, 634 samples remained for analysis. 
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Each step of probe filtering (rs, detection p > 0.01, bead 
count < 3, polymorphic, non-specific) was evaluated in 
the full cohort, as well as in sex-stratified cohort halves 
(m = 325 XY males, n = 309 XX females). Probes were 
removed in all cases if they reported a detection p > 0.01 
in > 1% of samples, or a bead count < 3 in > 1% of samples. 
To remove non-variable probes in a statistically valid way, 
probe variability was first indexed within the test dataset, 
and then overlapped with a tissue-specific probe exclu-
sion list [35]. Here, we defined non-variable probes as in 
Edgar et al. [35] as probes with less than a 0.05 range in 
beta values between the 10th–90th centile in our cohort, 
and removed these probes from the dataset if they were 
also reported in the independent list of placenta non-var-
iable probes from Dieckmann et al. [35, 77].

Normalization
Seven normalization procedures were selected based on 
consistent demonstration of their high performance in 
the literature [48, 78–80]: functional, functional + noob, 
beta-mixture quantile (BMIQ), BMIQ + noob, dasen, 
dasen + noob, and noob normalization alone. We com-
puted the Spearman correlation coefficient (rho)  and 
root-mean square errors (RMSE) of each sample’s raw 
versus normalized data. Literature precedent exists for 
evaluating normalization techniques with RMSE values 
exists, including for the sex chromosomes [51, 81]. As 
a supplement we have also included Spearman correla-
tion coefficients, as this metric has been previously uti-
lized for comparing overall sample similarity in DNAme 
arrays, as well as for monitoring normalization and batch 
correction effects on DNAme data in technical replicate 
samples [82, 83].

Batch correction
To assess bias introduction during batch correction with 
sva Combat [55], batch correction was evaluated using 
three cohort splits: (i) the full 634-sample cohort, (ii) sex-
stratified XX female-only (n = 309) and XY male-only 
(n = 325) datasets, and (iii) a randomly stratified cohort 
that was balanced by sex (n = 322 (49% female), n = 312 
(49% female)). The randomly stratified cohort served as 
a negative control to assess whether differences observed 
after batch correction applied to the sex-stratified and 
full datasets were due to dataset size rather than the sex-
stratification itself. The cohort of origin was provided to 
ComBat as the batch variable (RICHS, NHBC, and EPIC, 
see Table  1), no outcomes of interest were provided via 
linear model to the ComBat function. Batch correction 
was evaluated by computing the Spearman correlation 
coefficient and RMSE for each sample before versus after 
ComBat.

Application of the method to an external dataset
As an application of our processing method, we down-
loaded Illumina Infinium MethylationEPIC DNAme data 
for 79 chorionic villus, amnion, and chorion samples 
from the GSE115508 dataset profiling acute chorioam-
nionitis. After excluding amnion and chorion tissue sam-
ples and removing 4 technical replicates, 44 chorionic 
villus samples remained, all of which were confirmed to 
be genetically distinct, and which matched annotated 
sample sex based on X and Y chromosome fluorescence 
intensity data. Data were noob normalized, and non-
specific and polymorphic probes were removed using the 
Zhou et  al. annotation (X chromosome = 2,223 probes 
removed; Y chromosome = 217 probes removed) [36]. 
Probes with a bead count < 3 in > 5% of samples were 
excluded (17 CpGs eligible to remove from the X chro-
mosome, 1 from the Y), while detection p-value calling 
was performed stratified by sex to exclude probes with 
a detection p > 0.01 in > 5% of samples (556 CpGs eligi-
ble to remove from the X chromosome, 0 from the Y). 
After filtering, 16,353 X chromosome and 320 Y chromo-
some CpGs remained for analysis. X and Y chromosome 
DNAme data were retained and converted to M values 
for all statistical analysis, which consisted of linear mod-
elling in sex-stratified analyses, adjusting for gestational 
age at birth.
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